数据结构-树的实现实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构设计性实验报告
题目:抽象数据类型--树
学院计算机学院
专业网络工程
年级班别 2013级4班
学号
学生姓名
指导教师
成绩
2015年 6 月 6 日
抽象数据类型:树的实现
1.题目
采用树的二叉链表(孩子指针-兄弟指针-双亲指针)存储表示,实现抽象数据类型树。
ADT Tree{
数据对象D:D是具有相同特性的数据元素的集合。
数据关系R:若D为空集,则称为空树;
若D仅含有一个数据元素,则R为空集,否则R={H},H是如下二元关系:
(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;
(2) 若D-{root}≠NULL,则存在D-{root}的一个划分D1,D2,D3, …,Dm(m>0),对于任意j≠k(1≤j,k≤m)有Dj∩Dk=NULL,且对任意的i(1≤i≤m),唯一存在数据元素xi∈Di有
(3) 对应于D-{root}的划分,H-{
基本操作P:
InitTree(&T);
操作结果:构造空树T。
DestroyTree(&T);
初始条件:树T存在。
操作结果:销毁树T。
CreateTree(&T,definition);
初始条件:definition给出树T的定义。
操作结果:按definition构造树T。
ClearTree(&T);
初始条件:树T存在。
操作结果:将树T清为空树。
TreeEmpty(T);
初始条件:树T存在。
操作结果:若T为空树,则返回TRUE,否则返回FALSE。
TreeDepth(T);
初始条件:树T存在。
操作结果:返回T的深度。
Root(T);
初始条件:树T存在。
操作结果:返回T的根。
Value(T,cur_e);
初始条件:树T存在,cur_e是T中某个结点。
操作结果:返回cur_e的值。
Assign(T,cur_e,value);
初始条件:树T存在,cur_e是T中某个结点。
操作结果:结点cur_e赋值为value。
Parent(T,cur_e);
初始条件:树T存在,cur_e是T中某个结点。
操作结果:若cur_e是T的非根结点,则返回它的双亲,否则函数值为“空”。
LeftChild(T,cur_e);
初始条件:树T存在,cur_e是T中某个结点。
操作结果:若cur_e是T的非叶子结点,则返回它的最左孩子,否则返回“空”。
RightSibling(T,cur_e);
初始条件:树T存在,cur_e是T中某个结点。
操作结果:若cur_e有右兄弟,则返回它的右兄弟,否则返回“空”。
InsertChild(&T,&p,I,c);
初始条件:树T存在,p指向T中某个结点,1≤i≤p指结点的度+1,非空树c与T不相交。
操作结果:插入c为T中p指结点的第i棵子树。
DeleteChild(&T,&p,i);
初始条件:树T存在,p指向T中某个结点,1≤i≤p指结点的度。
操作结果:删除T中p所指结点的第i棵子树。
TraverseTree(T,visit());
初始条件:树T存在,visit是对结点操作的应用函数。
操作结果:按某种次序对T的每个结点调用函数visit()一次且至多一次。一旦visit()失败,则操作失败。
CSTree Search(CSTree T,TElemType cur_e);
初始条件:树T存在,cur_e可能是树T中某一个结点的值。
操作结果:在树T中查找值为cur_e的结点,找到返回指向这个结点的指针,否则返回空指针。
这个函数的作用是为了几个基本操作而服务的。
void LevelOrderTraverseTree(CSTree T,void (* visit)(TElemType));
初始条件:树T存在,visit是对结点操作的应用函数。
操作结果:按层次次序对T的每一个结点调用函数visit()一次且至多一次。
void PreOrderTraverseTree(CSTree T,void(*visit)(TElemType));
初始条件:树T存在,visit是对结点操作的应用函数。
操作函数:按先序次序(先根遍历)对T的每一个结点调用函数visit()一次且至多一次。
函数的功能实现是递归实现的。
void PostOrderTraverseTree(CSTree T,void (*visit)(TElemType));
初始条件:树T存在,visit是对结点操作的应用函数。
操作结果:按后根遍历对T的每一个结点调用函数visit()一次且至多一次。
函数的功能实现是递归实现的。
void visit_print(CSTree p);
初始条件:树T存在,visit_print是对结点操作的应用函数。
操作函数:对T的每一个结点调用函数visit_print()一次且至多一次。
与visit函数不一样的是,visit函数只是输出一个结点的值,而visit_print还输出其结点,第一个孩子,其右兄弟和双亲的值
void Print(CSTree T,void (*visit)(CSTree));
附加函数:用于显示树的所有内容。