Sigma plot ——13Symbols

合集下载

SigmaPlot软件在相图绘制中的应用

SigmaPlot软件在相图绘制中的应用

1 二 元 系相 图 的绘 制
常 用的二元 系相 图有 气一 液、液一 液及液一 固的温度一 组成图
及 压 力 组 成 图 。在 此 , 以 异 丙 醇 一 己烷 二 元 系 液 一 的 温 度 一 环 液 组 成 图 的绘 制 为 例 ,实 验 数 据 见 表 1 。
图 软 件 ,具 有 强 大 的 数 据 处 理 分 析 及 图 形 绘 制 的 功 能 。 用 Sg a lt im Po 处理 实验 数 据 ,不 需 编 程 ,只 要 导 入 或输 入 测 量 数 据 ,然后再选择相 应的菜单命 令,点击相应的工具按钮 即可, 因而在 学术科 研中受到青睐。文章以二元 、三元 系相 图的绘制 实验 为例 ,介 绍 Sg Po 软 件 绘 制相 图 的 方 法 。 ima lt
Absr c : no d rt u c l n rc s l rw ai fc o y p a ed a r m f i a rtm a y tm sp a ed a r m s t ea tcei p e e td S g a l t n t a t I r e q i ky a d p e iey d a as tsa t r h s i g a o n r o e r s se h s ig a ,h r l o b y y i m lm n e i m P o i
Zh n i b n J e g M ng i , aZhe bi W u Xie M e u n n, r n, i n J
( p r n o h mi r, a g o gMe ia C l g , o g u n5 3 0 , hn ) De a me t f e s y Gu n d n dc l ol e D n g a 2 8 8 C ia t C t e

Sigmaplot操作-PPT

Sigmaplot操作-PPT
科研工具之图表图中空白处或单击右键,就可以打开Graph properties
Graph:图例、 网格线、背景等。 不同的图表类型 有不同的参数。
科研工具之图表制作---Sigmaplot
四、案例
4.1 案例1 - 双y轴柱状、线性图 4.2 案例2 - 轮廓图 4.3 案例3 - 三维网状图
科研工具之图表制作---Sigmaplot
1.2 科研论文中需要什么样的图表?
1.2.1 图表结构
• 图表区、绘图区 • 图表标题、图例、Y轴、X轴、数据系列、网格线
……
1.2.2 制作原则
• 准确、规范、清晰、美观
科研工具之图表制作---Sigmaplot
二、Sigmaplot介绍
2.1 特别设计给科学家使用,目前巳有超过十万 的使用者。 2.2 Sigmaplot绘制图形的精美程度远非SPSS、 Excel甚或Origin能及。 2.3 在众多的国外顶级期刊如Science、 Nature等 的发表论文中的精致细腻的统计图形大多出自 Sigmaplot之手。
科研工具之图表制作---Sigmaplot
二、Sigmaplot介绍
2.9 Sigmaplot可以灵活性定制你的图表和所有的细节。 你能增加轴,标准的或者不对称的线条和符号; 改 变颜色,字形,线的浓度等等。 2.10 将你的图表嵌入在任何OLE工具–微软Word, 微软PowerPoint或者制图软件,只需要双击你的图表 在你的文件里直接编辑 就可以了。 迅速的在线发布 你的高质量的图表与其他人分享。
请批评指正!
科研工具之图表制作---Sigmaplot
科研工具之图表制作---Sigmaplot
4.2 案例2 - 轮廓图
第三步:Graph properties-Plots,将plot1的 填充颜色修改为第196组 数据;Graph propertiesAxes,修改X、Y轴起始 点;Graph propertiesGraph,修改图例和X、Y 轴名称 第四步:导出图表

SigmaPlot应用

SigmaPlot应用

在new worksheet 中输入数据
选择Graph中的 Create Graph Scatter plot Multiple Error Bars X Many Y 按图选择数据 完成
双击y轴后在Settings 中选Scaling,在 Scale中选择 Log(common), 在End中填写1.
b=0.7815 N=c=1.7722 Do=1/b=1.2796 Dq=In(c/b)=0.8188 SF2=0.3408 S=1-(1-exp(-D/Do))^N=1-(1-exp(-0.7815*D))^1.7722
根据上述结果,我们很好的 解决了多靶单击模型拟合公 式的求解,得出了N, Do,Dq,SF2等多个放射生物 学参数以及所需的图片
点击Report2,查看b,c值
如图,点击Data1可 查看SF2的预计值
通过SigmaPlot可以得到结果为: b=0.7094 N=c=2.3062 Do=1/b=1.4096 Dq=In(c/b)=1.1789 SF2=0.4722 S=1-(1-exp(-D/Do))^N=1-(1-exp(-0.7094*D))^2.3062
LOGO
SigmaPlot应用 —— 计算多靶单击模型拟 合计量存活曲线
• 目前应用较多的是fertil等建立的克隆形成率分析 法,是用多个剂量的多个克隆存活分数进行数学 模型拟合。可通过简单的多靶单击模型S=1-(1exp(-D/Do))^N拟合剂量存活曲线,主要获得 N,No,Dq和SF2等多个放射生物学参数。 • 利用SigmaPlot对数据进行处理,得到拟合剂量存 活曲线等。
以上分别为0,1,2,4,6GY照射后MDA-MB-231和MCF-7的SF
• 克隆接种率PE=(对照组克隆数/接种细胞数 )×100%存活分数SF=克隆数/(接种细胞 数×PE) 要绘制对数图和算出简单的多靶单击模型 S=1-(1-exp(-D/Do))^N拟合剂量存活曲线 ,主要获得N,Do,Dq和SF2等多个放射学 参数。S为剂009级放射医学 潘峰 王茜 指导老师:赵刚

Sigmaplot在环境统计实践教学中的应用

Sigmaplot在环境统计实践教学中的应用
5 1
5 0 2 4
3 5
6 0 2 5
2 7
8 0 2 9
2 9
20 3 0
4 0
3 4 3 6
3 9
3 5 4 2
4 4
5 3 5 5
61
5 9 6 2
7 2
5 7 63
78
6 7 7 3
8 5
4 2 5 7
4 7
4 7 5 0
3 0 8 .5 .8 00
4 0 7 .5 0 7 .8
5 0 7 .2 0 8 .2
6 08 .3 07 .5
7 0.l 7 0.1 8
8 0 8 .2 07 .6
9 0 7 .9 0 8 .3
( .i n R suc s n i n na S in e D p r n , i T ahr olg ,utn i i g 8 3 0 C ia 1 Lf ad eo re Evr metl c c eat tYl eces l e K i Xn a 3 2 0,hn ) e o e me i C e u jn
r s ls ho e t a i w a n t n y i l e u t s w d h t t s o o l s mp e, b t a s e s e , a t r a d u l o a i r f s e n mo e r hi h-e f c e . g - f i i nt
8 30) 3 2 0
ቤተ መጻሕፍቲ ባይዱ
摘 要: 本文主要介 绍 了将S g po 软件运 用于环境 统计实验教 学中的一些技巧方法及教学效果评价 。 ima lt 实践证 明 ̄S g a l t ]i m Po 对进行环境 实验数据 处理 , 不仅入 门 简单 ,易于操作 , 而且 方便 快捷 高效 。 关 键 词 : imait 环 境 统 计 Sg po 中 图分类 号 : 5 G4 文献 标识 码 : A 文章 编号 : 6 -9 9 ( 0 2 0 () 1 6 2 17 3 7 5 2 1 ) 3 h一0 1 —0

sigmaplot_20090408

sigmaplot_20090408
39/79
1. 修改座標軸
》滑鼠快速點選 Y軸 兩下, 出現「Graph Properties」
40/79
活頁停在「Axes」的位置
Axis的位置停在 「pH」的位置
「Scaling」 我們要修改 座標值的位置
41/79
︾ 「Scaling」項目下,可供修改的項目
常用的為線性座標, 選擇其它 type時,座標軸會自動換算
Axes Lines、Scaling、Labels、Tick Label、Ticks、Breaks
Graph Legends、Plots、Grid Lines、Backplanes
12/79
Plots
Setting for
Data、Symbols、Lines、Area Fills、Error Bar、 Reference、Drop Lines
雖然 MS Excel 也有很強的作圖能力,畫出來的圖形更具花樣,但並不 適合用作為發表所用的圖形。雖然 Excel 的立體式長條圖很吸引人,的 確科學期刊中也有人使用,但要小心並不是所有的圖形都合適。
台大 微生物及生化學研究所 莊榮輝
.tw/ECX/PurXX.htm
可再在做細部設定
18 16 14 12 10 8 6 4 2 0
7
49/79
︾ Setting for 停留在 Ticks
針對主要 tick , 也可切換到 次要的 tick
長度及粗細
Tick的方向 及類型
座標的間距;自動設定 or 手動設定
手動設定數值
50/79
pH pH
pH pH
︾ 原始
13/79
Axes
Setting for Lines、Scaling、Labels、Tick Label、Ticks、Breaks

通过实例讲SigmaPlot的使用

通过实例讲SigmaPlot的使用

通过实例讲SigmaPlot的使用(一)SigmaPlot是一个专业的科研绘图软件。

《Science》、《Nature》中大部分图表都是出自SigmaPlot 之手。

如果你没有使用过SigmaPlot,那么你开始使用的时候会遇到许多问题。

甚至不知道里面的xy pair,single Y等等之类是什么意思。

我今天就来以一个最基本的柱状图为例来说明他的使用。

我们认为对于图表绘制,最大的难点在于数据在表格中的排列格式。

如果你搞清了各种数据在表格中按照怎样的格式输入,那么你就能做出各种各样的图表。

首先我们来看看下面这个带标准差值的柱状图(图一)。

我们假设这个图表是要描述某个指标在肿瘤组和正常组的若干个病人中的表达情况。

两组的指标的均值我们已经计算出来,标准差也计算出来了。

我们看看图表中的数据输入格式,并对照最终生成的图表。

非常明显。

第一根柱子对应表格中的第一行。

第二根柱子对应第二行。

每一行的第三列,分别填上相应组别标准差的值。

对于使用此软件次数很少的人来说,应该先掌握这种简单的数据输入格式。

标准差、均值等可以先通过另外的软件计算出来后填入,然后作图。

图一或许你不屑一顾的认为这种图Excel也可以做啊。

是的,这种图Excel是可以做,但是初学者先从简单的数据排列简单的图表练习起来,随着我们的之后讲解的深入,那些图表,Excel就不一定好做了,或者做起来很复杂。

好的,我们就从头来看看这个是如何做出来的吧。

假设你已经安装好了SigmaPlot,我这里使用的是SigmaPlot 11.0版本。

先打开软件,出现的向导页面点击取消。

然后出现的是图二的画面。

点击工具栏中的新建图标,新建一个所谓的notebook。

(之后的表格、图表等都将会自动放置在这个notebook里面)图二然后就出现图三的界面。

出现了一个空白的表格。

会用Excel的人都知道如何往里面输入数据的。

只需要单击相应的单元格选中,就可以依次输入数据了。

对照图四的数据排列结构输入数据吧。

sigmaplot作图指南

sigmaplot作图指南

多重标准物曲线(光合强度作X轴)光标选左上角——line/scatter plot——multiple line——by category, median——category,many y——选择第一竖列——选择第2、6、11竖列——完成修改趋势走向图:选择X轴,右击——graph properties——点击Axes ——scaling——scale type(linear)——start(0)——end(2000)修改Y轴同上双轴曲线(光合强度作X轴)1、Line plot——simple straight line——X pair——选择第一列——选择第二列——完成2、菜单栏graph——add plot——line plot——multiple straight——X many Y——指针打到selected column x:column2——选择第一竖列——选择第三竖列——完成3、菜单栏graph——add Axis——plot2——Y Axis——right——完成多重趋势线(时间做X轴)a.Line plot——multiple straight line——X man Y(双击第一列眉头可编辑名称(时间))——选择第一列(时间)——选择第2-4列——完成b.选择X轴右击——graph properties——scaling——scale type——date/time——settings(tick label)——time format——HH:MM:SS——删去SSc.选择X轴刻度上(00:00)右击——graph properties——ticks——major ticks(hour)——12小技巧:1.去掉边框将边框变成白色右击边框——object——fill ——edge and pattern ——color——选择白色2.增加文字,选择右侧Text编辑3.退出编辑T状态下才能选择graph4.选择X Data——右击——edit进行文字编辑5.一页多图情况下——format——arrange graph可进行版式编辑。

Sigmaplot作图-入门-教程——SigmaPlot教程合集资料文档

Sigmaplot作图-入门-教程——SigmaPlot教程合集资料文档

数据输入表格后,选择作图类型,如:柱状图、曲线图。

一)图像的调整:
1.双击图形,或者右击选择,就可以出现设置窗口。

图1 纵坐标刻度范围调整
图2 刻度线粗细的调整和主刻度值的调整
图3 次刻度值间距的调整及刻度线内外方向的调整
图4 误差线及线条粗细调整
图5 柱状图左右位置和图柱粗细的调整
图6 点击工具栏 T 输入X轴标签
图7 希腊字符可以从Word粘贴
还有更细节的调整,右键点击要调整对象的位置,选择,然后调整。

二)小数点前0的显示
在控制面版设置的过程(XP系统):
1.打开控制面版,选择区域和语言选项。

2.在区域&语言选项中选择自定义。

3.在自定义区域选项中选择零起始位置(图中为0.7和.7,这里选择0.7)
4.重新启动Sigmaplot即可。

三)其他
1.相类似的柱状图,作第二个图时,直接粘贴数据入第一个表,很省事,不用再具体设置(注意备份)。

2.将图片贴在word的文本框里,然后复制到sigmaplot里,可以同时有表和图。

3.先在word里调整好“β”字体,再黏贴到sigmaplot的图里,“β”字体不对,排版距离就不对。

4.输出图像时,设定Export selected only 不打勾,297改成497。

sigmaplot功能与特征图文介绍

sigmaplot功能与特征图文介绍

sigmaplot功能与特征图⽂介绍E x a c t G r a p h s f o r E x a c t S c i e n c e S i g m a P l o t 10SigmaPlot is the scientific graphing and data analysis software package with an award-winning interface and intuitive wizard technology that guides users step-by-step through the graph creation and data analysis process.SigmaPlot provides the flexibility to easily customize every graphic detail and create publication-quality graphs you simply can’t get from a basic spreadsheet package.Join the more than 100,000 scientists and engineers who have used SigmaPlot to show meaningful discoveries in their research data for technical publications,presentations or the web.The Most Effective Way to Analyze and Graph Research DataSigmaPlot ?10Designed Specifically to Meet the Needs of the Professional ResearcherSigmaStat 3.5Advisory Statistical Software This easy-to-use statistical software package guides users through every step of the analysis, allowing them to perform powerful statistical analysis without being a statistical expert. Access SigmaStat’s expert statistical analysis within SigmaPlot’s Statistics menu. SigmaStat is tailored to the areas of life science and is offered as a stand alone product or a powerful companion to SigmaPlot.Enzyme Kinetics Module The automatic choice foranalyzing enzyme kinetics dataThis module guides you through data entry, analysis and graphing of your enzyme kinetics data.Select the study type in the customized Data Entry Wizard,choose from 56 built-in equations,then discover the best fit tocharacterize the reaction mechanism.Automatically display a series of graphs to quickly determine the type of inhibition. ROC Curve Analysis Module Determine which clinical test is best by creating ROC Curves and comparing their areas using paired and unpaired data. Even handles missing values.Electrophysiology Module Directly read your electrophysiology data into SigmaPlotThe Electrophysiology Module provides a preview of your data so you can select and import the relevant information for your analysis.Ligand Binding Module Quickly analyze and plot ligand/receptor and dose response dataAutomatically fit radioligand and dose response equations formultiple compounds with replicate data. Select the type of study in the customized dialog and specify the number of replicate values to instantly plot and analyze your data. All graphs and analysis appear as notebook items, to efficiently manage your work.GET MORE POWER FROM SIGMAPLOT WITH ADD-ON MODULESInteractive Graph WizardLeads you step-by-step through graph creation.Graph Style GallerySave time by quickly plotting your data using previously saved styles or templates.Find the exact graph for your demanding researchSigmaPlot provides more than 80 different 2D and 3D graph types.With so many options, you can always find the best visual representation of your data.Manage and analyze your data efficiently and accuratelyManipulate millions of data points in SigmaPlot's powerful scientific data worksheet. SigmaPlot provides all the fundamental tools needed to analyzedata, from basic statistics to advanced mathematical calculations.The Regression Wizard guides you through the curve fitting processDynamic Fit Wizard compli-ments the Regression Wizard by automatically searching even harder to find the best solution to your most difficult curve fitting problems.Publish & Share Your Work AnywhereCreate professional-quality graphs for presentations, publications, or the web with a wide range of export options. Customize every element of your graphsSigmaPlot gives you the flexibility to customize every detail of your graphby double-clicking and editing any element to your exact specifications,even if it is buried under other elements.T h e T e c h n i c a l G r a p h i n g S t a n d a r d S i g m a P l o t 10Choose from a wide range of graph types to best present your resultsSigmaPlot provides more than 80 different 2-D and 3-D graph types. From simple 2-D scatter plots to compelling contour plots, SigmaPlot gives you the exact technical graph type you need for your demanding research. With so many options, you can always find the best visual representation of your data.Customize every element of your graphsSigmaPlot gives you the flexibility to customize every detail of your graph. Double-click on any element to launch the Graph Properties box and begin editing.Choose from unmistakably clear, illustrated options.Specify different colors, sizes and symbols for each data point. Create standard or asymmetric error bars. Insert axis breaks and add technical detail with the scientific text editor. Paste equations,symbols, maps and other images into your presentation.SigmaPlot’s toolbar palettes make editing your graphs faster than ever. Set properties like line thickness, tick lengths and fonts,then apply your changes to multiple selections. Save properties of your favorite graphs in the Graph Style Gallery to quickly recreate the same graphs using new data.Clearly present your exact scientific ideasCompare and contrast trends in your data by creating multiple axes per graph, multiple graphs per page and multiple pages per worksheet. Arrange multiple graphs accurately in no time using your own page layouts with SigmaPlot’s WYSIWYG layout and zoom features.Share your SigmaPlot graphs with just about anyone, anywhereCreate stunning presentations,high-quality graphics for journals or detailed charts for your reports with SigmaPlot’s wide range of export options. Export your graphs as PDF , T rue CMYK EPS, TIF CMYK, JPEG,HTML and even vector EPS-CMYK - the preferred format for publication. Incorporate your graphs into Microsoft Word documents or Microsoft PowerPoint presentations with one simple step.Instantly access SigmaPlot from ExcelCombine two powerful software /doc/07adc2886529647d272852ad.html unch SigmaPlot’s Graph Wizard directly from Microsoft ?Excel ?to create your exact technical graph.SigmaPlot’s direct access from Excel eliminates tedious cut-and-paste data preparation steps.Placing SigmaPlot graphs into Microsoft PowerPoint slides and Microsoft Word documents is a breeze!Placing your SigmaPlot graphs into Microsoft ?PowerPoint ?slides and Microsoft ?Word ?documents is simple. Now you can incorporate clear and exact graphs in your reports and presentations. Just select the “Paste to PowerPoint” or “Insert into MS Word” commands from the T oolbox drop-down menu and your graphs are automatically placedin the file.Create Y our Exact Technical Graph and Publish Y our Work AnywhereLaunch the SigmaPlot Graph Wizard from Microsoft Excel’s toolbar or menu, then select the row and column references in Excel worksheet format.Edit graphs to your exact specificationsand easily place them in MicrosoftPowerPoint presentations.With so many choices for customizing the plot area, SigmaPlot is flexible enough to meet the needs of almost any researcher.E x a c t G r a p h s f o r E x a c t S c i e n c e S i g m a P l o t 10Fit your data easily and accuratelyFit your data easily and accurately with the SigmaPlot Regression Wizard. The Regression Wizard automatically determines your initial parameters, writes a statistical report, saves your equation to the SigmaPlot Notebook,and adds your results to existing graphs or creates a new one!The Regression Wizard fits nearly any equation - piecewise continuous, multifunctional, weighted, Boolean functions and more - up to 10 variables and 25 parameters. You can even add your own equations to the Regression Wizard.For more complicated models with problematic data,SigmaPlot’s new Dynamic Fit Wizard searches even harder to find the best solution to your difficult curve fitting problems. The Dynamic Fit Wizard is a powerful analytical tool to solve curve fitting problems that have multiple local minima even when inaccurate initial parameter estimates are supplied. It works by giving you the ability to automatically try as many initial starting conditions as necessary to assure the best fit is found.Plot any mathematical functionUse the Function Plotter to plot user-defined and parameterized equations with a single mouse click. Just type the function orselect one from the built-in library and specify the param-eters and the range. It’s that easy! Create your own built-in functions and save for future use.Plot functions on new or existing graphs or plot multiple functions simultaneously using different parameter values.Manage your work efficientlyManipulate millions of data points in SigmaPlot’s powerful scientific data worksheet. Organize graph pages, SigmaPlot or Microsoft Excel data worksheets, curve fit results and reports effectively in the SigmaPlot Notebook Manager.Run simple mathematical transforms effortlessly using SigmaPlot’s quick transforms feature or create powerful mathematicalroutines to perform complex analyses with SigmaPlot’s transform language.Save time by writing a transform once and saving it forfuture use. Access built-in transforms or create your own. Save time and effort by automating complex and repetitive tasksCreate macros in no time with SigmaPlot’s easy-to-use VBA-based macro language. Not a programmer?No problem - record macros by point and click with the macro recorder. Use macros to acquire your data, execute powerful analytical methods and create industry- specific or field-specific graphs. Use built-in macros as provided or use these macros as a base to create your own macros.Share the power of SigmaPlot with less experienced users by tailoring the SigmaPlot interface to your application with macros. Create custom dialog boxes, menu choices and forms to help guide novice users through a session.Tap into SigmaPlot’s capabilities from external sources that have Visual Basic embedded, including Microsoft Word and Excel or custom software applications. Run a macro script in Microsoft Word or Excel that calls onSigmaPlot to access data, generate a graph and embed your report. With SigmaPlot’s OLE automation, you get unlimited flexibility.Fit your data with a few mouse clicks as the wizard guides you through the curve fitting process.With a number of new worksheet improvements and the new Notebook Manager, you will instantlywitness increased workflow efficiency in yourresearch and analysis.“”Our lab studies the visual signaling pathway in retinal rod and cone photoreceptors.We use Sigmaplot exclusively for all of our data analysis needs.It has the power to carry out complex curve fitting routines to model the experimental results in terms of the underlying biochemical reaction mechanism.Sigmaplotprovides our lab a user-friendly path for creating visual representations of our results,and allows us to easily prepare figures that are compatible with electronic publication in scientific journals.- Rick H. Cote, Ph.DProfessor of Biochemistry and Molecular Biology,University New HampshireSigmaPlot 10 FeaturesGRAPHING FEATURES 2DArea Plots - 4 Types Scatter - 14 types Line - 4 typesScatter and Line - 10 types Step - 8 typesVertical Bar - 2 types Horizontal Bar - 2 typesVertical, Grouped Bar - 2 types Horizontal, Grouped Bar - 2 types Vertical, Stacked Bar Horizontal, Stacked Bar Box -2 types ?Polar - 3 typesContour, line and filled - 2 types Histograms - 6 typesTernary - 3 types Time-Series Bubble PieControl Charts NeedleHigh-low-close, Range, Quartile Quadrant Population 3DAutomatically interpolate and unordered 3D data*Multiple, intersecting plots with hidden line removal, smooth or discrete shading, transparent or opaque fills, and light source shading ?3D rotationPerspective preview Scatter Bar3D line - trajectoryMesh - with or without contour projections* Contour WaterfallCreate Graphs EasilyNEW Program Startup Screen: helps both first time users or power users start their workflow with easy access to previously used documents, quick Excel and Access database import; use older documents as templates for new work*?Graph Style Gallery: Save any graph with all graphproperties and add a bitmap image to the gallery to recreate complex graphsGraph Toolbar: select toolbar icon of the graph type and style you want to create a graph or to add additional curves to an existing graphGraph Wizard: easy to use, step-by-step wizard for helping you select a graph type and pick dataDefault graph settings: set preferences for graph options to create favorite graphs more easilyTemplates: create custom graph page templates to store for easy accessibility and future use"Intersections" now supported for area fillsImproved Graph Wizard: retains last settings, you can click 'Finish Early,' Gallery Graphs are listed Technical AxesReciprocal (including Arrhenius)*Weibul*Linear Log10 Natural log Probit Logit Probability ReverseTernary percentage Ternary unaryPolar (both clockwise and counter clockwise)*Category (text data automatically binned into groups) Time and dateUser-defined custom axis to create almost any scale Axis FeaturesControl of display, thickness, color, range, and axis breaks Offset axes Automatic titlesMultiple axes: Add Axis Wizard for creating multiple axes easily Ticks: customize major & minor intervals, in & out orientation, top & bottom location, length, thickness, color, and tick mark selection from column to create custom axesLabels: customize prefix, suffix, numeric, and time & date Axis breaks: customize symbol, thickness, color, length, gap width, and post break interval Symbol TypesOver 80 symbol typesMore line types types for line plots and line scatter plots, free-form lines, boxes and ellipses*More fill patterns for bar charts, box plots, pie charts, area plots and free-form boxes and ellipses*Edit font when using text as symbolAccess new lines, fills, and symbols directly from graph prop-erties dialog, toolbar, legend page, and the symbol dialog boxError barsMean, Median, First and Last values for symbols Standard deviation, Standard error 10th, 25th, 75th, and 90th Percentiles ?Min and Max95% or 99% confidenceCalculate error bars from replicate values across rows User-defined upper and lower error bar values One way, two way and asymmetric error barsPercentile method: choose between nearest integer (graphical) or value dependent (numerical) algorithms Multiline Text EditorControl font, size, style, color, Greek, multiple levels of superscript & subscript, 360 degree rotation, left, right & center justification, and line spacingGrids and FillsControl of color, line type, thickness, and display of major & minor grids in X, Y, & Z directionControl of pattern and edge color, pattern style, pattern density, and edge thickness SymbolsReference LinesControl mean, standard deviation, standard error, user-defined constants, 95% and 99% confidence intervals Up to 5 horizontal or vertical linesControl of color, line type, and thickness Drop linesDisplay in any or all X, Y, and Z directionsLegendsAutomatic or manually createdLegends for regressions, confidence, and prediction intervals Turn on and off lines and symbolsPlace line and symbol before or after textFunction PlotterPlot 2D and 3D functionsOver 100 2D and 3D built-in, graphically-illustrated equationsUser-defined parameters, scale and rangeCustomize the SigmaPlot library of functions or create your own Plot functions on new or existing graphsPlot multiple different parameter values simultaneously Select line properties for each functionEquation Solver: solve equations or functions containing a single independent variable and any number of parameters Graphs Created Through Transforms ?Gaussian cumulative distributionArea - shading under and between curves Z plane design VectorKaplan-Meier survival FrequencyComplex Control chartsDATA ANALYSIS FEATURES Regression WizardLinear and nonlinear regressionsNew piecewise-linear models for regression include 2, 3, 4, and 5-segment piecewise-linear models with automatic parameter estimation*Over 100 built-in, graphically-illustrated equations Marquardt-Levenberg algorithm with up to 10 independent variables and 25 parametersDefine constraints, tolerance, step size and iterations Automatically determines your initial parametersWrites a complete statistical report to your SigmaPlot Notebook Automatically graphs your results on new or existing graphs ?Option to add 99% confidence and prediction bands to a results graph*Optional Chi-Square Regression Weighting*Edit code so you can customize the SigmaPlot library of functions or create your ownSpecify the range for the predicted values output by curve-fitter Dynamic Fit Wizard*Compliments the Regression Wizard by providing hundreds of initial parameter estimates to minimize the squared residual errors, produce individual curve fits for each, and chose the best in a matter of secondsAchieves the best fit by automatically choosing and trying numerous initial parameter estimates to find the global minimum,even if you supply a complicated model with problematic data ?The initial fitting parameters can be generated automatically or can be user specifiedAutomatic Linear RegressionsUp to 10th order with confidence and prediction intervals and regression statisticsColumn Statistics Generated Automatically ?Size, sum, mean, minimum, maximum, standard deviation,standard error, skewness, minimum positive, number of missing values, and 95% & 99% confidence intervals SMOOTHING2D & 3D Smoothing Routines ?Negative exponential ?Running average ?LoessRunning median BisquareInverse squareInverse distance (for 3D smoothing)TRANSFORMATIONS Quick TransformsPerform quick mathematical transforms provided in a function paletteMathematical Transforms ?12 New Probability Transforms*?HistogramNormalize ternary data Interpolate 3D mesh SortingFast fourier transforms with filters Lowess smoothing Differential equationsData to RGB-color transformTrigonometric and algebraic functionsStatistics including 95% and 99% confidence, t-tests Random and gaussian random number generation Range, accumulation, precision, and moreTransforms are now kept in notebook files as JNB files for easier organization of transforms; create transform libraries; associate Transforms with data sets*Protect and track changes to transforms for 21 CFR Part 11*GENERAL FEATURESLarge, Scientific WorksheetsUp to 32,000 columns by millions of rowsHandles numeric, text (categorical), and date & time data Automatically generate column statistics Data sorting Rename, insert and delete rows and columns Insert color, symbols, line styles and bar patterns Independent graphically adjustable row height and column widthsMissing data handling Data point samplingGraphical feedback of current curve and datapoint Text support of up to 256 characters Change the font type and grid colors ?Change font for worksheet ?Multiple UndoFormat empty cells - formatted selected columns even if they do not contain dataMore flexible column titles allow for duplicates and numeric only titlesEnhanced data/time recognition and more formats Arrow-key functionality is similar to that of Microsoft Excel Freeze Panes and print previewMulti-line editing - text wraps to fit the column while the row height automatically adjusts Find and replace data SigmaPlot Notebook ManagerCan hold SigmaPlot worksheets, Excel worksheets, reports, documents, regression wizard equations, graph pages, transforms and macros.New dialog-bar-based notebook that has several states: docks, resizable, hide-able, summary information mode, etc. Direct-editing of notebook summary information SigmaPlot Report EditorCut and paste or use OLE to combine all the important aspects of your analysis into one document. Choose from a wide range of styles, sizes, and colors from any system font. ?Export to most word processorsAdd decimal tabs, tab leader, true date/time fields Auto-numberingImproved formatting rulerPage Layout and Annotation Options ?Direct graphic file import into graph page*Real-time mouse-over XY and page coordinate feedback*Click-through accessibility to select and edit graph objects buried under other items*?OLE 2 container and server ?Automatic or manual legends ?True WYSIWYG ?Multiline text editor Multiple curves and plots on one graph Multiple axes on one graphArrange graphs with built-in templatesMultiple levels of zooming and custom zoomingEasily change the size and position of multiple selected objects simultaneously to lay out and arrange graphs and other objects quickly*?Scale graph to any sizeResize graphic elements proportionally with resizing graph Alignment and position toolsDraw lines, ellipses, boxes, arrows Layering optionsOver 16 million custom colors Inset graphs inside one another Selection of graph objects Right-click property editing Color schemesPaste graphic objects from other programs Graph page rulersAdjustable snap-to grids"Picking from Column" OptionEnter colors, patterns, symbols, line styles, tick mark intervals, tick labels and more directly into your worksheet to customize your graph the way you want. Transforms and "picking from column" allow you to create data dependent color gradients, symbols and sizes.Automate Routine and Complex Tasks ?Visual Basic compatible programming using built-in macro language interface Macro recorder to save and play-back operations Full automation object support - use Visual Basic to create your own SigmaPlot-based applicationsRun built-in macros or create and add your own scripts Add menu commands and create dialog boxes Toolbox menu: helpful macros appear as a separate menu itemExport graph to PowerPoint Slide (macro)New 'Insert Graph to Microsoft Word' Toolbox macro New keyboard shortcuts in the Graph Properties and most Microsoft Excel keyboard shortcuts in the worksheet Windows ApplicationExcel, Word and PowerPoint for Office 2000 and Windows 2000 support ToolTips Tips and Tricks at startup Full 32-bit implementation ?OLE 2 container and serverUse Excel worksheets inside SigmaPlot UninstallerControls have bitmaps to give feedback about selections Right mouse button property editing Selection of objects on graph pageFull precision and date/time Microsoft Excel copy and paste Microsoft Office IntegrationYou can open Excel spreadsheets directly inside SigmaPlot, allowing you to use the many features Excel offers. Use in-cell formulas and other Excel data analysis tools on your data.One-click access to directly launch SigmaPlot from Microsoft ExcelSigmaStat 3.5 Integration*SigmaStat's statistical capabilities are directly accessible in SigmaPlot through the statistics menu.Over 30 of the most frequently used statistical tests to analyze scientific researchAdvisor Wizard guides you through the process of choosing the appropriate statistical testReport generation that translates the statistics into plain and simple English Descriptive statisticsNon-parametric tests: t-tests, ANOVA One-way, two-way, three-way ANOVA Repeated measures Rates and proportions ?CorrelationSurvival analysis (Kaplan-Meir) Power and sample size analysisIMPORT & EXPORT OPTIONS ImportDirectly import SAS data sets (.sd2 and .sas7bdat files)*Directly import Mintab data sets (.mtw & .mpj files)*Axon Binary, Axon Text, ASCII Plain, Comma and general import filter, 1-2-3T, Symphony T, Quattro T, Excel,dBASE E, DIF , all SigmaPlot files through SigmaPlot 8.02, SigmaStat files (all versions), SYSTAT, SigmaScan Pro, Sigma Scan, SigmaScan Image, Mocha ?Import any ODBC compliant databaseRun SQL queries on tables and selectively import information ExportSAS files (.sd2 and .sas7bdat files)*Minitab files (.mtw & .mpj files)*ASCII Text, Tabbed, Comma, 1-2-3T, Excel, DIF , all SigmaPlot files though SigmaPlot 9.01, SigmaScan Pro PDF and HTML export of graphs and reports Import Graphics Options*Load popular graphic file formats directly into SigmaPlot graphic pageImport BMP , JPEG, GIF , TIFF , Cursor and Icon Files & many more Graph Publication Export OptionsNew Submission Assistant Stores an extensible list of publication requirements and is used to double check whether exported figures meet standards of publication and allows creation of customized output profiles*Export an individual graph, a group of graphs and objects, or an entire pageDifferent levels of resolution and color depths:PDF ,EPS, TIFF , JPEG, WMF , BMPTrue color EPS vector and CMYK EPS export Compressed CMYK TIFFPublication Help: guides user through the complexities selecting the correct DPI, image size, file export format Publish as Web PageExport graphs as high-resolution Web objectsWebViewer: free browser plug-in to view data used to create graph or print, pan and zoom in on graph without losing resolutionThe WebViewer supports IE 4.01 or higher. A screen resolution JPEG file is automatically displayed for browser applications and operating systemsSYSTEM REQUIREMENTS ?Windows XP , 2000 or NT 4.0 ?Pentium 200 or clone ?64MB or more of RAM ?48MB of disk space ?CD-ROM DriveSVGA/256 color graphics adapter (800 x 600, High Color recommended)To use HTML Help, Internet Explorer 4.01 or later required*New Features added in SigmaPlot 102006 Systat Software, Inc. SigmaPlot, SigmaStat, SYSTAT, SigmaScan and SigmaScan Pro are registered trademarks of Systat Software, Inc. All other product or brand names are trademarks or registered trademarks of their respective holders. North, Central & South America:Systat Software, Inc.501 Canal Blvd, Suite E Richmond, CA 94804-2028USAPhone:800-797-7401Fax:800-797-7406Email:info-usa@/doc/07adc2886529647d272852ad.htmlSupport:techsupport@/doc/07adc2886529647d272852ad.htmlEurope:Systat Software GmbH Schimmelbuschstr 25D-40699 Erkrath GermanyPhone:+49.2104.9540Phone (France only):0800 90 37 55Fax:+49.2104.95410E-mail:eurosales@/doc/07adc2886529647d272852ad.htmlSupport:eurotechsupport@/doc/07adc2886529647d272852ad.htmlUK and Ireland:Systat Software UK Limited.23, Vista Centre,50, Salisbury Road,Hounslow, - TW4 6JQ,London, UK. Phone:+44-(0)208-538 0128Fax:+ 44-(0)208-5380273Email:uksales@/doc/07adc2886529647d272852ad.htmlSupport:eurotechsupport@/doc/07adc2886529647d272852ad.htmlOther Countries:Cranes Software International Ltd.Shankar Narayan Building, 4th Floor, Block - I,# 25 M.G. Road,Bangalore - 560001,India. Phone:+91-80-4112 0000Fax:+91-80-4123 1274Email:info-intl@/doc/07adc2886529647d272852ad.htmlSupport:apactechsupport@/doc/07adc2886529647d272852ad.htmlLearn more about SigmaPlot and other Systat products contact your nearest Systat office or visit us at /doc/07adc2886529647d272852ad.html。

Sigmaplot

Sigmaplot

你的图表可以在任何地方出版
SigmaPlot大量的图表输出选项可以将图表保存为 一种技术的期刊、文章或者报纸等出版物的印刷版。 你用于展示和出版的分析结果将前所未有的精美,并 且容易实现。用SigmaPlot的报告编辑建立定制的报告 或者将你的图表嵌入在任何OLE工具——Word, PowerPoint或者制图软件,只需要双击你的图表,在 你的文件里直接编辑就可以了。 迅速的在线发布你的 高质量的图表与其他人分享。
SigmaPlot的界面非常友好,采用标准的菜单、工具 栏、鼠标和图表参数设计。 首先从图表工具栏里的快 捷图标中选择你想要用图表类型,接下来交互式的图 表编辑向导将引导你完成每一步制作。你会立刻获得 专业的、高质量的表。SigmaPlot还提供了比其它制图 软件更多的表格、模型、图形形式。 在你建立多重轴数据中比较每一页里的每个图表和 每个表里的每一页时,使用具有SigmaPlot的所见即所 得的内置模版或者是你自己的格式,精确地安排关于 一页的多重的图表。
在网络上共享优质的图表和数据
把你的图表输出成高质量的、动态的网页—并非简 单的GIF或者JPEG文件。 浏览者能研究数据,创建图 表并且放大或缩小,同时可以直接从浏览器上打印全 部的内容。用你的图表自动地产生动态的Web对象, 或再嵌入到其他网页内。 其他人可以用他们的浏览器通过内部互联网或者网 站将你全部的报告直接打印,不会损坏图片质量。 授权用户时建立一个可选的口令,限制授权人接触 你的图表。 无须学习HTML就可以创建网络,或者将SigmaPlot 网络对象图表嵌入已存在的HTML文件中建立交互式电 子报告。
在SigmaPlot强大的数据表中可以处理超过10亿个数 据点。 在SigmaPlot笔记本中,可以有效地存放图表, SigmaPlot或者Excel数据表,曲线图和报表。简单数学 转换通过SigmaPlot快速转换工具有效地实现,通过 SigmaPlot转换语言可以创建强大的数学程序或者执行 复杂的分析。 通过一次转换语言的写入,将它保存起 来以便今后使用,这样一来节省了大量的时间。 通过 内置的或者自创的变换式,过滤运算规则将你的数据 整理到最理想的状态。

sigmaplot问题合集

sigmaplot问题合集

1.sigmaplot零点几前面的零怎么显示出来啊??在电脑的控制面版设置的过程:1,打开控制面版,选择区域和语言选项。

2,在区域&语言选项中选择自定义。

3,在自定义区域选项中选择零起始位置(图中为0.7和.7,这里选择0.7)2.怎么把sigmaplot作出来的图的图例竖排改成横着排列??1.选中图标。

2.点右边ungroup。

3.拉成一条线即可。

3.怎么解决中文不完全支持?Insert……word text. 根据需要拉文本框值适当大小,拉完之后再次双击,然后退出字体就恢复好了4.作一个点画线,以这个序列的平均值将该线一分为上下两部分,不同颜色填色如何做?首先整理一下你的数据,把你的x一列,y 一列,y的平均值一列,之后选中一个空列,然后选择insert ---graphic cells--colors,之后选择一个颜色作为大于均值部分的填充颜色,另外一个颜色为小于均值得填充,之后要选择白色,作为与x轴之间的颜色。

之后做一个multiple area graph,之后不用管现在的填充颜色,右键单击,选择graph properties--plots --identify intersecions (选中),应用。

--fill ,-- fill color--color (在这个下拉菜单中选择你设定设定颜色的那个一个列),之后就可以!5.给出一组数据(x,y轴数据),想求其拟合曲线以及方程。

(已知其为有限指数增长函数)。

我现在连怎么导入数据都不清楚,请求高人指点。

最好具体到每一步怎么操作。

x轴 y轴Day1 20.299 Day6 26.488Day11 27.322 Day16 32.973Day21 34.052 Day26 34.962 Day31 35.276我看了你的数据,很可惜不容易看出有限指数增长函数的形状,更像一条直线。

如果理解正确你说的那个有限指数增长应该是首先一个线性增加之后到达一个平台(plateau,不知道该怎么翻译),维持在那里,基本不变。

SigmaPlot教程之各种柱形图的数据排列

SigmaPlot教程之各种柱形图的数据排列

SigmaPlot教程之各种柱形图的数据排列SigmaPlot教程之___各种柱形图的数据排列与使⽤其他绘图软件⼀样,最⼤的难点在于如何按照正确的格式输⼊数据。

Sigmaplot中讨厌的XY pair、singleY这些到底是什么意思?还有到底要按照什么顺序在表格中输⼊数据才⾏?今天多圈⽹通过各种柱形图的数据排列以及⼀步⼀步⽣成图表为例来让⼤家对sigmaplot有更加进⼀步的了解。

如果你完全没有使⽤过sigmaplot那么请先看看这个帖⼦:/doc/cf61b81714791711cc791771.html /thread-1536-1-1.html我们今天的课程不讲流程,不讲美观。

只讲数据怎么排列,当然也会告诉你⼀步⼀步⽣成图表的啦。

关于图表的美化,我们今后会有专门的课程做讲解。

实际上就像⼀个⼈⼀样,最开始先解决温饱问题,然后才会去追求美。

如果你根本不会⽤sigmaplot做出指定类型的图表,那么你⾸先要关⼼的是怎么样能先做出⼀个正确的图表来。

之后才是追求美观。

如果你还没有sigmaplot这个软件,那么请到这⾥下载:/doc/cf61b81714791711cc791771.html /thread-1284-1-1.html(sigmaplot11.0)我们按照这样的顺序来讲解:a、普通柱形图:普通柱形图我们讲解带误差线的柱形图的绘制。

不带误差线的只需要不输⼊标准差的就可以了,很简单。

不单独拿出来讲解。

普通柱形图讲解两种数据格式。

⼀种是已经计算好了每组的均值和标准差,输⼊后只需要作图即可。

另⼀种情况是⽐如每组有10个数据,直接输⼊到sigmaplot中,让软件⾃动计算每组的均值和标准差并⾃动作图。

b、分组柱形图:先讲解不带误差线的分组柱形图的数据排列及图表绘制。

再讲解带误差线的分组柱形图的数据排列。

由于分组柱形图组别可能很多,虽然也可以让软件⾃动计算每组的均值和标准差,但是那样会导致数据特别繁多,⾮常考验⼈的思维。

Mathematical symbols

Mathematical symbols

Mathematical symbolsαβγδεϵζηalpha beta gamma delta epsilon var epsilon zeta eta θϑικλμνξtheta var theta iota kappa lambda mu nu xi οπϖρϱςσomicron pi var pi rho var rho sigma var sigma τυφϕχψωtau upsilon phi var phi chi psi omegaΑΒΓΔΕΖΗΘAlpha Beta Gamma Delta Epsilon Zeta Eta Theta ΙΚΛΜΝΞΟΠIota Kapa Lambda Mu Nu Xi Omicron Pi Ρ΢ΣΤΥΦΧΩRho Sigma Tau Upsilon Phi Chi Psi OmegaSymbols^ Examplesthe nth root of xintegral from zero to infinity the sum from i equals 1 to n^Greek alphabet^Roman alphabet^Fractions^Decimal Fractions^SI Units: Prefixes^Cardinal Numbers^Ordinal Numbers代数部分1. 有关数学运算add,plus 加 subtract 减 difference 差 multiply, times 乘 product 积divide 除divisible 可被整除的 divided evenly 被整除dividend 被除数,红利 divisor 因子,除数quotient 商remainder 余数 factorial 阶乘power 乘方radical sign, root sign 根号round to 四舍五入to the nearest 四舍五入2. 有关集合union 并集proper subset 真子集solution set 解集3. 有关代数式、方程和不等式algebraic term 代数项like terms, similar terms 同类项numerical coefficient 数字系数literal coefficient 字母系数inequality 不等式triangle inequality 三角不等式range 值域original equation 原方程equivalent equation 同解方程,等价方程 linear equation 线性方程(e.g. 5 x +6=22) 4. 有关分数和小数proper fraction 真分数improper fraction 假分数mixed number 带分数vulgar fraction,common fraction 普通分数 simple fraction 简分数complex fraction 繁分数numerator 分子denominator 分母(least) common denominator (最小)公分母 quarter 四分之一decimal fraction 纯小数infinite decimal 无穷小数recurring decimal 循环小数tenths unit 十分位5. 基本数学概念arithmetic mean 算术平均值weighted average 加权平均值geometric mean 几何平均数exponent 指数,幂base 乘幂的底数,底边cube 立方数,立方体square root 平方根cube root 立方根common logarithm 常用对数digit 数字constant 常数inverse function 反函数 complementary function 余函数linear 一次的,线性的factorization 因式分解absolute value 绝对值,e.g.|-32|=32 round off 四舍五入6. 有关数论natural number 自然数positive number 正数negative number 负数odd integer, odd number 奇数even integer, even number 偶数 integer, whole number 整数positive whole number 正整数negative whole number 负整数 consecutive number 连续整数real number, rational number 实数,有理数 irrational(number)无理数inverse 倒数composite number 合数prime number 质数reciprocal 倒数common divisor 公约数multiple 倍数(least)common multiple (最小)公倍数 (prime) factor (质)因子common factor 公因子ordinary scale, decimal scale 十进制 nonnegative 非负的tens 十位units 个位mode 众数median 中数common ratio 公比7. 数列arithmetic progression(sequence) 等差数列 geometric progression(sequence) 等比数列8. 其它approximate 近似(anti)clockwise (逆) 顺时针方向ordinal 序数direct proportion 正比distinct 不同的estimation 估计,近似parentheses 括号proportion 比例permutation 排列combination 组合table 表格trigonometric function 三角函数unit 单位,位几何部分1. 所有的角alternate angle 内错角 corresponding angle 同位角vertical angle 对顶角central angle 圆心角interior angle 内角exterior angle 外角supplementary angles 补角 complementary angle 余角adjacent angle 邻角acute angle 锐角obtuse angle 钝角right angle 直角round angle 周角straight angle 平角included angle 夹角2. 所有的三角形equilateral triangle 等边三角形 scalene triangle 不等边三角形 isosceles triangle 等腰三角形right triangle 直角三角形oblique 斜三角形inscribed triangle 内接三角形3. 有关收敛的平面图形,除三角形外 semicircle 半圆concentric circles 同心圆 quadrilateral 四边形pentagon 五边形hexagon 六边形heptagon 七边形octagon 八边形nonagon 九边形decagon 十边形polygon 多边形parallelogram 平行四边形equilateral 等边形plane 平面square 正方形,平方rectangle 长方形regular polygon 正多边形rhombus 菱形trapezoid 梯形4. 其它平面图形arc 弧line, straight line 直线line segment 线段parallel lines 平行线segment of a circle 弧形5. 有关立体图形cube 立方体,立方数rectangular solid 长方体regular solid/regular polyhedron 正多面体 circular cylinder 圆柱体cone 圆锥sphere 球体solid 立体的6. 有关图形上的附属物altitude 高depth 深度side 边长circumference, perimeter 周长radian 弧度surface area 表面积volume 体积arm 直角三角形的股cross section 横截面center of a circle 圆心chord 弦radius 半径angle bisector 角平分线diagonal 对角线diameter 直径edge 棱face of a solid 立体的面hypotenuse 斜边included side 夹边leg 三角形的直角边median of a triangle 三角形的中线base 底边,底数(e.g. 2的5次方,2就是底数) opposite 直角三角形中的对边midpoint 中点endpoint 端点vertex (复数形式vertices)顶点tangent 切线的transversal 截线intercept 截距7. 有关坐标coordinate system 坐标系rectangular coordinate 直角坐标系origin 原点abscissa 横坐标ordinate 纵坐标number line 数轴quadrant 象限slope 斜率complex plane 复平面8. 其它plane geometry 平面几何trigonometry 三角学bisect 平分circumscribe 外切inscribe 内切intersect 相交perpendicular 垂直pythagorean theorem 勾股定理congruent 全等的multilateral 多边的其它1. 单位类cent 美分penny 一美分硬币nickel 5美分硬币dime 一角硬币dozen 打(12个)score 廿(20个)Centigrade 摄氏Fahrenheit 华氏quart 夸脱gallon 加仑(1 gallon = 4 quart)yard 码meter 米micron 微米inch 英寸foot 英尺minute 分(角度的度量单位,60分=1度) square measure 平方单位制cubic meter 立方米pint 品脱(干量或液量的单位)2. 有关文字叙述题,主要是有关商业intercalary year(leap year) 闰年(366天) common year 平年(365天) depreciation 折旧down payment 直接付款discount 打折margin 利润profit 利润interest 利息simple interest 单利compounded interest 复利dividend 红利decrease to 减少到decrease by 减少了increase to 增加到increase by 增加了denote 表示list price 标价markup 涨价 per capita 每人ratio 比率retail price 零售价tie 打平数学词汇中文名称# W0 V# t g8 m( w- @, DAabbreviation 简写符号;简写absolute error 绝对误差absolute value 绝对值accuracy 准确度acute angle 锐角acute-angled triangle 锐角三角形add 加addition 加法addition formula 加法公式addition law 加法定律addition law(of probability) (概率)加法定律additive property 可加性adjacent angle 邻角adjacent side 邻边algebra 代数algebraic 代数的algebraic equation 代数方程algebraic expression 代数式algebraic fraction 代数分式;代数分数式algebraic inequality 代数不等式algebraic operation 代数运算alternate angle (交)错角alternate segment 交错弓形altitude 高;高度;顶垂线;高线ambiguous case 两义情况;二义情况amount 本利和;总数analysis 分析;解析0 C4 a, G! G9 O( ?8 S: wanalytic geometry 解析几何8 A; b; U/ R& Iangle 角. Z' ^/ @/ }) c; z9 H0 e0 Fangle at the centre 圆心角" w$ ~; V3 ?" |! l4 V; gangle at the circumference 圆周角+ Y' _6 W( S1 [. K6 W, C+ r; pangle between a line and a plane 直 与平面的交角9 h* G4 K8 h% t0 sangle between two planes 两平面的交角7 o ~2 k/ f4 r( k9 C0 j u& vangle bisection 角平分& `/ ~. o2 N1 cangle bisector 角平分线 ;分角线5 t4 s/ U6 B3 m) \0 }, @: _angle in the alternate segment 交错弓形的圆周角- P4 W* }. ^6 H/ fangle in the same segment 同弓形内的圆周角$ {- e5 m! l" Z3n& ?2 j; langle of depression 俯角7 g& |9 [* H" ^8 D# `4 qangle of elevation 仰角6 W9 A. A' [; M0 ]; W1 tangle of greatest slope 最大斜率的角; r+ C) |: D1 @' h% hangle of inclination 倾斜角- m' S k. j6 l2 m* K4 ^. j2 iangle of intersection 相交角;交角! |. A8 t' F+ |6 W0 u! V% nangle of rotation 旋转角* t; D$ r$ d. A+ d4 O( q8 zangle of the sector 扇形角: u8 L+ _+ p9 `angle sum of a triangle 三角形内角和! n# {6 I; m. u, pangles at a point 同顶角* L+ `2 c# p4 {3 |- n( x' L( W: pannum(X% per annum) 年(年利率X%)! @" M% n3 b3 O) ?$ Fanti-clockwise direction 逆时针方向;返时针方向( i" b# U$ p) w4 u1 H) manti-logarithm 逆对数;反对数7 B1 E5 y) U: V8 vanti-symmetric 反对称2 o$ q8 I+ L4 A- o. Gapex 顶点1 G& k1 Z3 K( |5 F' V6 Xapproach 接近;趋近* u4 s! a- x d# P, qapproximate value 近似值. ?3 O( \& u, ~3 R, Sapproximation 近似;略计;逼近; X5 r0 a* X. @# z' y* T/ c4 \; JArabic system 阿刺伯数字系统! y8 E. r& W" Z4 ?6 }arbitrary 任意6 L/ r* i) \% v% w0 ?arbitrary constant 任意常数% I' @. x) b4 b) a1 R" Farc 弧 ~/ O( @, e; a) W5 X9 \arc length 弧长* `9 F2 [3 G0 ]0 P/ z5 ~" _/ ?arc-cosine function 反余弦函数3 B Z2 C# z8 O% H5 @arc-sin function 反正弦函数5 C8 {/ z3 V l3 z. X6 Qarc-tangent function 反正切函数% z$ e8 u. R, m3 @area 面积% q9 F" m& t8 ]" |3 O+ narithmetic 算术( v; K( | O' b9 m; j- ?! Iarithmetic mean 算术平均;等差中顶;算术中顶1 w" M5 c" G" F: a arithmetic progression 算术级数;等差级数1 o9 T; w8 P/ e' }arithmetic sequence 等差序列) s3 r& L6 i( n! y; Varithmetic series 等差级数* h- ?3 Z3 C8 [8 n( f' Q0 ^arm 边' q6 N* i2 s8 P1 _. O* darrow 前号& p! G( `4 |5 j; a- m; I- Tascending order 递升序9 j- y2 g8 B+ f+ n/ Yascending powers of X X 的升幂+ ` L; r) W! w }+ jassociative law 结合律9 @, y% |* P. [assumed mean 假定平均数& E5 O# c2 c; t- d3 b' `assumption 假定;假设( j2 K }+ a+ z# Y4 Faverage 平均;平均数;平均值2 A9 b* Q0 F, L. e [average speed 平均速率6 o1 [6 f( g' zaxiom 公理* G/ S, n* [" M, Q% |2 uaxis 轴* v# D# ?; h) \4 ~2 e( \9 kaxis of parabola 拋物线的轴4 V* C. k/ l% p- A- Oaxis of symmetry 对称轴' d7 | o2 k* w- y6 ] 2 M( A, W _8 g4 d# d6 JB 9 ^) ? l2 }6 E" U( Y6 w* N( Oback substitution 回代; v! x$ U: u# Obar chart 棒形图;条线图;条形图;线条图4 S( g( d( W( o6 I, Fbase (1)底;(2)基;基数7 a; P7 S1 B" t& R) a8 \base angle 底角; Z4 w# x& W/ T/ k' ebase area 底面- x, m" r6 U# S1 N7 A6 L l' ebase line 底线 + ]+ ^, ^! G: N/ u5 \base number 底数;基数6 E, x4 b0 F- W0 { `, Vbase of logarithm 对数的底( y/ b( x7 S* s/ @bearing 方位(角);角方向(角)3 z# `3 x8 n+ @4 ~* m9 Tbell-shaped curve 钟形图- H t, Z5 X: ubias 偏差;偏倚$ D+ D) x& t& ~- q8 W9 T% xbillion 十亿- F3 S7 o4 k3 Y/ T+ P8 j# {, v/ qbinary number 二进数4 U( B9 Y# a0 I5 v# C% h binary operation 二元运算' ]: o1 k1 i+ e2 O; I1 [binary scale 二进法# O, ]! a0 `8 wbinary system 二进制+ e6 g8 @/ k1 h D; b* o8 }; a! rbinomial 二项式. y- X! L# X* l \5 X5 Ybinomial expression 二项式8 O) F# M5 D+ l: l5 `. i1 Vbisect 平分;等分' P: E3 L: T- n8 B4 @' Fbisection method 分半法;分半方法; W& ]5 g9 P Y3 n9 { bisector 等分线 ;平分线- v% A g7 t, Iboundary condition 边界条件, T2 \3 B3 T! h, d' w+ [6 r# H boundary line 界(线);边界% x% e% L, k( Y" Z9 U$ L. Fbounded 有界的0 o: F6 o0 o9 L# }$ M" Qbounded above 有上界的;上有界的0 n* d" ^3 s8 ^4 y/ i8 s( ^2 ubounded below 有下界的;下有界的0 [5 H$ G( g8 I5 V% s9 Ibounded function 有界函数& W& W" @# C; }+ H" H, lbrace 大括号/ {0 x3 L* m, ^3 R( D R7 u$ Mbracket 括号7 @( G0 i2 [& w# W Mbreadth 阔度: D( x0 r( H% ?/ {7 q9 Ibroken line graph 折线图7 |/ G5 P/ N/ g+ u$ A 2 d4 {( \; ?) a8 N7 ZC3 g. U b8 ^3 I- S) Bcalculation 计算! B6 k$ v% m3 z/ ~calculator 计算器;计算器1 v! I+ v! r. H0 X4 F, ^" I6 C' ^: n cancel 消法;相消5 `3 j1 ~6 a* Q8 U. rcanellation law 消去律" O& q; n) \7 O, y( ccapacity 容量2 y3 w) I3 h! cCartesian coordinates 笛卡儿坐标! |1 p0 J+ F/ |4 P X" q$ j3 v7 ] Cartesian plane 笛卡儿平面0 q- p- a/ x: rcategory 类型;范畴# G- L3 U/ S5 W9 e- L6 }* \/ o( z4 ?central line 中线 ) } f0 p+ D7 I: q) |5 t3 g central tendency 集中趋% Q: N4 W# n; @* ucentre 中心;心8 h" f, D7 ]0 u2 a/ Y+ l7 ?8 kcentre of a circle 圆心# I7 m2 u! r+ M* V' vcentroid 形心;距心) ]" k9 v8 p. ]* ^certain event 必然事件0 Q$ L9 I1 W, ?, z4 J( Q8 W0 Qchance 机会/ c1 {: z9 F# Q& [# {; ~" Vchange of base 基的变换3 j8 J/ o( @' p* }change of subject 主项变换& [ ?6 {7 l$ X: d* Dchange of variable 换元;变量的换3 N* j, F+ s3 ~7 L3 C& L* Vchart 图;图表5 ]7 w0 \7 h! Qchecking 验算) W7 @! G _% ~chord 弦2 c+ Q! `, k- E) |" |4 s* Schord of contact 切点弦" v. ~7 ]/ S: Hcircle 圆$ O6 X2 X6 _' ucircular 圆形;圆的! `# s- E( |4 z& ?3 g% i, W. hcircular function 圆函数;三角函数Z9 {1 v! g! F r, @+ O. n; acircular measure 弧度法" P! x1 I# g! b( s1 Ocircumcentre 外心;外接圆心% @ t% h: l' E5 t; `: d* C circumcircle 外接圆' E; ?; E8 j. k3 \' q Icircumference 圆周" Z+ u( W8 X! e3 x9 z% v/ Vcircumradius 外接圆半径 E" L3 Q, l6 n9 Ycircumscribed circle 外接圆# C+ L" X8 \& Gclass 区;组;类* y+ W& L4 r+ V0 Q9 C7 Eclass boundary 组界; d( z3 V1 Z! H8 E# `class interval 组区间;组距2 e. w% g6 J4 \class limit 组限;区限% _& T$ ^* L4 Sclass mark 组中点;区中点: a1 _/ e8 ^2 b7 X classification 分类: \- q, I8 ]9 B( ]/ {) _clnometer 测斜仪: z J$ b% _. r7 p3 jclockwise dirction 顺时针方向1 C1 X! e& Q5 Z3 x6 n) ~1 y. jclosed convex region 闭凸区域, M# b( H+ i- M H closed interval 闭区间8 J3 b3 L5 X( jcoefficient 系数2 {3 l; U. g5 i8 Jcoincide 迭合;重合* @" W; r, J3 x% f4 {, Kcollection of terms 并项5 H/ v2 n8 t, ^8 ]collinear 共线 C1 Y7 z" v- V' K' E9 ocollinear planes 共线面/ N) L$ h+ O, G7 M6 Scolumn (1)列;纵行;(2) 柱, I5 U8 o' k; l1 b combination 组合 |" l" I# a1 B4 s4 G- scommon chord 公弦8 P* ^% J4 ^. v0 |8 W7 W& ocommon denominator 同分母;公分母+ |0 y: Z% U* w; ycommon difference 公差, ?, y i9 X7 ucommon divisor 公约数;公约9 T( b$ f- Y z3 Gcommon factor 公因子;公因子, H0 W1 m7 U$ _common logarithm 常用对数* b+ V/ n" g" C: r1 p! l6 C& hcommon multiple 公位数;公倍0 n) U" h# v( S common ratio 公比6 Z6 C4 U7 g# a6 j, e0 Tcommon tangetn 公切6 C- T9 S u9 i, M& W# }commutative law 交换律3 k* Y" `2 H9 C# rcomparable 可比较的0 C" y; `3 q% ]; F& Ocompass 罗盘9 T9 l* P# y+ D( A+ Dcompass bearing 罗盘方位角- u/ z) E3 R* {/ d4 S; J% i3 Kcompasses 圆规, x3 O; L7 i- v8 r+ q% `$ D: l& ecompasses construction 圆规作图0 `1 B l9 u/ s9 f2W$ L, pcomplement 余;补余4 C9 e7 ]1 i2 ^9 Z( r( s# @complementary angle 余角% [* q* S. b' z0 _0 B! e3 w3 icomplementary event 互补事件5 Q. n- P: t2 i4 V. A- |% Tcomplementary probability 互补概率- x1 z2 `6 l, \# T; I' tcompleting the square 配方' f0 ^- T2 n+ m5 |* w9 S7 `4 P* H: k complex number 复数; h! b) m4 R8 H0 w* u( Mcomplex root 复数根, t2 v5 h0 n- R/ `$ K, zcomposite number 复合数;合成数! {" L) o- N( F" u compound bar chart 综合棒形图# Z' v& @: Z8 ]; E! V* r8 L9 ecompound discount 复折扣0 ^. J8 _" M( w/ Tcompound interest 复利;复利息' \+ h* T* Z: ?# B- W( k$ U, Gcomputation 计算5 T7 ?" Y z! @$ Ecomputer 计算机;电子计算器1 s, l7 Y- H% _ j- i+ B* ?concave 凹% K- c# P" [' ^$ H3 o' e+ xconcave downward 凹向下的8 z) ?( o0 K4 H/ G) yconcave polygon 凹多边形* q: F/ S4 t) p3 kconcave upward 凹向上的& \$ E: j: U+ `& h. D0 x( Rconcentric circles 同心圆7 g5 K* {, U6 p% t3 z0 q3 @! ^% Uconcept 概念1 f6 U: e2 X0 Y, k+ v% v conclusion 结论: Z. ^" F8 r, C) Y& r2 f( Nconcurrent 共点# e8 \2 v- ]) Gconcyclic 共圆( u7 J) c$ ]& T$ j9 }( Z( bconcyclic points 共圆点) d5 v y! O2 g( ~- O( Fcondition 条件$ c3 M, e p3 fconditional 条件句;条件式3 D" A% [8 }: |$ Rcone 锥;圆锥(体)$ F. J' u; c' K. xcongruence (1)全等;(2)同余. g I( V% P, V8 u( p4 Econgruent 全等% V) X" n9 l4 F4 I* ~congruent figures 全等图形( i4 O% U& Q8 T4 j# w: r) m" Qcongruent triangles 全等三角形' P1 \4 D. m* M1 Ycconjugate 共轭1 M" @4 o* s, Cconsecutive integers 连续整数 V$ P3 r v0 @( k" `) tconsecutive numbers 连续数;相邻数0 T" C* S$ b2 K- a3 @5 o; bconsequence 结论;推论1 ? e' o- h0 K, L4 O$ h! h; o$ tconsequent 条件;后项$ \' M J- X* Cconsistency condition 相容条件( j! ?- X3 n$ |, E& Nconsistent 一贯的;相容的* ^4 P z' s a* @! zconstant 常数( H: l1 u0 @* B" x" g+ ]constant speed 恒速率: h# X, N; X- ?* j7 [constant term 常项$ O/ I+ h1 c2 X) D, Cconstraint 约束;约束条件4 T& L/ q7 c1 v" y! ]9 }construct 作5 _5 n* D0 h. y* m4 g+ wconstruction 作图6 n6 D) U' U0 Z9 j o+ o) kconstruction of equation 方程的设立! S$ [$ d! J) v9 Q+ ~ continued proportion 连比例% v5 W7 Z% D$ x" U8 Jcontinued ratio 连比2 l$ [) J5 e* x' n: l1 econtinuous 连续的% ^8 R" _3 t9 C T3 K" Acontinuous data 连续数据- S3 |% m: m7 ~5 bcontinuous function 连续函数# L9 N# S2 O( l- \% N0 G continuous proportion 连续比例. T4 f1 x9 H8 z0 C5 a0 Rcontradiction 矛盾( w: h3 E) ?% I$ o3 uconverse 逆(定理)W5 X/ [$ b# D9 z' Lconverse theorem 逆定理" J+ Z- _( S* o+ [8 U6 b' xconversion 转换5 ~" [# y# `, g2 {+ a8 y5 Dconvex 凸+ T/ d0 W( f4 sconvex polygon 凸多边形- D, t9 R' i2 k, Fcoordinate 坐标' A; E$ y; n: G @, `3 ^- i rcoordinate geometry 解析几何;坐标几何2 M6 ~' j/ q# b% L: Gcoordinate system 坐标系系定理;系;推论+ `; w! C. p-m$ b" W5 vcorrect to 准确至;取值至2 Q" e0 E. D S$ P9 v- {correspondence 对应1 T8 \) g* `" C3 hcorresponding angles (1)同位角;(2)对应角" B2 W$ N: ^7 R9 Gcorresponding sides 对应边* ~9 U" g+ q; D$ @9 U2 Hcosine 余弦9 f9 F3 e, i" I: W" \* scosine formula 余弦公式8 F' d8 g3 j1 Z6 acost price 成本" z- e; n2 X7 `1 Z+ F. e: ecounter clockwise direction 逆时针方向;返时针方向0 W- h4 J, G) Q" y9 rcounter example 反例8 `4 [. \, F; Ucounting 数数;计数% ^2 G5 x6 j1 B% j/ O3 d+ g# w, b5 dcriterion 准则. e. y* G2 H y N# f+ b+ xcritical point 临界点) s* P& P5 |, |7 A2 ]$ A% Xcross-multiplication 交叉相乘: o& Y$ q9 V( b' q b+ g! }cross-section 横切面;横截面;截痕& H* O% p1 j+ I$ \cube 正方体;立方;立方体$ s0 d; h* X/ G9 p" u- t8 k5 ycube root 立方根. C2 J. n( i0 ?0 n8 E& ~' g5 l1 Q" ucubic 三次方;立方;三次(的) 4 p4 r8 }& x8 W: u cubic equation 三次方程# ?( L, A; E/ k( r3 acuboid 长方体;矩体# z4 ?1 X2 R+ N; I b: `$ ecumulative 累积的4 n- y! _5 H4 y& m. J. D- o cumulative frequecy 累积频数;累积频率L" X2 E. Z* u* r/ a# y# Ucumulative frequency curve 累积频数曲 % P# @; ~; U" K) \' b/ q4 x# Qcumulative frequcncy distribution 累积频数分布- `6 L: u1 m9 E" _2 ocumulative frequency polygon 累积频数多边形;累积频率直方图% Y# K+ S1 U) T' d% Y% h4 Qcurve 曲线) {, f4 E5 E, G8 I! r: |3 s# _2 g! icurve sketching 曲线描绘(法) 8 A+ S. m& i/ z( n$ i curve tracing 曲线描迹(法)$ ?3 _. Z8 P2 A' V7 f0 w/ Rcurved line 曲线! o5 l" {9 R! Xcurved surface 曲面) r' S; |1 p3 h5 ]- b* y" jcurved surface area 曲面面积5 }" Q3 g1 F3 z" [1 Xcyclic quadrilateral 圆内接四边形* V0 g0 L& X _# d1 F" gcylinder 柱;圆柱体% A7 I: R1 ]2 H' |cylindrical 圆柱形的2 k6 l5 D( k, F 2 T) @* c9 w4 O! I! u. P, aD ) L4 p6 |5 H8 |" I8 K* }3 [data 数据" E N3 A) B2 g. Mdecagon 十边形/ X. `6 E9 ^7 j) I2 \decay 衰变/ P* M7 b7 l3 F8 T! m( _9 N3 }decay factor 衰变因子( ^& O5 H2 {+ e4 I7 Vdecimal 小数M* Z; k* Z! ^; G" Rdecimal place 小数位; a1 k1 I" B1 s* {5 V0 bdecimal point 小数点5 }. _* l, h0 E: ` h7 v$ e! Rdecimal system 十进制- q& X0 @ @, }1 T F+ R$ ^ decrease 递减( r" J: t" f w9 v, vdecreasing function 递减函数;下降函数8 P8 U! Z$ b" k( \decreasing sequence 递减序列;下降序列: [, ~8 _! s3 ~decreasing series 递减级数;下降级数& m5 U% O& u# l8 ~. ndecrement 减量1 m9 c, \7 }0 ~; g8 Jdeduce 演绎7 U- g6 g) ]3 q* u1 Tdeduction 推论1 V* w" |* w }) b" [deductive reasoning 演绎推理) i+ ?3 b6 u4 h' x7 i4 ]definite 确定的;定的. e& D- U6 c- [distance 距离) `, J) ^7 n1 hdistance formula 距离公式2 e6 @9 p- Z, [) Xdistinct roots 相异根: r+ W5 @0 D' S. H3 mdistincr solution 相异解3 J" t, b/ i- R- ^+ Zdistribution 公布8 m0 T8 s9 C" x/ Ydistrivutive law 分配律! M( `+ S, G6 c; h0 Y4 fdivide 除" g; G' H' G6 }dividend (1)被除数;(2)股息5 V. [: j6 T" Ydivisible 可整除6 d: c, @5 S. t. M& {! z6 R: c' Wdivision 除法2 G, D J" y4 }* q) V0 y4 r$ o division algorithm 除法算式6 U* S" v- I/ \; Jdivisor 除数;除式;因子, U* W; o6 l8 }6 t- _divisor of zero 零因子- |% h" e2 O/ hdodecagon 十二边形0 M: x+ q+ b* g8 q9 o( a. Sdot 点. l4 L7 Y3 c# C# }9 ddouble root 二重根5 W0 f. U+ t1 h* t# y* udue east/ south/ west /north 向东/ 南/ 西/ 北+ ]6 }. H) u# vdefiniton 定义7 r; y- f* E& O4 Fdegree (1)度;(2)次& e; d0 P; I# _# Y$ Idegree of a polynomial 多项式的次数4 u; X' o' ?8 `* r7 {/ _" g, |( q0 ~degree of accuracy 准确度- B. s' z1 Z# g: L- Kdegree of precision 精确度- |' [4 }2 N2 w0 ?1 z$ f4 pdelete 删除;删去/ J& F l, f& r# Mdenary number 十进数9 o7 m* u3 G) i7 Y. k; f' idenary scale 十进法1 p. D9 ^! d( p+ Z) t) Jdenary system 十进制3 i$ W: x5 `0 }denominator 分母5 S: _' I# ]4 S$ k9 Sdependence (1)相关;(2)应变2 @: B- g7 X {; |dependent event(s) 相关事件;相依事件;从属事件4 {+ k$ r! j3 ^ J- H dependent variable 应变量;应变数: C4 [6 z/ | ]* Vdepreciation 折旧( c) _: J! B7 [3 Wdescending order 递降序& r/ ?7 h+ X+ cdescending powers of X X的降序& b/ |% p1 _& z4 odetached coefficients 分离系数(法) 3 d1 U d+ X+ @5 l- |4 Qdeviation 偏差;变差" Z7 M" }8 I/ a, [deviation from the mean 离均差9 e/ ^: Y8 @/ |' X6 J4 t- Adiagonal 对角5 C/ R. e" m% @ I5 w$ Bdiagram 图;图表, p! u( U. E# S8 odiameter 直径" F& Q: ~, o7 G; mdifference 差: R( \! x3 G" {6 T- edigit 数字$ q5 h- [% K) u! O: @3 k- ^dimension 量;量网;维(数)4 v6 n1 ^5 X0 X. _* Adirect proportion 正比例- e( `1 ~; z3 d8 E( ddirect tax, direct taxation 直接税9 J1 U) q0 i) p; Pdirect variation 正变(分)- R2 E4 o) Q) P. p4 s. }directed angle 有向角/ E" M) x/ h! Mdirected number 有向数- Q7 g4 q0 k/ }% t- Jdirection 方向;方位 j, ~' }$ T S+ v0 `6 E/ B3 G# ? discontinuous 间断(的);非连续(的);不连续(的)4 A' p/ V& \( d0 @- l" Mdiscount 折扣9 {. Y4 w1 i9 I* l7 N0 {& k+ {# ]9 Ediscount per cent 折扣百分率2 _0 C. R! {5 K2 A, y( jdiscrete 分立;离散9 k4 t9 F' S& Pdiscrete data 离散数据;间断数据: m! M7 L% d3 u" ~2 }; ]discriminant 判别式5 c4 V, H3 q4 ydispersion 离差8 V0 K {1 [, B6 l% \displacement 位移~" p3 u2 u1 l; y! [: o% udisprove 反证0 g; z: f+ N4 B0 g$ L1 u% f9 k S u: FE/ Z5 Q. M' F% Redge 棱;边5 E$ H$ L# y' R ]( C) ^8 C/ pelimination 消法% }# y% Q# ^( D. N" Z8 T& Gelimination method 消去法;消元法; w- q; h3 {2 W% Welongation 伸张;展6 L3 U x( y! B+ C4 I: }+ Nempirical data 实验数据; H8 ^ S. q0 S( ^6 Xempirical formula 实验公式( [: D6 f9 |2 O* c3 I! k% o' `empirical probability 实验概率;经验概率' T$ o( ~! X$ M, X9 t* ~% \, Tenclosure 界限. g- y0 X! Q" s, c4 B) r7 Pend point 端点& B6 i3 a1 h6 t& h6 B& ientire surd 整方根% K" d) w9 L& G3 q0 sequal 相等5 j' j$ G p0 q: Z5 r& t( K# d; E& pequal ratios theorem 等比定理2 y% ]) \* }3 G/ M2 m* B3 n2 nequal roots 等根. Q1 m `: E* q( \/ C$ I& Sequality 等(式) " r. R& y& i* J9 Eequality sign 等号! P! P- R3 z' h; |: S: p% vequation 方程" u; y1 q# p/ @8 ?# C, Q6 tequation in one unknown 一元方程D, V( V+ ]1 [+ Y7 }. oequation in two unknowns; L7 D4 Z! N! g5 g V(variables) 二元方程; b. {& a# R# ^5 T( _9 g1 \, ?equation of a straight line 直线方程: H8 L. k, H% h- ]equation of locus 轨迹方程" F* Z% U; I: F" P+ W9 D equiangular 等角(的)8 J+ v0 ~7 x9 `9 t) o5 n& ` K7 aextreme value 极值) ^8 k+ ?& i! bequidistant 等距(的) ) o0 O0 t% ?0 @% e; y9 }, f tequilaeral 等边(的) # a# I& Y, ~! O9 v# k# Bequilateral polygon 等边多边形0 E& N* I9 _" w! l3 u, x7 j' Xequilateral triangle 等边三角形- _/ T* i( L3 W v7 t: U equivalent 等价(的)" k7 }7 [# R& c1 o$ aerror 误差# R" _' u4 H, ?$ iescribed circle 旁切圆2 h3 Z9 P7 _( F, J" Gestimate 估计;估计量2 J$ L& [! C. V1 n7 v4 wEuler's formula 尤拉公式;欧拉公式! O- @4 B2 @! W+ z9 y, Levaluate 计值$ Z7 ?9 H6 y6 O) t0 meven function 偶函数' ]8 v: @4 S/ C3 K, v3 Q) reven number 偶数( n) o+ B. W. i6 G1 Fevenly distributed 均匀分布的- o2 Y: s/ M6 y: F$ B+ P: bevent 事件; U$ X: p. I xexact 真确+ z- o% Y# I) l& E" X: Z* R$ Uexact solution 准确解;精确解;真确解f j0 a. k8 t: X0 d4 ]/ a) M9 p- Hexact value 法确解;精确解;真确解 R: w0 T!I e! r& vexample 例# \/ h) V( v+ H: O2 aexcentre 外心" O$ J: P! \& U0 o% O. q* Mexception 例外/ g$ ]6 q; q4 p/ V$ A: ~excess 起+ G; h" R" W& h. q4 V: Mexclusive 不包含0 h# v" U/ F- u9 l" Rexclusive events 互斥事件# e2 b! p/ Y8 I- Lexercise 练习6 A0 Q* L9 @# Vexpand 展开& a( P+ Z/ `0 q' c& k4 @expand form 展开式9 M+ n0 q5 |" L. R, r3 M# T# D9 h0 Yexpansion 展式. z# v1 q, _5 f% _ expectation 期望% M! ~1 k2 x# h* N2 Lexpectation value, expected value 期望值;预期值5 G* `$ |; L) J2 ]5 mexperiment 实验;试验5 V& k" u9 T6 g% Z0 pexperimental 试验的3 l2 R& x% G9 {+ u& F6 B: V. Xexperimental probability 实验概率# t2 p% l, L( ~& {* fexponent 指数0 _% h) y; N# }, |* j/ r1 T( oexpress…in terms of….. 以………表达$ w% s1 D5 |9 Kexpression 式;数式+ M. @- _. z+ R2 K6 ]- _% ]7 G) Pextension 外延;延长;扩张;扩充, j( e# O/ z-U( Q3 ]" c* b0 r7 Z" qexterior angle 外角( H7 p6 U( u: H$ S% b/ f4 ]: zexternal angle bisector 外分角 " g* t, U0 r. \0 w: C* Z7 Zexternal point of division 外分点' C6 X" A j) eextreme point 极值点; a! r0 C; B' L4 R( [' G ; g* d9 \: o9 ~8 nF: D" d5 J0 {+ q; W" E) p& f; F4 T* Jface 面2 D6 @1 j- p8 Wfactor 因子;因式;商. @" r5 `) d; e: }7 I6 v" t. l, [$ Kfactor method 因式分解法. R8 D; C; l0 p" F0 sfactor theorem 因子定理;因式定理* ~$ t5 G; {% C- D" f) |factorial 阶乘\$ G1 F) y hfactorization 因子分解;因式分解' V7 v7 }1 |. Z4 c: Ifactorization of polynomial 多项式因式分解: z- ]! ^4 t1 G* @FALSE 假(的) 9 C4 O' s# c8 |feasible solution 可行解;容许解/ B- B. ?8 c( O6 S# M, TFermat’s last theorem 费尔马最后定理. F. V4 t4 [9 {9 k1 }+ A4 N" |& rFibonacci number 斐波那契数;黄金分割数1 ?* q5 Z# [* V3 tFibonacci sequence 斐波那契序列: X6 h1 e A: ^) G- ifictitious mean 假定平均数- ]% N/ S1 y0 I0 p ~8 Gfigure (1)图(形);(2)数字, F! P4 h" c5 L( A2 X% ]$ v' H finite 有限' R0 O/ f4 Q( N* ~, ufinite population 有限总体* r' Y2 v/ u+ x4 B' f* `2 tfinite sequence 有限序列, Y3 G+ Z1 W$ S9 M( m; l# U; _, J finite series 有限级数: ^1 ]! ?! X I, E/ e& I% ~: ]first quartile 第一四分位数, [+ A' }6 Z c' w4 Pfirst term 首项6 `5 f3 b& f& N/ o) k# ?9 Dfixed deposit 定期存款 C' v, W* T! Cfixed point 定点& ?4 H/ c: X: `flow chart 流程图+ f* D5 W8 S$ g* M7 \2 tfoot of perpendicular 垂足6 [( S! j" m* E% x* O" Y, `% Qfor all X 对所有X+ f C- M0 ?" ]2 E) A' Wfor each /every X 对每一X4 u, Q p/ K# X' V' [0 A/ l, Bform 形式;型: j$ e; O5 ?1 }- A8 y ?! N$ Yformal proof 形式化的证明- v5 f# p1 H7 f j, P0 O#p4 ?3 aformat 格式;规格6 _* V* K+ L( {# Qformula(formulae) 公式3 o/ z8 u! i: I! z, cfour rules 四则 |2 n* ~# L4 {+ _5 u& Q& |four-figure table 四位数表$ D+ a: S; b3 gfourth root 四次方根, m- q8 X) k7 A# kfraction 分数;分式0 V" O4 }9 F& \6 u' \) Hfraction in lowest term 最简分数- {/ }+ Y% j5 {fractional equation 分式方程- g+ L$ _4 q& M) vfractional index 分数指数2 D' s$ k! @& a' x0 o- Hfractional inequality 分式不等式" X% f5 Z2 A7 P; `4 F7 E2 Jfree fall 自由下坠/ H8 @( h7 ?8 {frequency 频数;频率& V8 p1 }/ t, y( Z: A# e& r9 gfrequency distribution 频数分布;频率分布- j8 d' L3 S2 k. K1 _3 |frequency distribution table 频数分布表7 M8 t* }6 {) y6 _frequency polygon 频数多边形;频率多边形7 G A. E! _9 a5 k* L# _4 Pfrustum 平截头体6 `4 ~6 V) ^( ?: [5 u# \' ] ^ |( _4 efunction 函数- Z/ I) u% _7 g, Kfunction of function 复合函数;迭函数6 s. c6 L" W: jfunctional notation 函数记号) d: F5 R5 w: W- w% [& E. b( _) F+ Y4 R2 Q. d8 U( L1 DG) n& r) F' P$ h( Egain 增益;赚;盈利$ u# x# p% m9 y7 t+ t kgain per cent 赚率;增益率;盈利百分率" A+ ?; I2 ~- N# u. U& H) igame (1)对策;(2)博奕# l. W$ L/ @; C9 l) c' T( h4 Wgeneral form 一般式;通式- X; A2 ~/ P) g+ C6 R# lgeneral solution 通解;一般解. W6 Y1 }5 l& J l, Z: T7 Z, I general term 通项5 K, \' M- r) G% O5 E. H9 Ngeoborad 几何板/ A) {( S9 ?8 e8 v; `; N/ ~geometric mean 几何平均数;等比中项$ t. D9 v5 }3 i5 X2 jgeometric progression 几何级数;等比级数$ z; b/ y. X% Vgeometric sequence 等比序列/ r! W) V5 d6 i5 h- P9 x- ~geometric series 等比级数$ v- ]0 A! T; C# L \geometry 几何;几何学1 _, ~$ ~) G, C3 }# dgiven 给定;已知) z; d H& r. n* i& A9 Qgolden section 黄金分割. o2 z/ S1 u& wgrade 等级' e. i( p2 N. i% Ggradient (1)斜率;倾斜率;(2)梯度. R& Q+ @( l3 h% Ogrand total 总计& x$ }8 U! X/ `* d0 l2 igraph 图像;图形;图表9 f6 L8 q8 |) y4 n: g5 g3 Pgraph paper 图表纸* {2 c8 c9 O8 m b. @) t: l) Wgraphical method 图解法- p( I" E. R' B5 C! U' V1 ngraphical representation 图示;以图样表达% P! V; x( X1 h8 t ^% A( J+ Igraphical solution 图解( n X# U0 [' s7 J. d6 u% rgreatest term 最大项, W0 F' S0 O4 lgreatest value 最大值" T# S4 l, s! @$ M) Cgrid lines 网网格线6 I9 D+ p( {! |7 Agroup 组;- i' l$ d9 Y9 z6 e1 ~grouped data 分组数据;分类数据% p- z$ k Q8 B$ f1 C }, Z5 E* Kgrouping terms 并项;集项7 n% f1 {) v" A9 }, T0 ^- _growth 增长6 y e4 Q& W" s0 n6 S3 P v) n- Ugrowth factor 增长因子+ B- f: q. J3 ~5 E3 l9 o1 V7 `7 u ! F$ S( C0 m! i8 BH . a6 t/ t7 r) \! @9 X8 f: F3 Ehalf closed interval 半闭区间3 y2 D$ a# a+ w {6 p" I) X; ehalf open interval 半开区间* E1 |( f9 [0 d9 M$ b# ahead 正面(钱币)/ P/ A: a6 A* J) c ]height 高(度)0 `6 M/ U8 w$ I; O. \( C' e' H$ f5 n hemisphere 半球体;半球, \3 S' @$ M1 J5 f7 h' T* U; wheptagon 七边形8 l) O: C# M2 WHeron's formula 希罗公式4 F W- U0 V- ^+ m, v+ Ahexagon 六边形5 s- {! x7 a) g6 ghigher order derivative 高阶导数) ~, y9 G, c" c' H0 a$ x% ? highest common factor(H.C.F) 最大公因子;最高公因式;最高公因子$ n4 h! t4 ^2 } |& XHindu-Arabic numeral 阿刺伯数字# }5 q7 I! x# [. B5 g1 j' Jhistogram 组织图;直方图;矩形图/ I" h+ L4 ^2 z6 L; w: h horizontal 水平的;水平! P5 z( \( e) x7 G3 @; R* l& khorizontal line 横线 ;水平线 ( A: R7 `8 j$ c" e+ `) t2 Bhyperbola 双曲线 ; w( H5 X, s8 Q9 Mhypotenuse 斜边% A. H7 j1 X1 `, l, f4 K。

软件使用说明ppt课件

软件使用说明ppt课件
48
2020/1/4
7运用ImagePro-Plus 6.0分析灰度值
49
2020/1/4
7运用ImagePro-Plus 6.0分析灰度值 1 打开图像,打开“Count / Size”对话框。
50
2020/1/4
7运用ImagePro-Plus 6.0分析灰度值 2 选择 “Count / Size”对话框中的“Select Ranges”。打开“Segmentation”对 话框,拖动对话框中“histogram Based”框条,保证红色部分填充满你的条 带,使条带与背景尽量分开。完成后选择“Apply Mask” → “Closd”。
7
2020/1/4
1 运用SigmaPlot 10.0 做全程图
5“时间”栏,从0开始;点击散点图,开始作图。
8
2020/1/4
1 运用SigmaPlot 10.0 做全程图
5 选择“XY pair”,X 轴是时间,Y轴是电流。
9
2020/1/4
1 运用SigmaPlot 10.0 做全程图
10
39
2020/1/4
5 运用ImagePro-Plus 6.0快速测量细胞面积
6 选择测量选项对话框中: “Area”, “Center-X (mass)”, “Center-Y (mass)” 和“Roundness”四个测量选项。分别对它们进行编辑范围。
40
2020/1/4
5 运用ImagePro-Plus 6.0快速测量细胞面积
1 运用SigmaPlot 10.0 做全程图
6 双击,对图形进行编辑。“Lines→Thickness”调整线条厚度, “Scaling→Range”调整坐标刻度范围; “Ticks→Tick intervals →Major Tick”调整坐标刻度间隔。保存文件,可以作为模板。

sigmaplot简易教程

sigmaplot简易教程

目录:z制作柱形图: (2)z制作肿瘤生长曲线 (8)z多组柱形图: (11)z多坐标轴作图 (14)制作柱形图:1.1 排列数据:1.2 选择左框中的vertical bar (对同一组数据的分析)1.3Symbol value指每个数据代表的什么。

这里我们要计算的是control、Yp等每列数据的平均值,应该选择column means(列平均)。

1.4选择x and many Y,X轴如果是数字,很容易出现1.000,输入1后加空格,就会被默认为是字符。

1.5图片制作好,在graph properties中修改,主要是让图片好看,还有符合杂志的要求,例如将X轴Y轴的数字变大(我常用的是14号)。

XY轴的名称可以再大些(24号)。

X data,Y data双击可以改写。

线条,框架点击可以直接delete。

1.6X轴中的control、Yp、Ys….如果太长,可以双击这些词,会出现下图。

点击tick labelfont,点击paragraph,在rotation中选择旋转角度,一般25,35度都可以。

1.7统计学比较的话,我只用过最简单的,就是t-test。

1.8比较group1和group2的差异性,直接鼠标点击这一行,比较的就是这两行数据的差别。

(注意的是有的数据安排一行中会出现其他的数据,在统计时,就要把相应的数据copy 在一边单独比较)有差别时,使用图片右侧T选项(同Photoshop)在相应的bar上写*。

1.9最后图片都处理好了,使用ctrl+A(全选),用图片右侧的group项组合(同PPT)。

1.10选中图片,点file中的export file,输出图片,一般使用TIFF格式,保证图片分辨率。

这种图片一般保存需要600dpi。

最后OK。

z 制作肿瘤生长曲线1. 数据排列(X 轴如果是数字,很容易出现1.000,输入1后加空格,就会被默认为是字符。

)2. 这种不同于一条曲线,是要比较3-6条曲线之间的不同。

Sigmaplot论文简易幻灯片版本-答辩用

Sigmaplot论文简易幻灯片版本-答辩用
第二节sigmaplot软件基础?2d图面积图散点图线形图散点和线性图步进图垂直条形图水平条形图垂直分组条形图水平分组条形图垂直和水平叠加条形图箱式图极线图等值线图线图和填充图直方图图面积图散点图线形图散点和线性图步进图垂直条形图水平条形图垂直分组条形图水平分组条形图垂直和水平叠加条形图箱式图极线图等值线图线图和填充图直方图ternary种时间序列泡图圆形比例图控制图针式图3种时间序列泡图圆形比例图控制图针式图高低收盘图极差图四分位数图象限总体高低收盘图极差图四分位数图象限总体?3d图多重交叉图带有隐线消除平滑或离散底纹透明或不透明填充以及光源明暗处理图多重交叉图带有隐线消除平滑或离散底纹透明或不透明填充以及光源明暗处理3d旋转图透视预览图散点图条形图旋转图透视预览图散点图条形图3d线形图弹道曲线网眼图等值线图瀑布图通过变形得到的图形高斯累积分布图面积图曲线下面以及曲线间的明线形图弹道曲线网眼图等值线图瀑布图通过变形得到的图形高斯累积分布图面积图曲线下面以及曲线间的明暗处理z平面设计图矢量图kaplanmeier存活暗处理z平面设计图矢量图kaplanmeier存活图频数图复杂控制图用户自定义数轴sigmaplot主界面第三节sigmaplot软件应用?创建图形?创建图形有三种方法

3.52 单击3D散点图,一路单击下一步,得到预处理图形

3.53双击坐标轴,修改坐标范围,plots-lines-solid

3.54 由散点图转化为散点曲线图

3D图 多重交叉图(带有隐线消除、平滑或离散底纹、 透明或不透明填充以及光源明暗处理)、3D旋转图、 透视预览图、散点图、条形图、3D线形图-弹道曲线、 网眼图、等值线图、瀑布图、通过变形得到的图形、 高斯累积分布图、面积图-曲线下面以及曲线间的明 暗处理、Z平面设计图、矢量图、Kaplan-Meier存活 图、频数图、复杂控制图、用户自定义数轴
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档