坐标系与参数方程考前冲刺专题练习(五)附答案新高考高中数学

合集下载

坐标系与参数方程考前冲刺专题练习(一)附答案新教材高中数学

坐标系与参数方程考前冲刺专题练习(一)附答案新教材高中数学
评卷人
得分
三、解答题
4.(本小题满分12分)
已知直线 的参数方程: ( 为参数)和圆 的极坐标方程: .
(1)将直线 的参数方程化为普通方程,圆 的极坐标方程化为直角坐标方程;
(2)求直线 与圆 相交所截得弦长.
5.在极坐标系中,从极点 作直线与另一直线 相交于点 ,在 上取一点 ,使 .
(1)求点 的轨迹方程;
8.已知圆的极坐标方程为: .将极坐标方程化为直角坐标方程;
9.若两条曲线的极坐标方程分别为 与 ,它们相交于A,B两点,求直线AB的极坐标方程
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.A
第II卷(非选择题)
请点击修改第II卷的文字说明
Байду номын сангаас评卷人
得分
二、填空题
2.
3.
评卷人
得分
三、解答题
4.
5.(1) ;(2) .
6.
7.解:C1: . 得t= ,代入①,化简得x2+y2=2x.
又x= ≠0,∴C1的普通方程为(x-1)2+y2=1(x≠0).……………………6分
圆C1的圆心到直线l:y=x- 的距离d= = .
所求弦长=2 = .……………………10分
8.
9.
A. ( ).B. ( ).
C. ( ).D. ( ).
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.参数方程 为参数)化为普通方程为___________.
3.已知曲线 的参数方程为 ( 为参数), 在点 处的切线为 ,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,则 的极坐标方程为_____________.(汇编年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))(坐标系与参数方程选讲选做题)

坐标系与参数方程强化训练专题练习(五)附答案新高考高中数学

坐标系与参数方程强化训练专题练习(五)附答案新高考高中数学
三、解答题
4.在平面直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立坐标系.已知点 的极坐标为 ,直线的极坐标方程为 ,且点 在直线上.
(1)求 的值及直线的直角坐标方程;
(2)圆c的参数方程为 ,( 为参数),试判断直线与圆的位置关系.(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))坐标系与参数方程:
(A) π(B) π(C) π(D) π(汇编重庆理)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.在极坐标系中,点(2, )到直线ρsinθ=2的距离等于_________.(汇编年高考北京卷(理))
3.在极坐标系中,圆 与直线 相切,则实数 的值为____.
,或
评卷人
得分
从而直线的直角坐标方程为
(Ⅱ)由已知得圆 的直角坐标方程为
所以圆心为 ,半径
以为圆心到直线的距离 ,所以直线与圆相交
5.选修4—4:坐标系与参数方程
解:将曲线 化为直角坐标方程得:

即 ,
圆心到直线的距离 ,
∴曲线 相离.
6.解:(1)圆 ,即
圆 的直角坐标方程为: ,即
直线 ,即 则直线的直角坐标方程为:
5.已知曲线 的极坐标方程为 ,曲线 的极坐标方程为 ,判断两曲线的位置关系.
6.在极坐标系下,已知圆 和直线 。
(1)求圆 和直线 的直角坐标方程;
(2)当 时,求直线 与圆 公共点的极坐标。
7.在极坐标系中,已知圆 ( )与直线 相切,求实数a的值.
8.在极坐标系中,已知点 , ,求以 为直径的圆的极坐标方程.
9.求曲线C1: 被直线l:y=x- 所截得的线段长.

2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)

2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)

2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。

坐标系与参数方程考前冲刺专题练习(三)附答案高中数学

坐标系与参数方程考前冲刺专题练习(三)附答案高中数学
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.在极坐标系中,圆心坐标是 ( ),半径为 的圆的极坐标方程是…()
A. ( ).B. ( ).
C. ( ).D. ( ).
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.(理)已知两曲线的参数方程分别为 (0≤<π)和 ,则它们的交点坐标为.
(文)若 ,则函数 的单调递增区间是.
3.直线 ( 为参数, 为常数且 )被以原点为极点, 轴的正半轴为极轴,方程为 的曲线所截,求截得的弦长.
评卷人
得分
三、解答题
4.已知圆C的参数方程为 ,若P是圆C与x轴正半轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l,求直线l的极坐标方程.
5.若两条曲线的极坐标方程分别为 与 ,它们相交于 两点,求线段 的长.
6.在极坐标系中,圆 的方程为 ,以极点为坐标原点,极轴为 轴的正半轴建立平面直角坐标系,直线 的参数方程为 ( 为参数),判断直线 和圆 的位置关系.
(2)将直线l的参数方程化为直角坐标方程,得 .…………………6分
令 ,得 ,即 点的坐标为(2,0).
又曲线 为圆,圆 的圆心坐标为(1,0),半径 ,则 .…………8分
所以 .………………………………10分
9.证明:以F为极点,极轴与x轴正向重合建立极坐标系.

极坐标及参数方程高考题练习含答案

极坐标及参数方程高考题练习含答案

极坐标系与参数方程高考题练习2014年一.选择题1. (2014)曲线1cos 2sin x y θθ=-+⎧⎨=+⎩〔θ为参数〕的对称中心〔 B 〕.A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上2.(2014)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位。

直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为〔 D 〕〔A 〕14 〔B 〕214 〔C 〕2 〔D 〕223(2014) (2).〔坐标系与参数方程选做题〕假设以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段()101y x x =-≤≤的极坐标为〔 〕 A.1,0cos sin 2πρθθθ=≤≤+ B.1,0cos sin 4πρθθθ=≤≤+C.cos sin ,02πρθθθ=+≤≤ D.cos sin ,04πρθθθ=+≤≤【答案】A 【解析】1y x =-()01x ≤≤10sin cos 2πρθθθ⎛⎫∴=≤≤ ⎪+⎝⎭所以选A 。

二.填空题1. (2014)〔选修4-4:坐标系与参数方程〕曲线1C 的参数方程是⎪⎩⎪⎨⎧==33t y tx ()为参数t ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ,则1C 与2C 交点的直角坐标为_______.2. (2014)直角坐标系中,倾斜角为4π的直线l 与曲线2cos 1sin x C y αα=+⎧⎨=+⎩:,〔α为参数〕交于A 、B 两点,且2AB =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________. 3 (2014)直线l 的参数方程为⎩⎨⎧+=+=t y t x 32〔t 为参数〕,以坐标原点为极点,x 正半轴为极轴建立极坐标系,曲线C的极坐标方程为)20,0(0cos 4sin 2πθρθθρ<≤≥=-,则直线l 与曲线C 的公共点的极经=ρ____5____. .【答案】5 【解析】4 (2014)曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是。

高考数学压轴专题(易错题)备战高考《坐标系与参数方程》基础测试题附答案解析

高考数学压轴专题(易错题)备战高考《坐标系与参数方程》基础测试题附答案解析

新高考数学《坐标系与参数方程》专题解析一、131.如图,扇形的半径为1,圆心角150BAC ∠=︒,点P 在弧BC 上运动,AP mAB nAC =+u u u v u u u v u u u v,则3m n -的最大值是()A .1B .3C .2D .23【答案】C 【解析】 【分析】以A 为原点可建立坐标系,设()cos ,sin P θθ,0150θ≤≤o o;根据AP mAB nAC=+u u u v u u u v u u u v 可求得cos 3sin 2sin m n θθθ⎧=+⎪⎨=⎪⎩,从而得到()32sin 60m n θ-=+o,利用三角函数值域求解方法可求得结果. 【详解】以AB 为x 轴,以A 为原点,建立坐标系,如下图所示:设()cos ,sin P θθ,0150θ≤≤o o ,则()0,0A ,()10B ,,31,22C ⎛⎫- ⎪ ⎪⎝⎭()cos ,sin AP θθ∴=u u u v ,()1,0AB =u u u v ,3122AC ⎛⎫=- ⎪ ⎪⎝⎭u u u vAP mAB nAC =+u u u v u u u v u u u v Q 3cos 21sin 2m n nθθ⎧=-⎪⎪∴⎨⎪=⎪⎩,解得:cos 32sin m n θθθ⎧=⎪⎨=⎪⎩ ()33sin 2sin 60m n θθθ∴-=+=+o0150θ≤≤o o Q 6060210θ∴≤+≤o o o ()1sin 6012θ∴-≤+≤o132m n ∴-≤-≤,即3m n -的最大值为2本题正确选项:C 【点睛】本题考查利用圆的参数方程求解最值的问题,关键是能够建立坐标系,利用圆的参数方程将问题转化为三角函数最值的求解问题.2.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A .25B .213C .4D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=, ∴椭圆的焦距为29425-=,故选A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.3.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

极坐标与参数方程高考题专题练习

极坐标与参数方程高考题专题练习

1.在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,以分别为与轴,轴的交点(1)写出的直角坐标方程,并求出的极坐标.(2)设的中点为,求直线的极坐标方程.2.已知曲线:(为参数),:的参数方程(为参数)(1)化,的方程为普通方程,并说明它们分别表示什么曲线.(2)若上的点对应的参数为,为上的动点,求中点到直线:(为参数)距离的最小值.3.已知曲线:(为参数),:的参数方程(为参数)(1)指出,是什么曲线,并说明与的公共点的个数.(2)若把,上各点的纵坐标都压缩为原来的一半,分别得到曲线,,写出,参数方程,与公共点的个数和与公共点个数是否相同,说明理由.4.在在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.5.已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段长度.6.已知圆的参数方程为,若是圆与轴正半轴的交点,以坐标原点为极点,轴正半轴为极轴建立极坐标系,试求过点的圆的切线的极坐标方程.7.在极坐标系中,已知圆的圆心坐标为,半径,求圆的极坐标方程.8.在平面直角坐标系中,动圆,的圆心为,求的取值范围.9.已知圆锥曲线:(为参数),点、分别是圆锥曲线的左、右焦点,点为圆锥曲线上的上顶点,求经过点且垂直于直线的直线的方程.10.求圆被直线(为参数)截得的弦长.11.已知直线的参数方程(为参数),是椭圆上的任意一点,求点到直线距离的最大值.12.已知圆,直线,求过点且与直线垂直的直线的极坐标方程。

13.已知直线的参数方程为(为参数),曲线参数方程(为参数)(1)将曲线的参数方程化为普通方程.(2)若直线与曲线相交于点,两点,试求线段的长.14.已知在一个极坐标系中,定点,动点对极点和点的张角,在的延长线上取一点,使,当在极轴上方运动时,求点的轨迹的极坐标方程.15.设是曲线:(为参数,)上任意一点(1)将曲线化为普通方程.(2)求的取值范围.16.在平面直角坐标系中,圆参数方程(为参数),直线经过点,倾斜角.(1)写出直线的参数方程.(2)设与圆交于点,两点,求点到,两点的距离之积.17.在曲线:(为参数)上求一点,使它到直线:(为参数)的距离最小,并求出该点坐标和最小距离.18.以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心,为半径.(1)求直线的参数方程和圆的极坐标方程.(2)试判定直线和圆的位置关系.19.已知圆参数方程(为参数),若是圆与轴正半轴的交点,以圆心为极点,轴正半轴为极轴建立极坐标系,求过点的圆的切线的极坐标方程.。

(完整版)坐标系与参数方程典型例题(含高考题----答案详细)

(完整版)坐标系与参数方程典型例题(含高考题----答案详细)

选修4-4《坐标系与参数方程》复习讲义一、选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系:① 理解坐标系的作用.② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. ④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.2.参数方程:① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM为终边的∠XOM 叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ.4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

坐标系与参数方程考前冲刺专题练习(一)带答案人教版高中数学新高考指导

坐标系与参数方程考前冲刺专题练习(一)带答案人教版高中数学新高考指导

高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.点P (1,0)到曲线⎩⎨⎧==ty t x 22(其中参数t ∈R )上的点的最短距离为( )A .0B .1C .2D .2(汇编全国理,6)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.在平面直角坐标系xoy 中,以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点(1,3)-化为极坐标为_______________.3.设曲线C 的参数方程为2x t y t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________(汇编年高考江西卷(理))(坐标系与参数方程选做题) 评卷人得分 三、解答题4.极坐标系与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为2,sin .x t α⎧⎨⎩=+tcos αy =(t 为参数).曲线C 的极坐标方程为ρ2sin θ=8cos θ.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值.5.选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,设动点P ,Q 都在曲线C :12cos 2sin x y θθ=+⎧⎨=⎩,(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A (1,0)间的距离为d ,求d 的取值范围.6. 已知直线l 的参数方程:12x t y t =⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程: )4sin(22πθρ+=. (Ⅰ)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;(Ⅱ)判断直线l 和圆C 的位置关系.7.已知A 是曲线12sin ρθ=上的动点,B 是曲线12cos()6πρθ=-上的动点,试求线段AB 长的最大值.8.已知圆锥曲线C 的极坐标方程为θθρ2cos 1sin 8+=,以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,求曲线C 的直角坐标方程,并求焦点到准线的距离。

坐标系与参数方程考前冲刺专题练习(一)附答案人教版高中数学高考真题汇编

坐标系与参数方程考前冲刺专题练习(一)附答案人教版高中数学高考真题汇编
A.0B.1C. D.2(汇编全国理,6)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.直线 ( 为参数, 为常数)恒过定点▲.
3.已知曲线 ( 为参数)与 轴, 轴交于 、 两点,点 在曲线 上移动, 面积的最大值为14.
评卷人
得分
三、解答题
4.(选修4—4:坐标系与参数方程)
5.
6.解:⑴ ------4分
⑵设 ,
∴ (其中,
当 时, ,∴ 点到直线 的距离的最小值为 。------10分
7.(Ⅰ) (0≤θ≤π,θ为参数)……………………………………4分
(Ⅱ)设点P的坐标为 ,则
z=x+2y= = = .…………6分
∵0≤θ≤π,∴ ,∴ ,
∴当 ,即θ=π时,z=x+2y取得最小值是- ;
⑵设点 在曲线 上,求 点到直线 距离的最小值.
7.已知曲线C:3x2+4y2-6=0(y≥0).
(Ⅰ)写出曲线C的参数方程;
(Ⅱ)若动点P(x,y)在曲线C上,求z=x+2y的最大值与最小值.
8.过抛物线y2=2px(p>0)的焦点F任作一弦AB=4p,建立适当的极坐标系,求OA的极角.(O为极点)
9.设点P在曲线 上,点Q在曲线 上,求 的最小值.
【参考答案】***试卷处理标记,请不要删除
评卷人
Байду номын сангаас得分
一、选择题
1.D
解析:B
解法一:将曲线方程化为一般式:y2=4x
∴点P(1,0)为该抛物线的焦点
由定义,得:曲线上到P点,距离最小的点为抛物线的顶点.
解法二:设点P到曲线上的点的距离为d

高考数学压轴专题新备战高考《坐标系与参数方程》专项训练解析含答案

高考数学压轴专题新备战高考《坐标系与参数方程》专项训练解析含答案

数学《坐标系与参数方程》高考复习知识点一、131.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合 D .关于直线()2R πθρ=∈对称【答案】A 【解析】 【分析】由点(),ρπθ--和点(,)ρθ-为同一点. 则比较点(,)ρθ-和点(),ρθ,可推出点(),ρθ与(),ρπθ--的位置关系.【详解】解:点(),ρπθ--与点(),ρθ-是同一个点,(),ρθ-与点(),ρθ关于极轴对称.∴点(),ρθ与(),ρπθ--关于极轴所在直线对称.故选:A. 【点睛】考查极坐标的位置关系.题目较为简单,要掌握极坐标的概念.2.已知直线1:1x t l y at =+⎧⎨=+⎩(t 为参数)与曲线221613sin ρθ=+的相交弦中点坐标为(1,1),则a 等于( )A .14-B .14C .12-D .12【答案】A 【解析】 【分析】根据参数方程与普通方程的互化,得直线l 的普通方程为1=-+y ax a ,由极坐标与直角坐标的互化,得曲线C 普通方程为221164x y +=,再利用“平方差”法,即可求解.【详解】由直线1:1x tl y at=+⎧⎨=+⎩(t 为参数),可得直线l 的普通方程为1=-+y ax a ,由曲线221613sin ρθ=+,可得曲线C 普通方程为221164x y +=,设直线l 与椭圆C 的交点为()11,A x y ,()22,B x y ,则22111164x y +=,2221164x y +=,两式相减,可得1212121214y y y y x x x x -+⋅=--+. 所以1212114y y x x -⋅=--,即直线l 的斜率为14-,所以a =14-,故选A . 【点睛】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.3.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) ABCD【答案】C 【解析】分析:首先将取消C 的方程化为直角坐标方程,然后结合直线参数方程的几何意义整理计算即可求得最终结果.详解:曲线C 的参数方程2x cos y sin θθ=⎧⎨=⎩(θ为参数)化为直角坐标方程即:2214y x +=,与直线l的参数方程12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)联立可得:21613t =,则121313t t ==-,结合弦长公式可知:1213AB t t =-=. 本题选择C 选项.点睛:本题主要考查参数方程的应用,弦长公式等知识,意在考查学生的转化能力和计算求解能力.4.在极坐标系中,已知圆C 经过点6P π⎛⎫⎪⎝⎭,,圆心为直线sin 4πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ= B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点6P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】在sin 4πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点6P π⎛⎫⎪⎝⎭,,所以圆C 的半径2r ==,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.5.已知曲线C 的极坐标方程为:2cos 4sin ρθθ=-,P 为曲线C 上的动点,O 为极点,则PO 的最大值为( )A .2B .4C D .【答案】D 【解析】 【分析】把极坐标方程变成直角坐标方程,通过最大距离d r =+求得答案。

高考数学压轴专题许昌备战高考《坐标系与参数方程》全集汇编含答案

高考数学压轴专题许昌备战高考《坐标系与参数方程》全集汇编含答案

【高中数学】数学高考《坐标系与参数方程》复习资料一、131.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<„,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 【答案】D 【解析】 【分析】根据参数的几何意义求解即可。

【详解】 如图:由直线参数方程的参数t 的几何意义可知,1PB t =,2PC t =,因为M 是BC 的中点,所以122t t PM +=. 选D. 【点睛】本题考查直线参数方程的参数t 的几何意义。

2.如图所示,ABCD 是边长为1的正方形,曲线AEFGH ……叫作“正方形的渐开线”,其中¶AE ,¶EF ,·FG,¶GH ,……的圆心依次按,,,B C D A 循环,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π【答案】C 【解析】 【分析】分别计算»AE ,»EF,»FG ,¼GH 的大小,再求和得到答案. 【详解】根据题意可知,»AE 的长度2π,»EF 的长度为π,»FG的长度为32π,¼GH 的长度为2π,所以曲线AEFGH 的长是5π. 【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.3.221x y +=经过伸缩变换23x x y y ''=⎧⎨=⎩后所得图形的焦距( )A .5B .13C .4D .6【答案】A 【解析】 【分析】用x ′,y '表示出x ,y ,代入原方程得出变换后的方程,从而得出焦距. 【详解】由23x x y y ''=⎧⎨=⎩得2 3x x y y '⎧=⎪⎪⎨'⎪=⎪⎩,代入221x y +=得22 149x y ''+=, ∴椭圆的焦距为29425-=A .【点睛】本题主要考查了伸缩变换,椭圆的基本性质,属于基础题.4.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【解析】由ρ=cosθ得ρ2=ρcosθ,∴x2+y2=x,即12x⎛⎫-⎪⎝⎭2+y2=14.它表示以1,02骣琪琪桫为圆心,以12为半径的圆.由x=-1-t得t=-1-x,代入y=2+t中,得y=1-x表示直线.5.参数方程(为参数)所表示的图象是A.B.C.D.【答案】D【解析】【分析】由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。

高三模拟冲刺试题 参数方程

高三模拟冲刺试题 参数方程

专题 参数方程1.【2018衡水联考】在平面直角坐标系中,已知曲线: (为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为. (1)求曲线的普通方程和直线的直角坐标方程; (2)过点,且与直线平行的直线交曲线于, 两点,求点到, 两点的距离之积.2.【2018河南中原名校联考】已知曲线的极坐标方程为,曲线的参数方程为,( 为参数). (1)将两曲线化成普通坐标方程; (2)求两曲线的公共弦长及公共弦所在的直线方程.3.【2018华大新高考质检】在直角坐标系中,曲线的参数方程为(为参数),以为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)若,求直线交曲线所得的弦长;(2)若上的点到的距离的最小值为1,求.4.【2018黑龙江齐齐哈尔一模】在直角坐标系中,直线的参数方程为 (为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,圆的极坐标方程为. (1)求直线的普通方程与圆的直角坐标方程; (2)设直线与圆相交于两点,求.5.【2018四川绵阳一模】在直角坐标系中,曲线的参数方程是(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系.(1)求曲线的极坐标方程;(2)设,,若与曲线分别交于异于原点的两点,求的面积. xOyC ,{ x y sin αα==αO xl cos 14πρθ⎛⎫+=- ⎪⎝⎭C l ()1,0M -l 1l C A B M A B 1C 1ρ=2C 12{ 12x cos y sin αα=+=+αxOy l 23,{ 312x t y t =-=-+t x C 2cos 4πρθ⎛⎫=- ⎪⎝⎭l C l C ,A B AB6.【2018山西两校联考】在平面直角坐标系中,曲线 (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)分别求曲线的普通方程和曲线的直角坐标方程;(2)若分别为曲线上的动点,求的最大值.7.【2018福建泉州一中联考】在平面直角坐标系中,曲线的方程为.以坐标原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出曲线的参数方程和曲线的直角坐标方程;(2)设点在曲线上,点在曲线上,求的最大值.8.【2018南宁摸底联考】已知曲线的参数方程为:(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:,直线的直角坐标方程为. (l )求曲线和直线的极坐标方程;(2)已知直线分别与曲线、曲线交异于极点的,若的极径分别为,求的值.9.【2018广西柳州摸底联考】在平面直角坐标系中,曲线的参数方程为 (其中为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线的极坐标方程为. (1)把曲线的方程化为普通方程, 的方程化为直角坐标方程;(2)若曲线, 相交于两点, 的中点为,过点做曲线的垂线交曲线于两点,求.xOy 13:{ x cos C y sin αα==αO x 2C 2sin ρθ=-1C 2C P Q 、12C C 、PQ 1C 2219x y +=x 2C 28150sin ρρθ-+=1C 2C P 1C Q 2C PQ xOy 1C 24{ 4x t y t ==t O x 2C cos 42πρθ⎛⎫+= ⎪⎝⎭1C 2C 1C 2C ,A B AB P P 2C 1C ,E F PE PF ⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
评卷人
得分
三、解答题
4.(本小题满分14分)
若直线 (参数 )与圆 (参数 , 为常数)相切,求 的值.
5.已知曲线 的参数方程为 ( 为参数),直线的极坐标方程为 ,直线与曲线 交于 , 两点,求 的长;
6.在极坐标系 中,求曲线 与 的交点 的极坐标.
7.在平面直角坐标系 中,求过椭圆 ( 为参数)的右焦点且与直线 ( 为参数)平行的直线的普通方程。
7.椭圆的普通方程为 右焦点为(4,0),直线 ( 为参数)的普通方程为 ,斜率为: ;所求直线方程为:
8.解:(1)x2+y2-4x-4y+6=0; 6分
()x+y=4+2sin( )最大值6,最小值2 4分
9.
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.直线 与圆心为D的圆 交于A、B两点,则直线AD与BD的倾斜角之和为()
8.已知某圆的极坐标方程为:ρ2-4 ρcos(θ- )+6=0.
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
9.若两条曲线的极坐标方程分别为 与 ,它们相交于A,B两点,求直线AB的极坐标方程
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.C数形结合 由圆的性质可知

第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.
3.
评卷人
得分
三、解答题
4.
5.
6.命题立意:本题主要考查直线与圆的极坐标方程,考查运算求解能力.
解:将直线 与圆 分别化为普通方程得,直线 与圆 ,(6分)
易得直线 与圆 切于点Q ,所以交点Q的极坐标是 .(10分)
(A) π(B) π(C) π(D) π(汇编重庆理)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.直线 ( 为参数, 为常数)恒过定点▲.
3.在直角坐标系 中,以原点 为极点, 轴的正半轴为极轴建立极坐标系.若极坐标方程为 的直线与曲线 ( 为参数)相交于 两点,则 (汇编年普通高等学校招生统一考试重庆数学(理)试题(含答案))
相关文档
最新文档