第七章 常微分方程
第七章 常微分方程
15
例 7 求方程 (y - 2xy) dx + x2dy = 0 满足初始
条件 y|x=1 = e 的特解.
解 将所给方程化为如下形式:
dy 1 2x
dx
x2
y 0,
这是一个线性齐次方程,
且
P(
x)
1
2 x2
x
,
则
P( x)dx
2 x
其中 y1 与 Q(x) 均为已知函数,所以可以通过积分 求得
C
(
x)
Q( x)dx y1
C
,
代入 y = C (x)y1 中,得 y Cy1 y1
Q( x) dx.
y1
容易验证,上式给出的函数满足线性非齐次方程
y P( x) y Q( x),
18
且含有一个任意常数,所以它是一阶线性非齐次方程
12
若 Q (x) 0,则方程成为
y P( x) y 0,
②
称为一阶线性齐次微分方程,简称线性齐次方程, 若 Q (x) 0,则称方程 ① 为一阶线性非齐次微分 方程,简称线性非齐次方程. 通常方程 ② 称为方 程 ① 所对应的线性齐次方程.
13
1.一阶线性齐次方程的解法
一阶线性齐次方程
y P(x) y 0
称为微分方程的阶. 例如,方程 (1) - (3) 为一阶微 分方程,方程 (4) - (5) 为二阶微分方程. 通常,n 阶微分方程的一般形式为
F(x, y, y, , y(n)) = 0,
其中 x 是自变量, y 是未知函数,F(x, y, y, , y(n)) 是已知函数,而且一定含有 y(n).
高等数学 上册 第7章 微分方程
形如
dny dxn
a1
(
x)
d n1 y dxn1
an1
(
x)
dy dx
an (x) y
f (x)
的微分方程称为n阶线性微分方程.否则,就称为 n阶非线性微分方程.
例如,xy 2 y x2 y 0 是三阶线性微分方程.
dy dx
2
x
dy dx
y
cos
x
是一阶非线性微分方程.
y 2 y( y)2 2x 1 是二阶非线性微分方程.
可分离变量的微分方程 dy f (x)g( y) 的解法总结如下:
dx
① 分离变量: 1 dy f (x)dx
g( y)
②
两边积分:
1 g( y)
dy
f
(x)dx
二、可分离变量的微分方程
例1. 求微分方程
的通解.
解: 分离变量,得 d y 4x3 d x 说明: 在求解过程中
y
每一步不一定是同解
dx x
;
5、回代变量:将u回代成 .
一、齐次方程
例1. 求微分方程 x2 dy y2 xy 满足初值条件 y |x1 1 的特解 x2
①
假定方程①中的f(x),g(y)是连续的,且 g( y) 0,
设y=(x)是方程①的解, 则有恒等式
1 (x) d x f (x) d x g( (x))
两边积分, 得
f (x)dx
设函数G(y)和F(x)依次为 则有
和f(x)的原函数, ② 这说明方程①的解满足等式②
二、可分离变量的微分方程
①
dx
y x1 3
②
由①得
( C为任意常数)
第七章 常微分方程习题课
7
x3
2
Cx3 .
7
20
例3 求 dy dx
x
y y2 cos
的通解 y
解:将原方程写成
dx 1 x y cos y dy y
x
e
1 y
dy
(
y cos
y
)e
1 y
dy
dy
C
y
(
y
cos
y)
1 y
dy
C
y(C sin y)
21
例4
求通解
2x
y2 3x2
dx
dy 0.
y3
y4
3
2、一阶微分方程的解法
(1) 可分离变量的微分方程
形如 g( y)dy f ( x)dx
解法 g( y)dy f ( x)dx
分离变量法
(2) 齐次方程 形如 dy f ( y) dx x
解法 作变量代换 u y x
4
(3) 可化为齐次的方程
形如 dy f ( ax by c )
通解:y Y y*
求特解的方法 待定系数法
(1) f ( x) ex Pm ( x) 型
0 不是根
设特解 y* xkexQm (x) k 1 是单根 ,
2 是重根
15
(2)
f
(
x)
ex
[
Pl
(1)
(
x)
cos
x
P(2) n
(
x)
sin
x]
型
设特解
y*
xkex[Rm(1) (x) cosx
由
2 解得
4b 0,
a 1,
8 b 0,
第七章常微分方程数值解法
h2 h3 y ( xi 1 ) y ( xi h) y ( xi ) hy '( xi ) y ''( xi ) y '''( xi ) 2! 3!
丢掉高阶项,有
y( xi 1 ) y( xi h) y( xi ) hy '( xi ) yi hf ( xi , yi )
| f ( x, y1 ) f ( x, y2 ) | L | y1 y2 | ,
那么模型问题在 [ a, b] 存在唯一解。
Lipschitz 连续: | f ( x, y1 ) f ( x, y2 ) | L | y1 y2 | .
(1) 比连续性强: y1 y2 可推出 f ( x, y1 ) f ( x, y2 ) ; (2) 比连续的 1 阶导弱:具有连续的 1 阶导,则
f | f ( x, y1 ) f ( x, y2 ) || ( ) || y1 y2 | L | y1 y2 | . y
常微分方程数值解法
目标:计算出解析解 y ( x) 在一系列节点 a x0 x1 xn1 xn b 处的近似值 yi y( xi ) ,即所谓的数值解。节点间距 hi xi 1 xi ,一般 取为等距节点。
常微分方程初值问题的数值解法一般分为两大类: (1)单步法:在计算 yn 1 时,只用到前一步的值,即用到 xn1 , xn , yn ,则给定初
值之后,就可逐步计算。例如 Euler 法、向后欧拉法、梯形公式、龙格-库塔法;
(2) 多步法: 这 类 方 法 在 计算 yn 1 时 , 除 了 用 到 xn1 , xn , yn 外 , 还 要 用到
微分方程
dy P ( x ) y Q( x ) dx
dy 2 dx 2 例如 y x , x sin t t , 线性的; dx dt
yy 2 xy 3, y cos y 1,
非线性的.
高等数学(上)
一阶线性非齐次微分方程的通解为:
ye
Ce
P ( x ) dx
过定点的积分曲线; 微分方程的图形
y f ( x , y , y ) 二阶: y x x0 y0 , y x x0 y0
过定点且在定点的切线的斜率为定值的积分曲线.
高等数学(上)
第二节 一阶微分方程
一、可分离变量的微分方程
二、齐次方程
三、一阶线性微分方程
cos x C.
所以原方程通解为
y
1 cos x C . x
高等数学(上)
1 sin x 求方程 y y 的通解. x x
1 解 P( x) , x
sin x Q( x ) , x
sin x y x ln x sin x ln x e e dx C x 1 1 sin xdx C cos x C . x x
高等数学(上)
( x, C1 )
例3 求方程 xy
解
(5)
y
(4)
0 的通解.
(5)
设y
(4)
P ( x ), y
P ( x )
(4)
代入原方程 分离变量,得
xP P 0, (P 0)
1 2 两端积分,得 y C1 x C 2 , 2
原方程通解为
高等数学(上)
高等数学-第七章-微分方程
制动时
常微分方程
偏微分方程
含未知函数及其导数的方程叫做微分方程 .
方程中所含未知函数导数的最高阶数叫做微分方程
(本章内容)
( n 阶显式微分方程)
微分方程的基本概念
一般地 , n 阶常微分方程的形式是
的阶.
分类
或
— 使方程成为恒等式的函数.
通解
— 解中所含独立的任意常数的个数与方程
于是方程化为
(齐次方程)
顶到底的距离为 h ,
说明:
则将
这时旋转曲面方程为
若已知反射镜面的底面直径为 d ,
代入通解表达式得
一阶线性微分方程
第四节
一、一阶线性微分方程
*二、伯努利方程
第七章
一、一阶线性微分方程
一阶线性微分方程标准形式:
若 Q(x) 0,
若 Q(x) 0,
称为非齐次方程 .
第七章
一、齐次方程
形如
的方程叫做齐次方程 .
令
代入原方程得
两边积分, 得
积分后再用
代替 u,
便得原方程的通解.
解法:
分离变量:
例1. 解微分方程
解:
代入原方程得
分离变量
两边积分
得
故原方程的通解为
( 当 C = 0 时, y = 0 也是方程的解)
( C 为任意常数 )
此处
例2. 解微分方程
例4
例5
例6
思考与练习
求下列方程的通解 :
提示:
(1) 分离变量
(2) 方程变形为
作业
P 298 5(1); 6 P 304 1 (1) , (10); 2 (3), (4) ; 4 ; 6
第七章 常微分方程
两边积分
1 1 1 2 2 ln( y 1 ) ln( x 1 ) ln c 2 2 2
通解为
( x2 1 ) ( y 2 1 ) c
⑶ x y dx
1 x dy 0 ;
1 x dy dx 2 y 1 x 1 dy y
2
习题解答:3
y y C1 sin x C2 cos x C1 sin x C2 cos x 0
又 y C1 sin x C2 cos x 中有两个独立的任意常数,且微分方
程 y y 0 是二阶的,所以 y C1 sin x C2 cos x 是该微分
方程的通解.
⒋ 初始条件
用来确定特解的条件称为初始条件。
例1 验证 y C1 sin x C2 cos x 是微分方程 y y 0 的通解。 解 : y C1 cos x C2 sin x , y C1 sin x C2 cos x
把 y 和 y 代入微分方程左端得
工 程 数 学
常 微 分 方 程
广东水利电力职业技术学院 张静华
Tel:38490981
数学教学部
Email:zhangjh@
目 录
第一节 第二节
微分方程的基本概念 一阶微分方程
⒈ 可分离变量的一阶微分方程 ⒉ 齐次方程
⒊ 一阶线性微分方程
第三节 第四节
可降阶的高阶微分方程 二阶常系数线性微分方程
dy y 一般形式: ⑴ f( ) dx x y 解法:令 u , 则 y u x x dy du ux dx dx du f (u ) 代入方程 ⑴ 得 u x dx 1 1 分离变量得 du dx f (u ) u x y 两端分别积分后再用 代替 u x 便得到原方程的通解 .
高数 第七章 微分方程常微分方程
5.微分方程的初始条件、特解
定义5 用来确定 解n 微分方程 F (x, y, y, ,y(n) ) 的0 通解中任意
常数的条件: y xx0 y0 , y xx0 y0 ,
,y(n1)
y , xx0
( n 1) 0
其中 x0, y0, y0 , , y0(n1都) 是给定的值。上述这种条件叫做初始 条件。
(
y) x
的方程,称为齐次方程。
例如(1)2xy d y (x2 y2 ) d x 0
(2)(x2 y xy2 ) d x (x3 y3) 0
2.齐次方程的求解:
在齐次方程
理有
du
(u)
u
dx x
d d
y x
求出积分后,再以
程的通解。
(
y x
y x
) 中,令 u y ,化简并整
铁岭师范高等专科学校 理工学院 数学教研室
第一讲 微分方程的基本概念;可分离变量的微分方程方 程
授课题目(章节)§7.1 微分方程的基本概念 §7.2 可分离变量的微分方程方程 教学目的与要求: 了解微分方程的阶及微分方程的解、通解、初始条件、特
解等概念; 2.会识别变量可分离的一阶微分方程,熟练掌握可分离
用常数变易法,令:y ueP(x)dx ,其中u u(x) 为待定函数,
带入原非齐次微分方程d y P(x)y Q(x) ,可解
得:u Q(x)eP(x)d x d x C
dx
因此,非齐次微分方程 d y P(x)y
解为: d x
y
e
P(
x)
d
x
(
Q(x)e P(x)d x
《高等数学》 第七章
C
;
第三步,求积分的通解: G( y) F(x) C .
其中 G( y) , F (x) 分别是 1 , f (x) 一个原函数. g ( y)
第二节 一阶微分方程
例 1 求微分方程 dy y sin x 0 的通解. dx
解 将方程分离变量,得到 dy sin xdx , y
两边积分,即得
(*)
例如,以上六个方程中,(1)、(2)、(5)、(6)是一阶常微分方程,(3)是二阶
常微分方程,(4)是二阶偏微分方程.
定义 3 如果微分方程中含的未知函数及其所有导数都是一次多项式,则称该方
程为线性方程,否则称为非线性方程.
一般说来,n 阶线性方程具有如下形状:
a0(x) y(n) a1(x) y(n1) an1(x) y an (x) y (x) .
第二节 一阶微分方程
例 3 求方程 dy y 1 的解. dx x 1
为方便起见,以后在解微分方程的过程中,如果积分后出现对数,理应都需作
类似下述的处理,其结果是一样的.以例 3 为例叙述如下:
分离变量后得
1 dy 1 dx , y 1 x 1
两边积分得
ln | y 1| ln | x 1| ln C ,
再分离变量,得 du 1 dx ; f (u) u x
第三步,两端分别积分后得
du f (u) u
ln | x | C1
.
求出积分后,再用 y 代替 u ,便可得到方程关于 x 的通解. x
第二节 一阶微分方程
例 4 求微分方程 xy y(1 ln y ln x) 的通解.
解
将方程化为齐次方程的形式
dy dx
y x
1
微分方程与差分方程详解与例题
第七章 常微分方程与差分方程常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。
微分方程作为考试的重点容,每年研究生考试均会考到。
特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。
【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。
【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。
【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。
理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。
了解欧拉方程的概念,会求简单的欧拉方程。
会用微分方程处理物理、力学、几何中的简单问题。
【考点分析】本章包括三个重点容:1.常见的一阶、二阶微分方程求通解或特解。
求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。
2.微分方程的应用问题,这是一个难点,也是重点。
利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。
若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。
第七章 常微分方程数值解法.
y f ( x, y), x [a,b]
y(
x0
)
y0
23
7.1 欧拉法和改进的欧拉法
欧拉公式
yi1 yi y0 y( x0 )
h
f
(xi ,
yi )
,
i
0,1,2,
改进的欧拉公式
yi
1
26
引言:
公式构造思想:从泰勒公式出发,寻找更高阶的 数值公式。
例如,泰勒公式计算到二阶可得
y(x + h) = y(x) + yⅱ(x)h + 1 y ?(x)h2 + O(h3) 2!
因
ìïïïíïïïî
y¢(x) = yⅱ(x) =
f (x, y(x)) df (x, y(x))
dx
=
fx (x, y(x)) +
可证明预测-校正公式的截断误差也为 O(h3)。
18
7.1.2 改进的欧拉法及预测-校正公式
例 取步长h=0.2,用改进的欧拉法的预测-校正公
式求解初值问题的数值解y1 , y2 .
ìïïíïïî
y¢= x + y(0) = 1
y
解
f (x, y) = x + y, x0 = 0, y0 = 1
预测-校正公式具体是
y( p) 2
=
0.2x1 +
1.2 y1
=
0.2?
0.2
1.2? 1.24
1.528
y2 = y1 + 0.1[(x1 + y1) + (x2 + y2( p) )] = 1.24 + 0.1(0.2 + 1.24 + 0.4 + 1.528) = 1.5768
第七章常微分方程1
c2 e x
C、 y c1 cos x c 2 sin x 9、微分方程 y y sin x 待定特解的结构是 ( A、 y a sin x C、 y a sin x b cos x 10、微分方程 y y e A、 y Ae
2 2
)是变量可分离微分方程。
7、下列微分方程中, (
dx xt t dt dy xy x 2 C、 dx
A、 A、
B、 x
dx e xt sin t dt dy x2 y2 D、 dx
B、
)是变量可分离微分方程。
dy sin x y 2 dx dy 2x3 3y 2 C、 dx
c2 e x
c2 e
D、 y c1e )微分方程。
1 x 3
c2 e x
3、微分方程 y dx (1 x ) dy 0 是 ( A、一阶线性齐次 C、变量可分离 4、微分方程 xy 2 y 2 x 是 (
4
B、一阶线性非齐次 D、二阶线性齐次 )微分方程。
* * x x * *
x
待定特解的结构是 (
C、 y Ax e
2
x
D、 y Ax e
*
3 x
8、微分方程 y y 0 的通解为 ( A、 y c1e
x
dy e x y cos x dx dy xy 2 y 2 D、 dx
) 。 B、 y (c1 c 2 x )e D、 y (c1 c 2 x )e ) 。 B、 y a cos x D、 y x ( a sin x b cos x ) ) 。 B、 y Axe
高等数学_第7章___常微分方程
第7章 微分方程一、本章提要1. 基本概念微分方程,常微分方程(未知函数为一元函数),偏微分方程(未知函数为多元函数),微分方程的阶数(填空题).齐次方程 :()dy y dxx ϕ=或者()dxxdy yϕ=(计算) 一阶线性微分方程:()()y P x y Q x '+=或者()()x P y x Q y '+=通解公式()d ()d ()e d e P x x P x x y Q x x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 或者用常数变异法求解.(计算或者填空) 线性相关,线性无关(选择) 可降解(不显含x 或y )的(计算)齐次常系数线性微分方程:特征根法(填空)非齐次常系数线性微分方程:特接用待定系数法. (计算) 微分方程解的结构定理(选择或填空). 换元法也是求解微分方程的重要方法之一. 二、要点解析问题1 常微分方程有通用的解法吗?对本章的学习应特别注意些什么?解析 常微分方程没有通用的求解方法.每一种方法一般只适用于某类方程.在本章 我们只学习了常微分方程的几种常用方法.因此,学习本章时应特别注意每一种求解方法所适用的微分方程的类型.当然,有时一个方程可能有几种求解方法,在求解时,要选取最简单的那种方法以提高求解效率.要特别注意:并不是每一个微分方程都能求出其解析解,大多数方程只能求其数值解.例1 求微分方程 '+=y y 0 的通解.解一 因为 0y y '+= 所对应的特征方程为10r +=,特征根1r =-,所以e xy C -=(C 为任意常数)为所求通解.解二 因为0=+'y y ,所以)0(d d ≠-=y y xy ,分离变量x y y d d -=,两边积分⎰⎰-=x yy d d ,1ln ln y x C =-+, 所以exy C -= (C 为任意常数)三、例题精解例3 求''=y y 4满足初始条件01,2x x yy =='== 的特解.解一 令'=y p ,则d d d d d d d d p p y py pxy x y''==⋅=.将其代入原方程''=y y 4得 y yp p4d d =,分离变量 y y p p d 4d =, 两边积分⎰⎰=y y p p d 4d ,22111422p y C =⋅+, 2224p y C =+,因为001,2x x yp y =='===,所以222241C =⨯+,可得C 2=0.故224p y =,即 p y =±2.这里'=-y y 2 应舍去,因为此时'y 与y 异号,不能够满足初始条件.将2y y '=分离变量便得其解y =23exC +.再由y x ==01,得30C =,于是所求解为2e xy =.上面解法中,由于及时地利用初始条件确定出了任意常数C 1的值,使得后续步骤变得简单,这种技巧经常用到.解二 因为''=y y 4,所以40y y ''-=,特征方程 240r -=, 特征根 122,2r r =-=, 于是其通解为2212e e x x y C C -=+, 由初始条件可得C 1=0 ,C 2=1 ,所求特解为 2e x y =.例4 求方程''+=y y x sin 的通解.解一 该方程为二阶常系数非齐次线性方程,其对应的齐次方程为 ''+=y y 0, 特征方程为 210r +=, 特征根12i,=i r r =-,齐次方程的通解为12cos sin Y C x C x =+,由于方程0sin e sin y y x x ''+==,i i αβ+=(其中0,1αβ==) 恰是特征单根,故设特解为(c o s s i n y x a xb x *=+,代入原方程,可得1,02a b =-= 所以1cos 2y x x *=-,于是所求通解为y C x C x x x =+-1212c o ss i n c o s .上述解法一般表述为:若二阶线性常系数非齐次微分方程 ''+'+=y py qy f x ()中的非齐次项[]()e()c o s ()s i nxnh f x P x x P xx αββ=+,那么该微分方程的特解可设为[]e()c o s ()s i n kxp mm y x P x x Q xx αββ=+,其中(), ()m m P x Q x 均为 m 次待定多项式 {}m h n =m ax ,.如果非齐次项中的αβ,使i αβ±不是特征方程的根,则设0k =;如果i αβ±是特征方程的单根,则取1k =. 例5 求解微分方程x xe y y y 42=+'-''。
同济大学高等数学上册第七章常微分方程
同济大学高等数学上册第七章常微分方程同济大学高等数学上册是大多数理工科专业的学生必修的课程,第七章是关于常微分方程的内容。
常微分方程是数学中的一个重要分支,广泛应用于物理、化学、经济等领域。
掌握常微分方程的基本理论和解法对于理解和应用这些领域的知识具有重要意义。
本章内容主要包括:一阶常微分方程、高阶常微分方程、一阶线性微分方程、可分离变量的微分方程、齐次线性微分方程和一阶齐次线性方程、一阶齐次线性非齐次方程、二阶常系数齐次线性方程、常系数非齐次方程等。
一、一阶常微分方程一阶常微分方程是指未知函数的导数只包含一阶导数的方程。
例如,dy/dx = f(x)。
常微分方程的求解可以采用分离变量法、恰当方程、公式法等。
其中分离变量法是常用的解法之一。
分离变量法的基本思想是将方程两边的变量分离开来,从而达到求解的目的。
二、高阶常微分方程高阶常微分方程是未知函数的导数包含高于一阶导数的方程。
例如,d²y/dx² + p(x) dy/dx + q(x) y = f(x)。
高阶常微分方程的求解可以采用常系数线性微分方程的方法。
常系数线性微分方程是指系数为常数的微分方程,其求解方法相对简单。
三、一阶线性微分方程一阶线性微分方程是指未知函数的导数与未知函数本身之间线性相关的方程。
例如,dy/dx + p(x) y = q(x)。
一阶线性微分方程的求解可以借助于积分因子的方法。
积分因子的选择是使方程两边的未知函数系数相等,从而将方程转化为可积分的形式。
四、可分离变量的微分方程可分离变量的微分方程是指未知函数和自变量可以在方程中分离的方程。
例如,dy/dx = f(x)/g(y)。
可分离变量的微分方程的求解可以通过对方程两边的变量分离,然后进行适当的积分得到。
这种方法常用于求解一些特殊形式的微分方程。
五、齐次线性微分方程和一阶齐次线性方程齐次线性微分方程是指未知函数的导数和未知函数本身之间构成齐次线性关系的微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
,−
y x +y
2 2
]
卫星运动方程
GMx && = − 2 x ( x + y 2 )3 / 2
GMy && = − 2 y ( x + y 2 )3 / 2
地球引力参数: 地球引力参数:GM=3.986005×105(km3/s2) ×
12/16
5/16
创建MATLAB的函数文件 的函数文件 创建 function z=fox(t,y) z(1,:)=y(1)-0.015*y(1).*y(2); z(2,:)=-y(2)+0.01*y(1).*y(2); 求微分方程数值解并绘解函数图形 Y0=[100,20]; [t,Y]=ode23('fox',[0,20],Y0); x=Y(:,1);y=Y(:,2); figure(1),plot(t,x,'b',t,y,'r') figure(2),plot(x,y)
dy = f (t , y ) dt y ( t 0 ) = y0
t ≥ t0
一阶常微分方程组初值问题数值求解方法 [T,y] = ode23(' F ',Tspan,y0) 其中, F是函数文件 表示 微分方程右端函数 其中 是函数文件, 是函数文件 Tspan = [t0 Tfinal] —— 求解区域 求解区域; y0 —— 初始条件 函数F(t,y) 必须返回列向量 必须返回列向量. 注: 函数 的每一行对应于列向量T中的每一行数据 数值解 y 的每一行对应于列向量 中的每一行数据
9/16
实验数据: 实验数据 k Xmax
800
0.1 677.35
0.01 3073.15
1000 8000.02 2433.660.015 2719.33
600
600
400
400
200 0 -200
200 0
0 500 1000 1500 2000 2500
-200 0 500 1000 1500 2000 2500 3000
4/16
捕食者与被捕食者问题 海岛上有狐狸和野兔,当野兔数量增多时, 海岛上有狐狸和野兔,当野兔数量增多时,狐狸捕食 野兔导致狐群数量增长; 野兔导致狐群数量增长;大量兔子被捕食使狐群进入 饥饿状态其数量下降; 饥饿状态其数量下降;狐群数量下降导致兔子被捕食 机会减少,兔群数量回升。 机会减少,兔群数量回升。微分方程模型如下
13/16
右端函数的函数文件
function z=orbit(t,y) GM=3.986005e05; z(1,:)=y(2); z(2,:)=-GM*y(1)./((y(1).^2+y(3).^2).^(3/2)); z(3,:)=y(4); z(4,:)=-GM*y(3)./((y(1).^2+y(3).^2).^(3/2));
14/16
function [Vmax,H]=orbitlab(v,h,T) T0=T*60*60; Y0=[-(6378+h),v*cos(-pi/2),0,v*sin(-pi/2)]; [T,Y]=ode23('orbit',[0,T0],Y0); x=Y(:,1);y=Y(:,3); vx=Y(:,2);vy=Y(:,4); V=sqrt(vx.^2+vy.^2); Vmax=max(V); H=max(x); plot(x,y,[0,-(6378+h)],[0,0],'ro')
6/16
-----------兔子数量; ------狐狸数量 ; ------
兔-狐数量 变化相位图
7/16
抛射曲线实验,假设阻力与速度成正比。在微分方 抛射曲线实验,假设阻力与速度成正比。 程中增加阻力项
x ′′( t ) = − kx ′( t ) y′′( t ) = − g − ky ′( t )
转换为一阶微分方程组
& x=u & y=v
初始条件
y(0) = 0
& = −GMy /( x 2 + y 2 ) 3 / 2 v
u(0) = v0 cos(−π / 2)
& = −GMx /( x 2 + y 2 ) 3 / 2 u
x(0) = −( R + h)
v(0) = v0 sin(−π / 2)
N (1994 ) = 12
1995
2000
2005
2010
2015
2020
编辑窗口 命令窗口
function z=fun1(t,N) z=0.015*N; ode23('fun1',[1994,2020],12) [T,N]=ode23('fun1',[1994,2020],12)
3/16
常微分方程组初值问题
15/16
实验数据 (h=200km) Vmax H 10.30 10.45 10.60 10.75 10.90
16/16
dx dt = x − 0.015 xy dy = − y + 0.01 xy dt
x(0)= 100 y(0)=20
时的数据。 计算 x(t),y(t) 当t∈[0,20]时的数据。绘图并分 , ∈ , 时的数据 析捕食者和被捕食者的数量变化规律。 析捕食者和被捕食者的数量变化规律。
k=0.02
k=0.015
10/16
嫦娥一号轨道数据实验
嫦娥一号卫星进入的初始轨道是周期为16 嫦娥一号卫星进入的初始轨道是周期为 小时的地球同步轨道。 小时的地球同步轨道。 卫星进入初始轨道时, 卫星进入初始轨道时,最大速度大约为 10.3(km/s),而奔月速度需要 而奔月速度需要10.9(km/s)。 而奔月速度需要 。 经历四次变轨提速后,卫星才进入地月转移轨道。 经历四次变轨提速后,卫星才进入地月转移轨道。 第一次变轨卫星由初始轨道进入16小时轨道; 第一次变轨卫星由初始轨道进入16小时轨道; 16小时轨道 第二次变轨卫星进入24小时轨道; 第二次变轨卫星进入24小时轨道; 24小时轨道 第三次变轨卫星进入48小时轨道; 第三次变轨卫星进入48小时轨道; 48小时轨道 第四次变轨卫星进入116小时地月转移轨道。 116小时地月转移轨道 第四次变轨卫星进入116小时地月转移轨道。
11/16
假设五个轨道上最大速度从10.3(公里 秒 )逐步增加到 公里/秒 逐步增加到 假设五个轨道上最大速度从 公里 10.9(公里 秒) 公里/秒 公里 10.3,10.45,10.6,10.75,10.9 , , , , 根据牛顿万有引力定律, 根据牛顿万有引力定律,地球对卫星的引力大小为
2/16
年我国人口为12亿为初 例7.1 马尔萨斯模型,以1994 年我国人口为 亿为初 .1 马尔萨斯模型, 值,求解常微分方程 N(t)表示人口数量,取人口变化率r =0.015,微分方程 表示人口数量,取人口变化率 表示人口数量 ,
dN = 0.015 N dt
18 16 14 12 1990
1 2 x ( t ) = v cos α t − 2 kt v cos α y ( t ) = v sin α t − 1 gt 2 − 1 k t 2 v sin α 2 2
8/16
2008电影《集结号》展现出视听震撼的战争场面, 电影《集结号》展现出视听震撼的战争场面, 电影 92式山炮,炮弹初速 式山炮, 式山炮 炮弹初速: 198米/秒,最大射程 最大射程:2788米 米 秒 最大射程 米 利用实验程序确定阻力系数 k
微分方程与计算机模拟
常微分方程数值解方法 捕食者与被捕食者问题 有阻力抛射曲线问题 卫星轨道模拟问题
1/16
数值方法求常微分方程初值问题 数值方法求常微分方程初值问题
y ′ = f ( x, y) y( x 0 ) = y 0
求解步骤: 求解步骤 (1)用函数文件定义一阶微分方程(或方程组)右端函数; 用函数文件定义一阶微分方程( 用函数文件定义一阶微分方程 或方程组)右端函数; (2)用MATLAB命令 命令ode23()求数值解或绘积分曲线。 求数值解或绘积分曲线。 用 命令 求数值解或绘积分曲线 使用格式: 使用格式:[T,Y] = ode23('F',Tspan,y0) 其中,Tspan = [t0,tN]是常微分方程求解区域,y0是初 是常微分方程求解区域, 是初 其中 是常微分方程求解区域 始值, 是包括函数文件名字的符串。 始值,‘F’ 是包括函数文件名字的符串。 返回值(T,Y) 是求解区域内离散数据及对应数值解。 是求解区域内离散数据及对应数值解。 返回值
function Xmax=mlab72(k) alfa=pi/4; v=198;g=9.8; t=0;dt=.1; x=0;y=0; while y>=0; t=t+dt; xk=v*cos(alfa)*t-1/2*v*cos(alfa)*k*t^2; yk=v*sin(alfa)*t-1/2*g*t^2-1/2*t^2*v*sin(alfa)*k; x=[x,xk];y=[y,yk]; end Xmax=xk; plot(x,y,'ro')
x(0) = 0, x ′(0) = v 0 cos α y(0) = 0, y′(0) = v 0 sin α
符号计算方法 syms t v g alfa k
x=dsolve('D2x=-k*Dx','x(0)=0','Dx(0)=v*cos(alfa)'); y=dsolve('D2y=-g-k*Dy','y(0)=0','Dy(0)=v*sin(alfa)'); X=taylor(x,3,t),Y=simplify(taylor(y,3,t))