17.1勾股定理1

合集下载

天津市宁河区八年级数学下册 17 勾股定理 17.1 勾股定

天津市宁河区八年级数学下册 17 勾股定理 17.1 勾股定

17.1 勾股定理(1)学习目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

经历用面积法探索勾股定理的过程。

2. 体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。

3. 培养在实际生活中发现问题总结规律的意识和能力。

学习重点、难点1.重点:探索和验证勾股定理。

2.难点:勾股定理的证明。

一、预习内容1.复习旧知(1)在Rt△ABC中,∠C=90°,则∠A+∠B= (填度数)。

(2)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,则AC= ,理由是:。

(3)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,则AC= ,理由是:。

(4)在Rt△ABC中,∠C=90°,AC=3,BC=4,则△ABC面积S= 。

(5)用腰长为1的四个等腰直角三角形拼成如图所示的正方形,则正方形的面积为,正方形的边长为。

2. 课前预习阅读课本P64-P66探究之前的内容。

根据你对课文的理解,完成下列问题:(1) 在如图所示边长为1的正方形网格中有如图所示的三个正方形A ,B ,C 则A S =,B S =C S =(2) 由上可知,正方形A 和正方形B 的面积之和等于(3) 我们发现在等腰直角三角形中,斜边的平方等于(4) 若网格中每一个小方格面积为1个单位面积,那么正方形A 、B 、C 的面积分别为(5) (填=或>或<)(6) 如果设正方形A ,B ,C 的边长分别为a ,b ,c ,则由上面可知:。

用文字叙述为:二、数学概念勾股定理:三、例题讲解(1) 求出下列直角三角形中未知边的长度。

(2) 在Rt △ABC 中,∠A=90°,AB=10,BC=26。

求(1) △AB C 周长。

(2) △ABC 的面积。

四、总结反思说说你的收获;你还有什么问题?五、反馈练习在△ABC中,∠C=90°。

2023-2024学年人教版八年级数学下册课件17.1 勾股定理第1课时 勾股定理

2023-2024学年人教版八年级数学下册课件17.1 勾股定理第1课时 勾股定理
= 8, = 10, ⊥ 于点,则的长是
( D ) .
A.6
32
B.
5
18
C.
5
24
D.
5
图17.1-3
5.如图17.1-4,在Rt △ 中,∠ = 90∘ ,
∠ = 30∘ ,垂直平分斜边,交于点,是
垂足,连接.若 = 2,则的长是( C ) .
A.4
B.8
C.4 3
D.2 3
图17.1-4
6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是
我国古代数学的骄傲.如图17.1-5所示的“赵爽弦图”是由
四个全等直角三角形和一个小正方形拼成的一个大正
方形,设直角三角形较长直角边长为,较短直角边长
为,若 +
2
图17.1-5
= 21,小正方形的面积为5,则大正
2 41或6
9.已知直角三角形的两边长分别为8,10,则第三边长为_________.
10.如图17.1-7,已知△ 和△ 都是等腰直角
三角形,∠ = ∠ = 90∘ ,为边上一点,
求证:22 = 2 + 2 .
提示:证明△ ≌△ SAS ,得 = .证
学习过程中,我们已经学会了运
用如图17.1-9所示的图形,验证
著名的勾股定理,这种根据图形
直观推论或验证数学规律和公式
图17.1-9
的方法,简称为“无字证明”.实际
上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规
律,它体现的数学思想是 ( C ) .
A.统计思想
B.分类思想
C.数形结合思想
轻松达标
1.在△ 中,∠,∠,∠的对应边分别是,,,若∠ = 90∘ ,

人教版八年级数学“17.1.1勾股定理”

人教版八年级数学“17.1.1勾股定理”
2 2 2 a +b =c
⒊勾股定理的主要作用是 在直角三角形 中,已知任意两边求第三边的长。
勾股定理
如果直角三角形两直角边分别为a,b,斜 边为c,那么
2 a +
结论变形
2 b =
2 c
c2=a2+b2
a2=c2-b2 b2=c2-a2
c= a 2 b2 c a=
b=
b
c b
2
2
c a
2

图1-1
图1-2
目前世界上许多科学家正在试图寻找其它 星球的“人”,为此向宇宙发出了许多信号,如 地球上人类的语言,音乐,各种图形等.我国数学 家华罗庚建议,发射一种反映勾股定理的图形, 如果宇宙人是“文明人”,那么他们一定会识别 这种语言的.
证 法 4:
毕达哥拉斯证法
a2 c2
a2
b2 a 2 + b 2 = c2
探究与猜想
B A C 图2 图3 图2 A的面积 B的面积 C的面积 (单位面 (单位面 (单位面 积) 积) 积)
4
9
9
25
13
34
C A B
图3 A、B、C 面积关 系 直角三 角形三 边关系
sA+sB=sC
两直角边的平方和 等于斜边的平方
猜想:两直角边a、b与斜边c 之间的关系? A a B b
图2-1 图2-2
9
9
18
对于等腰直角三角形有这 样的性质:
两直角边的平方和等于斜边的平方
思 考
那么对于一般的直角三角形 是否也有这样的性质呢?
做 一 做
2.观察右边两个图 并填写下表: A
A的面积 B的面积 C的面积 图1-2 图1-3

17.1.1勾股定理 PPT课件

17.1.1勾股定理 PPT课件
最佳方状砖态地而。发起呆来.原来,朋友
家的地是用一块块直角三角形形
状的砖铺成的,黑白相间,非常
美观大方.主人看到毕达哥拉斯
看似平淡无奇
的样子非常奇怪,就想过去问 他.谁知毕达哥拉斯突然恍然大
的现象有时却隐藏 悟的样子,站起来,大笑着跑回
着深刻的道理。 家去了。
原可来以古发希现腊,著以名等数腰学三 家角毕形达 两哥直拉 角斯 边从 为朋 边友 长家的的小 地正砖方铺 形成的的 面地 积面 的上 和发 ,现等了于: 直以角斜三 边角为形边三 长边 的的 正数 方量形关的 系面积。。
C A
图1
A的面积 B的面积 C的面积
(单位长 (单位长 (单位长
度)
度)
度)
99
B
图2 4 4
C
图2-1
A B
C的面积怎么求呢?
图2-2
(图中每个小方格代表一个单位面积)
C A
C的面积怎么求呢?
S正方形c
B C
图2-1
A
4 1 33 18 2
B
(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
(三)教学重点、难点:
重点:是勾股定理的发现、验证和 应用。
难点:是用拼图方法、面积法证明 勾股定理。
二、学情分析:
前面,学生已具备一些平面几何的知 识,能够进行一般的推理和论证,但如何 通过面积法(拼图法)证明勾股定理,学 生对这种解决问题的途径还比较陌生,存 在一定的难度,针对这个问题我将本课的 教法和学法体现确定如下:
章前图中左下角的图案有什么意义?为什么选 它作为2002年在北京召开的国际数学家大会的会 徽?
本章我们将探索并证明勾股定理及其逆定理, 并运用这两个定理去解决有关问题,由此可以加 深对直角三角形的认识。

17.1勾股定理1

17.1勾股定理1

角形. 正方形P的面积是
B P C
R
9 个单位面积.
正方形Q的面积是
A Q
图1
9 个单位面积.
正方形R的面积是
18 个单位面积.
你是怎样得到以AB为 边的正方形R的面积 的?
观察图1(图中每个小方格代表一个单位面积)
ΔABC是 等腰直角 三 角形. 正方形P的面积是
9 个单位面积.
正方形Q的面积是
股b c 弦 a + b = c (也称作勾股定理) 2 2 2 勾+股=弦
2 2 2
C
a 勾
B
(1)使用前提是直角三角形 (2)分清直角边、斜边
B
结论变形 c
b A
a
C
c2 = a2 + b2
勾股史话
勾 股 股 弦 勾
在中国古代,人们把弯曲成直角的手臂的上半部分 称为“勾”,下半部分称为“股”。我国古代学者把直 角三角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”。我国是最早了解勾股定理的 国家之一。早在三千多年前,周朝数学家商高就提出, 将一根尺折成一个直角三角形,如果勾等于三,股等于 四,那么弦就等于五。即“勾三、股四、弦五”。它被 记载于我国古代著名的数学著作《周髀算经》中。

B
R
9 个单位面积.
正方形R的面积是
C
A Q
图1
18 个单位面积.
1
2
3
你是怎样得到以AB为 边的正方形R的面积 的?

把R分割成四个与 ΔABC全等的三角形
B P C Q
图1
R
S正方形 R
A
1 4 3 3 18 2
返回

(完整版)17.1勾股定理

(完整版)17.1勾股定理

17.1 勾股定理(1)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理. 2.培养在实际生活中发现问题总结规律的意识和能力.3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习.二、重点、难点1.重点:勾股定理的内容及证明. 2.难点:勾股定理的证明.3.难点的突破方法:几何学的产生,源于人们对土地面积的测量需要.在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积泥土,但也抹掉了田地之间的界限标志.水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积.几何学从一开始就与面积结下了不解之缘,面积很早就成为人们认识几何图形性质与争鸣几何定理的工具.本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明.其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变. 三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手.激发学生的民族自豪感,和爱国情怀.例2(补充)使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.进一步让学生确信勾股定理的正确性. 四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的.这个事实可以说明勾股定理的重大意义.尤其是在两千年前,是非常了不起的成就.让学生画一个直角边为3 cm 和4 cm 的Rt △ABC ,用刻度尺量出斜边AB 的长.以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连接得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的Rt △ABC ,用刻度尺量斜边AB 的长.你是否发现32+42和52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?五、例习题分析例1 (补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c . 求证:a 2+b 2=c 2.分析:⑴让学生准备多个三角形模型,拼摆不同的形状,利用面积相等进行证明.⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正,则 4×21ab +(b -a )2=c 2,化简可证.A B⑶发挥学生的想象能力拼出不同的图形,进行证明.⑷勾股定理的证明方法,达300余种.这个古老的精彩的证法,出自我国古代无名数学家之手.激发学生的民族自豪感,和爱国情怀.例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c . 求证:a 2+b 2=c 2. 分析:左右两边的正方形边长相等,则两个正方形的面积相等. 左边S=4×21ab +c 2,右边S=(a+b )2,左边和右边面积相等,即 4×21ab +c 2=(a+b )2,化简可证.六、课堂练习1.勾股定理的具体内容是: . 2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ; ⑶若∠B=30°,则∠B 的对边和斜边: ; ⑷三边之间的关系: .3.△ABC 的三边a 、b 、c ,若满足b 2= a 2+c 2,则 =90°;若满足b 2>c 2+a 2,则∠B 是 角; 若满足b 2<c 2+a 2,则∠B是 角.4.根据如图所示,利用面积法证明勾股定理.七、课后练习1.已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则 ⑴c= .(已知a 、b ,求c ) ⑵a= .(已知b 、c ,求a ) ⑶b= .(已知a 、c ,求b )2.如下表,表中所给的每行的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a=19时,b ,c 的值,并把b 、c 用含a 的代数式表示出来.bbbbaa AB b E B3.在△ABC 中,∠BAC=120°,AB=AC=310cm ,一动点P 从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直.4.已知:如图,在△ABC 中,AB=AC ,D 在CB 的延长线上. 求证:⑴AD 2-AB 2=BD·CD⑵若D 在CB 上,结论如何,试证明你的结论.参考答案六、课堂练习1.略.2.⑴∠A+∠B=90°;⑵CD=21AB ;⑶AC=21AB ;⑷AC 2+BC 2=AB 2. 3.∠B ,钝角,锐角;4.提示:因为S 梯形ABCD = S △ABE + S △BCE + S △EDA ,又因为S 梯形ACDG =21(a+b )2, S △BCE = S △EDA =21 ab ,S △ABE =21c 2, 21(a+b )2=2×21 ab +21c 2. 七、课后练习1.⑴c=22a b -;⑵a=22c b -;⑶b=22a c +2.⎩⎨⎧+==+1222b c c b a ;则b=212-a ,c=212+a ;当a=19时,b=180,c=181.3.5秒或10秒.4.提示:过A 作AE ⊥BC 于E .D CB17.1 勾股定理(2)一、教学目标1.会用勾股定理进行简单的计算.2.树立数形结合的思想、分类讨论思想.二、重点、难点1.重点:勾股定理的简单计算.2.难点:勾股定理的灵活运用.3.难点的突破方法:⑴数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用.⑵分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力.⑶作辅助线,勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力.⑷优化训练,在不同条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度.三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系.让学生明确在直角三角形中,已知任意两边都可以求出第三边.并学会利用不同的条件转化为已知两边求第三边.例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想.例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法.让学生把前面学过的知识和新知识综合运用,提高综合能力.四、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形.学习勾股定理重在应用.五、例习题分析例1(补充)在Rt△ABC,∠C=90°⑴已知a=b=5,求c.⑵已知a=1,c=2, 求b.⑶已知c=17,b=8, 求a.⑷已知a:b=1:2,c=5, 求a.⑸已知b=15,∠A=30°,求a,c.分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系.⑴已知两直角边,求斜边直接用勾股定理.⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式.⑷⑸已知一边和两边比,求未知边.通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边.后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想.例2(补充)已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算.让学生知道考虑问题要全面,体会分类讨论思想.例3(补充)已知:如图,等边△ABC 的边长是6cm .⑴求等边△ABC 的高.⑵求S △ABC .分析:勾股定理的使用范围是在直角三角形中,因此注意要 创造直角三角形,作高是常用的创造直角三角形的辅助线做 法.欲求高CD ,可将其置身于Rt △ADC 或Rt △BDC 中, 但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=21AB=3cm ,则此题可解. 六、课堂练习1.⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= . ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= . ⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 . ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 . ⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 . 2.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长.3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积. 七、课后练习1.在Rt △ABC ,∠C=90°,⑴如果a=7,c=25,则b= . ⑵如果∠A=30°,a=4,则b= . ⑶如果∠A=45°,a=3,则c= . ⑷如果c=10,a-b=2,则b= .⑸如果a 、b 、c 是连续整数,则a+b+c= . ⑹如果b=8,a :c=3:5,则c= .2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC , AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长.参考答案六、课堂练习 1.17;7; 6,8; 6,8,10; 4或34; 3,3;2.8; 3.48. 七、课后练习1.24; 43; 32; 6; 12; 10; 2.332.DBA ABB17.1 勾股定理(3)一、教学目标1.会用勾股定理解决简单的实际问题.2.树立数形结合的思想.二、重点、难点1.重点:勾股定理的应用.2.难点:实际问题向数学问题的转化.3.难点的突破方法:数形结合,从实际问题中抽象出几何图形,让学生画好图后标图;在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,教师要向学生交代清楚,解释明白;优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度;让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性.三、例题的意图分析例1(教科书例1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题.例2(教科书例2)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其他两边的变化.四、课堂引入勾股定理在实际的生产生活当中有着广泛的应用.勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试.五、例习题分析例1 分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角.⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法.⑸注意给学生小结深化数学建模思想,激发数学兴趣.例2 分析:⑴在△AOB中,已知AB=3,AO=2.5,利用勾股定理计算OB.⑵在△COD中,已知CD=3,CO=2,利用勾股定理计算OD.则BD=OD-OB,通过计算可知BD≠AC.⑶进一步让学生探究AC和BD的关系,给AC不同的值,计算BD.A BC六、课堂练习 1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米.2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米.2题图 3题图 4题图3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 .4.如图,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B 地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少? 七、课后练习 1.如图,欲测量松花江的宽度,沿江岸取B 、C 两点,在江对岸取一点A ,使AC 垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为 .2.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米. 3.一根32厘米的绳子被折成如图所示的形状钉在P 、Q 两点,PQ=16厘米,且RP ⊥PQ ,则RQ= 厘米.4.如图,钢索斜拉大桥为等腰三角形,支柱高24米,∠B=∠C=30°,E 、F 分别为BD 、CD 中点,试求B 、C 两点之间的距离,钢索AB 和AE 的长度.(精确到1米)参考答案六、课堂练习1.2250; 2.6, 32; 3.18米; 4.11600. 七、课后练习 1.350米; 2.22; 3.20; 4.83米,48米,32米.ACB Q ABDEF17.1 勾股定理(4)一、教学目标1.会用勾股定理解决较综合的问题. 2.树立数形结合的思想. 二、重点、难点1.重点:勾股定理的综合应用. 2.难点:勾股定理的综合应用. 3.难点的突破方法:⑴数形结合,正确标图,将条件反应到图形中,充分利用图形的功能和性质.⑵分类讨论,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力.⑶作辅助线,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力.⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度.三、例题的意图分析例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用.目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及 30°或45°特殊角的特殊性质等.例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角.让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题.使学生清楚作辅助线不能破坏已知角.例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.在转化的过程中注意条件的合理运用.让学生把前面学过的知识和新知识综合运用,提高解题的综合能力.例4 让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论. 四、课堂引入复习勾股定理的内容.本节课探究勾股定理的综合应用. 五、例习题分析例1(补充)已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长.分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用.目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等.要求学生能够自己画图,并正确标图.引导学生分析:欲求AB ,可由AB=BD+CD ,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1.或欲求AB ,可由22BC AC AB +=,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6.C D例2(补充)已知:如图,△ABC 中,AC=4,∠B=45°,∠A=60°,根据题设可知什么?分析:由于本题中的△ABC 不是直角三角形,所以根据题设只能直接求得∠ACB=75°.在学生充分思考和讨论后,发现添置AB 边上的高这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC .让学生充分讨论还可以作其它辅助线吗?为什么?小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题.并指出如何作辅助线? 解略.例3(补充)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD 的面积.分析:如何构造直角三角形是解本题的关键,可以连接AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单.教学中要逐层展示给学生,让学生深入体会.解:延长AD ,BC 交于点E . ∵∠A=∠60°,∠B=90°,∴∠E=30°. ∴AE=2AB=8,CE=2CD=4.∴BE 2=AE 2-AB 2=82-42=48,BE=48=34.∵DE 2= CE 2-CD 2=42-22=12,∴DE=12=32. ∴S 四边形ABCD =S △ABE -S △CDE =21AB·BE-21CD·DE=36. 小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差. 例4 在数轴上画出表示13的点.分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论.变式训练:在数轴上画出表示22,13--的点.六、课堂练习1.△ABC 中,AB=AC=25 cm ,高AD=20 cm ,则BC= ,S △ABC = . 2.△ABC 中,若∠A=2∠B=3∠C ,AC=32cm ,则∠A= 度,∠B= 度,∠C= 度,BC= ,S △ABC = . 3.△ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = .4.已知:如图,△ABC 中,AB=26,BC=25,AC=17, 求S △ABC . C ADBCC七、课后练习1.在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,AB= . 2.在Rt △ABC 中,∠C=90°,S △ABC =30,c=13,且a <b ,则a= ,b= . 3.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22,求(1)AB 的长;(2)S △ABC . 4.在数轴上画出表示-52,5 的点.参考答案六、课堂练习1.30cm ,300cm 2; 2.90,60,30,4,32; 3.2,3,3,1,32;4.作BD ⊥AC 于D ,设AD=x ,则CD=17-x ,252-x 2=262-(17-x )2,x=7,BD=24, S △ABC =21AC·BD=254. 七、课后练习 1.4; 2.5,12;3.提示:作AD ⊥BC 于D ,AD=CD=2,AB=4,BD=32,BC=2+32,S △ABC = =2+32; 4.略.C。

2023-2024学年人教版八年级数学下册17.1勾股定理 勾股定理的应用(1) 课件

2023-2024学年人教版八年级数学下册17.1勾股定理  勾股定理的应用(1) 课件

知识点❷ 勾股定理之风吹荷花模型
典例2 (教材P29习题T10·改编)如图,有一个水池,水面是一
个边长为16尺的正方形,在水池正中央有一根芦苇,它高出水
面2尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到
达池边的水面,则水池里水的深度是多少尺?
解:设水池里水的深度是x尺,
由题意,得x2+


∵BO=0.7 m,BC=0.8 m,
∴CO=1.5 m.
在Rt△DOC中,DO= - = . -. =2(m).
∴AD=AO-DO=2.4-2=0.4(m).
答:梯子的顶端沿墙下滑了0某社区要在如图所示AB所在的
直线上建一图书室,本社区有两所学校,分别在点C和点D处,
∴AB= + = + = ≈43.4.
答:两孔中心的距离约为43.4 mm.
3.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从
C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB
是4米.求竹子折断处与根部的距离CB.
解:由题意知CB+AC=8,∠CBA=90°,
△ABC恰好为直角三角形(∠ABC=90°).通过测量,得到AC
=130 m,BC=120 m,则A,B之间的距离是多少?
解:在Rt△ABC中,根据勾股定理,
得AB2=AC2-BC2=1302-1202=2 500.
∴AB=50 m.
答:A,B之间的距离是50 m.
3.小刚欲从点A出发划船横渡一条河,由于水流的影响,
课堂检测
1.(教材P25例1·改编)如图所示的是一个长为2
m,宽为1.5 m的长方形门框,光头强有一些薄
木板要通过门框搬进屋内.在不能破坏门框,

17.1勾股定理(1)教学设计2022-2023学年人教版八年级下册数学

17.1勾股定理(1)教学设计2022-2023学年人教版八年级下册数学

17.1 勾股定理(1)教学设计一、教学目标1.了解勾股定理的基本概念和原理;2.掌握勾股定理的运用方法,能够解决与勾股定理相关的问题;3.培养学生分析问题和解决问题的能力。

二、教学内容本节课的教学内容主要包括以下几个方面:1.勾股定理的概念和原理;2.三角形的直角边、斜边和斜角的关系;3.勾股定理的运用方法和例题讲解。

三、教学步骤步骤一:导入1.教师通过提问的方式引出勾股定理的概念,激发学生对于勾股定理的兴趣;2.教师通过举例子的方式,让学生感受一下勾股定理的应用场景。

步骤二:学习与讨论1.教师通过讲解勾股定理的定义和原理,引导学生理解勾股定理的内涵;2.教师通过几何图形和实际问题的分析,让学生看到勾股定理的实际应用;3.学生与教师一起探讨如何应用勾股定理解决问题,并给出解决问题的步骤。

步骤三:例题讲解1.教师选择一些典型的例题进行讲解,通过解题过程演示勾股定理的运用方法;2.教师引导学生分析题目中的信息,确定解题思路,并进行逐步解题。

步骤四:练习与巩固1.学生在教师的指导下,完成相关练习题;2.学生互相交流解题思路,激发学生的合作学习能力和解决问题的能力。

步骤五:归纳总结1.教师引导学生总结勾股定理的运用方法;2.学生以小组为单位,展示他们的解题思路和方法;3.教师进行点评和总结,强调勾股定理的重要性和实际应用。

四、教学评价1.课堂练习的完成情况,包括学生的解题过程和答案的准确性;2.学生课后作业的完成情况,包括书面作业和练习题;3.学生对于勾股定理的理解程度和应用能力的评价。

五、教学反思本节课通过理论讲解和实际问题的应用,帮助学生理解和掌握勾股定理的基本概念和运用方法。

在教学过程中,学生积极参与,课堂气氛活跃。

通过解题讲解和学生的合作学习,提高了学生的解决问题的能力。

但是在练习环节中,部分学生的思维转换还不够灵活,需要加强巩固训练。

教师在今后的教学中将重点培养学生的分析问题和解决问题的能力,多进行案例分析和实践操作,提高学生的学习兴趣和实际应用能力。

人教版八年级数学下册第十七章第一节 第1课时 勾股定理

人教版八年级数学下册第十七章第一节 第1课时 勾股定理

B
解:(1) 据勾股定理得
c a2 b2 52 52 50 5 2. C
A
(2) 据勾股定理得
b c2 a2 22 12 3.
【变式题1】在 Rt△ABC 中, ∠C = 90°. (1) 若 a∶b = 1∶2 ,c = 5,求 a ; (2) 若 b = 15,∠A = 30°,求 a,c. 解:(1) 设 a = x,b = 2x,根据勾股定理建立方程得 x2 + (2x)2 = 52,解得 x 5, ∴ a 5 . (2) ∵A 30°,b 15,∴c 2a . 因此设 a = x,c = 2x,根据勾股定理建立方程得 (2x)2 - x2 = 152,解得 x 5 3 . ∴ a 5 3 ,c 10 3 .
1 4
BC2.
勾股定理
内容 注意
在Rt△ABC 中,∠C = 90°,a,
b 为直角边,c 为斜边,则有 a2 + b2 = c2.
在直角三角形中
看清哪个角是直角
已知两边没有指明是直角边 还是斜边时一定要分类讨论
D
根据三角形面积公式,
3
∴ ∴
1 2
AC×BC
12
CD = 5 .
=
1 2
AB×CD.
C
4
B
归纳 由直角三角形的面积求法可知直角三角形两直角
边的积等于斜边与斜边上高的积,它常与勾股定理联
合使用.
练一练
求下列图中未知数 x、y 的值:
81 x
144
解:由勾股定理可得 81 + 144 = x2,
解得 x = 15.
勾股定理有着悠久的历史:古巴比伦人和古代中国人 看出了这个关系,古希腊的毕达哥拉斯学派首先证明 了这关系,下面让我们一起来通过视频来了解吧:

2023-2024学年人教版初中数学8年级下册 17.1 勾股定理 (1)

2023-2024学年人教版初中数学8年级下册 17.1 勾股定理 (1)

第十七章勾股定理17.1 勾股定理17.1.1 勾股定理1.一个直角三角形的两条直角边分别为3和4,则它的第三边长为()A B.4 C.5 D.52.在一个直角三角形中,若斜边的长是13,一条直角边的长为5,那么这个直角三角形的面积是()A.30 B.40 C.50 D.603.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14 B.13 C.D.4.下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个5.如图,用硬纸板做成的四个全等的直角三角形,直角边的长分别为a和b,斜边长为c.可选取若干直角三角形纸板拼图,并根据拼图验证勾股定理.请画出一种示意图并写出验证过程.________________________________________________________________________第十七章 勾股定理17.1 勾股定理 17.1.1 勾股定理1.【答案】C【解析】由题意可知:第三边长为:2234+=5,故选C .2.【答案】A【解析】由勾股定理得,另一条直角边长为:2213512-=,∴这个直角三角形的面积为5×12÷2=30,故选A .3.【答案】D【解析】∵AE =10,BE =24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF 221414=+=142.故选D .4.【答案】A【解析】第一个图形,中间小正方形的面积c 2=(a +b )2﹣412⨯ab ;化简得c 2=a 2+b 2,可以证明勾股定理.第二个图形,中间小正方形的面积(b ﹣a )2=c 2﹣412⨯ab ;化简得a 2+b 2=c 2,可以证明勾股定理.第三个图形,梯形的面积为12(a +b )(a +b )=212⨯⨯ab 12+c 2,化简得a 2+b 2=c 2,可以证明勾股定理.第四个图形,由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直参考答案及解析角三角形的面积的和,即(b 2b a --)(a 2b a -+)12=ab 12+c 12⋅c ,化简得a 2+b 2=c 2,可以证明勾股定理,故选A .5.【答案】示意图如图所示.证明如下:∵大正方形的面积可表示为(a +b )2,大正方形的面积也可表示为:c 2+412⨯ab ,∴(a +b )2=c 2+412⨯ab ,即a 2+b 2+2ab =c 2+2ab , ∴a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方.17.1.2 勾股定理的应用1.张大爷离家出门散步,他先向正东走了30 m,接着又向正南走了40 m,此时他离家的距离为()A.30 m B.40 m C.50 m D.70 m2.如图,有两棵树,一棵高9米,另一棵高4米,两树相距12米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?()A.11 B.12 C.13 D.143.如图,一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,求这条木板的长.4.如下图,为了测量一湖泊的宽度,小明在点A,B,C分别设桩,使AB⊥BC,并量得AC =52m,BC=48m,请你算出湖泊的宽度应为多少米?5.如下图,一个工人拿一个2.5米长的梯子,一头放在离墙0.7米处,另一头靠墙,如果梯子的顶部滑下0.4米,梯子的底部向外滑出多远?________________________________________________________________________17.1.2 勾股定理的应用1.【答案】C【解析】223040+=50 m,故选C.2.【答案】C【解析】建立数学模型,两棵树的高度差AC=9﹣4=5 m,间距AB=DE=12 m,根据勾股定理可得:小鸟至少飞行的距离BC22125=+=13 m.故选C.3.【答案】221.5 3.6+=3.9(米)答:这条木板的长为3.9(米).4.【答案】2227042304AB AC BC=-=-=20.答:湖泊的宽度为20 m.5.【答案】∵BC222.50.7=-=2.4,∴当一直角边为BC﹣0.4=2,斜边为2.5时,另一直角边为222.52-=1.5.故梯子的底部向外滑出1.5﹣0.7=0.8(米).答:梯子的底部向外滑出0.8米.参考答案及解析。

17.1第1课时勾股定理及验证

17.1第1课时勾股定理及验证

图 17-1-13
第1课时 勾股定理及验证
解:证明:连接 DB,过点 B 作 DE 边上的高 BF,则 BF=b-a. 1 1 ∵S 五边形 ACBED=S 梯形 ACBE+S△AED= (a+b)b+ ab, 2 2 1 1 2 1 又∵S 五边形 ACBED=S△ACB+S△ADB+S△BED= ab+ c + a(b-a), 2 2 2 1 1 1 1 2 1 ∴ (a+b)b+ ab= ab+ c + a(b-a), 2 2 2 2 2 ∴a2+b2=c2.
第1课时 勾股定理及验证
C拓广探究创新练
15.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其 中的“面积法”给了小聪灵感.他惊喜地发现:当两个全等的直角 三角形如图 17-1-12 或图 17-1-13 摆放时, 都可以用“面积法” 来证明.下面是小聪利用图 17-1-12 证明勾股定理的过程: 将两个全等的直角三角形按图 17-1-12 所示的方式摆放,其中 ∠DAB=90° ,求证:a +b =c .
第1课时 勾股定理及验证
14.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的 一种新的证明方法. 如图 17-1-11 所示, 火柴盒的一个侧面 ABCD 倒下到四边形 AB′C′D′的位置,连接 CC′,AC′,AC,设 AB=a, BC=b,AC=c,请利用四边形 BCC′D′的面积验证勾股定理: a2 +b =c .
图17-1-7
第1课时 勾股定理及验证
10.[2018· 凉山州] 如图 17-1-8,数轴上点 A 对应的数为 2, AB⊥OA 于点 A,且 AB=1,以 O 为圆心,OB 长为半径作弧, 交数轴于点 C,则 OC 的长为( D ) A.3 B. 2 C. 3 D. 5

八年级数学下册人教版教学课件:17.1 勾股定理第1课时 勾股定理课件

八年级数学下册人教版教学课件:17.1 勾股定理第1课时 勾股定理课件

SA+SB=SC
正方形面积间的关系: SA+SB=SC
A
A a
CC c
b BB 图① 图1-1
设:直角三角形的 三边长分别是a、b、c
SA+SB=SC
a2+b2=c2
猜想:直角三角形三边之 间的关系,即:两直角边 的平方和等于斜边的平方.
命题1 如果直角三角形的两直角边长分别为
a,b,斜边长为c,那么a2+b2=c2.
首页
随堂训练
见《学练优》本课时课堂达标训练
首页
课后作业
见《学练优》本课时课后巩固提升
S小正方形=(b-a)2 S大正方形=4·S三角形+S小正方形 即 c2=4×12 ab+(b-a)2,
c2=2ab+a2-2ab+b2 所以 a2+b2=c2
温馨提示:上述这种验证勾股定理的方法是用面积法
“赵爽弦图”表现了我国古人对数学的钻研精神和聪明 才智,它是我国古代数学的骄傲。因为,这个图案被选为 2002年在北京召开的国际数学大会的会徽.
量关系进而发现直角三角形三边的某种数量关系.
看似平淡 无奇的现 象有时却 隐藏着深 刻的道理
毕达哥拉斯
AB C
首页
合作探究
活动:探究勾股定理的探索发现、验证及简单应 用
AB
C
思考:你能发现图中的 等腰直角三角形有什么性 质吗?
发现: 以等腰直角三角形两直角边为 边长的小正方形的面积的和,等于以 斜边为边长的正方形的面积.即我们惊 奇地发现,等腰直角三角形的三边之 间有一种特殊的关系:斜边的平方等 于两直角边的平方和.
第十七章 勾股定理
17.1 勾股定理

17.1勾股定理

17.1勾股定理

感悟新知
6-1. 古诗赞美荷花“竹色溪下绿, 荷 花镜里香”. 平静的湖面上,一朵 荷花亭亭玉立,露出水面10 cm, 忽见它随风斜倚,花朵恰好浸入 水面,仔细观察,发现荷花偏离 原地40 cm(如图).请问:水深多少?
知3-练
感悟新知
知3-练
解:设水深CB=x cm,则AC=(x+10) cm, 即CD=(x+10) cm. 在Rt△BCD中,由勾股定理得x2+402=(x+10)2, 解得x=75. 答:水深75 cm.
会改变; 2. 根据同一种图形的面积的不同表示方法列出等式; 3. 利用等式性质变换验证结论成立,即拼出图形→写出图形面
积的表达式→找出等量关系→恒等变形→推导命题结论. 通过拼图,利用求面积来验证,这种方法以数形转换为指导思 想,以图形拼补为手段,以各部分面积之间的关系为依据而达 到目的.
感悟新知
感悟新知
2. 在数轴上作出表示 n 的点
知4-讲
如图17.1-6,构造两条直角边长都是1 的直角三角
形,利用勾股定理得到斜边的长为 2 ,再用圆规截取
的方法画出 2在数轴上的对应点;
感悟新知
知4-讲
构造两直角边长分别为 2 ,1 的直角三角形,利用 勾股定理得到斜边的长为 3 ,再用圆规截取的方法画出
知3-讲
(1)已知直角三角形的任意两边求第三边;
(2)已知直角三角形的任意一边确定另两边的关系;
(3)证明包含有平方(算术平方根)关系的几何问题;
(4)求解几何体表面上的最短路程问题;
(5) 构造方程(或方程组)计算有关线段长度,解决生产、生
活中的实际问题.
感悟新知
特别提醒
知3-讲
运用勾股定理解决实际问题的一般步骤:

人教版数学八年级下册17.1第1课时《勾股定理》说课稿

人教版数学八年级下册17.1第1课时《勾股定理》说课稿

人教版数学八年级下册17.1第1课时《勾股定理》说课稿一. 教材分析《勾股定理》是人教版数学八年级下册17.1第1课时的重要内容。

这部分内容主要让学生了解并证明勾股定理,理解勾股定理在几何学中的重要性。

教材通过引入直角三角形和斜边的关系,引导学生探究并证明勾股定理。

二. 学情分析学生在学习本课时,已经掌握了实数、方程、不等式等基础知识,具备一定的逻辑思维和探究能力。

但对于证明勾股定理,可能需要一定的时间去理解和消化。

因此,在教学过程中,需要关注学生的学习情况,适时给予引导和帮助。

三. 说教学目标1.知识与技能:让学生掌握勾股定理的内容,学会用勾股定理解决实际问题。

2.过程与方法:通过探究、证明勾股定理,培养学生的逻辑思维和探究能力。

3.情感态度与价值观:激发学生对数学的兴趣,感受数学在生活中的应用。

四. 说教学重难点1.教学重点:掌握勾股定理的内容及其应用。

2.教学难点:理解并证明勾股定理。

五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、讲解法等。

2.教学手段:多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入:通过一个实际问题,引出直角三角形和斜边的关系,激发学生的兴趣。

2.探究:引导学生分组讨论,探究勾股定理的证明方法。

3.讲解:讲解勾股定理的证明过程,解释勾股定理的意义和应用。

4.练习:让学生通过练习题,巩固对勾股定理的理解。

5.总结:对本节课的内容进行总结,强调勾股定理的重要性。

七. 说板书设计板书设计要简洁明了,突出勾股定理的关键信息。

主要包括:1.勾股定理的定义2.勾股定理的证明过程3.勾股定理的应用示例八. 说教学评价教学评价主要通过以下几个方面进行:1.学生对勾股定理的理解程度。

2.学生能否运用勾股定理解决实际问题。

3.学生在课堂中的参与程度和合作能力。

九. 说教学反思在教学过程中,要关注学生的学习情况,适时调整教学方法和节奏。

对于学生的反馈,要及时给予指导和鼓励。

在课后,要反思教学效果,查找不足,不断提高教学质量。

勾股定理

勾股定理

第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.①用多媒体课件演示.②小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm,面积为________cm2.【答案】(1)17 (2)7 (3)6 8 (4)6,8,10 (5) 3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24 (2)4 3 (3)3 2 (4)6 (5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】2 3 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.。

人教版数学八年级上册17.1: 勾股定理1优秀课件资料

人教版数学八年级上册17.1: 勾股定理1优秀课件资料

03 归纳验证完善新知
命题1:如果直角三角形的两直角边长分 别为a、b,斜边长为c,那么a2+b2=c2
a
c
b
a2 +b2 =c2
c b
a
弦图
现在我们一起来探 索“弦图”的奥妙吧!
S大正方形=c2 S小正方形=(b-a)2
S大正方形=4·S三角形+S小正方形
即:c2=4•
1 2
ab+(b-a)2
面积各为多少?
毕达哥拉斯(公元前572----前492年),古希腊著名的哲 学家、数学家、天文学家。
A
B
C
A、B、C的面积有什么关系? SA+SB=SC
对于等腰直角三角形有这样的性质:
两直边的平方和等于斜边的平方
小组活动
• (1)画一画:画出一个直角边分别为3和4 的直角三角形
• (2)量一量:量出斜边的长度 • (3)算一算:分别算出三边的平方 • (4)说一说:说出你发现的规律
x2=62+82 x2 =36+64 x2 =100
x=10
∵ x2+52=132 ∴ x2=132-52
x2=169-25 x2=144 x=12
4.求下列直角三角形中未知边的长:

5

比8
17

x
16
x 12

x

20


快 方法小结: 可用勾股定理建立方程.

试一试:
3、一个直角三角形的三边长为三个连续
布置作业,巩固加深
1.必做题:习题17.1 第1, 2,3题。 2.选做题:课本 “阅读与思考” 了解勾股定理的多种证法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题名称17.1勾股定理1 备课时间2017.2.28 编号07 授课类型新授课授课时间
教学目标知识和能力探索并证明勾股定理。

过程和方法经历勾股定理的探究过程。

情感态度
价值观
了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介
绍,培养学生的民族自豪感。

教学重点探索并证明勾股定理。

教学难点勾股定理的探究和证明。

教学方法自学法、探究法、引导法等。

教学媒体一体机。

教学过程
设计
意图一、创设情境复习引入
国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。

2002年在北京召开了第24届国际数学家大会。

右图就是大会会徽的图案。

你见过这个图案吗?它由哪些我们学过的基本图形组成?这个图案有什么特别的意义?前面我们学习了有关三角形的知识,我们知道,三角形有三个角和三条边。

问题1 三个角的数量关系明确吗?三条边的数量关系明确吗?
师生活动:教师引导,学生回答。

我们学习过等腰三角形,知道等腰三角形是两边相等的特殊的三角形,它有许
回顾三角形的内角和是180°以及三角形任何两边的和大于第三边,由三角形三边的不等关系引导学生思考,三角形三边之间是否存在等量关系。

多特殊的性质.研究特例是数学研究的一个方向,直角三角形是有一个角为直角的特殊三角形,中国古代人把直角三角形中较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。

直角三角形中最长的边是哪条边?为什么?它们除了大小关系,有没有更具体的数量关系呢?这就是我们要研究的问题。

二、观察思考,探究定理
问题2 相传2500多年前,毕达哥拉斯有一次在朋友家作客,发现朋友家用砖铺成的地面图案反映了直角三角形三边的某种数量关系.三个正方形A,B,C的面积有什么关系?
毕达哥拉斯(公元前572---前492年),古希腊著名的哲学家、数学家、天文学家。

师生活动学生观察图形,分析、思考其中隐含的规律.通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形A,B中的等腰直角三角形补成一个大正方形,得出结论:小正方形A,B的面积之和等于大正方形C的面积。

追问由这三个正方形A,B,C的边长构成的等腰直角三角形三条边长之间有怎样的特殊关系?
师生活动:教师引导学生直接由正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

问题3 在网格中的一般的直角三角形,以它的三边为边长的三个正方形A,B,C的面积是否也有类似的关系?
师生活动:学生动手计算,分别求出A,B,C的面积并寻求它们之间的关系。

追问正方形A,B,C所围成的直角三角形三条边之间有怎样的关系?
师生活动:学生独立思考后分组讨论,难点是求以斜边为边长的正方形面积,可由师生共同总结得出可以通过割、补两种方法求出其面积,教师在学生回答的基础上归纳方法---割补法.可求得C的面积为13,教师引导学生直接由正方形的面从最特殊的直角三角形手,通过观察正方形面积关系得到三边关系,对等腰直角三角形边长关系进行初步的一般化。

为方便计算,网格中的直角三角形边长通常设定为数,进一步体会面积割补法,为探究无网格背
积等于边长的平方归纳出:直角三角形两条直角边的平方和等于斜边的平方。

问题4 通过前面的探究活动,思考:直角三角形三边之间应该有什么关系师生活动:教师引导学生表述:如果直角三角形两直角边长分别为,,斜边长为,那么。

问题5 以上直角三角形的边长都是具体的数值,一般情况下,如果直角三角形的两直角边分别为a,b,斜边长为c,我们的猜想仍然成立吗?
师生活动:要求学生通过独立思考,用a,b表示c.如图,用“割”的方法可得;用“补”的方法可得.这两个式子经过整理都可以得到即直角三角形两直角边的平方和等于斜边的平方.中国人称它为“勾股定理”,外国人称它为“毕达哥拉斯定理”。

问题6 历史上各国对勾股定理都有研究,下面我们看看我国古代的数学家赵爽对勾股定理的研究,并通过小组合作完成教科书拼图法证明勾股定理。

师生活动:教师展示“弦图”,并介绍:这个图案是公元3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,赵爽根据此图指出:四个全等的直角三角形(朱实)可以如图围成一个大正方形,中间部分是一个小正方形(黄实).我们刚才用割的方法证明使用的就是这个图形,教师介绍勾股定理相关史料,勾股定理的证明方法据说有400多种,有兴趣的同学可以搜集研究一下。

三、初步应用,巩固新知
例1 画一个直角三角形,,它的两直角边分别是
,量一量它的斜边是多少厘米?算一算,你量的结果对吗?
师生活动:学生操作,教师个别指导。

例2 在直角三角形中,各边的长如图,求出未知边的长度。

景下直角三角形三边关系打下基础,提供方法。

在网格背景下通过观察和分析得出了等腰直角三角形和一般的直角三角形的三边关系后,猜想直角三角形的三边关系是很容易的。

通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,发展学生的形象思维,使学生对定理的理解更加深刻,体会数学中数形结合的思想。

师生活动:学生计算,教师检验。

例3 蚂蚁沿图中的折线从A点爬到D点,一共爬了多少厘米?
师生活动:学生观察、思考、计算,教师检验.
四、归纳小结,反思提高
师生共同回顾本节课所学主要内容,并请学生回答以下问题:
(1)勾股定理总结的是什么数量关系?
(2)勾股定理有什么作用?
(3)阅读教科书,总结教科书提供的勾股定理的其他证明方法.了解中国人的伟大和外国人的智慧。

让学生从不同角度谈本节课学习的主要内容,在学习过程中感受到中国数学文化博大精深和数学的美,感悟数形结合的思想,增强对数学学习的自信。

作业设计(1)教科书第28页第1题;
(2)通过互联网收集定理的多种证法.自主探究定理的证明。

板书设计
教学反思。

相关文档
最新文档