Application of random amplified polymorphic DNA

合集下载

RFLP技术

RFLP技术

RFLP技术遗传分析的根本方法是DNA水平的分析,可分为两种方法:直接对DNA全部碱基序列的分析和DNA部分碱基序列的分析。

从原理上可分为两类:直接测序,主要是分析一些特定基因或DNA片段的核苷酸序列;另一类是检测基因组的一批识别位点,如限制性片段长度多态性(Restriction fragment length polymorphism, RFLP)分析,DNA指纹分析和随机扩增多态DNA(Random Amplified Polymophism DNA)技术等RFLP技术是用特定的方法将核(n)DNA,叶绿体(cp)DNA,线粒体(mt)DNA或总DNA,cDNA(用特定基因克隆片段作为探针来检测生物基因组),MHC(主要相容性复合体)提取出来,用限制性内切酶消化后,直接或间接地得出酶切片段在长度和数量上的差异。

限制性片段长度多态性(Restriction fragment length polymorphism, RFLP)是指用限制性内切酶消化不同基因型的DNA后产生的酶切片段在长度和数量上的差异。

它的分子基础是核苷酸序列出现碱基代替或插入/缺失及倒位分子重排事件,而导致限制性切点或获得。

在遗传多态性研究中,常用于RFLP 分析的DNA分子主要有:cpDNA、mtDNA、Rdna,单拷贝基因以及变相基因等。

方法是将上述DNA之一,用限制性酶切消化,电泳印迹,再用DNA探针杂交,从而得到与探针同源的DNA序列酶切后在长度上的差异。

对于特定基因和DNA片段而言,还可采用PCR技术将目的DNA扩增至百万倍后直接酶切观察,使方法更为简便,节省和安全。

随机扩增多态DNA(Random Amplified Polymophism DNA,RAPD)技术是1990年出现的一项新技术,该技术通过PCR进行DNA扩增,所用引物是G+C含量为50~70%的单个随机引物,这些引物在一定的退火条件下能与基因组DNA的互补序列配对,启动DNA的合成。

微卫星标记

微卫星标记

鳗及其近交后代微卫星分子标记研究RAPD指纹方面的初步研究,但采用微卫星分子标记进行分析的研究还相对较少。

而微卫星分子标记方法在动植物育种上己经作为一种育种辅助标记广泛应用。

2遗传标记的发展及应用遗传标记(GelleticMarkers)是指与目标性状紧密连锁,同该性状共同分离可以明确反映遗传多态性的生物特征,是基因型特殊的可识别的表现形式,它是生物分类学、育种学、遗传学和物种起源与进化等研究的主要技术指标之一。

广义的遗传标记是指可遗传的并可检测的DNA序列或蛋白质,狭义的遗传标记概念只是指DNA分子标记(Parke:。

tal.,1998)。

理想的遗传标记一般必须达到以下几个要求: (1)具有高度的多态性;(2)共显性遗传,即利用分子标记可鉴别二倍体中杂合和纯合基因型;(3)能明确辨别等位基因;(4)遍布整个基因组;(5)除特殊位点的标记外,要求分子标记的位点均匀分布于整个基因组;(6)选择中性,即无基因多效性;(7)检测片段简单、快速,实验程序易自动化;(8)开发成本和使用成本尽量低廉;(9)在实验室内和实验室间重复性好,便于数据交换。

但是,目前发现的任何一种分子标记均不能满足以上所有要求(贾继增,1996;邱芳等,1998;赵淑清等,2000)。

遗传标记已作为一种辅助育种标记广泛应用于动、植物及其它领域。

从不同层次水平上看,它可分为形态学标记、细胞学标记、生化标记、分子标记四种2.1形态学标记形态学标记(MO甲hologicalmarkers)是指那些从表型上看显示遗传多态性的特征,即生物特征,如鱼的体高、体长、体色等。

由于形态学标记易观察、识别,因此它一直是选种、育种的重要标记,也是孟德尔遗传学创立的重要基础。

由自发突变或物理化学诱变均可获得具有特定优良性状的形态特征,通过人工选育工作使那些优良胜状稳定遗传下来,从而达到选育的目的和效果,自上个世纪80年代,我国科研工作者就开始采用形态学方法对鱼类种质资源鉴定进行研究,李思发等(1990) 对长江、珠江、黑龙江鳞、墉、草鱼种质资源进行了调查和研究。

模拟退火免疫粒子群算法在皮肤电信号情感识别中的应用

模拟退火免疫粒子群算法在皮肤电信号情感识别中的应用
e p rme t e u t s o h tc mp d wi P O,S I S a c iv eai ey h g e o n t n r t t e rfa u e , xe i na r s l h w t a o  ̄e t I S l s h A-P O c n a h e e r lt l i h r c g i o ae wi fwe t r s v i h e t e a p i ain o i l td a n ai g me h n s c n h l t h p i z t n o e t r ee t n a d t e mp o e h p l t f smu ae n e n c a im a e p wi t e o t c o l h miai f f au e s lc i , n h i rv d o o ag r h as ef r s w l o l b o v re c . lo t m o p r m el n go a c n e g n e i l o l
n h S a d t i l e n e igI m n a i e S am O t i t n ( A I S e mua d A n a n - u e P r c w r pi z i t l m t l m a o S — O) w s a o t r fa r eet n t e P a d p d f e t e sl i . h e o u co
第3 卷第 1 1 0期
21 0 1年 1 0月
计 算机 应 用
J un lo o ue piain o r a fC mp trAp l t s c o
V0 _ No 0 I 31 .1
0c. 01 t2 1

棉花分子标记实验

棉花分子标记实验

利用SRAP—BSA法筛选棉花抗病基因的分子标记一、实验名称;利用SRAP—BSA法筛选棉花抗病基因的分子标记二、项目的研究背景和目的、意义【研究意义】棉花枯萎病是世界性的危害病害,对棉花生产造成严重威胁。

Atkinson于1891年在美国亚拉巴马州发现并报告了棉花枯萎病,其后,陆续有一些国家和地区相继报告发现棉花桔萎病以及该病对棉花造成的危害损失情况。

美国70年代棉花枯萎病开始逐年加重。

80年代初,枯萎病己在全世界范围内所有产棉区普遍发生,到2l世纪初,棉花桔荽病的发病地区己遍及亚洲、澳大利亚、非洲、北美、南美及欧洲等地,几乎在世界各地均有分布,对全世界的棉花生产造成重大损失。

我国在30年代以前没有关于棉花枯萎病的报道,30年代初期由于引种美棉未经检疫和种予消毒处理即分发各地种植,楠花桔萎病随即传入我国。

193 1年冯肇芳在我国的华北地区首先发现并报告棉花枯萎病,1934年黄方仁报告桔萎病在江苏南通发生和危害,据1965年全国棉花枯黄萎病会议统计,全国有18个植棉省的372个县不同程度发生桔萎病,局部十分严重。

80年代出于大力推广抗枯萎病棉花品种,到80年代末枯萎病的严重为害基本德到控制。

但是棉花枯萎病在我国仍有扩展蔓延的趋势。

1995年新疆棉花桔萎病普查中,有6.67khm2的田地发现有棉花枯萎病存在。

据国家统计局调查.2003年全国棉花种植面积预计7300万亩,棉花枯萎病、黄萎病发生面积1700多万亩。

2004年棉花播种面积比去年总体增加16.02%达8890万亩,但由于一些地区出现连续阴雨天气,导致山西,河北棉花枯萎病大面积暴发。

因此在生产上迫切需要解决棉花枯萎病的防治阅题。

【前人研究进展】棉花枯萎病是一种典型的土传真菌病害,其致病菌在分类上属于半知菌亚门,丝孢纲,丝孢目,瘤座孢科科,镰孢属,尖孢种,属尖孢镰刀菌萎蔫专化型。

目前,共发现棉花枯萎病菌8个生理小种,第7、8号生理小种是中国农科院植保所陈其瑛1985年发现的,其中7号小种是我国的优势小种。

量化研究英语用词

量化研究英语用词

量化研究英语用词
Variable: 变量
变量是研究中的基本元素,可以是一个数字、一个文字或一个符号。

在量化研究中,变量通常被用来表示研究对象的不同特征或属性。

Measurement: 测量
测量是对研究对象进行量化的过程。

通过测量,我们可以将变量的具体值表示出来。

在量化研究中,测量是获取数据的重要手段。

Sample: 样本
样本是从总体中选取的一部分研究对象。

通过样本的研究,我们可以推断出总体的特征和规律。

在量化研究中,样本的选择和研究方法对研究结果的影响至关重要。

Population: 总体
总体是研究对象的全体。

总体包含了所有的研究对象,而样本是从总体中选取的一部分。

在量化研究中,对总体的研究可以提供更全面的信息,但通常需要更多的时间和资源。

Dependent Variable: 因变量
因变量是研究中受其他变量影响的变量。

因变量的变化趋势可以反映出自变量的影响效果。

在量化研究中,因变量的选择和研究方法对研究结果的影响至关重要。

Independent Variable: 自变量
自变量是研究中能够影响其他变量的变量。

自变量的变化可以引起因变量的变化。

在量化研究中,自变量的选择和研究方法对研究结果的影响至关重要。

Control Variable: 控制变量
控制变量是在研究中需要控制或考虑的变量。

控制变量的影响可以被排除或控制,以便更好地研究自变量和因变量之间的关系。

在量化研究中,控制变量的选择和研究方法对研究结果的影响至关重要。

基于汉密尔顿蒙特卡洛方法的随机波动模型

基于汉密尔顿蒙特卡洛方法的随机波动模型

基于汉密尔顿蒙特卡洛方法的随机波动模型经济金融系统中潜在风险的防范和控制十分必要,而我国股票市场的波动特征在一定程度上能体现和折射出我国经济及金融系统的稳定性。

因此,用以描述股市波动的模型和方法一直是学者关注的焦点。

更为重要的是,运用新的模型和方法更为准确深入地研究我国股市波动,对于投资者入市选股和制定投资决策、相关人员制定应对措施有效控制股市风险有一定的指导作用。

波动模型是分析刻画经济金融系统潜在风险的重要工具。

不少国内外实证研究表明,传统的波动模型不能客观描述具有时变性和异方差特点的金融时序特征。

目前研究收益率波动的主流模型有随机波动模型(SV)和ARCH族模型两大类。

SV模型在其方差方程中引进潜在的随机变量,较ARCH族模型更适合描述股市收益率的波动情况。

SV模型下参数的似然函数是难解的高维积分,常用求解模型的算法是马尔科夫链蒙特卡洛(MCMC)方法。

但传统的MCMC方法具有不可避免的随机游走行为,容易使马尔可夫链在更新迭代过程中陷入局部最优,收敛效果不太理想。

汉密尔顿蒙特卡洛(HMC)方法是将汉密尔顿动力学系统和Metropolis准则相结合的算法。

它通过将虚拟的动量变量引入汉密尔顿系统,利用汉密尔顿系统的内在物理特性和蛙跳技术完成状态更新。

动力系统的能量守恒特性使得状态转移的概率较高,可逆性和保体积性也有助于潜在状态更新,在某种程度上减少了传统MCMC方法的随机游走行为,改进了马尔科夫链的有效性,确保算法能迅速收敛。

HMC算法充分考虑了状态空间的各敏感因素,能够遍历探索目标分布轨迹,尤其适用于目标分布处于高维状态空间或变量之间存在强相关性的情形。

因其是全局迭代更新算法,HMC方法在求解高维积分时运算效率较高,且在国内外常被用于天体物理、机器智能以及物体的动态跟踪问题的研究上。

但是,国内应用HMC算法于金融市场领域的研究却并不多见,关于股票收益率波动的分析研究更是如此。

而且,HMC算法作为MCMC方法的一种,与其它传统MCMC方法的比较实证研究也是值得进一步关注的重点。

脉冲随机微分方程英文

脉冲随机微分方程英文

脉冲随机微分方程英文Pulse Stochastic Differential Equations: AnIntroduction and Applications.Stochastic differential equations (SDEs) are a generalization of ordinary differential equations (ODEs) that incorporate random effects. These equations model systems that are influenced by both deterministic and stochastic forces, making them suitable for describing a wide range of real-world phenomena such as financial markets, ecological systems, and population dynamics. Pulse stochastic differential equations (PSDEs) are a subclass of SDEs that introduce impulsive effects, where the system state can undergo sudden changes at discrete time points.In this article, we will explore the theory and applications of PSDEs. We will start by defining PSDEs and discussing their fundamental properties. Then, we will delve into methods for solving these equations, including numerical approximation techniques. Finally, we willexplore some real-world applications of PSDEs,demonstrating their utility in modeling complex systems.Definition and Properties of PSDEs.A PSDE is a stochastic differential equation that incorporates impulsive effects. It has the general form:\[ dX(t) = f(t, X(t))dt + g(t, X(t))dW(t) + J(t, X(t^-), X(t)) \delta(t Tk), \]where:\( X(t) \) represents the state of the system at time\( t \).\( f(t, X(t)) \) and \( g(t, X(t)) \) aredeterministic and stochastic components of the equation, respectively.\( dW(t) \) is a Wiener process (or Brownian motion), representing the stochastic noise.\( J(t, X(t^-), X(t)) \) represents the impulsive effect at time \( Tk \), where \( t^\) denotes the limit from the left.\( \delta(t Tk) \) is the Dirac delta function, which is zero for all \( t \neq Tk \) and infinite at \( t = Tk \).The impulsive effects occur at discrete time points\( Tk \), causing sudden jumps in the system state. These jumps can be deterministic or stochastic, depending on the specific form of \( J(t, X(t^-), X(t)) \).PSDEs exhibit several unique properties that distinguish them from traditional SDEs. Firstly, their solutions are typically discontinuous at impulsive time points, reflecting the sudden changes in the system state. Secondly, PSDEs can exhibit complex dynamics, including periodic behavior, chaos, and bifurcations, depending on the specific forms of \( f \), \( g \), and \( J \).Solving PSDEs.Solving PSDEs is generally more challenging than solving ODEs or traditional SDEs due to the impulsive effects and the discontinuous nature of the solutions. However, several numerical approximation techniques have been developed to address this challenge.One common approach is to discretize the time domain and approximate the impulsive effects using a suitable numerical scheme. For example, the Euler-Maruyama method can be extended to handle impulsive effects by introducing additional terms at the impulsive time points. Other numerical methods, such as the Milstein method or the tau-leaping method, can also be adapted to solve PSDEs.The choice of numerical method depends on the specific properties of the PSDE and the desired accuracy of the solution. It is important to note that numerical approximations may introduce errors, and it is crucial to assess their impact on the overall accuracy of the model.Applications of PSDEs.PSDEs find applications in various fields, particularly those involving complex systems with impulsive events. Here are some examples:1. Financial Markets: PSDEs can model financial markets, where prices can undergo sudden jumps due to news events, economic announcements, or trader behavior. Byincorporating impulsive effects, these models can better capture the dynamics of financial markets and provide more accurate predictions.2. Ecological Systems: Ecological systems are often influenced by impulsive events such as disasters, diseases, or migrations. PSDEs can model these systems, incorporating impulsive effects to capture the sudden changes in population sizes or species distributions.3. Population Dynamics: PSDEs can also be used to model population dynamics, where impulsive events such as births, deaths, or migrations can significantly affect populationsizes. These models can provide insights into population growth patterns and the impact of external factors on population dynamics.4. Neural Networks: In neuroscience, PSDEs can be used to model neural networks, where neurons can receive impulsive inputs or undergo sudden firing events. These models can help understand the dynamics of neural networks and their response to external stimuli.Conclusion.Pulse stochastic differential equations (PSDEs) are a powerful tool for modeling complex systems with impulsive effects. They generalize traditional stochasticdifferential equations to incorporate sudden jumps in the system state, making them suitable for describing a wide range of real-world phenomena. By combining deterministic and stochastic components, PSDEs can capture the complex dynamics of these systems and provide insights into their behavior.Numerical approximation techniques play a crucial role in solving PSDEs, as they allow us to approximate the solutions efficiently and accurately. These methods enable us to simulate the system's behavior over time, assess its long-term properties, and make predictions based on the model's dynamics.Applications of PSDEs span multiple fields, including financial markets, ecological systems, population dynamics, and neural networks. By incorporating impulsive effects, these models can better capture the real-world behavior of these systems and provide valuable insights into their dynamics and response to external factors.In summary, PSDEs are a valuable tool for modeling complex systems with impulsive effects. They offer a flexible and powerful framework for understanding and predicting the behavior of these systems, with applications ranging from finance to ecology and neuroscience.。

RFLP技术

RFLP技术

RFLP技术遗传分析的根本方法是DNA水平的分析,可分为两种方法:直接对DNA全部碱基序列的分析和DNA部分碱基序列的分析。

从原理上可分为两类:直接测序,主要是分析一些特定基因或DNA片段的核苷酸序列;另一类是检测基因组的一批识别位点,如限制性片段长度多态性(Restriction fragment length polymorphism, RFLP)分析,DNA指纹分析和随机扩增多态DNA(Random Amplified Polymophism DNA)技术等RFLP技术是用特定的方法将核(n)DNA,叶绿体(cp)DNA,线粒体(mt)DNA或总DNA,cDNA(用特定基因克隆片段作为探针来检测生物基因组),MHC(主要相容性复合体)提取出来,用限制性内切酶消化后,直接或间接地得出酶切片段在长度和数量上的差异。

限制性片段长度多态性(Restriction fragment length polymorphism, RFLP)是指用限制性内切酶消化不同基因型的DNA后产生的酶切片段在长度和数量上的差异。

它的分子基础是核苷酸序列出现碱基代替或插入/缺失及倒位分子重排事件,而导致限制性切点或获得。

在遗传多态性研究中,常用于RFLP 分析的DNA分子主要有:cpDNA(叶绿素)、mtDNA、Rdna(核糖体DNA),单拷贝基因以及变相基因等。

方法是将上述DNA之一,用限制性酶切消化,电泳印迹,再用DNA探针杂交,从而得到与探针同源的DNA序列酶切后在长度上的差异。

对于特定基因和DNA片段而言,还可采用PCR技术将目的DNA扩增至百万倍后直接酶切观察,使方法更为简便,节省和安全。

随机扩增多态DNA(Random Amplified Polymophism DNA,RAPD)技术是1990年出现的一项新技术,该技术通过PCR进行DNA扩增,所用引物是G+C含量为50~70%的单个随机引物,这些引物在一定的退火条件下能与基因组DNA的互补序列配对,启动DNA的合成。

生物技术在中药鉴定方面的应用

生物技术在中药鉴定方面的应用

生物技术在中药鉴定方面的应用浙江理工大学生命科学学院,浙江杭州 310018摘要现代生物技术是以现代生物学和生命科学为基础,按照所研究的层次不同,可以分为酶工程、发酵工程、细胞工程、基因工程、蛋白质工程等五大类,核心是基因工程。

我国药材资源丰富,药用动植物约1万余种。

但目前使用的药材来源复杂,互混、互代、掺假现象普遍存在因此对各种药材进行准确鉴定显得十分必要。

近年来,随着生物科学的飞速发展,许多新学科理论和实验技术不断的被运用到中药的鉴定当中,以确保中药使用更安全有效。

关键词中药鉴定 PAGE技术 RAPD技术 DNA序列分析生物芯片中药鉴定学研究的主要内容是中药材及基原鉴定,包括鉴定方法和鉴定标准。

鉴定的方法有很多,生物方法有分子鉴定,化学方法鉴定技术有红外光谱鉴定、色谱鉴定,形态鉴定技术有仿生技术。

现从生物技术角度主要介绍蛋白标记技术和基于PCR的DNA分子鉴定技术。

1 蛋白质标记技术1.1 聚丙烯酰胺凝胶电泳(PAGE)中药材中含有多种组分,如有机酸、蛋白质、生物碱和酶等,其电荷和分子量和分子结构大不相同。

在电场作用下,经一定时间,各组泳动的方向、速度和距离也不同,采用电泳技术进行蛋白质谱带数目、宽窄、位置及染色程度分析,可以获得很多信息从而达到中药鉴别的目的[1]。

该方法操作方便,设备简单,分辨率高,尤其对种子类药材有很好的鉴别作用。

赵华英等应用PAGE技术,对6种外形相似的苋科种子类药材青箱子、牛膝子、鸡冠花子、邹果苋子、苋子、反枝苋子之间进行了可溶性蛋白质电泳分析,电泳图谱显示各样品特征带,可以准确区分各种药材,鉴别真伪,在临床用药时保证用药安全[2]。

2 DNA分子鉴定2.1随机引物扩增多态性(randomamplifiedpolymor2phicDNA,RAPD)技术RAPD技术在PCR技术的基础上发展于20世纪90年代,是用人工合成的较短的单个随机引物,以药材总DNA为模板,在DNA聚合酶作用下,进行非特异性的聚合酶链式反应,分析扩增产物电泳图谱在不同类群中的变异,扩增片段具有品种、品系及单株特异性。

DNA分子标记的研究进展及几种新型分子标记技术_关强

DNA分子标记的研究进展及几种新型分子标记技术_关强

黑龙江农业科学2008(1):102~104 Heilong jiang Ag ricultural Sciences综述 102 黑龙江农业科学DNA 分子标记的研究进展及几种新型分子标记技术关 强1,张月学2,徐香玲1,孙德全2,李绥艳2,林红2,潘丽艳2,马延华2(1.哈尔滨师范大学生命与环境科学学院,哈尔滨150080;2.黑龙江省农业科学院草业研究所,哈尔滨150086)摘要:分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种比较理想的遗传标记技术。

综述了DN A 分子标记的类型,基本原理和特点,同时还对几种最新出现的分子标记技术作了简要的介绍。

关键词:新型DN A 分子标记;RG A s 标记;RM A P D ;SRA P ;T RAP中图分类号:Q 78 文献标识码:A 文章编号:1002-2767(2008)01-0102-03Development of DNA Molecular Marker and SeveralNew Types of Molecular MarkersGUAN Qiang 1,ZHANG Yue -xue 2,XU Xiang -ling 1,SUN De -quan 2,LI Sui -yan 2,LIN Hong 2,PAN Li -yan 2,MA Yan -hua2(1.Life and Environmental Co lleg e ,H arbin No rm al U niversity ,H arbin 150080;2.Pratacultural Science Institute ,Heilongjiang Academy of Ag ricultural Sciences ,H arbin 150086)Abstract :DN A molecular mar ke r is a compar atively ideal g enetic mar ker s develo ped after the shape ma rker ,cellu -lar ma rker and biochemical mar ke r .I n this pape r ,the ty pe s ,basic principles a nd cha racte rs we re summarized ,meanw hile ,several new ty pes of mo lecular ma rkers we re intro duced w hich appea red rece ntly .Key words :DN A mo lecular marker ;RGA s marker s ;RM A PD ;SRA P ;T RA P收稿日期:2007-05-29第一作者简介:关强(1982-),男,黑龙江人,在读硕士,从事遗传学研究。

自适应网格交互多模型不敏粒子滤波算法

自适应网格交互多模型不敏粒子滤波算法
的 缺 陷 ,同时 各 模 型滤 波 算 法 采 用 不 敏 粒 子 滤 波 ( P ) 法 ,使 重 要 性 密 度 函数 融 合 了 最 新 量 测 信 息 ,更 好 地 逼 近 U F算 真 实 状 态 的 后 验 概 率 分 布 。通 过 计 算 机 仿 真 证 明 , 出 的算 法 可 以有 效 提 高 I 提 MMP F的 费 效 比 。
摘 要 : 将一种变结构多模 型算法—— 自适应网格交互多模 型( G MM) AI 算法和不敏粒子 滤波 ( P ) 法相 U F算
结 合 , 出了 自适 应 网 格 交 互 多 模 型 不 敏 粒 子 滤 波 算 法 ( GMMU F 。 该 算 法 通 过 自适 应 网格 实 现 了模 型 自适 应 , 提 AI P) 从 而 以较 小 的 模 型 集 合 覆 盖 了 目标 大 范 围 的 机 动 , 以 此 来 克 服 固 定 结 构 交 互 多 模 型 粒 子 滤 波 ( M F 算 法 存 在 并 1 MP )

l tt n o x d s cu eitr cigmut l d lp r ce ftr I i ai ff e t tr nea t lpe mo e at l l ( MMP i o ec me . h n c ne mi o i u r n i i ie F) s v ro d T e u se td
关键 词 : 自适应 网格 ;变结构 多模 型算 法 ;不敏 粒子 滤波 中图分 类号 : T 9 7 N 5 文献标 识 码 : A
文 章 编 号 : 1 7 - 6 9 2 1 ) 8 0 1 ~ 5 d i1 . 4 4 ji n 17 — 6 9 2 1 . 8 0 4 6 2 7 4 ( 0 2 0 ~ 0 8 0 o :0 3 0 /.s . 6 2 7 4 . 0 2 0 . 0 s

树莓胶体模板法

树莓胶体模板法

树莓胶体模板法
近日,来自美国哈佛大学的Joanna Aizenberg教授团队的科研人员在Nature Catalysis发表了题为“Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation”的论文,该项研究采用了一种模块化树莓胶体模板方法来调整PdAu合金纳米粒子的平均粒子间距,同时保留所有其他理化性质,包括纳米粒子尺寸。

通过控制三维大孔SiO2载体中的金属负载量和预成形纳米粒子的位置,并利用苯甲醛加氢生成苯甲醇和甲苯作为探针反应,研究人员发现增加粒子间距(从12 nm到21 nm)可大幅提高对苯甲醇的选择性(从54%提高到99%),且不影响催化性能。

自适应粒子群优化算法在聚丙烯熔融指数预报上的应用

自适应粒子群优化算法在聚丙烯熔融指数预报上的应用
a a i e p r i l w a m ptm i a i n d ptv a tc e s r o i z to
ZHAO Che y ng e, LI Xi g o U ng a
( tt y L b r tr f I d sra o to c n lgy,De a t n f Co to ce c n g n e ig , S aeKe a o ao y o n u ti lC n r lTeh oo p rme t n r lS in ea d En i ern o
第6 1卷
第 8 期

工 学 报
Vo1 No. .61 8 A ugu t 2 0 s 01
21 0 0年 8月
CI ESC J u n l o ra
自适 应 粒 子群 优化 算 法在 聚 丙 烯熔 融指数
预 报 上 的 应 用
赵 成 业 , 刘 兴 高
( 工业 控 制 技 术 国 家 重 点 实 验 室 ,浙 江 大学 控 制科 学 与工 程 系 ,浙 江 杭 州 3 0 2 ) 1 0 7
摘 要 :针 对 丙 烯 聚 合 生 产 控 制 中聚 丙 烯 熔 融 指 数 在 线 测 量 的 控 制 要 求 ,以 及 过 程 变 量 间 相 关 性 高 的 特 点 , 提 出

种 基 于 自适 应 粒 子 群 优 化 算 法 和 径 向基 函数 神 经 网 络 的 聚 丙 烯 熔 融 指 数 预
p r il wa m p i z t n ( S a tce s r o tmia i o P O) n CA sa p i d t e u e t e c mp e iy o h t ts ia d 1 A ,a d P i p l or d c h o e l x t ft e s a itc l mo e. n w e h d o p i zn o h s r c u e a d p r me e s o a i1 b ss f n t n ( e m t o fo tmii g b t t u t r n a a t r f r d a a i u c i o RBF) n t r S a s e wo k i l o

SSR分析简单序列重复SSR又称...

SSR分析简单序列重复SSR又称...

摘要梨属于蔷薇科的梨亚科,品种很多,长期以来在分类上存在很多的问题。

本论文的目的是研究主要梨品种细胞质遗传多态性。

采用PCR-RFLP方法,对提取出的总DNA用10对叶绿体通用引物进行扩增,对PCR产物用限制性内切酶AluI,HaeIII,HinfI,Hin6I,RsaI,MvaI 和TaqI进行酶切,对19种梨(包括新疆梨系统、白梨系统、西洋梨系统、秋子梨系统、杜梨、沙梨系统)的叶绿体基因组trnS-trnfM非编码区进行克隆、测序。

应用DPS v7.05和DNAMAN、DNAStar、ClustalX-1.83、PHYLIP -3.68软件进行分析。

通过序列比对,再进行聚类分析,最后依据所得结果确定所测分子序列的亲缘关系,构建系统进化树。

结果显示:10对引物中只有7对(cp01,cp 02,cp 03,cp 04,cp 06,cp 09,cp 10)能在梨属植物上扩增出一条特异性谱带,这说明梨属植物叶绿体基因组序列十分保守,3个引物对(cp05,cp07,cp08)不能在梨属植物上扩增出谱带。

931份引物对/酶切组合中,cp09/MvaI,cp03/Hin6I 的酶切位点有显著差异。

对梨属植物的cpDNA trnS-trnfM区域进行克隆、测序,所得的序列长度为:库尔勒香梨和鸭梨的序列最长(1642bp),苹果梨、早酥梨、慈梨、象牙、翠伏的序列最短(1272bp)。

用DNAMAN软件对序列进行比对分析:库尔勒香梨与白梨系统的同源性为:85.01%,与新疆梨系统的同源性为:78.60%,与西洋梨系统的同源性为:78.28%,与沙梨系统的同源性为:77.47%,与秋子梨系统的同源性为:77.91%。

根据ClustalX软件完全比对的结果,用PHYLIP -3.68软件的邻接法对cpDNA trnS-trnfM区域序列变异位点构建系统进化树。

黑酸梨和京白聚为一类,伏茄和身不知聚为一类,冬巴和新世纪聚为一类。

openmodelica软件中的配平算例

openmodelica软件中的配平算例

在介绍openmodelica软件中的配平算例之前,让我们先来了解一下openmodelica软件的基本概念和功能。

OpenModelica是一种开放源代码的建模和仿真环境,它为用户提供了一个强大、灵活且可扩展的评台,以便进行系统级建模、仿真和分析。

openmodelica软件不仅支持多个领域的物理系统建模,还拥有丰富的建模语言和代码库,能够满足各种建模需求。

在openmodelica中,配平算例是一个重要的概念,它涉及到系统中各个组件之间的平衡和优化。

配平算例通常用于优化系统的性能、降低能耗、提高效率等方面,是系统仿真和优化的重要环节。

在openmodelica软件中,用户可以利用配平算例功能进行系统的建模、仿真和优化,从而实现系统的优化和改进。

在进行配平算例时,首先需要对系统进行建模和描述,明确系统中各个组件的特性、参数和相互关系。

根据系统的实际需求和优化目标,选择合适的算法和方法对系统进行配平和优化。

在openmodelica软件中,用户可以利用系统建模和仿真的功能,对系统进行全面的分析和评估,从而实现系统的优化和改进。

针对指定的主题,让我们以从简到繁、由浅入深的方式来进行探讨。

我们可以从介绍openmodelica软件中的配平算例的基本概念和功能开始,然后逐步展开对配平算例的建模、仿真和优化过程进行详细讲解,包括系统的描述、参数的选择、算法的应用等方面。

我们可以共享一些实际的配平算例应用案例,以及在实际操作中遇到的问题和解决方案。

我们可以对配平算例的应用进行总结和回顾,共享个人对这个主题的观点和理解。

在本篇文章中,我将结合自己的实际经验和对openmodelica软件中配平算例的深入理解,从简到繁地介绍配平算例的基本概念和功能,包括建模、仿真和优化过程,并共享一些实际的应用案例和个人观点。

关于openmodelica软件中的配平算例,是一个非常重要的主题,它涉及到系统建模与优化的方方面面。

DNA分子标记技术概述

DNA分子标记技术概述

作者简介:姚红伟(1981-),男,硕士研究生,研究方向:水产生物繁育。

E -mail :yao_317@doi :10.3969/j.issn.1004-6755.2010.07.020DNA 分子标记技术概述姚红伟1,张立冬1,孙金阳1,刘霄霞2(1.大连海洋大学生命科学与技术学院,辽宁大连116023;2.太原理工大学,山西太原030024)摘 要:综述了DNA 分子标记技术的类型及代表性分子标记技术的基本原理和优缺点,对常用分子标记技术进行了对比,并对其发展趋势进行了展望。

关键词:DNA ;分子标记;类型;原理;展望 1953年Wat son 和Crick 提出DNA 分子结构双螺旋模型,宣布了分子遗传学时代的到来。

1974年,Grozdicker 等人在鉴定温度敏感表型的腺病毒DNA 突变体时,利用限制性内切酶酶解后得到的DNA 片段的差异,首创了DNA 分子标记。

所谓分子标记是根据基因组DNA 存在丰富的多态性而发展起来的可直接反映生物个体在DNA 水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术[1]。

广义的分子标记是指可遗传的并可检测的DNA 序列或蛋白质分子。

通常所说的分子标记是指以DNA 多态性为基础的遗传标记[2]。

DNA 分子标记不受环境和发育阶段的影响,标记数丰富,可大大提高杂交育种的有效性和可靠性,而且在对杂种机理的认识、杂种优势的预测、目的性状的选择等方面已显示出不可比拟的优越性。

很多分子标记表现为共显性,能鉴别出纯合基因型和杂合基因型,能提供完整的遗传信息。

同时,许多以前无法开展的研究如环境因素的影响、数量性状的多重效应等在分子标记的帮助下已经开展。

1 D NA 分子标记技术的类型DNA 分子标记从它诞生之日起,就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后,分子标记技术日趋成熟,现已出现的DNA 分子标记技术有几十种,部分分子标记技术所属类型如下。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RESEARCH ARTICLEApplication of random amplified polymorphic DNA andinter-simple sequence repeat markers in the genus Crataegus H.Dai1,X.Guo1,Y.Zhang2,Y.Li1,L.Chang1&Z.Zhang1,21College of Horticulture,Shenyang Agricultural University,Shenyang,Liaoning,China2Key Laboratory of Agriculture Biotechnology of Liaoning Province,Shenyang,ChinaKeywordsCrataegus;genetic diversity;ISSR;RAPD.CorrespondenceZ.Zhang,College of Horticulture,Shenyang Agricultural University,Dongling Road120, Shenyang,Liaoning110161,China.Email:zhangz@Received:23September2007;revised version accepted:20June2008.doi:10.1111/j.1744-7348.2008.00290.x AbstractHawthorn(Crataegus spp.)has a long history as an ornamental and a source of medicine.We report the use of random amplified polymorphic DNA(RAPD) and inter-simple sequence repeat(ISSR)markers to determine genetic rela-tionships in the genus Crataegus.Twenty-eight accessions,including eight species(Crataegus pinnatifida,Crataegus bretschneideri,Crataegus maximowiczii, Crataegus kansuensis,Crataegus altaica,Crataegus songarica,Crataegus dahurica and Crataegus sanguinea)and two botanical varieties(C.pinnatifida var.major and C.maximowiczii var.ninganensis)were analysed.Twelve RAPD primers repro-ducibly and strongly amplified128fragments of which116were polymorphic; similarly,13ISSR primers generated127products of which119were poly-morphic.Dendrograms based on unweighted pair group method with arith-metic average analysis were constructed from both the RAPD and the ISSR data.Similarity coefficient based on RAPD and ISSR markers ranged from0.22 to0.98and0.23to0.98,respectively.The range in similarity coefficient indi-cated that the genus has a high level of genetic diversity.The Mantel test on the similarity matrices produced by RAPD and ISSR markers gave r=0.86, showing high correlation between RAPD and ISSR markers in their ability to detect genetic relationships between Crataegus accessions.RAPD and ISSR appear to be reliable methods for the analysis of genetic relationships among hawthorns.IntroductionHawthorn(Crataegus spp.),a genus of the Rosaceae fam-ily,grows as small shrubs or spreading trees with thorny branches,three-tofive-lobed deciduous leaves,white flowers and red,orange,yellow-green or yellow fruits (Dai et al.,2007).Including numerous hybrids,the Cra-taegus genus contains anywhere between140and200 species(Phipps et al.,2003).Besides its worldwide use as an ornamental,hawthorn ranks as one of the most ancient of pharmaceutical plants and is described in vari-ous pharmacopoeias(Rigelsky&Sweet,2002;Kao et al., 2005).The hawthorn fruit,which may be consumed fresh or in the form of sauce,preserved slices or juice, has been used in China as an aid to digestion for at least 2500years.As many as18species and6botanical varie-ties of Crataegus originated in China(Zhao&Feng,1996),among which the large fruited(6–17g)Chinese hawthorn(Crataegus pinnatifida Bge.var.major N.E.Br.) is represented by>100cultivars in northern China.A characterisation of diversity present is a prerequisite for the scientific exploitation of genetic resources.To date,in hawthorn,this has been based on variation for morpholog-ical traits,a method that suffers from low numbers of inde-pendent characters and often poor heritability(Archak et al., 2003).In contrast,DNA-based assays are generally highly heritable and available in unlimited numbers.Random amplified polymorphic DNA(RAPD)and inter-simple sequence repeat(ISSR)are molecular marker techniques based on PCR.The former employs a single short primer of arbitrary nucleotide sequence(Williams et al.,1990),while the latter targets the genomic DNA lying between the fre-quently occurring microsatellites(or simple sequence re-peats)by anchoring the primers to either end of theseAnnals of Applied Biology ISSN0003-4746Ann Appl Biol154(2009)175–181ª2008The Authors175features(Zietkiewicz et al.,1994).Both RAPD and ISSR techniques have several advantages such as simplicity of use,the short time required to obtain results,highly informative nature,lower cost and the use of a small amount of plant material(Qian et al.,2001).And there are many different RAPD primers that can be available commercially.RAPD and ISSR have been widely applied for DNAfingerprinting(Blair et al.,1999;Raina et al., 2001),for gene tagging(Molnar et al.,2000),for pedigree verification(Harada et al.,1992),for cultivar identification (Martins et al.,2003)and for assessing the level of genetic diversity in collections of germplasm(Qian et al.,2001; Souframanien&Gopalakrishna,2004).Molecular marker technology has yet to be applied to genus Crataegus.In the present paper,we describe a diver-sity study of hawthorn,based on RAPD and ISSR mark-ers,and compare the utility of these two techniques.Materials and methodsPlant materialsThe sample set of accessions consisted of28of the col-lection of130accessions of hawthorn,including eight species and two botanical varieties originating from China, maintained in the National Hawthorn Germplasm Re-pository at Shenyang.The sample included one represen-tative each of the wild species[Crataegus maximowiczii Schneid.,Crataegus kansuensis Wils.,Crataegus altaica (Loud.)Lange,Crataegus songarica C.,Crataegus dahurica Koehne,Crataegus sanguinea Pall.]and the botanical vari-ety C.maximowiczii Schneid.var.ninganensis S.Q.Nie& B.J.Jen,four accessions each of Crataegus bretschneideri Schneid.and C.pinnatifida Bge.,and a set of13ran-domly chosen cultivars of C.pinnatifida Bge.var.major N.E.Br.(Table1).Table1Informativeness of RAPD and ISSR primers used to genotype accessions of Crataegus spp.Number Name ofAccession SpeciesRAPD ISSRNo.ofScoredBandsNo.ofPolymorphicBandsPolymorphism(%)No.ofScoredBandsNo.ofPolymorphicBandsPolymorphism(%)1Maoshanzha Crataegus maximowiczii494183.7322475.02Ninganshanzha C.maximowicziivar.ninganensis514384.3443681.83Liaoningshanzha Crataegus sanguinea463882.6443681.84Ganshushanzha Crataegus kansuensis534584.9453782.25Aertaishanzha Crataegus altaica453782.2282071.46Zhungeershanzha Crataegus songarica393179.5393179.57Guangyeshanzha Crataegus dahurica524484.6393179.58Zuofu2Crataegus bretschneideri524484.6605286.79Jifu2 C.bretschneideri534584.9655787.710Fulihong C.bretschneideri544685.2645687.511Jifu1 C.bretschneideri534584.9625487.112Dashanlihong Crataegus pinnatifida544685.2484083.313Xinbinruanzi C.pinnatifida574986.0514384.314Fenshanlihong C.pinnatifida544685.2453782.215Chuizhishanlihong C.pinnatifida534584.9423481.016Yidu C.pinnatifida var.major554785.5524484.617Jilindawang C.pinnatifida var.major605286.7574986.018Xuzhoudahuo C.pinnatifida var.major554785.5534584.919Qiujingxing C.pinnatifida var.major635587.3605286.720Mopan C.pinnatifida var.major585086.2524484.621Liaohong C.pinnatifida var.major564885.7554785.522Qiuhong C.pinnatifida var.major675988.1564885.723Jianzirou C.pinnatifida var.major605286.7574986.024Tongliaohong C.pinnatifida var.major564885.7554785.525Wulinghong C.pinnatifida var.major564885.7524484.626Luanhong C.pinnatifida var.major635587.3564885.727Tugu1 C.pinnatifida var.major564885.7595186.428Yubeihong C.pinnatifida var.major524484.6554785.5ISSR,inter-simple sequence repeat;RAPD,random amplified polymorphic DNA.RAPD and ISSR markers in Crataegus H.Dai et al. 176Ann Appl Biol154(2009)175–181ª2008The AuthorsTotal DNA extractionGenomic DNA was extracted from leaves using the CTAB (cetyltrimethylammonium bromide)method described by Doyle&Doyle(1990),with minor modifications.The con-centration of CTAB in the extraction buffer was3%w/v. The concentration of dissolved DNA was estimated using a DU800spectrophotometer(Beckman Coulter,Fullerton, CA,USA).Random amplified polymorphic DNA and inter-simple sequence repeat amplificationsA set of148RAPD primers was tested,including133 10-mer primers purchased from Sangon Biological Engi-neering and Technology and Service Co.,Ltd.(Shanghai, China)1212-mer primers obtained from Wako Inc. (Osaka,Japan)and three designed by the National Insti-tute of Vegetable and Tea Science at Tsu in Japan.RAPD amplifications were carried out in20l L reactions contain-ing1ÂPCR buffer[50mM KCl,10mM Tris–HCl(pH9.0), 0.1%v/v Triton X-100,2mM MgCl2],0.2mM dNTP, 0.3l M primer,0.5U Taq DNA polymerase(Tiangen, Shanghai,China)and50ng template DNA.Amplification was achieved via an initial denaturing step(94°C/30s), followed by45cycles of94°C/30s,40°C/120s,72°C/ 180s and ending with an incubation of72°C/7min.For ISSR,26primers were selected from the University of British Columbia series(UBC807–812,814,815,823,824, 834–836,840–844,852,853,868,881and888–891),eight [VBV(AC)7,HBH(CT)7,GCV(TC)7,VCG(TC)7,BDV(AG)7, HVH(TGT)5,BDB(CAC)5and BDV(CAG)5]were as reported by Arnau et al.(2002)and were nominated st-01to st-08, respectively,in our laboratory and two[(BDB(AC)7, (AG)8YG],nominated SAU01and SAU02,were designed in our laboratory.ISSR amplifications were carried out in 20l L reactions containing1ÂPCR buffer[50mM KCl; 10mM Tris–HCl(pH9.0);0.1%v/v Triton X-100,3mM MgCl2],0.2mM dNTP,0.3l M primer,0.5U Taq DNA polymerase(Tiangen)and50ng template DNA.Amplifica-tion was achieved via an initial denaturing step(94°C/ 3min),followed by38cycles of94°C/30s,annealing tem-perature for60s,72°C/120s and ending with an incubation of72°C/7min.The optimal annealing temperature of each primer wasfirst established by temperature gradient PCR. Amplicons were separated by agarose gel electrophore-sis in TBE buffer,and profiles were visualised under UV light after staining in ethidium bromide.The experimental reproducibility of the RAPD and ISSR markers was as-sessed by performing two independent amplifications. Data analysisRAPD and ISSR products were scored as present or absent, disregarding variation in band intensity.Data analyses were performed using NTSYS-pc v2.10e(Rohlf,1992). Jaccard’s coefficient was used to estimate genetic iden-tity,calculated as N AB/(N AB+N A+N B),where N AB represents the number of shared bands between two profiles,N A the number of fragments unique to sample A and N B the number unique to sample B.A cluster analysis was based on the resulting similarity matrices, and the relationships between accessions were displayed as dendrograms based on the unweighted pair group method with arithmetic average(UPGMA)algorithm. Correlation between the two matrices obtained with two marker types was estimated by means of the Mantel test (Mantel,1967)with1000random permutations. ResultsRAPD banding patternsOf the148RAPD primers,30amplified clear and repro-ducible profiles.Fig.1is the representative of the extent of polymorphism of four accessions of Crataegus revealed by primers of A15and A17.Of the30RAPD primers,the 12that proved the most highly informative(Table2) were used to genotype the full panel of accessions. RAPDfingerprinting was based on128clear,reproduc-ible fragments,equivalent to a mean of10.7fragments per primer.Of these,116(9.7per primer)were poly-morphic.The size of the amplified fragmentsrangedFigure1Random amplified polymorphic DNA profiles of hawthorn accessions generated by primers A15and A17.M,100bp DNA ladder. 1–4,accessions:‘Yidu’(Crataegus pinnatifida var.major),‘Fulihong’(Crataegus bretschneideri),‘Zuofu2’(C.bretschneideri)and‘Ningan-shanzha’(Crataegus maximowiczii var.ninganensis).H.Dai et al.RAPD and ISSR markers in Crataegus Ann Appl Biol154(2009)175–181ª2008The Authors177from250to2100bp.The proportion of polymorphic fragments in the profile generated by each primer in turn ranged from66.7%(A20)to100%(A53,A56and A88)(mean90.7%).The most effective RAPD primer was A88(Table2).The number of fragments present in any particular profile varied from accession to accession from39(C.songarica‘Zhungeershanzha’)to67(C.pin-natifida var.major‘Qiuhong’)(Table1).Inter-simple sequence repeat band patternsExcept for UBC868and UBC890,all the ISSR primers amplified some PCR product.UBC891,BDB(AC)7and HBH(CT)7produced only weak and smeared bands. Thirteen of the primers generated clear and reproducible polymorphic banding profiles(Table3).Fig.2is the representative of the extent of polymorphism of28ac-cessions of Crataegus revealed by UBC835.Seven of these13primers were3#-anchored poly(GA)or poly (AG)based.The annealing temperature greatly affected the efficiency of amplification,and the difference between the theoretical melting temperature(T m)and the optimum annealing temperature ranged from24°C to5°C.The primers amplified a variable number of dis-tinct products,with the poly(AG)primers producing a greater number(12.7per primer)than poly(GA)(8.8 per primer).The13selected primers generated127clear, reproducible bands(mean of9.8per primer)(Table3). The size of the amplified fragments ranged from200to 2000bp.All but eight of the bands were polymorphic across the genotype set(mean of9.2polymorphic prod-ucts per primer).Individual primers generated66.7–100%polymorphism(mean93.8%),somewhat more than had been achieved by the RAPD primers.The most informative primer was SAU02,which amplified20 polymorphic products(Table3).The total number of fragments per accession varied from less than40to more than60(Table1).Dendrogram:interspecies and intraspecies relationshipAll the clear and reproducible bands generated by the12 chosen RAPD primers(Table2)were scored for presence or absence among the28accessions of Crataegus and used for the UPGMA cluster analysis.The dendrogram based on UPGMA analysis of the RAPD data is shown in Fig.3.The similarity coefficients ranged from0.22to0.98, indicating a good level of genetic diversity in theTable2Informativeness of a core set of12RAPD primers used to assess genetic diversity in a panel of28accessions of Crataegus spp.PrimerName Sequence No.ofScoredBandsNo.ofPolymorphicBandsPolymorphism(%)A15GGTGATGTCC161487.5A17GGGTTGCCGT121083.3A20AGCACTGTCA6466.7A28GGGATCGTGT151493.3A53GATAGCCGAC1111100A56TCGGCCTGCT1111100A70TGCAGCACCG5480.0A76CCACAGCAGT4375.0A88GAGCCCTCCA1616100A91GTGCCTAACC9888.9A95TGCCCGTCGT121191.7A96CTCTCCGCCA111090.9Total128116Average10.79.790.7Table3Informativeness of a core set of13ISSR primers used to assess genetic diversity in a panel of28accessions of Crataegus spp.Primer Name Sequence a T m(°C)Optimum AnnealingTemperature(°C)No.of ScoredBandsNo.ofPolymorphic BandsPolymorphism(%)UBC810(GA)8T50519888.9UBC811(GA)8C525377100UBC824(TC)8G525288100UBC834(AG)8YT535355100UBC835(AG)8YC55581313100UBC840(GA)8YT53581010100UBC841(GA)8YC55589666.7UBC853(TC)8RT53501212100UBC868(GAA)6485233100SAU02(AG)8YG55582020100st-06HVH(TGT)54951111090.9st-07BDB(CAC)559601111100st-08BDV(CAG)559559666.7Total127119Average9.89.293.8a R=(A,G);Y=(C,T);B=(C,G,T);D=(A,G,T);H=(A,C,T);V=(A,C,G).RAPD and ISSR markers in Crataegus H.Dai et al. 178Ann Appl Biol154(2009)175–181ª2008The AuthorsH.Dai et al.RAPD and ISSR markers in CrataegusFigure2Inter-simple sequence repeat profiles of hawthorn accessions generated by primer UBC835.M,100bp DNA ladder.1–28,accessions as 1.identified in TableFigure3Genetic relationships derived from an UPGMA-based analysis among a panel of Crataegus accessions(listed in Table1)based on random amplified polymorphic DNA(RAPD)or inter-simple sequence repeat(ISSR)genotyping.Ann Appl Biol154(2009)175–181ª2008The Authors179germplasm sample.The28accessions could be grouped into three clusters.Cluster I comprisedfive of the wild species(C.sanguinea, C.altaica, C.dahurica, C.kansuensis and C.maximowiczii)and one botanical variety(C.maximo-wiczii var.ninganensis).The C.bretschneideri,C.pinnatifida and C.pinnatifida var.major accessions grouped as cluster II,within which subclusters IIa and IIb contained,respec-tively,the wild C.pinnatifida and the C.bretschneideri ac-cessions.All the C.pinnatifida var.major cultivars fell into subcluster IIc.‘Zhungeershanzha’(C.songarica)formed a separate operational taxonomic unit III.The dendrogram based on the ISSR data is also shown in Fig.3.The accessions formed two clusters,one of which comprised six of the wild species(C.songarica, C.san-guinea,C.altaica,C.dahurica,C.kansuensis and C.maximo-wiczii)and other botanical variety C.maximowiczii var. ninganensis.C.bretschneideri,C.pinnatifida and C.pinnatifida var.major grouped into cluster II,within which three sub-clusters could be identified.Subcluster IIa comprised the C.bretschneideri genotypes,IIb the three wild accessions of C.pinnatifida and IIc all13cultivars of C.pinnatifida var.major along with one wild C.pinnatifida accession (‘Dashanlihong’).A difference emerged between the RAPD-and the ISSR-based dendrograms:in the latter,all the C.pinnatifida accessions(including the wild types and the cultivars)formed a larger cluster,and then grouped with the C.bretschneideri accessions.However,in the for-mer,the wild C.pinnatifida accessionsfirst clustered with C.bretschneideri.An analysis performed by means of a Mantel test (Mantel,1967)indicated a high correlation between RAPD and ISSR markers in their ability to detect genetic relationships between Crataegus accessions(r=0.86; t=9.00;P=0.002).DiscussionDifferences between molecular marker types with respect to their informativeness have been well rehearsed in the literature(e.g.for strawberry–Degani et al.,2001;Kuras et al.,2004;for pea–Ellis et al.,1998and for hop–Pat-zak,2001).In the present study,the RAPD markers gen-erated a genetic data set,which was more consistent than was the ISSR-based set with the geographical origins and the morphological variation of hawthorn.Crataegus has been divided into22sections(Phipps,1983),and the eight species and two botanical varieties of hawthorn used here belong to section Pinnatifidae(C.pinnatifida, C.pinnatifida var.major and C.bretschneideri),section San-guineae(C.maximowiczii,C.maximowiczii var.ninganensis, C.kansuensis, C.altaica, C.dahurica and C.sanguinea)or section Orientales(C.songarica).The phylogenetic tree of hawthorn based on RAPD(Fig.3)is completely consis-tent with these taxonomic sections,as all the accessions in cluster I belong to the Sanguineae,all those in cluster II to the Pinnatifidae and C.songarica(Orientales)was an out-lier.However,in the ISSR-based tree,the Sanguineae and Orientales accessions clustered together.Random amplified polymorphic DNA markers have sometimes been associated with a lack of reproducibility (Penner et al.,1993).However,if the PCR conditions are well controlled,a high level of reproducibility is attain-able(Mattioni et al.,2002).We devoted considerable ef-forts to optimise the components of the PCR,including the concentrations of MgCl2,dNTP,primer and Taq DNA polymerase and the quality and concentration of tem-plate DNA(data not shown).Furthermore,a relatively high annealing temperature(40°C)and a long annealing time(120s)were applied(Zhang et al.,2003).Although Penner et al.(1993)have drawn attention to the depen-dence of RAPD profiles on the PCR machine used,in our hands,two different thermocyclers–the Mastercycler Gradient produced by Eppendorf company and the PTC-200DNA Engine produced by MJ research company–gave highly consistent results,with nearly all the strongly amplified fragments proving to be fully repro-ducible.We conclude that RAPD analysis is a reliable technique for genotyping in hawthorn. AcknowledgementsThe authors thank Chuansheng Zhou for hisfield assis-tance.This research was supported by the Program for Innovation Team in University of Liaoning Province and the Science Foundation for Young Teachers in Shenyang Agricultural University.ReferencesArchak S.,Gaikwad A.B.,Gautam D.,Rao E.V.,SwamyK.R.,Karihaloo J.L.(2003)Comparative assessment of DNAfingerprinting techniques(RAPD,ISSR and AFLP)for genetic analysis of cashew(Anacardium occidentale L.)ac-cessions of India.Genome,46,362–369.Arnau G.,Lallemand J.,Bourgoin M.(2002)Fast and reli-able strawberry cultivar identification using inter simple sequence repeat(ISSR)amplification.Euphytica,129,69–79.Blair M.W.,Panaud O.,McCouch S.R.(1999)Inter-simple sequence repeat(ISSR)amplification for analysis of microsatellite motif frequency andfingerprinting in rice (Oryza sativa L.).Theoretical and Applied Genetics,98,780–792.Dai H.,Zhang Z.,Guo X.(2007)Adventitious bud regenera-tion from leaf and cotyledon explants of ChineseRAPD and ISSR markers in Crataegus H.Dai et al. 180Ann Appl Biol154(2009)175–181ª2008The Authorshawthorn(Crataegus pinnatifida Bge.var.major N.E.Br.).In Vitro Cellular and Developmental Biology–Plant,47,2–8. Degani C.,Rowland L.J.,Saunders J.A.,Hokanson S.C., Ogden E.L.,Golan-Goldhirsh A.,Galletta G.J.(2001)A comparison of genetic relationship measures in strawberry (FragariaÂananassa Duch.)based on AFLPs,RAPDs,and pedigree data.Euphytica,117,1–12.Doyle J.J.,Doyle J.L.(1990)Isolation of plant DNA from fresh tissue.Focus,12,13–15.Ellis T.H.N.,Poyser S.J.,Knox M.R.,Vershinin A.V., Ambrose M.J.(1998)Ty1-copia class retrotransposon inser-tion site polymorphism for linkage and diversity analysisin pea.Molecular and General Genetics,260,9–19.Harada T.,Matsukawa K.,Sato T.,Ishikawa R.,Niizeki M., Saito K.(1992)DNA-RAPDs detect genetic variation and paternity in Malus.Euphytica,65,87–91.Kao E.S.,Wang C.J.,Lin W.L.,Yin Y.F.,Wang C.P.,Tseng T.H.(2005)Anti-inflammatory potential offlavonoid con-tents from dried fruit of Crataegus pinnatifida in vitro andin vivo.Journal of Agriculture and Food Chemistry,53,430–436. Kuras A.,Korbin M.,Zurawicz E.(2004)Comparison of suitability of RAPD and ISSR techniques for determination of strawberry(FragariaÂananassa Duch.)relationship. Plant Cell,Tissue and Organ Culture,79,189–193.Mantel N.(1967)The detection of disease clustering and a gen-eralized regression approach.Cancer Research,27,209–220. Martins M.,Sarmento D.,Oliveira M.M.(2003)Genetic sta-bility of micropropagated almond plantlets,as assessed by RAPD and ISSR markers.Plant Cell Reports,23,492–496. Mattioni C.,Casasoli M.,Gonzalez M.,Ipinza R.,Villani F. (2002)Comparison of ISSR and RAPD markers to charac-terize three Chilean Nothofagus species.Theoretical and Applied Genetics,104,1064–1070.Molnar S.J.,James L.E.,Kasha K.J.(2000)Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley.Genome,43,224–231.Patzak J.(2001)Comparison of RAPD,STS,ISSR and AFLP molecular methods used for assessment of genetic diversity in hop(Humulus lupulus L.).Euphytica,121,9–18.Penner G.A.,Bush A.,Wise R.,Kim W.,Domier L.,Kasha K.,Laroche A.,Scoles G.,Molnar S.J.,Fedak G.(1993)Reproducibility of random amplified polymorphic DNA (RAPD)analysis among laboratories.PCR Methods and Ap-plications,2,341–345.Phipps J.B.(1983)Crataegus–a nomenclator for sectional and serial names.Taxon,32,598–604.Phipps J.B.,O’Kennon R.J.,Lance R.W.(2003)Hawthorns and Medlars.Cambridge,UK:Timber Press.pp.62–103. Qian W.,Ge S.,Hong D.Y.(2001)Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers.Theoretical and Applied Genetics,102,440–449.Raina S.N.,Rani V.,Kojima T.,Ogihara Y.,Singh K.P., Devarumath R.M.(2001)RAPD and ISSRfingerprints as useful genetic markers for analysis of genetic diversity, varietal identification,and phylogenetic relationships in peanut(Arachis hypogaea)cultivars and wild species. Genome,44,763–772.Rigelsky J.M.,Sweet B.V.(2002)Hawthorn:pharmacology and therapeutic uses.American Journal of Health-System Pharmacy,59,417–422.Rohlf F.J.(1992)NTSYS-PC:Numerical Taxonomy and Multi-variate Analysis System Version2.0.Stony Brook,NY,USA: State University of New York.Souframanien J.,Gopalakrishna T.(2004)A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers.Theoretical and Applied Genetics, 109,1687–1693.Williams J.G.,Kubelik A.R.,Livak K.J.,Rafalski J.A.,Tingey S.V.(1990)DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Research,18,6531–6535.Zhang Z.,Fukino N.,Mochizuki T.,Matsumoto S.(2003) Single-copy RAPD marker loci undetectable in octoploid strawberry.The Journal of Horticultural Science and Bio-technology,78,689–694.Zhao H.,Feng B.(1996)China Fruit-plant Monograph of Haw-thorn(Crataegus)Flora.Beijing,China:China Forest Press. Zietkiewicz E.,Rafalski A.,Labuda D.(1994)Genomefinger-printing by simple sequence repeat(SSR)-anchored poly-merase chain-reaction amplification.Genomics,20,176–183.H.Dai et al.RAPD and ISSR markers in Crataegus Ann Appl Biol154(2009)175–181ª2008The Authors181。

相关文档
最新文档