数学建模整数规划
运筹学-整数规划建模
• 该部门现有资金10万元,问它应如何确定给这 些项目的每年投资额,使到第 5 年末拥有的资 金本利总额为最大? 8
解:1) 设xiA、xiB、xiC、xiD ( i =1,2,3,4,5)分别表 示第 i 年年初给项目A,B,C,D的投资额;
变量: 第1年 第2年 第3年 第4年 第5年 A x1A x2A x3A x4A B x1B x2B x3B x4B x5B C x2C D x3D
设决策变量xj为对第j个方案的取(xj=1) 或舍(xj=0),可得到下列整数规划问题, 是0—1规划。
yj
x yj
yj
xij 为整数
例.某公司考虑今后五年内给以下项目投资。
• 项目A:每年年初可以投资,于次年末回收本利 115% ,投资金额必须为1万元的整数倍; • 项目 B :每年初可购买公债,于当年末归还,并加利 息6%,投资金额必须为1万元的整数倍; • 项目 C:第2年初可以投资,到第5年未能回收本利 140% ,投资金额必须为1万元的整数倍; • 项目D:第3年初可以投资,到第5年未能回收本利 128% ,如果投资金额必须大于2万元;
B2 顾客 B3 仓库固定 运营费 仓库 A1 仓库 A2
顾客需求量 6 6 150 4 5 150 6 5 200 10 11
6.1.2 建模中常用的处理方法(续)
费用:
fi:动用i仓库的固定运营费(租金等) cij:从仓库i到j顾客运送单位货物的运费 约束条件: i)每个顾客的需要量dj必须得到满足; ii)只能从动用的仓库运出货物。
第j项工作).于是得到一个0--1整数规划问题:
整数规划建模
例.某企业在 A1 地已有工厂,其产品的生产能 力为30 万箱。为扩大生产,拟在 A2,A3,A4, A5地中再选择若干地建厂。已知在 A2 , A3, A4,A5地建厂的固定成本分别为17.5、30、 37.5、50万元,另外, A1产量及A2,A3,A4, A5建成厂的产量,那时销地的销量以及产地到 销地的单位运价(每万箱运费)如右下表所示。 问应该在哪些地方建厂,在满足销量的前提下, 使得其总的固定成 销地 本和总的运输费用 B B B 产量(千吨) 产地 之和最小? A 8 4 3 30
数学建模中的整数规划与混合整数规划
数学建模作为一种解决实际问题的方法,旨在从实际问题中抽象出数学模型,并运用数学方法来对模型进行分析和求解。
在数学建模过程中,整数规划与混合整数规划是两种常用的数学工具,适用于解决许多实际问题。
整数规划是指在约束条件下,目标函数为整数变量的线性规划问题。
而混合整数规划是在整数规划的基础上,允许部分变量为实数,部分变量为整数。
这两种规划方法可以广泛应用于许多领域,如物流、生产规划、资源分配等。
整数规划的一个经典问题是背包问题。
假设有一个容量为C的背包,有n个物品,每个物品有自己的重量w和价值v。
目标是在不超过背包容量的情况下,选择装入背包的物品,使得背包中的物品总价值最大化。
这个问题可以用整数规划的方式进行建模和求解,将每个物品视为一个二进制变量,表示是否选择该物品,目标函数为物品价值的总和,约束条件为背包容量不能超过C。
通过对目标函数和约束条件的线性化处理,可以得到整数规划模型,并利用整数规划算法进行求解,得到最优解。
混合整数规划在实际问题中更为常见。
一个典型的实际问题是运输网络设计问题。
假设有一组供应地和一组需求地,需要建立供需之间的运输网络,以满足需求地对各种商品的需求,同时要考虑供给地的产能限制和运输成本。
这个问题可以用混合整数规划的方法进行建模和求解。
将供需地视为节点,建立连通性矩阵表示供需之间的运输路径,将路径的运输量作为决策变量,目标函数可以是运输成本的最小化,约束条件可以包括供给地产能限制和需求地需求量的满足。
通过对目标函数和约束条件的线性化处理,可以得到混合整数规划模型,并利用相应的求解算法进行求解,得到最优的运输网络设计方案。
整数规划与混合整数规划在数学建模中起着重要的作用。
它们既具备一般整数规划问题的优点,可以提高问题的精度和可行性,又具备一般线性规划问题的优点,可以通过线性规划算法来求解。
同时,整数规划与混合整数规划也存在一些挑战,如求解时间长、难以处理大规模问题等。
对于这些问题,研究者们一直在不断提出新的算法和优化方法,以提高整数规划与混合整数规划的求解效率。
数学建模-整数规划
算例
max 3x1 5x2 4x3
2x1 3x2 1500
s.t.32xx12
4x3 2x2
800 5x3
2000
x1
,
x2
,
x3
0,
x1 , x3为整数
max 3 x1+5 x2+4 x3 subject to 2 x1+3 x2<=1500 2 x2+4 x3<=800 3 x1+2 x2 +5 x3<=2000 end gin x1 gin x3
注解
该问题本质上是个整数规划问题, 放松的线性规划的最优解是个整数 解,所以两规划等价。
定义整数变量用函数@gin(x1)…… @gin(x7); 0-1整数变量为@bin(x1)
应急选址问题
某城市要在市区设置k个应急服务中心, 经过初步筛选确定了m个备选地,现已 知共有n个居民小区,各小区到个备选地 的距离为 d ij , i 1,2,..., n, j 1,2,..., m,为了使 得各小区能及时得到应急服务,要求各 小区到最近的服务中心的距离尽可能的 短,试给出中心选址方案。
问题分析
为了便于说明问题引入间接变量,第i 小区是否由第j个中心服务
yij 0,1, i 1,2,..., n, j 1,2,..., m,
以及最远的距离 z,
约束条件
小区服务约束
yij x j , i 1,2,..., n, j 1,2,..., m,
m
yij 1, i 1,2,..., n,
方案 确定每天工作的人数,由于连续休息2天,当确定每 个人开始休息的时间就等于知道工作的时间,因而确定 每天开始休息的人数就知道每天开始工作的人数,从而 求出每天工作的人数。
整数规划建模方法及应用
整数规划建模方法及应用
整数规划是一种数学优化方法,其任务是找到满足特定限制条
件的整数决策变量的最优值。
整数规划被广泛应用于制造、物流、
金融、计算机科学、工程和其他领域。
以下是整数规划建模方法及
其应用。
整数规划建模方法:
1. 确定决策变量:将需要做出的决策表示为一个整数变量,如
产品数量、员工数量等。
2. 给出目标函数:目标函数表示要最大化或最小化的优化目标,如利润、销售额等。
3. 设置限制条件:限制条件是指需要遵守的约束条件,如生产
能力、市场需求等。
4. 决策变量的整数要求:由于整数规划的特殊性质,需要规定
决策变量为整数。
应用:
1. 生产问题:整数规划可以优化生产计划,包括最佳的生产数量、产品组合和生产时间。
例如,在制造业中,整数规划可以帮助
确定要生产的产品数量,以最大化收益和最小化成本。
2. 库存问题:整数规划可以应用于零售商和批发商的库存管理,以确保及时补货和避免库存过量。
例如,在食品行业中,整数规划
可以帮助决定购买多少食材以达到最大利润。
3. 作业调度问题:整数规划可以帮助确定作业完成的时间,并确保资源分配最有效。
例如,在工厂中可以使用整数规划分配机器的使用时间以达到最大的生产效率。
4. 资源分配问题:整数规划可以帮助分配资源,如资金、人力资源和物资,以最大化效益。
例如,在政府基金分配方面,整数规划可以帮助确定资金分配的最佳方式,以支持社区发展、教育等。
总之,整数规划是一种非常有用的数学工具,可以帮助优化决策和资源分配的过程,应用广泛。
数学建模(整数规划)
整数规划模型实际问题中x x x x f z Max Min Tn "),(),()(1==或的优化模型mi x g t s i ",2,1,0)(..=≤x ~决策变量f (x )~目标函数g i (x )≤0~约束条件多元函数决策变量个数n 和数线性规划条件极值约束条件个数m 较大最优解在可行域学规非线性规划解的边界上取得划整数规划Programming+Integer所有变量都取整数,称为纯整数规划;有一部分取整数,称为混合整数规划;限制取0,1称为0‐1型整数规划。
型整数规划+整数线性规划max(min) nz c x =1j jj n=∑1s.t. (,) 1,2,,ij j i j a x b i m=≤=≥=∑"12 ,,,0 ()n x x x ≥"且为整数或部分为整数+例:假设有m 种不同的物品要装入航天飞机,它们的重量和体积分别为价值为w j 和v j ,价值为c j ,航天飞机的载重量和体积限制分别为W 和V ,如何装载使价值最大化?m1⎧1max j jj c y =∑ 1 0j j y =⎨被装载 s.t. mj j v y V≤∑0j ⎩没被装载1j m=1j j j w y W=≤∑ 0 or 1 1,2,,j y j m=="(Chicago)大学的Linus Schrage教授于1980年美国芝加哥(Chi)Li S h前后开发, 后来成立LINDO系统公司(LINDO Systems Inc.),网址:I)网址htt//li dLINDO: Interactive and Discrete Optimizer (V6.1) Linear(V61) LINGO: Linear Interactive General Optimizer (V8.0) LINDO——解决线性规划LP—Linear Programming,整数规划IP—Integer Programming问题。
数学建模线性规划与整数规划
数学建模线性规划与整数规划数学建模是一门将实际问题转化为数学问题,并利用数学方法解决的学科。
线性规划和整数规划是数学建模中常用的两种模型,它们在实际问题中有着广泛的应用。
本文将重点介绍线性规划和整数规划的概念、模型形式以及求解方法。
一、线性规划(Linear Programming)线性规划是一种在约束条件下求解线性目标函数最优解的数学模型,它的基本形式可以表示为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0在上述模型中,C₁,C₂,...,Cₙ为目标函数的系数,Aᵢₙ为不等式约束条件的系数,bᵢ为不等式约束条件的右端常数,X₁,X₂,...,Xₙ为决策变量。
线性规划的求解可以通过单纯形法或内点法等算法实现。
通过逐步优化决策变量的取值,可以得到满足约束条件并使目标函数达到最优的解。
二、整数规划(Integer Programming)整数规划是在线性规划基础上增加了决策变量必须取整的要求,其模型形式为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0X₁,X₂,...,Xₙ为整数整数规划在实际问题中常用于需要求解离散决策问题的情况,如装配线平衡、旅行商问题等。
然而,由于整数规划问题的整数约束,其求解难度大大增加。
求解整数规划问题的方法主要有分支定界法、割平面法、遗传算法等。
数学建模整数规划
x2
D(2, 4) B(2.25, 3.75) 5x1 +9 x2 = 45
R
o
C ( 6, 0 )
9
x1
求解整数规划不宜采用枚举法。
整数规划常用的解法是分枝定界法和割平面法。
一旦遇到仅含两个决策变量的情况,可以采用
图解法,其计算方法与线性规划图解法大同小 异,就不再赘述。
销售店 B1 B2 B3
表 2-1 需求量(箱/周) 50 60 30
表 2-2
产量 制药厂 (箱/周) A1 A2 A3 A4 50 70 20 20
运资(元/箱) B1 3 10 1 4 B2 2 5 3 5 B3 3 8 10 3
解:建立数学模型
设:制药厂Ai 每周运到销售店Bj 的药品为xij 箱(i =1,2,3,4; j =1,2,3);
第三步
主要特征就是定界,由各枝的最优值中选最大 值,称为定界。而该最大值,称为界。最优值称 为界的枝,称为界枝。 完成定界之后,即可得到这样的结论:若界枝 的最优解满足原整数规划的最优条件,则它也是 原整数规划的最优解。
第三步的具体做法为:进行定界,找出界枝。 若界枝的最优解就是原整数规划的最优解,则计 算过程便告结束;否则,回到第二步。
Max y 5 x 1 8 x 2 5 x 1 9 x 2 45 x1 x 2 6 x2 4 x 1 1 x1 , x 2 0
Max y 5 x 1 8 x 2 5 x 1 9 x 2 45 x1 x 2 6 x2 4 x 2 1 x1 , x 2 0
例2 某医疗器械厂生产A1和A2两种产品。出
数学建模整数规划详解
vlb = zeros(2,1);
vub=[9;15];
%调用linprog函数:
[x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
结果为: x=
9.0000 0.0000 fval =360
即只需聘用9个一级检验员。
注:本问题应还有一个约束条件:x1、x2取整数。故它
钢材(吨) 劳动时间(小时) 利润(万元)
小型 1.5 280 2
中型 3
250 3
大型 5 400 4
现有量 600 60000
• 制订月生产计划,使工厂的利润最大。
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
Max z 2x1 3x2 4x3
s. t. 1.5x1 3x2 5x3 600 280 x1 250 x2 400 x3 60000
x1, x2 , x3 0
线性 规划 模型
(LP)
模型 求解
x= 64.5161
结果为小数, 怎么办?
注意:当决策变量变化范围较大时,运行速度较慢
Max z 2x1 3x2 4x3
s. t. 1.5x1 3x2 5x3 600
280 x1 250 x2 400 x3 60000
x1, x2 , x3为非负整数
qiche2.m qiche2.c
IP 的最优解x1=64,x2=168,x3=0,最优值z=632
78
70
67.4
j=2
(完整word版)整数规划的数学模型及解的特点
整数规划的数学模型及解的特点整数规划IP (integer programming ):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。
例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。
松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。
若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。
一、整数线性规划数学模型的一般形式∑==nj jj x c Z 1min)max(或中部分或全部取整数n j nj i jij x x x mj ni x b xa ts ,...,,...2,1,...,2,10),(.211==≥=≥≤∑=整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pure integer linear programming ):指全部决策变量都必须取整数值的整数线性规划。
有时,也称为全整数规划.2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。
3、0—1型整数线性规划(zero —one integer liner programming ):指决策变量只能取值0或1的整数线性规划。
1 解整数规划问题0—1型整数规划0-1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的变量xi 称为0-1变量,或称为二进制变量.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z0—1型整数规划中0—1变量作为逻辑变量(logical variable ),常被用来表示系统是否处于某一特定状态,或者决策时是否取某个方案。
整数规划建模方法及应用
整数规划建模方法及应用什么是整数规划?整数规划(Integer Programming,简称IP)是在满足一定的约束条件下,求解使目标函数达到最优的一组整数决策变量的数学规划问题。
与线性规划(Linear Programming,简称LP)不同的是,LP中的决策变量可以取任意实数值,而IP中的决策变量只能取整数值。
因此,整数规划问题通常更为复杂,求解难度更大。
整数规划广泛应用于各种实际问题中,例如制造业生产计划、物流配送优化、网络优化、人员调度等。
整数规划建模方法线性整数规划线性整数规划(Integer Linear Programming,简称ILP)是指目标函数和约束条件都是线性的整数规划问题。
一个典型的线性整数规划问题可以表示为:$max\\{cx|Ax\\le b,x\\in Z^n\\}$其中,$A\\in R^{m*n}$,$b\\in R^m$,$c\\in R^n$,$x\\inZ^n$表示整数决策变量。
指派问题是一个经典的线性整数规划问题。
它是一个求解如下二元匹配问题的整数规划模型:$min\\{cx|cx\\ge\\{1,...,1\\},x_{ij}\\in\\{0,1\\},i=1,...,n,j=1,...,m\\}$其中,c是n∗m维的代价系数向量,x ij表示第i个任务分配给第j个工人的决策变量,x ij=1表示第i个任务分配给第j个工人,x ij=0表示不分配。
非线性整数规划非线性整数规划(Nonlinear Integer Programming,简称NLIP)是指目标函数或/和约束条件中存在非线性项的整数规划问题。
一个典型的非线性整数规划问题可以表示为:$max\\{f(x)|g(x)\\le0,x\\in Z\\}$其中,f(x)是目标函数,g(x)代表约束条件,x是整数决策变量。
整数规划求解方法前向分支定界法前向分支定界法(Branch and Bound,简称B&B)是一种广泛应用于整数规划求解的算法。
数学建模-整数规划
整数规划
Integer Programming
数信学院 任俊峰
2012-4-15
数学建模之整数规划
整数规划模型(IP)
如果一个数学规划的某些决策变量或全部决策 变量要求必须取整数,则称这样的问题为整数规 划问题,其模型称为整数规划模型。 如果整数规划的目标函数和约束条件都是线性 的,则称此问题为整数线性规划问题.
松弛问题最优解满足整数要求,则该最优解为整数 规划最优解;
数学建模之整数规划
整数线性规划的求解方法
从数学模型上看整数规划似乎是线性规划的 一种特殊形式,求解只需在线性规划的基础上,通 过舍入取整,寻求满足整数要求的解即可。 但实际上两者却有很大的不同,通过舍入得到
的解(整数)也不一定就是最优解,有时甚至不能
1 xj 0
选中第j个项目投资 不 选中第j个项目投资
max Z 160 x 1 210 x 2 60 x 3 80 x 4 180 x 5 210 x 1 300 x 2 150 x 3 130 x 4 260 x 5 600 x x2 x3 1 1 x3 x4 1 x x 1 5 x1 , x 2 , x 3 , x 4 , x 5 0 或 1
1 2
14 x1 9 x 2 51 6 x1 3 x 2 1 x1 , x 2 0
数学建模之整数规划
用图解法求出最优解 x1=3/2, x2 = 10/3 且有 z = 29/6 现求整数解(最优解): 如用“舍入取整法”可得到4 个点即(1,3) (2,3) (1,4) (2,4)。显然,它们都不可能 是整数规划的最优解。
数学建模之整数规划
例5 固定费用问题
数学建模中的整数规划与线性规划
数学建模中的整数规划与线性规划数学建模是指利用数学方法解决实际问题的过程,其中整数规划和线性规划是常用的数学建模技术。
本文将探讨数学建模中的整数规划和线性规划的基本原理、应用领域以及解决实际问题的方法。
一、整数规划整数规划是指在线性规划的基础上,将决策变量限制为整数的优化问题。
在实际问题中,有些变量只能取整数值,而不能取小数值。
整数规划的数学模型可以表示为:$max\{cx:Ax≤b,x\geq0,x为整数\}$其中,c是目标函数的系数向量,A是约束条件的系数矩阵,b是约束条件的常数向量,x是决策变量。
整数规划的应用非常广泛,比如生产调度、资源配置、旅行商问题等。
整数规划不仅可以帮助企业进行生产计划,还可以优化物流配送路线,解决旅行商的最优路径问题等。
二、线性规划线性规划是指目标函数和约束条件均为线性关系的优化问题。
线性规划的数学模型可以表示为:$max\{cx:Ax≤b,x\geq0\}$线性规划在数学建模中是最常用的优化工具之一,广泛应用于生产计划、资源分配、投资组合等领域。
通过线性规划,可以找到目标函数在约束条件下的最优解,从而为决策提供科学依据。
三、整数规划与线性规划的联系整数规划是线性规划的一个特例,即当决策变量限制为整数时,线性规划就变成了整数规划。
因此,整数规划可以通过线性规划来求解,但是整数规划的求解难度要高于线性规划。
在实际问题中,有时候整数规划难以求解,此时可以采用线性规划来近似求解。
例如,可以将决策变量限制为小数,然后通过计算得到的解来指导实际决策。
当然,这种近似解不一定是最优解,但可以提供一种可行的解决方案。
四、整数规划与线性规划的求解方法针对整数规划和线性规划问题,有多种求解方法。
其中,常用的方法包括暴力搜索、分支定界法、割平面法等。
暴力搜索是一种基础的求解方法,通过枚举所有可能的解来寻找最优解。
这种方法的好处是可以找到全局最优解,但计算时间较长,适用于问题规模较小的情况。
数学建模常用算法模型
数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
下面将对这些算法模型进行详细介绍。
1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。
它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。
线性规划的常用求解方法有单纯形法、内点法和对偶理论等。
2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。
在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。
整数规划常用的求解方法有分支界定法和割平面法等。
3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。
与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。
非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。
4.动态规划:动态规划是一种用于解决决策过程的优化方法。
它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。
动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。
5.图论算法:图论算法是一类用于解决图相关问题的算法。
图论算法包括最短路径算法、最小生成树算法、网络流算法等。
最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。
最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。
网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。
6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。
它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。
遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。
总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
数学建模线性整数规划
7、模型推广 8、参考文献 9、附录
第二讲
线性规划建模方法
一、从现实问题到线性规划模型
二、线性规划模型的求解
三、线性规划建模实例 四、线性规划的对偶问题
一、从现实问题到线性规划模型
例1 加工奶制品的生产计划
1桶 牛奶 或 每天: 12小时 8小时 50桶牛奶 3公斤A1 获利24元/公斤
4公斤A2
获利16元/公斤
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
1桶 牛奶 或
12小时
3公斤A1
4公斤A2
获利24元/公斤
数学建模的具体应用
• 分析与设计
• 预报与决策
•
控制与优化
• 规划与管理
数学建模
如虎添翼
计算机技术
知识经济
1.4 数学建模的方法和步骤
数学建模的基本方法
•机理分析
根据对客观事物特性的认识, 找出反映内部机理的数量规律
将对象看作“黑箱”,通过对量测数据的 统计分析,找出与数据拟合最好的模型 用机理分析建立模型结构, 用测试分析确定模型参数
1.6 近几年国内竞赛题
1.7 怎样学习数学建模与竞赛组队
1.8 撰写数学建模论文
1.1 数学建模由来
• 在上世纪70年代末和80年代初,英国著名的剑 桥大学专门为研究生开设了数学建模课程
•1985年由美国工业与应用数学学会和美国运筹 学会联合主办大学生数学建模竞赛( MCM ) • 数学建模作为一门崭新的课程在20世纪80年代 进入我国高校,萧树铁先生1983年在清华大学首 次为本科生讲授数学模型课程,他是我国高校开 设数学模型课程的创始人
数学建模整数规划
整数规划前面介绍的线性规划问题中,只要求决策变量非负,也就是说决策变量可以取小数,然而在许多经济管理的实际问题中,决策变量只有取非负的整数才有实际意义。
如果一个线性规划问题要求全部的决策变量都取整数,那么这样的线性规划问题称为全整数规划或纯整数规划问题。
如果只要求一部分决策变量取整数,那么这样的线性规划问题称为混合整数规划问题。
如果决策变量只能取0或者1,那么就称为0-1规划问题 整数规划在实际中的应用: 1. 指派问题:某公司人事部门欲安排四个人去做四项不同的工作,每个人只能完成一项工作,一项工作只能由一个人完成。
每个人完成各项工作所消耗的时间(单位:分钟)如下表所示,(2) 如果把(1)中的消耗时间数据看成创造效益的数据,那么应该如何指派,可以使得总的效益最大?(3) 如果在(1)中再增加一项工作E ,甲 、乙、丙、丁四人完成工作E 的时间分别为17,20,15,16分钟,那么应该指派这四个人干哪四项工作,可使得这四个总的消耗时间为最少?解:(1) 引入0-1变量ij x ,并令⎩⎨⎧=项工作时个人不做第当第项工作时个人去做第当第j i j i x ij 01,于是这个分派问题的数学模型为:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧====+++=+++=+++=+++=+++=+++=+++=++++++++++++++++++=4,3,2,1,4,3,2,1101111111119242017181516262027241828201920min 443424144333231342322212413121114443424134333231242322211413121144434241343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x x Z ij ,或 用管理运筹学2.0软件求解结果如下:**********************最优解如下*************************目标函数最优值为 : 71变量 最优解 ------- --------x1 0 x2 1 x3 0 x4 0 x5 1 x6 0 x7 0 x8 0 x9 0 x10 0 x11 1 x12 0 x13 0 x14 0 x15 0 x16 1 约束 松弛/剩余 ------- ---------1 02 03 04 05 06 07 08 0 这就说明112=x ,121=x ,133=x ,144=x所以应该让甲去做B 工作,让乙去做A 工作,让丙去做C 工作,让丁去做D 工作,这时总的消耗时间为71分钟。