八年级数学19.1.1平行四边形的性质_

合集下载

平行四边形的性质

平行四边形的性质

E

D
A
E

D

O
F
O
N
B (4) (3) (4) F C
B

(3) (1) F
C
F●
小结:过平行四边形的对角线交点作直线与平行四边形 的一组对边或对边的延长线相交,得到线段总相等。
一位饱经苍桑的老人,经过 一辈子的辛勤劳动,到晚年的 时候,终于拥有了一块平行四边形的土地, 由于年迈体弱,他决定把这块土地分给他的四个孩子,他 是这样分的:
§19.1 .1平行四边形的性质
平行四边形
图 形
名 文字语言 称
定 两组对边分别平行的 义 四边形
图形语言
符号语言

A D
C ∵AB∥CD,AD∥BC
∴四边形ABCD是平行四边 形
平 行 四 边 形
性 1边:对边平行且相等; 质 2角:对角相等; 邻角 互补; A 3对角线:对角线互相 D 平分。
A E
D
O ●
F C
B
A E
3

1
D

O
2ห้องสมุดไป่ตู้

4
F
B
C
在上述问题中,若直线EF与边DA、BC的延长线 交于点E、F,(如图2),上述结论是否仍然成立? 试说明理由。 A E ●
D

A

D

E
O

O
F

F
B
(1)
C
B
(2)
C
在上述问题中,若将直线 EF 绕点O旋转至下图(3)的位置时,上述结论是否 M 若此时再与两边延长线相交呢? 仍然成立? ●E A E

数学:19.1.1平行四边形的性质(第1课时)课件(人教新课标八年级下)

数学:19.1.1平行四边形的性质(第1课时)课件(人教新课标八年级下)

练习:
在 ABCD中 1)若∠A:∠B=5:4,求∠C. 2) 若∠A: ∠B: ∠C: ∠D的值可能是: A 1:2:3:4 B 1:2:1:2 C 1:1:2:2 D 1:2:2:1 3) 若∠A=2 ∠B, 求∠D
运用所学知识解决问题
例:如图所示, ABCD中,若BE 平分∠ABC,求ED(写出解题过程)
△ABC中,D、F分别是BC上 的点,BD=CF,分别过D、F 作AB的平行线交AC于点 E、G,求证:AB=ED+FG
• 1.判断:平行线间的线段相等。( ) • 2 平行四边形ABCD的周长等于20,已知 AB=6,则BC=___,CD=___. • 3 平行四边形ABCD 中, ∠A 比∠B 大 30°,则∠A =____,∠D=____. • 若A,B,C三点不共线,则以这三点为顶点的 平行四边形有___个。
第十九章 四边形
松苑中学 徐秀婷 刘晓波
说出下列图形的名称
A D
B
C
19.1 平行四边形
—— 平行四边形的性质(第1课时)
平行四边形的定义和表示方法
1定义.两组对边分别平行 的四边形叫做平行四边 形.
推理格式: ∵ AD∥BC,AB∥DC ,
A
D
B
C
∴四边形ABCD是平行四边形.
Hale Waihona Puke 如图:四边形ABCD是平行四边形, 记作: ABCD
• 5.
ABCD中, AE⊥BC,AF ⊥CD, ∠EAF=60°, BE=2,CD=1,求 ABCD的面积。
作业布置
探究1: 在平行四边形ABCD 中,你能推出相等的 边和角吗?
B
A
D
C
结论: 平行四边形的对边相等,对角相等。

19.1.1平行四边形的性质.ppt

19.1.1平行四边形的性质.ppt
∴ ABC≌ CDA(ASA) ∴AB=CD,BC=DA,∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
A
4 1
D
B
2
3
C
例 题 教 学 解:
在 ABCD中,已知∠A=52 ° ,求其 余三个角的度数。
A D 52°
∵四边形ABCD是平行四边形 且∠A=52°(已知)
性质2:平行四边形的对角相等。
O B D
A
C
∵四边形ABCD是平行四边形
∠A=∠C,∠B=∠D.
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
画一个平行四边形,观察它的边之间还有什么关系?
A D
平行四边形的对边平行.
∵四边形ABCD是平行四边形 ∴AB ∥ CD,BC ∥ AD.
B
C
A D
平行四边形的对边相等.
∵四边形ABCD是平行四边形 ∴AB=CD,BC=AD.
B
C
性质1:平行四边形的对边平行。 性质2:平行四边形是中心对称图形。 (C) (B) A D
B
C
∴ ∠A=∠C=52°(平行四边形的对角相等) 又∵AD∥BC(平行四边形的对边平行)
∴∠A+∠B=180°(两直线平行,同旁内角互补)
∴∠B=∠D= 180 °-∠A= 180º 52°=128 ° -
变式练习:
A 如图: 在 ABCD中,∠A+∠C=200° 则:∠A= 100 ° ,∠B= 80 ° . D C B

19.1.1平行四边形性质(二)

19.1.1平行四边形性质(二)

八年级数学(学科)导读单第3 周第 4课时总课时第14 节主题19.1.1平行四边形性质(二) 主备人刘慧香授课人课型问题解决授课时间学习目标1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.重点平行四边形对角线互相平分的性质,以及性质的应用难点平行四边形对角线互相平分的性质,以及性质的应用预习提纲:1、阅读教材中的“探究”体会平行四边形是中心对称图形性质。

想一想我们学过的正方形、长方形、梯形是不是中心对称图形。

2、识记平行四边形对角线性质并完成证明3请在纸上画两个全等的平行四边形ABCD和平行四边形EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉课上导学:1.复习:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是 360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等2.【探究】:将课前准备的两个全等的平行四边形中平行四边形ABCD,绕点O旋转180 观察它还和平行四边形EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分结论2的应用格式例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF 过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF..【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.例2 已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.(平行四边形“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了)3、小结4、达标测试。

平行四边形的性质平行四边形的性质与判断方法

平行四边形的性质平行四边形的性质与判断方法

平行四边形的性质平行四边形的性质与判断方法平行四边形是一种特殊的四边形,它具有一些独特的性质和判断方法。

在本文中,我们将深入探讨平行四边形的性质,并介绍如何通过这些性质来判断一个四边形是否为平行四边形。

一、平行四边形的定义平行四边形是指四边形的对边两两平行的四边形。

四边形的对边是指相对的两条边,而平行的定义是指两条直线或线段在同一平面内永不相交。

二、平行四边形的性质1. 对角线互相平分平行四边形的两条对角线互相平分。

也就是说,连接平行四边形相对顶点的线段,其交点即为对角线的中点。

2. 对边等长平行四边形的对边长度相等。

即平行四边形的相对边长相等。

3. 内角和为180度平行四边形的内角和等于180度。

也就是说,平行四边形的内角之和是一个定值,无论其角度大小如何变化,内角之和始终等于180度。

4. 任意一组相邻内角补角为180度对于平行四边形来说,任意一组相邻内角的补角等于180度。

两条平行线被一条横切线所交,形成的内角和为180度。

5. 对角线等长平行四边形的对角线长度相等。

也就是说,连接平行四边形相对顶点的对角线长度相等。

三、判断平行四边形的方法1. 观察边长关系判断一个四边形是否为平行四边形,可以通过观察其边长关系。

如果四边形的对边长度相等,则可以判断为平行四边形。

2. 观察角度关系通过观察四边形的角度关系,也可以判断是否为平行四边形。

如果四边形的内角之和为180度,并且任意一组相邻内角的补角为180度,那么可以确定该四边形是平行四边形。

3. 观察对角线若一个四边形的对角线相等,则可证明该四边形为平行四边形。

这是因为平行四边形的对角线互相平分,所以如果四边形的对角线相等,那么可以得出结论它是平行四边形。

4. 使用截线定理截线定理是一种判断平行四边形的方法。

当一条直线与两条平行线相交时,它所切分的线段比例相等。

如果在一个四边形中,两组相邻边分别满足这个比例关系,那么可以得出结论该四边形是平行四边形。

平行四边形及其性质

平行四边形及其性质

19.1.1平行四边形及其性质(一)讲授课题:人教新课标八年级数学下册19.1.1平行四边形的性质(一)教学目标:1.知识目标:理解平行四边形的概念,掌握平行四边形的边、角性质,并能初步用其来解决实际问题.2.能力目标:通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想.3.情感目标:让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.教学重点:平行四边形的性质教学难点:论证并应用平行四边形的性质教学方法:探究、启发式教学过程:一、创设情境,引入新课1、出示图片,学生找出图片中的几何图形。

(1)你还能举出生活中平行四边形的例子吗?(2)教师介绍平行四边形的相关概念:对边,对角,邻角,对角线。

(3)提问:怎样的图形才是平行四边形?四边形的两组对边有怎样的位置关系?几何语言表示法。

(同时强调定义的两方面作用:一是可以判定一个四边形是不是平行四边形;二是平行四边形具有两组对边分别平行的性质。

)(4)符号表示法(教师画图并板书示范:平行四边形ABCD可以记作“□ABCD”。

2、平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?(为引入平行四边形的性质做铺垫)【设计意图】通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。

二、情理推导,认识性质[活动一]1、操作探究:请同学们用两块全等三角形纸片能拼出几个平行四边形?并通过观察、度量,猜想出它的对边、对角分别有什么关系?【活动方略】学生活动:分小组进行探讨,在探讨中采用观察、猜想的方法,很快发现平行四边形具有以下性质:性质一:平行四边形的对边相等;性质二:平行四边形的对角相等.2、请学生用以前所学的知识证明猜想。

已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)思路点拨:对于四边形的问题通常可以转化为三角形来解决,如性质一、二,可通过连结对角线AC 或BD(如下图c、d)的方法将平行四边形切割成两块三角形,然后利用三角形全等证明.【设计意图】采用学生动手画图感知得到平行四边形的两个性质,然后再应用“化归”的数学思想解决性质的严格证明,并渗透一题多解的发散思维.4、练一练:(1)在□ABCD中,已知∠A=55°,求∠B=___°;∠C=_____°;∠D_____°。

初中数学8年级四边形

初中数学8年级四边形

初中数学8年级四边形课题 19.1 平行四边形课时:四课时第一课时 19.1.1平行四边形的性质【学习目标】1.理解平行四边形的定义及有关概念。

2.能根据定义探索并掌握平行四边形的对边相等、对角相等的性质。

3.了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。

【重点难点】重点:平行四边形的概念和性质。

难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法(即为什么要添加对角线)【导学指导】现实世界中,四边形也在装点着我们的生活,宏伟的建筑物,铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝……处处都有四边形的身影。

在小学,我们已经学过一些特殊的四边形,如长方形、正方形、平行四边形和梯形等,这些特殊的四边形与我们的生活关系更为密切。

在章前图中,你能找出它们吗?在本章,我们将进一步认识这些特殊的四边形,分析它们的联系与区别,探索并证明它们的性质及判定方法,进一步提高分析问题、解决问题的能力。

学习新知:阅读教材P83-P84内容,思考、讨论、合作交流后完成下列问题:1.什么叫做平行四边形?如何表示一个平行四边形?2.四边形与平行四边形有怎样的从属关系?你能举出生活中的平行四边形的例子吗?3.平行四边形有什么性质?你能证明吗?【课堂练习】1.教材P84练习第1,2,3题。

2.如图在平行四边形ABCD中,如果EF∥AD,GH∥CD,EF与GH相交于点O,那么图中的平行四边形一共有()A.4个 B。

5个C。

8个D。

9个3.在平行四边形ABCD中,AB的度数之比为5:4,则∠C等于()A.60° B.80° C.100°D.120°【要点归纳】通过学习,本节课你学到了哪些知识?与同伴交流一下。

【拓展训练】已知任意三点A、B、C,是否存在点D,使A、B、C、D围成一个平行四边形?如果存在,请你作出平行四边形;如果不存在请说明理由。

第二课时平行四边形的性质(2)【学习目标】1.探索并掌握平行四边形的性质:平行四边形的对角线互相平分。

19.1.1平行四边形的性质

19.1.1平行四边形的性质

1、在 ABCD中,DE是∠ADC的角平分线, 、 的角平分线, 中 是 ADC的角平分线 BC于点 于点E. 交BC于点E.
(1)求证:AB=CE; 求证: 求证 ; (2)若BE=CE,∠B=80°,求∠DAE的度数 若 , ° 的度数
1、平行四边形 、 的四边形叫做平行四边形 叫做平行四边形. 两组对边分别平行 的四边形叫做平行四边形. 2、平行四边形的性质 、 平行四边形的边 位置关系 对边平行 数量关系 对边相等 对角 相等 相邻内角 互补
5、在 ABCD中,CE⊥AB,E为垂足 如果 、 为垂足.如果 中 ⊥ , 为垂足 的度数. ∠A=125°,求∠BCE的度数 °求 的度数
AE平分 平分∠ 例1、如图所示,在 ABCD 中,AE平分∠BAD 如图所示, DC于点 于点E AD=5cm,AB=8cm, EC的长 的长. 交DC于点E,AD=5cm,AB=8cm,求EC的长.
1、已知a∥b,c∥d,则 已知 ∥ , ∥ , (1)∠1= (1)∠1= ∠2 ( ∠2= ∠3 ( (2)∠1 + ∠4= ∠3 + ∠4= ∴∠1=∠3( ( ( ) ) ) ) )
如图, 如图,把两个全等的直角三角形进行 拼接,你能得到哪些四边形? 拼接,你能得到哪些四边形?
两组对边分别平行的ห้องสมุดไป่ตู้边形叫做平行四边形 两组对边分别平行的四边形叫做平行四边形. 平行四边形.
° ABCD中 已知∠A=130° 1、在□ ABCD中,已知∠A=130°,则∠B= 50° , 130° ° 50° ∠C=___ ,∠D=___. C=___ =___. °
平行四边形相邻的角互补 2、在 、
° ABCD中, ∠B+∠D=140°,则∠A= 110° 中 ∠ °则

平行四边形的性质1

平行四边形的性质1

19.1.1平行四边形的性质(一)人教版八年级数学元氏二中时菊芳教学目标:【知识技能】1 理解平行四边形的定义及有关概念。

2能根据定义探索并掌握平行四边形的对边相等,对角相等的性质。

3了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。

【数学思考】1经历运用平行四边形描述观察世界的过程,发展学生的形象思维和抽象思维。

2根据平行四边形的性质进行简单的计算和证明,通过观察,实验,归纳,证明,能运用数学语言合乎逻辑地进行讨论和质疑,培养学生的推理能力和演绎能力。

【解决问题】由平行四边形的定义,能从数学的角度探究平行四边形的其他性质,并能运用平行四边形的性质进行有关的证明和计算,发展应用意识。

【情感态度】在应用平行四边形的性质过程中培养独立思考的习惯,在数学活动中获得成功的体验。

通过平行四边形的应用,进一步认识数学与生活的密切联系。

教学重难点:【重点】平行四边形的概念和性质。

【难点】平行四边形性质的探究。

教学方法:探究、启发式教学过程:一、创设情境,引入新课观看投影:生活中的竹篱笆格子和汽车的防护链等,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?二、探究定义(1) 定义:两组对边分别平行的四边形是平行四边形。

(2)定义的双重性:具备“两组对边分别平行”的四边形,才是“平行四边形”;反过来,“平行四边形”就一定具有“两组对边分别平行”性质。

(3)表示方法:如图,平行四边形ABCD,记作ABCD三、引导实验,探索新知学生操作:画一个平行四边形,观察这个四边形,除了“两组对边分别平行”以外,它的边角之间还有其他的关系吗?猜一猜量一量得出结论:平行四边形的对边相等.平行四边形的对角相等.(引导学生积极参与画图,猜想,度量,探讨结论。

)证一证得出平行四边形性质1平行四边形的对边相等.2 平行四边形的对角相等.引导学生写出已知:ABCD求证:(1)AB=DC AD=BC(2)∠A=∠C ∠B=∠D证明(证明过程学生独立完成,投影仪展示或板演。

八年级数学下平行四边形性质知识点

八年级数学下平行四边形性质知识点

平行四边形是初中数学中非常重要的一个图形,它具有独特的性质和特点。

下面我将详细介绍平行四边形的性质知识点,帮助你更好地理解和掌握这一内容。

一、平行四边形的定义及性质:1.定义:平行四边形是具有两组对边平行的四边形。

2.性质1:对角线互相平分平行四边形的对角线互相平分,也即对角线相交于各自的中点。

这一性质可以用几何证明的方法得到。

3.性质2:对角线长相等平行四边形的对角线长相等,也即两条对角线的长度相等。

4.性质3:对边相等且对边平行平行四边形的对边相等,也即对边的长度相等;同时对边也是平行的。

5.性质4:同一边界的两角互补平行四边形的同一边界的两个内角和为180度,也即两个内角互补。

6.性质5:同一边界的两个内角相等平行四边形的同一边界的两个内角相等。

7.性质6:对角线的交点是连线两点的中点平行四边形的对角线的交点是连线两点的中点。

8.性质7:与原四边形的其他边平行且等长的线段的两内角相等对平行四边形,如果有一条与原四边形的其他边平行且等长的线段,那么这两条线段的两个内角也相等。

二、平行四边形的基本性质:1.平行四边形的对边相等,也即两组对边的长度相等。

2.平行四边形的对边平行,也即两组对边都是平行的。

3.平行四边形的任意一组对角线互相平分,也即对角线相交于各自的中点。

4.平行四边形的对角线相等,也即两条对角线的长度相等。

5.平行四边形的同一边界的两个内角和为180度,也即两个内角互补,并且同一边界的两个内角相等。

6.平行四边形的对角线的交点是连线两点的中点。

7.任意一条与平行四边形的一条边平行且等长的直线经过对角线交点后,就把平行四边形分成两个全等的三角形。

8.平行四边形的俄拉斯问题:通过平行四边形的顶点引较平行四边形的边,再连接对边的中点,可以得到四个全等的平行四边形。

三、平行四边形的几何性质应用:1.判断四边形是否为平行四边形:-判断对边是否平行-判断两组对边是否相等-判断对角线是否相等2.已知平行四边形的性质求解问题:-求平行四边形的面积-求平行四边形的周长-判断平行四边形的类型(正方形、长方形、菱形等)3.平行四边形的构造:-已知连线两点构造平行四边形-已知对角线长度构造平行四边形四、平行四边形的证明:在证明平行四边形的性质时,一般需要用到平移、对称、重叠等几何变换,以及线段的相等关系、角的性质等几何知识。

平行四边形的性质1

平行四边形的性质1

四边形19.1 平行四边形19.1.1 平行四边形的性质要点提示【重点提示】平行四边形的定义及性质.【难点提示】探索平行四边形的性质、寻求解题思路.【考点提示】1.应用平行四边形的性质定理解题.2.运用平行四边形对角、对边相等的性质进行有关的论证和计算.一课三练【课前自练】(10分钟)○1._________________________________的四边形叫做平行四边形.○2.平行四边形的性质:(1)___________________________(2) ________________________(3) _______________________________.○3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.△4.在□ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1C.1:1:2:2 D.2:1:2:1△5.平行四边行的两条对角线把它分成全等三角形的对数是()A.2 B.4 C.6 D.8【课堂精练】(20分钟,50分)○6.(8分)在□ABCD中,∠A、∠B的度数之比为5:4,则∠C等于()A.60°B.80°C.100°D.120°△7.(8分)将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有()A.1种B.2种C.4种D.无数种△8.(8分)平行四边形的周长等于56 cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为_______.△9.(12分)如图,在□ABCD中,AB=AC,若□ABCD的周长为38 cm,△ABC的周长比□ABCD 的周长少10 cm,求□ABCD的一组邻边的长.第9题图☆10.(14分)如图,在□ABCD中,对角线AC、BD相交于点O,MN是过O点的直线,交BC 于M,交AD于N,BM=2,AN=2.8,求BC和AD的长.第10题图【课后演练】(20分钟,50分)○11.(6分)平行四边形的两条对角线和一条边的长依次可以取()A.6、6、6B.6、4、3C.6、4、6D.3、4、5○12.如图:A/B/∥BA,B/C/∥CB,C/A/∥AC,图中的平行四边形有个,它们分别是.第12题图△13.(6分)在□ABCD中,∠A+∠C=270°,则∠B=______,∠C=______.△14.(10分)如图,在平行四边形ABCD中,BC=2AB,E为BC的中点,求∠AED的度数.第14题图△15.(10分)如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?第15题图☆16.(12分)如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.第16题图ACBCAB′′′答案○1.两组对边分别平行的○2. (1)平行四边形的对边相等(2)平行四边形的对角相等(3)平行四边形的对角线互相平分○3.24 △4. D △5. B ○6. C △7. D △8.21 cm △9. AD=10cm CD=9cm 【讲析】∵△ABC的周长= AB+AC+BC,□ABCD的周长=AB+BC+CD+AD,又∵△ABC的周长比□ABCD的周长少10 cm,且AB=AC,∴AD=10cm,∴CD=9cm ☆10. BC=4.8 AD=4.8 【讲析】∵点O是对角线的交点,∴AO=CO,∵MN是过O点的直线,∴∠AON=∠COM,又∵∠NAO=∠MCO,∴△AON≌△COM,∴AN =MC,又∵AN=2.8,∴BC=4.8,∵AD=BC,∴AD=4.8 ○11.C○12. 3□A/B/ C/B、□A/CB/ C/、□A/B/ AC/△13. 45°135°△14. 90°△15. 相等由△DOF≌△BOE易得到OE=OF☆16. 相等【讲析】∵四边形ABCD为平行四边形,∴AD∥EC,又∵AE∥CF,∴四边形AECF为平行四边形,∴AE=CF。

19.1.1平行四边形的性质(1)

19.1.1平行四边形的性质(1)

从拼图可以得到什么启示?
小结:
平行四边形可以是由两个全等的三角形组成, 因此在解决平行四边形的问题时,通常可以连结对 角线转化为两个全等的三角形进行解题。
已知: ABCD 求证:AB=CD,BC=DA; ∠B=∠D,∠A=∠C. 证明:连接AC ∵四边形ABCD是平行四边形
4 1 2 3
∴AB∥CD,AD∥BC ∴∠1=∠2,∠3=∠4 在△ABC和△CDA中 ∠1=∠2
19.1平行四边形
平行四边形相关概念
1.两组对边分别平行的四边形叫做平行四边形.
如图:四边形ABCD是平行四边形 记作: ABCD
B
A
D
C
2.平行四边形不相邻的两个顶点连成的线段叫
平行四边形的对角线.
线段AC、BD就是 ABCD的两条对角线。
3.平行四边形相对的边称为 对边, 相对的角称为 对角.
∠A= ∠C, ∠B= ∠D(平行四边形的对角相等)
1.如图:在 ABCD中,根据已知你能得到哪 些结论?为什么?
A 30cm B
124°
32cm
56° 124°
D
30cm
56°
32cm
C

ABCD中,AB=5,BC=3,求它的周长
例1:如图 小明用一根36m长的绳子围成了一个平行四 边形的场地,其中一条边AB长为8m,其他三条边各长 多少? A D 解:∵ 四边形ABCD是平行四边形 8cm ∴AB=CD, AD=BC B C ∵AB=8m
Hale Waihona Puke 对边:AB与CD; BC与DA. 对角: ∠ABC与∠CDA; ∠BAD与∠DCB.
平行四边形的边、角有怎样的数 量关系?
请用直尺,量角器等工具度量你手中平行 四边形的边和角,并记录下数据,验证猜想 AB=DC,AD=BC,∠A=∠C,∠B=∠D是否正确? 用你以前所学的知识证明猜想.

19.1.1平行四边形及其性质

19.1.1平行四边形及其性质

19.1平行四边形及其性质第一课时一、教学目标知识与技能理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.过程与方法会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.情感、态度与价值观培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点难点重点: 平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点: 运用平行四边形的性质进行有关的论证和计算.三、教学准备多媒体课件。

四、教学方法自主、合作、探究法。

五、教学过程(一)复习导入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC (性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.探究:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC 和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.(二)新课教授例1.(教材P93例1)例2.(补充)如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .分析:要证AF=CE ,需证△ADF ≌△CBE ,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC ,AB=CD ,又AE=CF ,根据等式性质,可得BE=DF .由“边角边”可得出所需要的结论.证明略.例3.如图所示,小明用一根36米长的绳子围成了一个平行四边形场地,其中一条边AB 长为8米,其他三边各长多少?师生共析:利用“平行四边形对边相等”。

19.1.1平行四边形的性质(1)

19.1.1平行四边形的性质(1)
(1)定义:两组对边分别平行的四边形是平行四边形.
(2)表示:平行四边形用符号“ ”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.
知识点二平行四边形的性质
【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.
四、课堂梳理小结作业说明
小结具体内容
平行四边形的性质及应用
详细分层作业
布置要求说明
必做:书P84练习1、2(本上)导航P38随堂练习
选作:导航P39课后演练
初二学案记录学科八下数学时间月日
课题
19.1.1平行四边形的性质(1)
课型
新授
课时
1
一、课堂导入知识点衔接
复习内容重点
回忆小学时,学习的平行四边形的概念及相关知识
具体衔接点
1、已知的平行四边形的相关知识
2、平行线的相关性质二、本课知点强调说明本课重点难点
1、四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用
针对性练习:1:、 ABCD中,AB=10,BC=6,则它的周长是____
2、如右图,在 ABCD中, ,如果∠A=125°
那么∠BCE的度数为()A 55°B 35°C 25°D 30°
例2如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
练习:
如图4.3-9,在 ABCD中,AC为对角线,BE⊥AC,
DF⊥AC,E、F为垂足,求证:BE=DF.
随堂练习
1、(1)在 ABCD中,∠A= ,则∠B=度,∠C=度,∠D=度.

初二数学平行四边形的性质与判定

初二数学平行四边形的性质与判定

初二数学平行四边形的性质与判定平行四边形是初中数学中的重要概念之一,它具有一系列特点和性质。

本文将介绍平行四边形的性质以及判定方法。

一、平行四边形的性质1. 对边平行性:平行四边形的对边是两两平行的。

即AB ∥ DC, AD ∥ BC。

2. 对角线重合性:平行四边形的对角线互相重合于中点。

即AC = BD,并且AC的中点和BD的中点重合。

3. 对角线相等性:平行四边形的对角线相等。

即AC = BD。

4. 对边相等性:平行四边形的对边相等。

即AB = DC, AD = BC。

5. 内角和性质:平行四边形的内角和为180度。

即∠A + ∠B + ∠C + ∠D = 180°。

6. 对边角性:平行四边形的对边对角是两个对立角,互相补角。

即∠A + ∠C = 180°, ∠B + ∠D = 180°。

二、平行四边形的判定方法根据平行四边形的性质,我们可以通过以下方法判定一个四边形是否为平行四边形。

1. 判定对边平行性:如果一个四边形的两对边分别平行,则该四边形为平行四边形。

2. 判定对边相等性:如果一个四边形的两对边分别相等,则该四边形为平行四边形。

3. 判定对角线重合性:如果一个四边形的对角线的中点重合,则该四边形为平行四边形。

4. 判定对角线相等性:如果一个四边形的对角线相等,则该四边形为平行四边形。

需要注意的是,以上判定方法是可以相互结合使用的,可以根据具体情况选择适当的判定条件。

三、平行四边形的应用平行四边形在几何学和实际生活中有着广泛的应用。

以下是几个常见的应用场景:1. 建筑设计:在建筑设计中,平行四边形的性质经常被应用于设计平行放置的房间、墙壁等。

2. 绘图与平行线:学习平行四边形有助于我们更好地理解平行线的性质和画法。

3. 地理测量:在地理测量中,利用平行四边形的性质可以计算地图上的距离和方位角。

4. 四边形面积计算:平行四边形的面积可以通过底边长度和高的乘积来计算,这在实际应用中非常常见。

平行四边形的性质

平行四边形的性质
CD8
又 A B B C C A D 3 D 6
A D B C 1(m 0) 答:其它三边的长为 分10别m,8m,10m.
例2.已知: ABCD中,∠A=100°, 求其他各角的度数.
A
D
B
C
3、已知一个平行四边形的两个内角之比 为1︰2,你能求出平行四边形每个内角的度 数吗?
D
C
A
A
E
D
3 4
O
B
F 7
C
练一练
第十九章 四边形
: □ ABCD的对角线AC、BD相交于点
O,AC =16㎝,BD =12㎝,BC =10㎝,
则□ABCD 的周长是__4_0c_m___,
□ ABCD的面积是___9_6_c_m____。
D
C
6
10
O
10
8
A
B
练一练
第十九章 四边形
3、在 ABCD中,∠A:∠B:∠C:∠D的值可能是( )
B
21
3 4
C
证明:连接AC
在 ABC和 CDA中
∵四边形ABCD是
∠4=∠1
∴ AD ∥BC, AB ∥CD
AC=CA
则 ∠2=∠3 ,∠4=∠1 ∴∠2+∠1=∠3 +∠4 即 ∠BAD= ∠BCD
∠2=∠3 ABC≌ CDA(ASA)
∴ AB=CD、BC=AD
∠B=∠D
平行四边形的性质
①平行四边形的两组对边分别平行且相等; 几何语言:
(3)由(2),你得出什么结论?
A
D
o
B
C
第十九章 四边形
平行四边形的性质
③平行四边形的对角线相互平分。

平行四边形的性质和判定

平行四边形的性质和判定

平行四边形的性质和判定平行四边形是初中数学中的重要概念之一,它具有独特的性质和判定方法。

本文将围绕平行四边形展开,通过举例、分析和说明,详细介绍平行四边形的性质和判定方法,以帮助中学生和他们的父母更好地理解和应用这一知识点。

1. 平行四边形的定义和性质平行四边形是指具有两对对边分别平行的四边形。

根据这个定义,我们可以得出平行四边形的几个重要性质。

首先,平行四边形的对边相等。

即平行四边形的对边长度相等,例如AB = CD,AD = BC。

其次,平行四边形的对角线互相平分。

平行四边形的对角线AC和BD互相平分,即AC = BD。

最后,平行四边形的内角和为180度。

平行四边形的内角A、B、C、D满足A + B + C + D = 180度。

通过这些性质,我们可以更好地理解平行四边形的特点,并在解题过程中灵活运用。

2. 平行四边形的判定方法在判定一个四边形是否为平行四边形时,我们可以运用以下几种方法。

首先,判定对边是否平行。

如果四边形的对边AB和CD平行,并且对边AD和BC也平行,那么这个四边形就是平行四边形。

其次,判定对角线是否相等。

如果四边形的对角线AC和BD相等,那么这个四边形就是平行四边形。

最后,判定内角和是否为180度。

如果四边形的内角A、B、C、D满足A + B + C + D = 180度,那么这个四边形就是平行四边形。

通过这些判定方法,我们可以快速准确地判断一个四边形是否为平行四边形,为解题提供了有效的工具。

3. 平行四边形的应用举例平行四边形的性质和判定方法在实际问题中有广泛的应用。

以下是一些具体的例子。

例1:在一个矩形ABCD中,如果AD = BC,那么这个矩形是否为平行四边形?解析:根据矩形的定义,我们知道矩形的对边是平行的,所以AD和BC是平行的。

又因为矩形的对边相等,所以AD = BC。

根据平行四边形的判定方法,我们可以得出结论:这个矩形是平行四边形。

例2:在一个四边形ABCD中,如果AC = BD,那么这个四边形是否为平行四边形?解析:根据四边形的定义,我们知道四边形的对角线不一定相等,所以AC = BD并不能直接判定这个四边形为平行四边形。

19.1.1 平行四边形的定义及性质

19.1.1 平行四边形的定义及性质

A 4 B 5 C 3

小组抢答!
如图,在 ABCD中,BE平分∠ABC交AD于 E,BC=8㎝,CD=6㎝, ∠D=60°,则下列 说法中错误的是( D ) A. ∠C=120° B. AE=6 ㎝ C. AD=8 ㎝ D. ∠BED=140 °
A 6 B 8 C 6 E D
60°
6
取出两张全等的三角形纸片拼平行四 边形,你能拼出几种不同的平行四边形?
平行四边形相对的两边有怎样的位置关系?
本课小结
定 义
A
B
C
D
两组对边分别平行的四边形叫做 平 行 四边形。其不
相邻的两个顶点连成的线段叫它的对角线。 表示方法 平行四边形ABCD, 记为“□ABCD”, 读作“平行 四边形ABCD”, 其中线段AC, BD称为对角线。 性 质 1、边:对边平行且相等; 2、角:对角相等, 邻角互补; 3、对角线:对角线互相平分; 4、对称性:是中心对称图形,对称中心 是对角线的交点。
发现了什么? (C) A AD=BC AB=CD 对边相等 B (D) O
D (B) ∠BAD=∠DCB ∠ABC=∠CDA 对角相等
C(A)
对角线互相平分 思考:平行四边形的邻角有什么关系呢? 邻角互补
1 1 O A = O C = A C 、O B = O D = B D 2 2
A O ● B C
3、如图,四边形ABCD是平行四边形,
AB=10,AD=8,AC⊥BC,求BC,CD,AC,OA 的长及 ABCD 的面积.
解:∵四边形ABCD是平行四边形 ∴BC=AD=8 CD=AD=10 又∵AC⊥BC ∴⊿ABC是直角三角形
B
A
10 8
D

19.1.1平行四边形的性质

19.1.1平行四边形的性质

读作:平行四边形ABCD
平行四边形相对的边称为 对边 相对的角称为 对角
B C
平行四边形不相邻的两个顶点连成
的线段叫平行四边形的对角线.
如图:线段AC、BD就是 ABCD的对角线
如图,DC∥ EF ∥ AB,DA∥ GH∥ CB,图中的 AHOE 平行四边形有__个,它们是________ 9 CFOG ABFE _____________________ BHOF DEOG __________________ BHGC ABCD CDEF AHGD
画一个平行四边形,观察它的边之间还有什么关系?
A D
平行四边形的对边平行.
B
∵四边形ABCD是平行四边形 ∴AB ∥ CD,BC ∥ AD. 平行四边形的对边相等. ∵四边形ABCD是平行四边形 ∴AB=CD,BC=AD.
C
探究
旋转平行四边形,探究对称性和角的关系
C A
B D
平行四边形是中心对称图形.
平行四边形的对角相等.
O B D
A
C
∵四边形ABCD是平行四边形 ∴∠A=∠C,∠B=∠D.
性质1:平行四边形的对边平行。
E
性质2:平行四边形是中心对称图形。
H
性质3:平行四边形的对边相等。 性质4:平行四边形的对角相等。
F
G
思考:平行四边形中相邻的两角有什么关系呢
例:在 ABCD中,已知∠A=52 o,求其余三 个角的度数。 解:
有两组对边分别平行的四边形是平行四边形。
平行四边形的对边平行且相等; 平行四边形的对角相等;邻角互补。 平行四边形是中心对称图形。
A D 52°
∵四边形ABCD是平行四边 形 且∠A=52°(已知)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、几何语言: AB∥CD AD∥BC
6.平行四边形中相对的边称为对边,相对的角称为对角, 相邻的角称为邻角。
1.举出你周围平行四边形形状的 一些实例。 2.推拉门、汽车的防护链为什么 都是平行四边形形状?
性质探寻及证明
D C
A
B
根据定义可知平行四边形的 对边互相平行。除此之外还有什 么性质呢?
19.1.1
平行四边形的性质
权力
观察图形,说出下列图形有什么特点?
两组对边都不平行
一组对边平行, 一组对边不平行
两组对边 分别平行
平行四边形
四边形
概念
A D
1、定义: 有两组对边分别平行的四边形 叫做平行四边形。 2、记作: ABCD
B

3、读作:平行四边形ABCD
四边形 4、两要素: 两组对边分别平行 四边形ABCD 是平行四边形பைடு நூலகம்
你说我说大家说
请你谈谈学习本节课 后的收获!
课本习题: 1, 2, 6
例题教学

例1 如图,小明用一根36m长的绳子围成 了一个平行四边形的场地,其中一条边AB 长为8m,其他三条边各长多少? 解: ∵四边形ABCD是平行四边形 AB CD; AD BC ∵AB=8
CD 8(m) 又 AB BC CD AD 36 AD BC 10(m)
2.平行四边形的对角相等. 3. 平行四边形的邻角互补.
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
∴ ABC≌ CDA(ASA) ∴AB=CD,BC=DA,∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
画一画
请同桌合作用定义的方法在练 习本上画一个平行四边形 ABCD。
A
D
B
C
量一量
猜一猜:平行四边 形对边、对角有怎 样的数量关系?
小组合作,用直尺,量角器等工具 度量你刚才画的平行四边形的边和角, 并记录下数据,猜想平行四边形的对 边对角之间的关系? 动态展示
猜想:
平行四边形的性质:
1.平行四边形的对边相等.
学以致用
1.已知: ABCD中,∠A=100°,你能求出 其他各角的度数吗?说说你的理由. A
D
B
C
2、如图,已知 ABCD 中,AB=8,BC=4,其余各边 长为多少?其周长等于多少? D C A
B
有一块形状如图 所示的玻璃,不小心把EDF 部分打碎了,现在只测得AE=60cm、BC=80cm, ∠B=60°且AE∥BC、AB∥CF,你能根据测得的 数据计算出DE的长度和∠D的度数吗?
A
4 1 3
D
B
2
C
形成定理
平行四边形性质定理1: 平行四边形的对角相等。 平行四边形性质定理2:
平行四边形的对边相等。
D
C
几何语言描述:
A
B
∵ 四边形ABCD是平行四边形 ∴ ∠D= ∠B, ∠C= ∠A .(平行四边形的对角相等) ∵ 四边形ABCD是平行四边形
∴ AB=CD,AD=BC.(平行四边形的对边相等)
相关文档
最新文档