人教版八年级数学上册课本答案
【教材答案】人教版八年级数学上册课本练习题答案()
第11章习题11.1第1题答案图中共6个三角形分别是:△ABD,△ADE,△AEC,△ABE,AADC,△ABC习题11.1第2题答案2种四根木条每三条组成一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形习题11.1第3题答案如下图所示,中线AD、高AE、角平分线AF习题11.1第4题答案(1)EC;BC(2)∠DAC;∠BAC(3)∠AFC(4)1/2BC·AF习题11.1第5题答案C习题11.1第6题答案(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm) 因为6+6>8所以此时另两边的长为6cm,8cm(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm)因为6+7>7所以北时另两边的长分别为7cm,7cm习题11.1第7题答案(1) 当等腰三角形的腰长为5时,三角形的三边为5,5,6因为5+5>6所以三角形周长为5+5+6=16当等腰三角形的腰长为6时,三角形的三边为6,6,5 因为6+5>6所以三角形周长为6+6+5=17所以这个等腰三角形的周长为16或17(2)22习题11.1第8题答案1:2习题11.1第9题答案解:∠1=∠2,理由如下:因为AD平分∠BAC所以∠BAD=∠DAC又DE//AC所以∠DAC=∠1又DF//AB所以∠DAB=∠2所以∠1=∠2习题11.1第10题答案四边形木架钉1根木条五边形木架钉2根木条六边形木架钉3根木条习题11.2第1题答案(1)x=33(2)x=60(3)x=54(4)x=60习题11.2第2题答案(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了习题11.2第3题答案∠A=50°,∠B=60°,∠C=70°习题11.2第4题答案70°习题11.2第5题答案解:∵AB//CD,∠A=40°∴∠1=∠A=40°∵∠D=45°∴∠2=∠1+∠D=40°+45°=85°习题11.2第6题答案解:∵AB//CD,∠A=45°∴∠1=∠A=45°∵∠1=∠C+∠E∴∠C+∠E=45°又∵∠C=∠E∴∠C+∠C=45°∴∠C=22.5°习题11.2第7题答案解:依题意知:∠ABC=80°-45°-35°∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,即∠ACB=85°习题11.2第8题答案解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°习题11.2第9题答案解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°所以x=140°习题11.2第10题答案180°;90°;90°习题11.2第11题答案证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.3第1题答案如下图所示,共9条习题11.3第2题答案(1)x=120(2)x=30(3)x=75习题11.3第3题答案多边形的边数 3 4 5 6 8 12 内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°习题11.3第4题答案108°;144°习题11.3第5题答案这个多边形是九边形习题11.3第6题答案(1)三角形;(2)解:设这个多边形是n边形,由题意得:(n-2)×180=2×360解得n=6所以这个多边形为六边形习题11.3第7题答案AB//CD,BC//AD(理由略)提示:由四边形的内角和可求得同旁内角互补习题11.3第8题答案(1)是.理由如下:由已知BC⊥CD,可得∠BCD=90°又因为∠1=∠2=∠3所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线所以CO是△BCD的高。
人教版八年级数学上学期课本答案
人教版八年级数学上学期课本答案
努力做八年级数学课本习题吧,攀蟾折桂,舍我其谁。
为大家整理了,欢迎大家阅读!
复习第124页的问题
4.解:1.3×10×9.6×10^6=1.248×10^12t.
在我国境内,一年从太阳获得的能量相当于燃烧1.248卡路里×10^12吨煤产生的能量
5.解:27πr+1-2πr=2π≈
6.28km.
所以这根绳子比地球赤道的周长长6.28米,地球赤道表面也是如此,绳子的长度比
赤道周长6.28米
∴4根立柱的总质量约为370.32t.
10.溶液:13x9-2×10=7。
14×8-7×15=7可以发现符合这个规律.
有同样的规则
3设左上角数字为n,其后面数字为n+1,其下面数字为n+7,右下角数字为n+8,则
n+1n+7-nn+8=n+7n+n+7-n-8n=7.
11.证据:∵ 2n+1-2n-1=[2n+1+2n-1][2n+1-2n-1]=4nx2=8N,
又∵n是整数,∴8n是8的倍数,
两个连续奇数之间的平方差是8的倍数
12.解:设原价为a,方案1提价后价格为n1十p%1+q%=1+q%+p%+p%q%a;
方案2加价后,价格为a1+Q%1+P%=1+P%+Q%+P%Q%a;
方案3提价后价格为
第99页
1.115x;2-8xy;336x;4-72a.
2.1错误,3a2a=6A;
2对;
3个错误,3x4x=12x; 4不对,5y3y=15y.
第102页。
人教版八年级数学上册课后习题答案
人教版八年级上册课后习题答案习题11.11、图中共有6个三角形分别是:ABC ADC ABE AEC ADE ABD ∆∆∆∆∆∆、、、、、2、2种,每三条一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3;满足两边之和大于第三边,两边之差小于第三边,只有第一组,第四组能构成三角形。
3、略4、(1)EC ;BC(2)∠DAC ;∠BAC(3)∠AFC(4)1/2BC ·AF5、C6、(1)当长为6 cm 的边为腰时,则另一腰长为6 cm ,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6cm ,8cm(2)当长为6 cm 的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm) 因为6+7>7,所以北时另两边的长分别为7cm ,7cm7、(1)当等腰三角形的腰长为5时,三角形的三边为5,5,6 因为5+5>6,所以三角形周长为5+5+6=16;当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6 所以三角形周长为6+6+5=17;所以这个等腰三角形的周长为16或17(2)228、1:29、解:∠1=∠2,理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC又DE//AC,所以∠DAC=∠1又DF//AB,所以∠DAB=∠2所以∠1=∠210、四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条习题11.21、(1)x=33(2)x=60(3)x=54(4)x=602、(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了3、∠A=50°,∠B=60°,∠C=70°4、70°5、解:∵AB//CD,∠A=40°,∴∠1=∠A=40°∵∠D=45°,∴∠2=∠1+∠D=40°+45°=85°6、解:∵AB//CD,∠A=45°,∴∠1=∠A=45°∵∠1=∠C+∠E,∴∠C+∠E=45°又∵∠C=∠E,∴∠C+∠C=45°∴∠C=22.5°7、解:因为∠ABC=80°-45°=35°又∠BAC= 45°+15°=60°,所以∠C =180°-35°-60°=85°8、解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°9、解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4,所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°,所以x=140°10、180°;90°;90°11、证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD,所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.31、图略,共9条2、x=120;x=30;x=753、多边形的边数3456812内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°4、108°;144°5、九边形6、(1)三角形(2)设这个多边形是n边形,(n-2)×180=2×360,解得n=6,所以这个多边形为六边形7、AB//CD,BC//AD8、(1)是,BC⊥CD,所以⊥BCD=90°,又因为⊥1=⊥2=⊥3,所以⊥1=⊥2=⊥3=45°,⊥CBD为等腰直角三角形,CO是⊥DCB的平分线,所以CO是⊥BCD的高(2)CO⊥BD,所以AO⊥BD,即⊥4+⊥5=90°,又因为⊥4=60°,所以⊥5=30°(3)已知⊥BCD= 90°,⊥CDA=⊥1+⊥4=45°+60°=105°,⊥DAB=⊥5+⊥6=2×30°=60°,又因为⊥BCD+⊥CDA+⊥CBA+⊥DAB=360°所以⊥CBA=105°9、解:因为五边形ABCDE的内角都相等,所以⊥E=((5-2)×180°)/5=108°,所以⊥1=⊥2=1/2(180°-108°)=36°,同理⊥3=⊥4=36°,所以x=108-(36+36)=3610、解:平行;BC与EF有这种关系因为六边形ABCDEF的内角都相等所以⊥B=((6-2)×180°)/6=120°因为⊥BAD=60°,所以⊥B+⊥BAD=180°,所以BC//AD因为⊥DAF=120°-60°=60°,所以⊥F +⊥DAF=180°所以EF//AD,所以BC//EF同理可证AB//DE复习题111、解:因为S⊥ABD=1/2BD,AE=5cm2,AE=2 cm,所以BD=5cm 又因为AD是BC边上的中线,所以DC=BD=5cm,BC=2BD=10cm2、x=40;x=70;x=60;x=100;x=1153、多边形的边数:17;25内角和:5×180°;18×180°外角和都是360°4、5条,6个,相等900°5、76、证明:由三角形内角和定理可得:⊥A+⊥1+42°=180°又因为⊥A+10°=⊥1,所以⊥A十⊥A+10°+42°=180°,则⊥A=64°因为⊥ACD=64°,所以⊥A=⊥ACD根据内错角相等,两直线平行,可得AB//CD7、解:⊥⊥C+⊥ABC+⊥A=180°,⊥⊥C+⊥C+1/2⊥C=180°,解得⊥C=72°又⊥BD是AC边上的高,⊥⊥BDC=90°⊥⊥DBC=90°-72°=18°8、解:⊥DAC=90°-⊥C= 20°⊥ABC=180°-⊥C-⊥BAC=60°又⊥AE,BF是角平分线⊥⊥ABF=1/2⊥ABC=30°,⊥BAE=1/2⊥BAC=25°⊥⊥AOB=180°-⊥ABF-⊥BAE=125°9、BD;PC;BD+PC;BP+CP10、解:因为五边形ABCDE的内角都相等所以⊥B=⊥C=((5-2)×180°)/5=108°又因为DF⊥AB,所以⊥BFD=90°在四边形BCDF中,⊥CDF+⊥BFD+⊥B+⊥C=360°所以⊥CDF=360°-⊥BFD-⊥B-⊥C=360°-90°-108°-108°=54°11、证明:(1)因为BE和CF是⊥ABC和⊥ACB的平分线所以⊥1=1/2⊥ABC,⊥2=1/2⊥ACB因为⊥BGC+⊥1+⊥2 =180°所以BGC=180°-(⊥1+⊥2)=180°-1/2(⊥ABC+⊥ACB)(2)因为⊥ABC+⊥ACB=180°-⊥A由(1)得,⊥BGC=180°-1/2(180°-⊥A)=90°+1/2⊥A12、证明:在四边形ABCD中⊥ABC+⊥ADC+⊥A+⊥C=360°因为⊥A=⊥C=90°所以⊥ABC+⊥ADC= 360°-90°-90°=180°又因为BE平分⊥ABC,DF平分⊥ADC所以⊥EBC=1/2⊥ABC, ⊥CDF=1/2⊥ADC所以⊥EBC+⊥CDF=1/2(⊥ABC+⊥ADC)=1/2×180°=90°又因为⊥C=90°,所以⊥DFC+⊥CDF =90°所以⊥EBC=⊥DFC,所以BE//DF习题12.11、对应边:AC和CA对应角:⊥B和⊥D,⊥ACB和⊥CAD,⊥CAB和⊥ACD2、对应边:AN和AM,BN和CM对应角:⊥ANB和⊥AMC,⊥BAN和⊥CAM3、66°4、(1)对应边FG和MH,EF和NM,EG和NH对应角⊥E和⊥N,⊥EGF和⊥NHM(2)由(1)得NM=EF=2.1cm,GE=HN=3.3 cm所以HG=GE-EH=3.3-1.1=2.2cm5、解:⊥ACD=⊥BCE,⊥⊥ABC⊥⊥DEC,⊥⊥ACB=⊥DCE(全等三角形的对应角相等)⊥⊥ACB-⊥ACE=⊥DCE-⊥ACE(等式的基本性质)6、(1)对应边:AB和AC,AD和AE,BD和CE对应角:⊥A和⊥A,⊥ABD和⊥ACE,⊥ADB和⊥AEC(2)因为⊥A=50°,⊥ABD=39°,⊥AEC⊥⊥ADB所以⊥ADB=180°- 50°- 39°=91°,⊥ACE=39°又因为⊥ADB=⊥1+⊥2+⊥ACE,⊥1=⊥2所以2⊥1+39°=91°,所以⊥1= 26°习题13.11、都是轴对称图形,图略2、略3、有阴影的三角形与1,3成轴对称;整个图形是轴对称图形;它共有2条对称轴4、⊥A'B'C'=90°,AB=6cm5、全等;不一定6、解:⊥DE是AC的垂直平分线,AE=3cm⊥AD=CD,CE=AE=3cm又⊥⊥ABD的周长为13cm⊥AB+BD+AD=13cm,AB+BD+CD=13cm,AB+BC=13cm⊥AB+BC+AC=AB+BC+AE+CE=13+3+3=19cm故⊥ABC的周长为19cm7、是,2条8、直线b,d,f9、证明:⊥OA=OC,⊥A =⊥C,⊥AOB=⊥COD⊥⊥AOB⊥⊥COD,⊥OB=OD⊥BE=DE,⊥OE垂直平分BD10、线段AB的垂直平分线与公路的交点是公共汽车站所建的位置11、AB和A'B'所在的直线相交,交点在L上;BC和B'C'所在的直线也相交,且交点在L上;AC和A'C'所在的直线不相交,它们所在的直线与对称轴L平行,成轴对称的两个图形中,如果对应线段所在的直线相交,交点一定在对称轴上,如果对应线段所在的直线不相交,则与对称轴平行12、发射塔应建在两条高速公路m和n形成的角和平分线与线段AB 的垂直平分线的交点位置上,图略13、证明:(1)∵点P在AB的垂直平分线上∴PA=PB,又∵点P在BC的垂直平分线上∴PB=PC,∴PA=PB=PC(2)点P在AC的垂直平分线上,三角形三边的垂直平分线相交于一点,这点到这个三角形三个顶点的距离相等习题13.21、略2、关于x轴对称的点的坐标依次为:(3,-6),(-7,-9),(6,-1),(-3,5),(0,-10)关于y轴对称点的坐标依次为:(-3,6),(7,9),(-6,-1),(3,-5),(0,-10)3、B(1,-1),C(-1,-1),D(-1,1)4、略5、关于x轴对称;向上平移5个单位长度关于y轴对称;先关于x轴作轴对称,再关于y轴作轴对称6、7、略习题13.31、(1)35°,35°(2)解:80°的角是底角时,那么另一个底角为80°,顶角为180°-80°-80°=20°80°的角是顶角时,两个底角相等,均为1/2(180°-80°)=50°所以另外两个角是20°,80°或50°,50°2、证明:⊥AD⊥BC,⊥⊥ADB=⊥DBC又⊥BD平分⊥ABC,⊥⊥ABD=⊥DBC⊥⊥ABD=⊥ADB,⊥AB=AD3、解:⊥五角星的五个角都是顶角为36°的等腰三角形⊥每个底角的度数是1/2×(180°- 36°)=72°⊥⊥AMB=180°-72°=108°4、解:⊥AB=AC,⊥BAC=100°⊥⊥B=⊥C=1/2(180°-⊥BAC)=1/2×(180°-100°)=40°又⊥AD⊥BC,⊥⊥BAD=⊥CAD=1/2⊥BAC=1/2×100°=50°5、证明:⊥CE//DA,⊥⊥A=⊥CEB又⊥⊥A=⊥B,⊥⊥CEB=⊥B⊥CE=CB,⊥⊥CEB是等腰三角形6、证明:⊥AB=AC⊥⊥B=⊥C,又⊥AD=AE⊥⊥ADE=⊥AED,⊥⊥ADB=⊥AEC在⊥ABD和⊥ACE中,有⊥B=⊥C,⊥ADB=⊥AEC,AB=AC⊥⊥ABD⊥⊥ACE(AAS),⊥BD=CE7、解:∵AB=AC,∠=40°∴∠ABC=∠C=1/2×(180°-40°)=70°又∵MN是AB的垂直平分线,∴DA=DB,∴∠A=∠ABD=40°∴∠DBC=∠ABC-∠ABD=70°-40°=30°8、略9、解:对的,因为等腰三角形底边上的中线和底边上的高重合10、证明:⊥BO平分⊥ABC,⊥⊥MBO=⊥CBO⊥MN⊥BC,⊥⊥BOM=⊥CBO,⊥⊥BOM=⊥MBO⊥BM=OM,同理CN=ON⊥AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC即⊥AMN的周长等于AB+AC11、解:⊥⊥NBC=84°,⊥NAC=42°,⊥MBC=⊥NAC+⊥C即84°=42°+⊥C,⊥⊥C=42°,⊥BC=BA又⊥BA=15×(10-8)=30(n mile)⊥BC=30n mile,即从海岛B到灯塔C的距离是30n mile12、13略14、解:∵PQ=AP=AQ,∴△APQ是等边三角形∴∠APQ=∠AQP=∠PAQ=60°又∵BP=AP,∴∠BAP=∠B又∵∠BAP+∠B=∠AOQ=60°,∴∠BAP=∠B=30°同理∠CAQ=30°所以∠BAC=∠BAP+∠PAQ+∠CAQ=30°+60°+30°=120°15、略复习题131、1,2,4,5,6是2、略3、证明:连接BC,⊥点D是AB的中点,CD⊥AB⊥AC= BC,同理,AB=BC⊥AC=AB4、点A与点B关于x轴对称;点B与点E关于y轴对称;点C与点E不关于x轴对称,因为它们的纵坐标分别是3,-2,不互为相反数5、⊥D=25°,⊥E=40°,⊥DAE=115°6、证明:⊥AD=BC,BD=AC,AB=AB⊥⊥ABD⊥⊥BAC,⊥⊥C=⊥D又⊥⊥DEA=⊥CEB,AD=BC⊥⊥ADE⊥⊥BCE,⊥AE=BE⊥⊥EAB是等腰三角形7、证明:⊥在⊥ABC中,⊥ACB=90°⊥⊥A+⊥B=90°⊥⊥A=30°,⊥⊥B=60°,BC=1/2AB⊥⊥B+⊥BCD=90°,⊥⊥BCD=30°⊥BD=1/2BC,⊥BD=1/2×1/2AB=1/4AB8、解:等边三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形右6条对称轴,正八边形有8条对称轴,正n边形有n条对称轴9、(1)(4)是轴对称;(2)(3)是平移;(1)的对称轴是y轴;(4)的对称轴是x轴;(2)中图形I先向下平移3个单位长度,再向左平移5个单位长度得到图形⊥;(3)中图形I先向右平移5个单位长度,再向下平移3个单位长度得到图形⊥10、证明:因为AD是⊥ABC的角平分线,DE,DF分别垂直于AB,AC 于点E,F,所以DE= DF,⊥DEA= ⊥DFA= 90°又因为DA=DA,所以Rt⊥ADE⊥Rt⊥ADF所以AE=AF,所以AD垂直平分EF11、证明:⊥⊥ABC是等边三角形⊥AB=BC=AC,⊥A=⊥B=⊥C=60°又⊥AD= BE=CF,⊥BD=CE=AF⊥⊥ADF⊥⊥BED⊥⊥CFF,⊥DF=ED=FE所以⊥DEF是等边三角形12、略13、证明:⊥⊥ABC是等边三角形,D是AC的中点⊥⊥ABC=⊥ACB=60°,⊥ABD=⊥DBC=1/2⊥ABC=30°⊥⊥ACB=⊥CEB+⊥CDE ,⊥⊥CED=1/2⊥ACB=30°⊥⊥DBC=⊥CED ,⊥DB=DE14、15略习题14.126310108646543)2(11a b a a a x b )不对,()不对,()不对,()不对,(不对,)不对,、(248334616-22a b a q p x 、、、、- 8753231094.446-183⨯-、、、、y x b a y xaa a ab ab b a x x b ab 4618510228-42322233++-+--+、、、、33232222;842;5214;483;6161;1895y x x x x y y x x x x x x --+--+-++-++-、 2222343121;43;16;4;16b a ab x x p m x ab ++-+--;、 021,-272==+=时,原式当、原式x x x 82;15125-822-+-x x x 、B 30289⨯、6101.5810⨯、13、2323253103103)32()2()2()2(222b a n m n m n m n m =⋅=⋅=⋅=+ 14、938;1>=x x 习题14.2 999996;3999999;425;94;1;9412222222b b a y x y x ----、9604;3969;94249;144;92416;2520422222222b ab a m m y xy x b ab a +-+++-++、168;961244;12;2458532422222+-++-+--++--x x y x y xy x y xy x x x 、2121,31,101242=-==+=时,原式当、原式y x y xy 5、5cm6、224)2()2()2(222ab a b a b a πππππ=⨯=--+ 7、19 8、778<x 9、61,23-==y x习题14.3)2)(3();23(q p 2)4(3);23(512---+-+m a q p c a bc a a )(;、))((3);127.0)(127.0();2)(2(3);61)(61(2y x y x p p y x y x b b -+-+-+-+、222222)(;)85(;)()21(;)7(;)15(3c b a a m n y m t ++--+-+、 4、314;5105.08⨯ ))((3;)2();2)(2(;)(522y x y x a y x y p p b a -+---++、 6、2207、222cm 84.1754=-r R ππ8、)1(4)2()1(4222222-=---=-⨯x x x x x 或 9、12±=m10、略11、)35)(35();2)(2(-+-+x x x x复习题14 39204;96.3599;12444;55;344;4122242297+--++--+y x y xy x x x b ab a y x 、xz y x a a b ---87;232;94;322252、 22)233(;)2();(2);45)(45(3+----+y x b a b a x y x y x 、 )(t 101.248412⨯、)(28.622)1(275km R R ≈=-+πππ、3232;46;4;298622-+---+xy z yz y x x 、 222)2(;)3();12)(12)(14();3)(3(7b a y x y x x x x x x +---++-+、17;4822=+=y x xy 、9、370.32(t )10、(1)规律:3×9-2×10=7;14×8-7×15=7(2)是有同样规律(3)设左上角数字为n ,其后面数字为n+1,其下面数字为n+7,右下角数字为n+8,则(n+1)(n+7)-n(n+8)=n2+7n+n+7-n2-8n=711、证明:∵(2n+1)2-(2n -1)2=[(2n+1)+(2n -1)][(2n+1)-(2n -1)]=4n ×2=8n ,又∵n 是整数,∴8n 是8的倍数∴两个连续奇数的平方差是8的倍数12、略习题15.1分式万字;、;11;/2.0101201--+t h km x n m nm n m b b a b a c m a x x y x b x -++-+++-,2,,3,1512),(43,3,122分式:、整式: 3、x ≠0;x ≠3;x ≠-5/3;x ≠±44、(1)(2)都相等,利用分式的基本性质可求出5、yx n m b a x y 2;34;2;52-- 263;23;516-++x b a a c b x ;、)32)(32(9124,)32)(32(2;)(22,)(2;3,318;69,62722222222222-++--+++-m m m m m m mn y x xy y x y x b a ac b a bc y x y xy 、8、(1)x ≠0且x ≠1(2)x 取任意实数 min 10120-120009+ωω、 10、玉米的单位面积产量为n/m ,水稻的单位面积产量为(2n+q)/(m+p)11、解:大长方形的面积为222b ab a ++因为大长方形的长为2(a+b ) 则大长方形的宽为)(2)(2222m b a b a b ab a +=+++ 12、正确;不正确,正确答案为x y x-13、a b a b x -≠==且5;1习题15.2xy m n xz y c a 4;;21;412-、 xy x x x x x y x b a a -++---;6;)2(32;122、 abz y x b 45;;2;2534262-、 xa x x -13;11;1)1(314++-;、 yx y x y p mn n p m ab 81;)(27;20158;10752232++-、)(322;823;)(;622224333222b a ab b a y x y x y x y x a b a b -++++-+、n mb a yz x ab 12;27;2;673323--、-7-7-5-5103.01105.67102108⨯⨯⨯;;;、-8-510109;、)(10km mq nptt q p m n =⋅⋅、倍、3-m 10m11)(33122t a a m+、)/(2132h km t t n-、)(5.02)5.0(14h n n n --、))()(()()()(;15222222a c c b b a c b b a a c mnp n m p ----+-+-++、15、略习题15.31、x=3/4;x=7/6;无解;x=4;x=-3;x=1;x=-6/7;12、(1)方程两边同乘x -1,得1+a( x -1) =x -1去括号,得1+ax -a=x -1移项,合并同类项,得(a -1)x=a -2因为a≠1,所以a -1≠0方程两边同除以a-1,得x=(a-2)/(a-1)检验:当x=(a-2)/(a-1)时,x-1=(a-2)/(a-1)-1= (a-2-a+1)/(a-1)=(-1)/(a-1)≠0所以x=(a-2)/(a-1)是原方程的解(2)方程两边同乘x(x+1),得m(x+1) -x=0去括号,得mx+m-x=0移项,得(m-1)x=-m因为m≠1,所以m-1≠0方程两边同除以m-1,得x=(-m)/(m-1)检验:因为m≠0,m≠1,所以x(x+1)=-m/(m-1)×[-m/(m-1)+1]=m/[(m-1)2]≠0所以x=-m/(m-1)是原分式方程的解3、解:设甲、乙两人的速度分别是3x km/h,4x km/h列方程,得6/3x+1/3=10/4x解得x=3/2经检验知x=3/2是原分式方程的解则3x=9/2,4x=6答:甲、乙两人的速度分别是9/2 km/h,6 km/h4、A型机器人每小时搬运90kg,B型机器人每小时搬运60kg5、解:设李强单独清点完这批图书需要x h,张明3 h清点完这批图书的一半,则每小时清点这批图书的1/6,根据两人的工作量之和是总工作量的1/2,列方程得:1.2×(1/x+1/6)=1/2,解得x=4经检验知x=4是原分式方程的解答:如果李强单独清点这批图书需要4 h6、解:因为小水管的口径是大水管的1/2,那么小水管与大水管的横截面积比为S小/S大=πr2/[π(2r)2]=1/4.设小水管的注水速度为xm3/min,那么大水管的注水速度为4xm3/min由题意得(1/2 V)/X+(1/2 V)/4x=t,解得x=5V/8t经检验,x=5V/8t是方程的根,它符合题意所以4x=5V/2t答:小水管的注水速度为5V/8tm3/min,大水管的注水速度为5V/2tm3/min7、解:设原来玉米平均每公顷产量是xt,则现在平均每公顷产量是(x+a)t,根据增产前后土地面积不变列方程,得m/x=(m+20)/(x+a)解得x=ma/20检验:因为m,a都是正数,x=ma/20时,x(x+a)≠0所以x=ma/20是原分式方程的解答:原来和现在玉米平均每公顷的产量是ma/20t与(ma/20+a)t 8、解:设第二小组速度为x m/min,则第一小组速度为1. 2x m/min由题意,得450/x-(450 )/1.2x=15,解得x=5检验:当x=5时,1.2x≠0,所以x=5是原分式方程的解此时1.2x=1.2×5=6 (m/min)答:两小组的攀登速度分别为6 m/min,5 m/min设第二小组的攀登速度为x m/min,那么第一小组的攀登速度为ax m/min根据题意得h/x=h/ax+t方程丙边同乘ax,得ha=h+atx解得x=(ha-h)/at经检验x=(ha-h)/at是原分式方程的解,(ha-h)/at·a=(ha-h)/t答:第一小组的攀登速度是(ha-h)/tm/min第二小组的攀登速度是(ha-h)/atm/min9、解:一飞机在顺风飞行920 km和逆风飞行680 km共用去的时间,正好等于它在无风时飞行1600 km用去的时间.若风速为40 km/h,求飞机在无风时飞行的速度设飞机在无风时的飞行速度为xkm/h,则顺风速度为(x+ 40) km/h,逆风速度为(x-40) km/h根据题意列方程得:920/(x+40)+680/(x-40)=(1 600)/x解得x=800/3检验:x=800/3时,x(x+40) (x-40)≠0所以x=800/3是原分式方程的解答:飞机在无风时的飞行速度为800/3krn/h复习题152)(2;;51;115;312b a ab y x z a n b a x +++分式:、整式: 2629622222229;;42442;1;2422zy x y x v u uv v u yx t s st s ---+-+-、 2224222;;1;1;168;161642;163y x ba b b a x x qr r q p x x x b -+--++-+-;、 6354-=x 、无解; 5、232;212≠±≠-≠-≠x x x x 且且 6、的值的值;小于;大于2212- 7、当x=-7时,11)2(3)1(2---+x x 与的值相等8、设现在平均每天生产x 台机器,则原计划每天生产(x -50)台机器 根据题意600/x=450/(x -50),解得x= 200检验:当x=200时,x(x - 50)≠0所以x=200是原分式方程的解答:现在平均每天生产200台机器9、设一个农民人工收割小麦每小时收割xhm2,则收割机每小时收割小麦150xhm2.根据题意,得10/150x=10/100x -1,解得x=1/30.经检验知x=1/30是原分式方程的解,所以150x=150×1/30=5(hm2).答:这台收割机每小时收割5hm2小麦10、设前一小时的平均行驶速度为x km/h ,则一小时后的平均速度为1.5x km /h根据题意,得180/x=1+(180-x)/1.5x+40/60,解得x=60经检验知x=60是原分式方程的解答:前一小时的行驶速度为60 km /h-0.22.3,33121,1111=-=+===+--=时,原式当原式;时,原式当、原式x x x x x )(2,)()(2122222r R r R S a S r R r R a -+-==-+-πππ所以、13、不能为0,此时式子没有意义。
人教版数学八年级上册课后习题参考答案
人教版数学八年级上册课后习题参考答案(总41页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第3页习题答案1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD在三角形内部,图(2)中AD 为三角形的一条直角边,图(3)中AD在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF5.C6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2BC.AD—丢AB.CE可得.9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.又DE//AC,所以∠DAC=∠1. 又DF//AB,所以∠DAB=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案1.解:因为∠CBD=∠CAD+∠ACB,所以∠ACB=∠CBD-∠CAD=45°-30°=15°.2.解:在△ACD中,∠D+∠DAC+∠DCA=180°,在△ABC中,∠B+∠BAC+∠BCA=180°,所以∠D+∠DAC+∠DCA+∠B+∠BAC+∠BCA=∠D+∠B+ ∠BAD+∠BCD=180°+180°=360°.所以40°+40°+150°+∠BCD= 360°. 所以∠BCD=130°人教版八年级上册数学第14页练习答案1.解:∠ACD=∠B.理由:因为CD⊥AB,所以△BCD是直角三角形,∠BDC=90°,所以∠B+∠BCD=90°,又因为∠ACB= 90°,所以∠ACD+∠BCD=∠ACB=90°,所以∠ACD=∠B(同角的余角相等).2.解:△ADE是直角三角形,理由:因为∠C=90。
八年级上册数学课本答案新人教版【三篇】
【导语】以下是为您整理的⼋年级上册数学课本答案新⼈教版【三篇】,供⼤家学习参考。
第2章2.1第1课时三⾓形的有关概念答案 课前预习 ⼀、直线;⾸尾 三、1、等腰三⾓形 2、相等 四、⼤于 课堂探究 【例1】思路导引答案: 1、1 2、2 变式训练1-1:C 变式训练1-2:B 【例2】思路导引答案: 1、2;8 2、4、6;C 变式训练2-1:B 变式训练2-2:B 课堂训练 1~2:A;B 3、2或3或4 4、11或13 5、解:(1)设第三边的长为xcm, 由三⾓形的三边关系得9-4 (2)由(1)知5 所以第三边长可以是6cm,8cm,10cm,12cm. (3)第三边长为6cm时周长最⼩,第三边长为12cm时周长, 所以周长的取值范围是⼤于等于19cm,⼩于等于25cm. 课后提升 12345 BBBAB 6、24 7、6;△ABD,△ADE,△AEC,△ABE,△ADC,△ABC 8、2cm;5cm;5cm 9,解:∵四边形ABCD是长⽅形且CE⊥BD于点E, ∴∠BAD,∠BCD,∠BEC,∠CED是直⾓,并且是三⾓形的⼀个内⾓. (1)直⾓三⾓形有:△ABD、△BCD、△BCE、△CDE. (2)易找锐⾓三⾓形:△ABE,钝⾓三⾓形:△ADE. 10、解:(1)由三⾓形三边关系得 5-2 因为AB为奇数, 所以AB=5, 所以周长为5+5+2=12、 (2)由(1)知三⾓形三边长分别为5,5,2,所以此三⾓形为等腰三⾓形. 第2章2.1第2课时三⾓形的⾼、中线、⾓平分线答案 课前预习 ⼀、⊥;CD;BC;∠2;∠BAC ⼆、中线 课堂探究 【例1】思路导引答案: 1、90 2、ABC;AB 变式训练1-1:C 变式训练1-2:A 【例2】思路导引答案: 1、线段 2、线段;⾓;90° 解:(1)CEB;C (2)∠DAC;∠BAC (3)∠AFC;90° (4)3 变式训练2-1:A 变式训练2-2: 解:(1)S△ABC=1/2AC•BC=1/2×3×4=6(cm²). (2)∵1/2AB•CD=SABC,∴1/2×5×CD=6,∴CD=12/5(cm) 课堂训练 1~3:C;B;C 4、40° 5、解:如图 (1)线段AD即为所画。
八年级数学上册 整式的乘除(习题及答案)(人教版)
整式的乘除(习题)➢ 例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-① ②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =--➢ 巩固练习1. ①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-; ④323(2)(2)b ac ab ⋅-⋅-.2. ①2223(23)xy xz x y ⋅+=_____________________; ②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________; ③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________; ④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3. ①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---; ④2(2)x y +;⑤()()a b c a b c -+++.4. 若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5. 若圆形的半径为(21)a +,则这个圆形的面积为( )A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6. ①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7. ①32(32)(3)x yz x y xy -÷-=____________; ②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-. 8. 计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.➢ 思考小结1. 老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可. ()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】➢ 巩固练习1. ①445a b ②522m n③12272x y - ④3524a b c -2. ①222336+9x y z x y ②428xy xy -+ ③232321334a b c a b c - ④442584a b a b - ⑤432323a a a a --++3. ①229x y - ②2242a b a b -+-③224212m mn n -++④2244x xy y ++ ⑤2222a b c ac -++4. D5. C6. ①223x z②12 ③48x y④34x y - ⑤22mn7. ①223x z x -+ ②2246b ab a -+-③222n m --④3222132m n m n m -+- 8. ①322a c②7 ③23a ab + ➢ 思考小结()()a b p q ap aq bp bq ++=+++ 22()(2)32a b a b a ab b ++=++。
人教版数学八年级上册学案及答案(全册)
人教版数学八年级上册学案及答案(全册)
学案及答案简介
本文档为人教版数学八年级上册学案及答案的全册内容。
学案是教师教学的指导方案,包含了每个教学单元的教学目标、内容安排、教学步骤及相关练等内容。
答案提供了学生在完成练时的参考答案,帮助学生巩固所学的知识。
学案及答案特点
- 本学案及答案按照人教版数学八年级上册的教学内容编写,覆盖全部内容。
- 学案设计简明清晰,具有循序渐进的教学步骤,帮助教师有效开展教学。
- 答案提供了详细的解析和思路,帮助学生理解并掌握各种数学题型的解题方法。
- 学案及答案内容秉持简洁、清晰的原则,避免复杂的法律问题,确保信息准确可靠。
使用建议
- 教师可通过学案的内容和教学步骤,合理安排课堂教学的时间和重点。
- 学生可使用答案进行自主练,对照答案检查并纠正自己的错误,提高解题能力。
- 学案及答案仅供参考,教师和学生在使用时应根据实际情况进行调整和适应。
结束语
人教版数学八年级上册学案及答案全册的编写旨在帮助教师和学生更好地掌握教学内容和提高研究成绩。
祝愿教师和学生们取得优异的成绩!。
人教版八年级上册数学书答案
人教版八年级上册数学书答案做八年级数学书习题一定要认真,马虎一点就容易出错。
下面小编给大家分享一些人教版八年级上册数学书答案,大家快来跟小编一起欣赏吧。
人教版八年级上册数学书答案(一)第24页1.(1)x=65;(2)x=60; (3)x=95.2.六边形3.四边形人教版八年级上册数学书答案(二)第28页1•解:因为S△ABD=1/2BD.AE=5 cm²,AE=2 cm,所以BD=5cm. 又因为AD是BC边上的中线,所以DC=BD=5 cm,BC=2BD=10 cm.2.(1)x=40;(2)x=70;(3)x=60;(4)x=100; (5)x=115.3.多边形的边数:17,25;内角和:5×180°,18×180°;外角和都是360°.4.5条,6个三角形,这些三角形内角和等于八边形的内角和.5.(900/7)°6.证明:由三角形内角和定理,可得∠A+∠1+42°=180°.又因为∠A+10°=∠1,所以∠A十∠A+10°+42°=180°.则∠A=64°.因为∠ACD=64°,所以∠A= ∠ACD.根据内错角相等,两直线平行,可得AB//CD.7.解:∵∠C+∠ABC+∠A=180°,∴∠C+∠C+1/2∠C=180°,解得∠C=72°.又∵BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°-72°=18°.8.解:∠DAC=90°-∠C= 20°,∠ABC=180°-∠C-∠BAC=60°.又∵AE,BF是角平分线,∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°,∴∠AOB=180°-∠ABF-∠BAE=125°.9.BD PC BD+PC BP+CP10.解:因为五边形ABCDE的内角都相等,所以∠B=∠C=((5-2)×180°)/5=108°.又因为DF⊥AB,所以∠BFD=90°,在四边形BCDF中,∠CDF+∠BFD+∠B+∠C=360°,所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°.11.证明:(1)如图11-4-6所示,因为BE和CF是∠ABC和∠ACB 的平分线,所以∠1=1/2∠ABC,∠2=1/2∠ACB.因为∠BGC+∠1+∠2 =180°,所以BGC=180°-(∠1+∠2)=180°-1/2(∠ABC+∠ACB).(2)因为∠ABC+∠ACB=180°-∠A,所以由(1)得,∠BGC=180°-1/2(180°-∠A)=90°+1/2∠A.12.证明:在四边形ABCD中,∠ABC+∠ADC+∠A+∠C=360°.因为∠A=∠C=90°,所以∠ABC+∠ADC= 360°-90°-90°=180°.又因为BE平分∠ABC,DF平分∠ADC,所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC,所以∠EBC+∠CDF=1/2(∠ABC+∠ADC)=1/2×180°=90°.又因为∠C=90°,所以∠DFC+∠CDF =90°.所以∠EBC=∠DFC.所以BE//DF.人教版八年级上册数学书答案(三)第32页1.解:在图12.1-2(2)中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图12. 1-2(3)中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C 和∠E,∠BAC和∠DAE是对应角.2.解:相等的边有AC=DB,OC=OB,OA=OD;相等得角有∠A=∠D,∠C=∠B,∠AOC=∠DOB.。
人教版八年级数学上册课本答案
人教版八年级数学上册课本答案做八年级数学课本习题,遇难心不慌,遇易心更细。
小编整理了关于人教版八年级数学上册课本答案,希望对大家有帮助!人教版八年级数学上册课本答案(一)第154页练习1.解:设骑车学生的速度为x km/h,则乘汽车学生的速度为2x km/h.由题意可知10/x-20/60=10/2x.方程两边都乘60x,得600-20x=300.20x=300,x=15.经检验x=15是原方程的解,它符合题意.答:骑车学生的速度为15km/h.2.解:设甲每小时做x个零件,则乙每小时做(x-6)个零件,由题意得90/x=60/(x-6),解得x=18.经检验x=18是原分式方程的解,符合题意.答:甲每小时做18个,乙每小时做12个.人教版八年级数学上册课本答案(二)第132页人教版八年级数学上册课本答案(三)第152页(1)解:方程两边乘2x(x+3),得x+3=4x,解得x=1.检验:当x=1时,2x(x+3)≠0.所以原分式方程的解为x=1.(2)解:方程两边乘3x+3,得3x=2x+3x+3,解得x=-3/2.检验:当x=-3/2时,3x+3≠0,所以原分式方程的解为x=-3/2. (3)解:方程两边乘X²-1,得2(x+1)=4,解得x=1.检验:当x=1时,X²-1=0,因此x=1不是原分式方程的解,所以原分式方程无解.(4)解:方程两边乘x(x+1)(x-1),得5(x-1) - (x+1) =0,解得x=3/2.检验:当x=3/2时,x(x+1)(x-1)≠0,所以原分式方程的解为x=3/2.。
人教版八年级上册数学书答案
人教版八年级上册数学书答案第一章有理数习题1.1:1.有理数是指能够用两个整数的比表示的数,可以是正数、负数或0。
2.(1)+12;(2)-7;(3)-32;(4)+18;(5)03.(1)-8;(2)-76;(3)0;(4)+20;(5)+9;(6)+364.(1)-9;(2)+24;(3)0;(4)-14;(5)+425.(1)0;(2)-45;(3)2;(4)-88;(5)9;(6)-656.(1)+13;(2)-37;(3)-45;(4)0;(5)+16;(6)+1;(7)-77;(8)+887.(1)-0.2;(2)+0.8;(3)-0.05;(4)+0.15;(5)-0.6;(6)+0.38.(1)-0.1;(2)+0.2;(3)-1.3;(4)+0.5;(5)-0.7;(6)+1.2习题1.2:1.(1)-4.3;(2)0;(3)-2.8;(4)-3.4;(5)-2.92. (1) -12.15 (2) 1.2 (3) -1.25 (4) -0.125 (5) 1.48 (6)3.4 (7) -15.6253. (1) -1.375 (2) 5.5 (3) 7 (4) -3.2 (5) -0.894 (6) 12.1254. (1) 69.50 (2) -8.2 (3) -1.8 (4) 1.7 (5) -0.02习题1.3:1. 总结:两个整数的和、差、积仍然是有理数。
2. 总结:两个有理数的和、积、商仍然是有理数,但当除数为0时,没有意义。
3. 总结:有理数的相反数仍然是有理数。
习题1.4:1. 一个有理数的绝对值等于该数与0之间的距离,绝对值表示数的大小。
2. (1) 3 (2) 8 (3) 15 (4) -63. (1) 6 (2) -14 (3) 20 (4) -3习题1.5:1. (1) -2.5 (2) -0.2 (3) 0.6 (4)3.52. (1) 1.3 (2) -0.7 (3) 0.9 (4) -0.1习题1.6:1. (1) 7 (2) 0 (3) 5 (4) 8 (5) -42. (1) -0.5 (2) -0.3 (3) -0.4 (4) 0.2 (5) -0.1习题1.7:1. x = -52. x = 33. x = -5习题1.8:1. 自定义答案第二章代数初步习题2.1:1. 解:x = 32. 解:x = 13. 解:x = 3习题2.2:1. 解:x = 22. 解:x = 03. 解:x = -1习题2.3:1. 代解得a = 6,b = 4习题2.4:1. 代入原式:1 + (2 + 3 + 4) = 1 + 9 = 102. 解:x = 83. 代入原式:3(8) = 24习题2.5:1. 代入原式:6 - (20 + 14) = 6 - 34 = -28习题2.6:1. 解:x = 3习题2.7:1. 解:x = 9习题2.8:1. 解:x = -5习题2.9:1. 解:x = 3习题2.10:1. 解:x = 4习题2.11:1. 解:x = 2习题2.12:1. 代入原式:8(2) = 16习题2.13:1. 解:y = 4习题2.14:1. 解:x = 62. 解:y = 6习题2.15:1. 解:x = -2习题2.16:1. 解:x = 7习题2.17:1. 解:a = 5习题2.18:1. 解:x = 1习题2.19:1. 解:x = -8习题2.20:1. 解:y = -3习题2.21:1. 解:x = 0习题2.22:1. 解:x = -4习题2.23:1. 解:x = -12习题2.24:1. 解:y = -4习题2.25:1. 代入原式:8 - (-12) = 8 + 12 = 202. 代入原式:-5 - (-3) = -5 + 3 = -83. 代入原式:3 - 7 = -4习题2.26:1. 代入原式:3 + 5(4) = 3 + 20 = 23习题2.27:1. 代入原式:4 + 5(-2) = 4 - 10 = -6习题2.28:1. 代入原式:7 - 5(3) = 7 - 15 = -8习题2.29:1. 代入原式:-3 + 5(-2) + 4 = -3 - 10 + 4 = -9习题2.30:1. 代入原式:3(5 - 2) = 3(3) = 9综上所述,以上是人教版八年级上册数学书第一章和第二章习题的答案。
人教版八年级上册数学第十一章 三角形 含答案
人教版八年级上册数学第十一章三角形含答案一、单选题(共15题,共计45分)1、如图为等边△ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC 上,且BD=BE,若AB=3,DE=1,则△EFC的面积为()A. B.1 C. D.2、下列各组线段能组成一个三角形的是()A.4cm,6cm,11cmB.3cm,4cm,5cmC.4cm,5cm,1cm D.2cm,3cm,6cm3、某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知,,,则的度数是()A. B. C. D.4、已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A的度数是()A.30°B.36°C.45°D.50°5、如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法:①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中正确的是()A.①②③④B.①②③C.②④D.①③6、已知四边形ABCD中,∠A与∠B互补,∠D=70°,则∠C的度数为()A.70°B.90°C.110°D.140°7、到三角形各顶点的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点8、一个五边形的三个内角是直角,另两个内角相等,则相等的这两个角的度数是()A. B. C. D.9、在下列条件中:①∠A=∠C﹣∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°﹣∠B,④∠B﹣∠C=90°中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个10、七边形的对角线共有()A.10条B.15条C.21条D.14条11、如图,在△ABC中,∠B=40°,∠C=50°,AD平分∠BAC,交BC于D,DE ∥AB,交AC于E,则∠ADE的大小是()A.40°B.45°C.50°D.90°12、某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.长方形C.正八边形D.正六边形13、如图,在ΔABC中,D为AB边上的一点,且S△ACD =S△BCD,则CD是ΔABC的()A.中线B.高C.角平分线D.不能确定14、如果n边形的每一个内角都等于与它相邻外角的2倍,那么n的值是( )A.7B.6C.5D.415、如图,在△ABC中,∠ACB=90°,AC=4,BC=2,P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S 1+S2的大小变化情况是()A.一直减小B.一直不变C.先增大后减小D.先减小后增大二、填空题(共10题,共计30分)16、正n边形的一个外角是30°,则n=________.17、如图1所示,圆上均匀分布着11个点A1, A2, A3,…,A11.从A1起每隔k个点顺次连接,当再次与点A1连接时,我们把所形成的图形称为“k+1阶正十一角星”,其中1≤k≤8(k为正整数).例如,图2是“2阶正十一角星”,那么∠A1+∠A2+…+∠A11=________;当∠A1+∠A2+…+∠A11=900°时,k=________.18、等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为________.19、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边上的高是________.20、三角形中两个外角的和必大于________度.21、如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.则∠3=________°.22、如图,点P是∠BAC的平分线上一点,PB⊥AB于B,且PB=5cm,AC=12 cm,则△APC的面积是________cm223、一束光线照射到平面镜上,然后在平面镜和之间来回反射,这时光线的入射角等于反射角,即,,.若已知,,那么∠3的度数为________.24、已知一个多边形的每一个内角都是,则这个多边形是________边形.25、一个等腰三角形的底边长为 5,一腰上中线把其周长分成的两部分的差为3,则这个等腰三角形的腰长为________三、解答题(共5题,共计25分)26、求出下列图中x的值。
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析
人教版八年级数学上册《第十二章全等三角形》课后练习及答案解析一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) B.∠BAE=∠CADA.AB=AC C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是( )A .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) 第3题图第5题图 第2题图第6题图AB C DA.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠2C .△ABC ≌△CED D .∠1=∠28. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于 点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ; ②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A 、3个 B 、2个 C 、1个 D 、0个二、填空题(每题3分,共21分)11.如图6,AC=AD,BC=BD,则△ABC≌ ;应用的判定方法是 .12.如图7,△ABD≌△BAC,若AD=BC,则∠BAD的对应角为 .13.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm ,则点D到AC的距离为 .B C DA 图6 D O CBA 图8 A D CB图7 第9题图 第7题图14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据 可得△AOD≌△COB,从而可以得到AD= .15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明 ≌ 得到AB=DC,再利用“ ”证明△AOB≌ 得到OB=OC. 16.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是 .17.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 三、解答题(共29分)18. (6分)如右图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.解: ∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中⎪⎪⎩⎪⎪⎨⎧∴△ABD ≌△ACD ( ) 19. (8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm ,FH=1.1 cm ,HM=3.3 cm ,求MN和HG 的长度.第19题图图10 DCBA20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、C、A在同一直线上,则DE的长就是A、B之间的距离,请你说明道理.21.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.四、解答题(共20分)22.(10分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DAE;②DF⊥BC.B C EF A23.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12章·全等三角形(详细答案)一、选择题 CBDCD BDCDC二、填空题 11、△ABD SSS 12、∠ABC 13、3cm 14、∠COB SAS CB 15、△ABC △DCB AAS △DOC 16、相等 17、○3 两角和它们的夹边分别相等的两个三角形全等三、解答题18、AD CAD AB=AC ∠BAD=∠CAD AD=AD SAS19、B 解:(1)EF=MN EG=HN FG=MH ∠F=∠M ∠E=∠N ∠EGF=∠MHN (2)∵△EFG ≌△NMH ∴MN=EF=2.1cm∴GF=HM=3.3cm ∵FH=1.1cm ∴HG=GF -FH=3.3-1.1=2.2cm 20、解:∵DE ∥AB ∴∠A=∠E在△ABC 与△CDE 中∠A=∠E BC=CD∠ACB=∠ECD∴△ABC ≌△CDE(ASA)∴AB=DE21、证明:∵AB ∥DE∴∠A=∠EDF∵BC ∥EFCA∴∠ACB=∠F∵AD=CF∴AC=DF在△ABC与△DEF中∠A=∠EDFAC=DF∠ACB=∠F△ABC≌△DEF(ASA)四、解答题22、证明:①∵BE⊥CD∴∠BEC=∠DEA=90°在Rt△BEC与Rt△DEA中BC=DABE=DE∴Rt△BEC≌Rt△DEA(HL)②∵Rt△BEC≌Rt△DEA∴∠C=∠DAE∵∠DEA=90°∴∠D+∠DAE=90°∴∠D+∠C=90°∴∠DFC=90°∴DF⊥BC23、证明:在△ABC与△ADC中1=∠2AC=AC3=∠4∴△ABC≌△ADC(ASA)∴CB=CD在△ECD与△ECB中CB=CD∠3=∠4CE=CE∴△ECD≌△ECB(SAS)∴∠5=∠6第十二章全等三角形一、填空题(每小题4分,共32分).1.已知:///ABC A B C ∆∆≌,/A A ∠=∠,/B B ∠=∠,70C ∠=︒,15AB cm =,则/C ∠=_________,//A B =__________.2.如图1,在ABC ∆中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形_______对.图1 图2 图33. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ cm 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________c m . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________.8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与B F 交于点O ,∠A =600,∠B =250,则∠E OB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD= BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC , 得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )NAMC B图7 图8 图9 图10A.边角边公理 B.角边角公理; C.边边边公理 D.斜边直角边公理13.如图9,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3C.2:3 D.1:414.如图10,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.图11第十二章全等三角形。
人教版八年级上册数学第十三章 轴对称含答案(完美版)
人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过O作AC的垂线EF,分别交AD、BC于E、F点,连接EC,则△CDE的周长为()A.5cmB.8cmC.9cmD.10cm2、如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8B.4C.12D.163、已知:如图,直线与轴、轴分别交于,两点,两动点,分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为()A. 、B. 、C. 、D.、4、甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)5、如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D 是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A.14B.13C.12D.116、在△ABC中,∠B和∠C的平分线交于点I,边AB和AC的垂直平分线交于点O,若∠BIC=90°+ θ,则∠BOC=()A.90°﹣θB.2θC.180°﹣θD.以上答案都不对7、如图,在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=120°,则∠A的度数为()A.110°B.60°C.80°D.100°8、下列图形中,是轴对称图形的个数是().A.1个B.2个C.3个D.4个9、把16个边长为a的正方形拼在一起,如图,连接BC,CD,则△BCD是()A.直角三角形B.等腰三角形C.等边三角形D.任意三角形10、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11、如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°12、如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,以B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A 可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=8;③∠AOB=150°;④其中正确的有()A.①②B.①②③C.①②④D.①②③④13、下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③顶角和底边对应相等的两个等腰三角形全等;④有一个角是60°的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.2B.3C.4D.514、如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=的图象经过点A,反比例函数y=的图象经过点B,则下列关于m,n2的关系正确的是()A.m=nB.m=﹣nC.m=﹣nD.m=﹣3n15、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.17、如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=12cm,则BC的长为________ cm.18、如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是________.19、如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为________.20、如图,已知在中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是________ .(只需填上一个正确的条件)21、如图,中,边AB的垂直平分线分别交AB、BC于点D、E,连接若,,则的周长为________.22、点A(2,-3)关于x轴对称的点的坐标是________.23、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是________24、如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为________.25、如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、以给出的图形“○,○,△,△, ”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.28、已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G 不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.29、作图题:如图,在平面直角坐标系xOy中,A(2,3),B(3,1),C(﹣2,﹣1).①在图中作出△ABC关于x轴的对称图形△A1B1C1并写出A1, B1, C1的坐标;②在y轴上画出点P,使PA+PB最小.(不写作法,保留作图痕迹)③求△ABC的面积.30、若等腰三角形一腰上的中线把三角形分为两个周长为 15cm和 18cm的三角形,且该中线长6cm,请画出示意图,并结合图形,求这个等腰三角形的底边长.参考答案一、单选题(共15题,共计45分)2、A3、A4、C5、C6、B7、D8、D9、B10、C11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
数学人教版八年级上册教材习题答案
§11.1.1练习1、图中有五个三角形.△ABE ,△DEC ,△BEC ,△ABC ,△BDC解析:本题考察三角形的定义及表示方法. 注意不要丢掉“△”符号.2、(1)(2)不能,(3)可以解析:本题考察三角形的三边关系.两边之和大于第三边.§11.1.21、(1)中∠B 为锐角;(2)中∠B 为直角;(3)中∠B 为钝角,BC 边的高AD 分别在 △ABC 内部△ABC 的边AB 上,△ABC 的外部.解析:本题考察三角形的高的位置. 锐角三角形高在三角形内部,钝角三角形两条高在三角形外部,一条高在内部,直角三角形两条高为直角边,一条高在内部.2、(1)2AF 或 2FB ,DC ,AC(2)∠2,∠ABC ,∠4解析:本题考察中线、角平分线蕴含的数量关系,特别注意相等、倍分关系. §11.1.3(1) (4) (6)解析:本题考察三角形的稳定性,多边形的不稳定性.习题§11.11、图中有6个三角形. △ABD ,△ADE ,△AEC ,△ABE ,△ADC,,△ABC解析:本题考察三角形的定义及表示方法.2、有2种选法:10,7,5;7,5,3解析:本题考察,三角形的三边关系,注意舍去不满足三边关系的选法. 3、AD 为中线 AE 为角平分线 AF 为高线.解析:本题考察中线、角平分线的定义及位置,注意高与三角形之间的位置关系.4、(1)EC ,BC(2)∠CAD ,∠BAC(3)∠AFC(4)12B C ×AF 解析:本题考察中线、角平分、高线的数量关系,注意根据题意找相等及倍分关系.5、C解析:本题考察三角形的稳定性.6、(1)若6cm 为腰,则另一腰为6cm ,底边为8cm(2)若6cm 为底边,则两腰为7cm解析:本题考察等腰三角形中的分类思想.7、(1)16或17(2)22解析:本题考察等腰三角形的分类思想及三角形的三边关系,注意去掉4.4,9,因为不满足三边关系.AB D E FC A B CDE AF C B D E8、12 AD CE解析:有关高的计算。
2013年审人教版八年级上册数学课本练习题答案汇总
第3页习题答案
1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.
2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置
第4页习题答案
1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.
2.解:(1)不能;(2)不能;(3)能.理由略
第5页习题答案:
1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD 在三角形内部,图(2)中AD为三角形的一条直角边,图(3)中AD在三角形的外部.
锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.
2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF
第7页习题答案:
解:(1)(4)(6)具有稳定性
第8页习题11.1答案
1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.
2.解:2种.
四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,
3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,
3.解:如图11-1-27所示,中线AD、高AE、角平分线
AF.
4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF
5.C。
八年级上册数学课本答案人教版
八年级上册数学课本答案人教版认真做八年级数学课本习题,就一定能成功!小编整理了关于人教版八年级数学上册课本的答案,希望对大家有帮助!八年级上册数学课本答案人教版(一)第41页练习1.证明:∵ AB⊥BC,AD⊥DC,垂足分为B,D,∴∠B=∠D=90°.在△ABC和△ADC中,∴△ABC≌△ADC(AAS).∴AB=AD.2.解:∵AB⊥BF ,DE⊥BF,∴∠B=∠EDC=90°.在△ABC和△EDC,中,∴△ABC≌△EDC(ASA).∴AB= DE.八年级上册数学课本答案人教版(二)习题12.21.解:△ABC与△ADC全等.理由如下:在△ABC与△ADC中,∴△ABC≌△ADC(SSS).2.证明:在△ABE和△ACD中,∴△ABE≌△ACD(SAS).∴∠B=∠C(全等三角形的对应角相等).3.只要测量A'B'的长即可,因为△AOB≌△A′OB′.4.证明:∵∠ABD+∠3=180°,∠ABC+∠4=180°,又∠3=∠4,∴∠ABD=∠ABC(等角的补角相等).在△ABD和△ABC中,∴△ABD≌△ABC(ASA).∴AC=AD.5.证明:在△ABC和△CDA中,∴△ABC≌△CDA(AAS).∴AB=CD.6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°,所以△ADC≌△BEC(AAS).所以AD=BE.7.证明:(1)在Rt△ABD和Rt△ACD中,∴Rt△ABD≌Rt△ACD( HL).∴BD=CD.(2)∵Rt△ABD≌ Rt△ACD,∴∠BAD=∠CAD.8.证明:∵AC⊥CB,DB⊥CB,∴∠ACB=∠DBC=90°.∴△ACB和△DBC是直角三角形.在Rt△ACB和Rt△DBC中,∴Rt△ACB≌Rt△DBC(HL).∴∠ABC=∠DCB(全等三角形的对应角相等).∴∠ABD=∠ACD(等角的余角相等).9.证明:∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠A=∠D.10.证明:在△AOD和△COB中.∴△AOD≌△COB(SAS).(6分)∴∠A=∠C.(7分)11.证明:∵AB//ED,AC//FD,∴∠B=∠E,∠ACB=∠DFE.又∵FB=CE,∴FB+FC=CE+FC,∴BC= EF.在△ABC和△DEF中,∴△ABC≌△DEF(ASA).∴AB=DE,AC=DF(全等三角形的对应边相等).12.解:AE=CE.证明如下:∵FC//AB,∴∠F=∠ADE,∠FCE=∠A.在△CEF和△AED中,∴△CEF≌△AED(AAS).∴ AE=CE(全等三角形的对应边相等).13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD.在△ABD和△ACD中,∴△ABD≌△ACD(SSS).∴∠BAE= ∠CAE.在△ABE和△ACE中,∴△ABE≌△ACE(SAS).∴BD=CD,在△EBD和△ECD中,:.△EBD≌△ECD(SSS).八年级上册数学课本答案人教版(三)习题12.31.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL).∴PM=PN(全等三角形的对应边相等).∴OP是∠AOB的平分线.2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂足分别为E,F,∴DE=DF.在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL).∴EB=FC(全等三角形的对应边相等)3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°.∵∠DOB=∠EOC,OB=OC,∴△DOB≌△EOC∴OD= OE.∴AO是∠BAC的平分线.∴∠1=∠2.4.证明:如图12 -3-26所示,作DM⊥PE于M,DN⊥PF于N,∵AD是∠BAC的平分线,∴∠1=∠2.又:PE//AB,PF∥AC,∴∠1=∠3,∠2=∠4.∴∠3 =∠4.∴PD是∠EPF的平分线,又∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等.5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB,∴PD=PE,∠OPD=∠OPE.∴∠DPF=∠EPF.在△DPF和△EPF中,∴△DPF≌△EPF(SAS).∴DF=EF(全等三角形的对应边相等).6.解:AD与EF垂直.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL).∴∠ADE=∠ADF.在△GDE和△GDF中,∴△GDF≌△GDF(SAS).∴∠DGE=∠DGF.又∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF.7,证明:过点E作EF上AD于点F.如图12-3-27所示,∵∠B=∠C= 90°,∴EC⊥CD,EB⊥AB.∵DE平分∠ADC,∴EF=EC.又∵E是BC的中点,∴EC=EB.∴EF=EB.∵EF⊥AD,EB⊥AB,∴AE是∠DAB的平分线,。
人教版八年级上册数学书习题13.3答案
Page 81 1(1)等腰三角形的一个角是110°,它的另外两个角是多少度?(2)等腰三角形的一个角是80°,它的另外两个角是多少度?Page82 2如图,AD ∥ BC ,BD 平分∠ABC ,求证:AD=AB 。
分析:题目要求我们证明AD=AB 。
观察图形,AB 与AD 位于△ABD 中。
由已知AD ∥BC , BD 平分∠ABC ,可考虑用等腰三角形的判定方法“等角对等边”来证明。
用已知的平行关系,可将∠ADB 与∠CBD 于关联起来,再有角平分线把∠ABD 与∠CBD 关联起来。
证明:∵AD ∥ BC ,∴∠ADB=∠CBD 。
又∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∴∠ADB=∠ABD ,∴AD=AB 。
Page82 3如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠AMBPage82 4如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC ,立柱AD ⊥ BC ,且顶角∠BAC=120°∠B ,∠C ,∠BAD ,∠CAD 各是多少度?解:∵AB =AC ,∠BAC=120°∴∠B=∠C= 12×(180-120)°=30°。
又∵AD ⊥BC ,∴∠BAD ,∠CAD = 12 ∠BAC = 12×120°= 60°。
Page82 5如图,∠A=∠B ,CE ∥DA ,CE 交AB 于点E 。
求证:△CEB 是等腰三角形。
证明:∵CE//DA ,MA B C D E n m ∴∠A=∠CEB 。
∵∠A=∠B,∴∠CEB=∠B,∴CE=CB ,∴△CEB 是等腰三角形。
Page82 6如图,点D ,E 在△ABC 的边BC 上,AB=AC ,AD=AE 。
求证:BD=CE 。
证明:∵AB =AC ,∴∠B =∠C 。
又∵AD =AE ,∴∠ADE =∠AED 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级数学上册课本答案
第154页练习
1.解:设骑车学生的速度为xkm/h,则乘汽车学生的速度为2xkm/h.
由题意可知10/x-20/60=10/2x.
方程两边都乘60x,得600-20x=300.
20x=300,x=15.
经检验x=15是原方程的解,它符合题意.
答:骑车学生的速度为15km/h.
2.解:设甲每小时做x个零件,则乙每小时做(x-6)个零件,
由题意得90/x=60/(x-6),
解得x=18.
经检验x=18是原分式方程的解,符合题意.
答:甲每小时做18个,乙每小时做12个.
第132页
第152页
(1)解:方程两边乘2x(x+3),
得x+3=4x,
解得x=1.
检验:当x=1时,2x(x+3)≠0.
所以原分式方程的解为x=1.
(2)解:方程两边乘3x+3,
得3x=2x+3x+3,
解得x=-3/2.
检验:当x=-3/2时,3x+3≠0,
所以原分式方程的解为x=-3/2.
(3)解:方程两边乘X²-1,
得2(x+1)=4,
解得x=1.
检验:当x=1时,X²-1=0,
因此x=1不是原分式方程的解,
所以原分式方程无解.
(4)解:方程两边乘x(x+1)(x-1),
得5(x-1)-(x+1)=0,
解得x=3/2.
检验:当x=3/2时,x(x+1)(x-1)≠0,所以原分式方程的解为x=3/2.。