MAX1267BEEG+T中文资料
MAX1168BEEG中文资料
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
Features
MAX1167/MAX1168
Applications
Motor Control Industrial Process Control Industrial I/O Modules Data-Acquisition Systems Thermocouple Measurements Accelerometer Measurements
*Future product—contact factory for availability. SPI/QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp. AutoShutdown is a trademark of Maxim Integrated Products, Inc. Ordering Information continued at end of data sheet. Pin Configurations appear at end of data sheet.
PART MAX1167ACEE MAX1167BCEE MAX1167CCEE MAX1167AEEE* MAX1167BEEE* MAX1167CEEE*
中文optima-GB
指导手册电子称OPTIMA填充和称量机GmbH邮编:100520D-74505 Schwäbisch Hall电话:(0791) 506-0传真:(0791) 506-9000目录1 Introduction/safety 简介/安全 (1)1.0 Preface 前言 (1)1.1 Legend 图标 (1)1.2 Safety 安全 (2)1.3 Installation and connection 安装和连接 (5)1.4 Technical data 技术数据 (6)2 Operation panel 操作面板 (8)2.0 Touch-screen display 接触屏显示 (9)2.1 Symbols on the keys 各键的标识 (10)2.2 Password symbols 密码标识 (11)2.3 Symbols of weight display 重量显示的标识 (11)3 Description 描述 (13)2.5 Function 功能 (20)4 Operation 操作 (24)4.0 Switching on 启动 (24)4.1 Operation conditions (status display) 操作条件(状态显示) (28)4.2 Switching off 关闭 (28)4.3 Access levels 多级入口 (29)4.4 Entering the password 输入密码 (31)4.5 General parameter entry 大致参数输入 (32)4.6 Product Parameter Memory 产品参数记忆(PPM) (34)Changing the product parameter memory (PPM) 修改PPM (34)Looking for a product parameter memory 寻找一个PPM (38)4.7 Maintaining the product parameter memory 维护PPM (38)5 Settings 设置 (43)5.0 Preparation for data entry 数据输入前的准备 (43)5.1 Product setting 产品设定 (44)5.2 Regulators 调整器 (47)5.3 Optimizing times 最优化时间 (49)5.4 Product transport 产品传送 (51)5.5 Running-in 优化 (52)5.6 Running-in aid 辅助优化 (55)5.7 Regulator status 调整阀的状态 (56)5.8 Manual functions 手动功能 (58)5.9 Overweight rejection 超重停止 (59)6 Operating elements 操作要领 (60)7 Fluidization 助流 (60)8 Statistics 统计 (61)8.0 Relation between the analyses 分析之间的联系(带打印) (62)8.1 Analysis 分析 (63)8.2 Types of statistical data 统计数据的种类 (64)8.3 Setting statistics 设定统计 (69)9 Maintenance 维护 (70)9.0 Calibrating the touch-screen 校准接触屏 (70)9.1 Loading macros 加载宏指令 (73)9.2 Calibrating the load cell 校准传感器 (75)9.3 Cleaning 清洁 (77)9.4 Printer 打印机 (79)10 Troubleshooting 解难 (83)10.0 Fault display on touch-screen 接触屏上的错误显示 (83)10.1 Resetting faults 重置错误 (84)10.2 Fault messages 出错信息 (85)Faults caused by the product (fault group 100) 由产品引起的错误(错误组100) (86)Faults caused by external modules (fault group 200) 由外部组件引起的错误(错误组200) (87)Faults caused by the control or operating unit (fault group 300) 由控制或操作单元引起的错误(错误组300) (88)Faults caused by load cell (fault group 400) 由传感器引起的错误(错误组400) (90)Faults caused by operator (fault group 500) 由操作员引起的错误(错误组500) (92)Synchronization faults (fault group 600)同步化错误(错误组600) (93)10.3 General faults 一般错误 (93)10.4 Weigher failure 称失效 (94)11 Dialogue texts 对话框 (96)1 Introduction/safety 简介/安全1.0 Preface 前言If you should have any questions, please contact OPTIMA. The manual is to be stored in a place near to the machine and must be easily accessible for the operator.如果有任何问题,请与OPTIMA 联系。
MAX2870中文规格书
PARAMETER
CONDITIONS
REFERENCE OSCILLATOR INPUT (REF_IN)
REF_IN Input Frequency Range
REF_IN Input Sensitivity
REF_IN Input Capacitance
REF_IN Input Current
CONDITIONS
CP[3:0] = 1111, RSET = 5.1kI CP[3:0] = 0000, RSET = 5.1kI
With output dividers (1/2/4/8/16/32/64/128)
Open loop Open loop into 2:1 VSWR Fundamental VCO output Fundamental VCO output VCO output divided-by-2 VCO output divided-by-2
定购信息在数据资料的最后给出。 典型应用电路在数据手资料的最后给出。
相关型号以及配合该器件使用的推荐产品,请参见:china.maximintegrated. com/MAX2870.related。
功能框图
MAX2870
REF_IN
CLK DATA
LE
MUX
R COUNTER
X2
SPI AND REGISTERS
Both channels enabled, maximum output power
Total, including RFOUT, both channel (Note 3)
Each output divide-by-2 ICCVCO + ICCRF (Note 3) Low-power sleep mode
MAX1856EUB-T中文资料
Wide Input Range, Synchronizable, PWM SLIC Power Supply MAX1856
ABSOLUTE MAXIMUM RATINGS
VCC, SYNC/SHDN to GND .....................................-0.3V to +30V PGND to GND .......................................................-0.3V to +0.3V LDO, FREQ, FB, CS to GND.....................................-0.3V to +6V EXT, REF to GND......................................-0.3V to (VLDO + 0.3V) LDO Output Current............................................-1mA to +20mA LDO Short Circuit to GND ...............................................<100ms REF Short Circuit to GND ...........................................Continuous Continuous Power Dissipation (TA = +70°C) 10-Pin µMAX (derate 5.6mW/°C above +70°C) ...........444mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
MAX1873数据手册的中文翻译
简单的限流开关模式Li +电池充电控制器--------------------------------------------------------------------------概述低成本的MAX1873R/S/T提供所有功能需要对高达4A或以上的2 - ,3 - 或4 - 系列的锂离子电池进行简单而有效的充电。
它提供调节充电电流和电压,少于±0.75%时,总电压在电池端出现错误。
在降压的DC - DC配置下,外部P沟道MOSFET有效地为电池充电,这是低成本的设计。
MAX1873R/S/T使用两个控制回路调节电池电压和充电电流,一起工作的两个控制回路在电压和电流调节之间顺利转换。
一个额外的控制回路限制电流来自输入端,可以使AC适配器尺寸和成本最小化。
模拟电压还提供其输出正比于充电电流,以便ADC或微控制器可以监控充电电流。
在多化学充电器设计时,MAX1873也可能被用来作一个有效的有限电流源对镍镉或镍氢电池充电。
MAX1873R/S/T采用节省空间的16引脚QSOP封装是可用的。
使用评估板(MAX1873EVKIT),可以帮助减少设计时间。
--------------------------------------------------------------------------应用笔记本电脑便携式网络片2 - ,3 - ,或4节锂离子电池充电器6 - ,9 – 10节镍电池充电器手持式仪表便携式桌面助理(PDA)台式插座充电器引脚配置在数据资料的最后。
--------------------------------------------------------------------------特征•低成本和简单电路•可对2 - ,3 - ,或4节串联锂离子电池充电•AC适配器输入电流限制回路•还可对以镍为主的电池充电•模拟输出监视充电电流•± 0.75%的电池调节电压•5μA关断电池电流•输入电压高达28V•200mV的压差电压/100%占空比•可调充电电流•为300kHz的PWM振荡器降低了噪音•采用节省空间的16引脚QSOP•采用MAX1873评估板以加快设计----------------------------------------------------------------------订购信息部分温度 .范围 PIN的封装MAX1873REEE -40 °C至85 °C 16 QSOPMAX1873SEEE-40 °C至85 °C16 QSOPMAX1873TEEE-40 °C至85 °C16 QSOP------------------------------------------------------------------典型工作电路极限值CSSP,CSSN,DCIN接GND ·······················- 0.3V至30V VL,ICHG / EN接GND ························- 0.3V至6V VH,EXT接DCIN ····························- 6V至0.3V VH,EXT接GND ·······················( V DCIN 0.3V) - 0.3V EXT接VH ······························6V至- 0.3V DCIN接VL······························30V至- 0.3V VADJ,REF,CCI,CCV,CCS, IOUT接GND··············- 0.3V至(VL 0.3V)BATT,CSB接GND···························- 0.3V至20V CSSP接CSSN·····························- 0.3V至0.6V CSB接BATT·····························- 0.3V至0.6V VL源电流··································+50mA VH反向电流································+40mA 连续功耗(TA=70℃)16引脚QSOP封装(在70° C以上,功率衰减8.3mW/° C···········+667mW 工作温度范围MAX1873_EEE·····················-40°C至+85°C 结点温度································+150 °C 存储温度范围··························-65°C至+150°C 引线温度(焊接,10S)···························300°C 超出“绝对最大额定值”中所列的压力可能会造成设备的永久性损坏。
MAX809TTRG资料
MAX809 Series,MAX810 SeriesVery Low Supply Current3−Pin MicroprocessorReset MonitorsThe MAX809 and MAX810 are cost−effective system supervisor circuits designed to monitor V CC in digital systems and provide a reset signal to the host processor when necessary. No external components are required.The reset output is driven active within 10 m sec of V CC falling through the reset voltage threshold. Reset is maintained active for a timeout period which is trimmed by the factory after V CC rises above the reset threshold. The MAX810 has an active−high RESET output while the MAX809 has an active−low RESET output. Both devices are available in SOT−23 and SC−70 packages.The MAX809/810 are optimized to reject fast transient glitches on the V CC line. Low supply current of 0.5 m A (V CC= 3.2 V) makes these devices suitable for battery powered applications.Features•Precision V CC Monitor for 1.5 V, 1.8 V, 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies•Precision Monitoring V oltages from 1.2 V to 4.9 V Availablein 100 mV Steps•Four Guaranteed Minimum Power−On Reset Pulse Width Available (1 ms, 20 ms, 100 ms, and 140 ms)•RESET Output Guaranteed to V CC = 1.0 V.•Low Supply Current•Compatible with Hot Plug Applications•V CC Transient Immunity•No External Components•Wide Operating Temperature: −40°C to 105°C•Pb−Free Packages are AvailableTypical Applications•Computers•Embedded Systems•Battery Powered Equipment•Critical Microprocessor Power Supply MonitoringV CCFigure 1. Typical Application DiagramSee general marking information in the device marking section on page 8 of this data sheet.DEVICE MARKING INFORMATIONSee detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.ORDERING INFORMATIONPIN DESCRIPTIONPin No.Symbol Description1GND Ground2RESET (MAX809)RESET output remains low while V CC is below the reset voltage threshold, and for a reset timeoutperiod after V CC rises above reset threshold2RESET (MAX810)RESET output remains high while V CC is below the reset voltage threshold, and for a reset timeoutperiod after V CC rises above reset threshold3V CC Supply Voltage (Typ)ABSOLUTE MAXIMUM RATINGSRating Symbol Value Unit Power Supply Voltage (V CC to GND)V CC−0.3 to 6.0V RESET Output Voltage (CMOS)−0.3 to (V CC + 0.3)V Input Current, V CC20mA Output Current, RESET20mAdV/dt (V CC)100V/m secThermal Resistance, Junction−to−Air (Note 1)SOT−23SC−70R q JA301314°C/WOperating Junction Temperature Range T J−40 to +105°C Storage Temperature Range T stg−65 to +150°C Lead Temperature (Soldering, 10 Seconds)T sol+260°C ESD ProtectionHuman Body Model (HBM): Following Specification JESD22−A114 Machine Model (MM): Following Specification JESD22−A1152000200VLatchup Current Maximum Rating: Following Specification JESD78 Class IIPositiveNegative I Latchup200200mAStresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.1.This based on a 35x35x1.6mm FR4 PCB with 10mm2 of 1 oz copper traces under natural convention conditions and a single componentcharacterization.2.The maximum package power dissipation limit must not be exceeded.P D+T J(max)*T Aq JAwith T J(max) = 150°CELECTRICAL CHARACTERISTICS T A = −40°C to +105°C unless otherwise noted. Typical values are at T A = +25°C. (Note 3) Characteristic Symbol Min Typ Max Unit V CC RangeT A = 0°C to +70°CT A = −40°C to +105°C 1.01.2−−5.55.5VSupply CurrentV CC = 3.3 VT A = −40°C to +85°CT A = 85°C to +105°C V CC = 5.5 VT A = −40°C to +85°CT A = 85°C to +105°C I CC−−−−0.5−0.8−1.22.01.82.5m AReset Threshold (V in Decreasing) (Note 4)V TH V MAX809SN490T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 4.834.784.664.9−−4.975.025.14MAX8xxLTR, MAX8xxSQ463T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 4.564.504.404.63−−4.704.754.86MAX809HTRT A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 4.484.434.324.55 4.624.674.78MAX8xxMTR, MAX8xxSQ438T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 4.314.274.164.38 4.454.494.60MAX809JTR, MAX8xxSQ400T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 3.943.903.804.00−−4.064.104.20MAX8xxTTR, MAX809SQ308T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 3.043.002.923.08−−3.113.163.24MAX8xxSTR, MAX8xxSQ293T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 2.892.852.782.93−−2.963.003.08MAX8xxRTR, MAX8xxSQ263T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 2.592.562.492.63−−2.662.702.77MAX809SN232, MAX809SQ232T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 2.282.252.212.32−−2.352.382.45MAX809SN160T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 1.581.561.521.60−−1.621.641.68MAX809SN120, MAX8xxSQ120T A = +25°CT A = −40°C to +85°C T A = +85°C to +105°C 1.181.171.141.20−−1.221.231.263.Production testing done at T A = 25°C, over temperature limits guaranteed by design.4.Contact your ON Semiconductor sales representative for other threshold voltage options.ELECTRICAL CHARACTERISTICS(continued) T A = −40°C to +105°C unless otherwise noted. Typical values are atT A = +25°C. (Note 5)Characteristic Symbol Min Typ Max Unit Detector Voltage Threshold Temperature Coefficient−30−ppm/°C V CC to Reset Delay V CC = V TH to (V TH − 100 mV)−10−m secReset Active TimeOut Period (Note 6) MAX8xxSN(Q)293D1MAX8xxSN(Q)293D2MAX8xxSN(Q)293D3MAX8xxSN(Q)293t RP1.020100140−−−−3.366330460msecRESET Output Voltage Low (No Load) (MAX809)V CC = V TH − 0.2 V1.6 V v V TH v2.0 V, I SINK = 0.5 mA2.1 V v V TH v 4.0 V, I SINK = 1.2 mA4.1 V v V TH v 4.9 V, I SINK = 3.2 mAV OL−−0.3VRESET Output Voltage High (No Load) (MAX809)V CC = V TH + 0.2 V1.6 V v V TH v2.4 V, I SOURCE = 200 m A2.5 V v V TH v 4.9 V, I SOURCE = 500 m AV OH0.8 V CC−−VRESET Output Voltage High (No Load) (MAX810)V CC = V TH + 0.2 V1.6 V v V TH v2.4 V, I SOURCE = 200 m A2.5 V v V TH v 4.9 V, I SOURCE = 500 m AV OH0.8 V CC−−VRESET Output Voltage Low (No Load) (MAX810)V CC = V TH − 0.2 V1.6 V v V TH v2.0 V, I SINK = 0.5 mA2.1 V v V TH v 4.0 V, I SINK = 1.2 mA4.1 V v V TH v 4.9 V, I SINK = 3.2 mAV OL−−0.3V5.Production testing done at T A = 25°C, over temperature limits guaranteed by design.6.Contact your ON Semiconductor sales representative for timeout options availability for other threshold voltage options.TYPICAL OPERATING CHARACTERISTICS0.50.40.30.20.10S U P P L Y C U R R E N T (m A )0.60.250.150.0500.35S U P P L Y C U R R E N T (m A )−50−2502550TEMPERATURE (°C)S U P P L Y C U R R E N T (m A )75100−50−2502550TEMPERATURE (°C)100Figure 6. Supply Current vs. Temperature(No Load, MAX809)Figure 7. Supply Current vs. Temperature (NoLoad, MAX810)750.100.200.30TYPICAL OPERATING CHARACTERISTICS252015105.00−50−25255075TEMPERATURE (°C)O U T P U T V O L T A G E V C C (m V )30100250−50−252575125TEMPERATURE (°C)125P O W E R −D O W N R E S E T D E L A Y (m s e c )125−50−2502550TEMPERATURE (°C)N O R M A L I Z E D P O W E R −U P R E S E T T I M E O U T0.70.80.91.21.375100Figure 10. Power−Down Reset Delay vs.Temperature and Overdrive (V TH = 1.2 V)Figure 11. Power−Down Reset Delay vs.Temperature and Overdrive (V TH = 4.9 V)Figure 12. Normalized Power−Up Reset vs.Temperature10050751.01.110050APPLICATIONS INFORMATIONV CC Transient RejectionThe MAX809 provides accurate V CC monitoring and reset timing during power−up, power−down, and brownout/sag conditions, and rejects negative−going transients (glitches) on the power supply line. Figure 13shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power−down.Typically, transient that goes 100 mV below the reset threshold and lasts 5.0 m s or less will not cause a reset pulse.Transient immunity can be improved by adding a capacitor in close proximity to the V CC pin of the MAX809.Figure 13. Maximum Transient Duration vs.Overdrive for Glitch Rejection at 25°CV CC1011060M A X I M U M T R A N S I E N T D U R A T I O N (m s e c )RESET COMPARATOR OVERDRIVE (mV)410160210260310360RESET Signal Integrity During Power−DownThe MAX809 RESET output is valid to V CC = 1.0 V .Below this voltage the output becomes an “open circuit” and does not sink current. This means CMOS logic inputs to the Microprocessor will be floating at an undetermined voltage.Most digital systems are completely shutdown well above this voltage. However, in situations where RESET must bemaintained valid to V CC = 0 V , a pull−down resistor must be connected from RESET to ground to discharge stray capacitances and hold the output low (Figure 14). This resistor value, though not critical, should be chosen such that it does not appreciably load RESET under normal operation (100 k W will be suitable for most applications).Figure 14. Ensuring RESET Valid to V CC = 0 VProcessors With Bidirectional I/O PinsSome Microprocessor’s have bidirectional reset pins.Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 k W resistor in series with the output of the MAX809 (Figure 15). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line.If the other components are required to follow the reset I/O of the Microprocessor, the buffer should be connected as shown with the solid line.Figure 15. Interfacing to Bidirectional Reset I/OBUFFERED RESETORDERING, MARKING AND THRESHOLD INFORMATIONPart Number V TH*(V)Timeout*(ms)Description Marking Package Shipping†MAX809SN160T1 1.60140−460Push−Pull RESET SAA SOT23−33000 / Tape & ReelMAX809SN160T1G 1.60140−460SAA SOT23−3(Pb−Free)MAX809SN232T1 2.32140−460SQP SOT23−3MAX809SN232T1G 2.32140−460SQP SOT23−3(Pb−Free)MAX809RTR 2.63140−460SPS SOT23−3MAX809RTRG 2.63140−460SPS SOT23−3(Pb−Free)MAX809STR 2.93140−460SPT SOT23−3MAX809STRG 2.93140−460SPT SOT23−3(Pb−Free)MAX809TTR 3.08140−460SPU SOT23−3MAX809TTRG 3.08140−460SPU SOT23−3(Pb−Free)MAX809JTR 4.00140−460SPR SOT23−3MAX809JTRG 4.00140−460SPR SOT23−3(Pb−Free)MAX809MTR 4.38140−460SPV SOT23−3MAX809MTRG 4.38140−460SPV SOT23−3(Pb−Free)MAX809HTR 4.55140−460SBD SOT23−3MAX809HTRG 4.55140−460SBD SOT23−3(Pb−Free)MAX809LTR 4.63140−460SPW SOT23−3MAX809LTRG 4.63140−460SPW SOT23−3(Pb−Free)MAX809SN490T1 4.90140−460SBH SOT23−3MAX809SN490T1G 4.90140−460SBH SOT23−3(Pb−Free)MAX809SN120T1G 1.20140−460SSO SOT23−3(Pb−Free)MAX809SN293D1T1G 2.931−3.3SSP SOT23−3(Pb−Free)MAX809SN293D2T1G 2.9320−66SSQ SOT23−3(Pb−Free)MAX809SN293D3T1G 2.93100−330SSR SOT23−3(Pb−Free)MAX809SQ120T1G 1.20140−460ZD SC70−3(Pb−Free)MAX809SQ232T1G 2.32140−460ZE SC70−3(Pb−Free)MAX809SQ263T1G 2.63140−460ZF SC70−3(Pb−Free)MAX809SQ293T1G 2.93140−460ZG SC70−3(Pb−Free)MAX809SQ308T1G 3.08140−460ZH SC70−3(Pb−Free)MAX809SQ400T1G 4.00140−460SZ SC70−3(Pb−Free)MAX809SQ438T1G 4.38140−460ZI SC70−3(Pb−Free)MAX809SQ463T1G 4.63140−460ZJ SC70−3(Pb−Free)MAX809SQ293D1T1G 2.931−3.3ZK SC70−3(Pb−Free)MAX809SQ293D2T1G 2.9320−66ZL SC70−3(Pb−Free)MAX809SQ293D3T1G 2.93100−330ZM SC70−3(Pb−Free)†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.*Contact your ON Semiconductor sales representative for other threshold voltage options.ORDERING, MARKING AND THRESHOLD INFORMATIONPart Number V TH*(V)Timeout*(ms)Description Marking Package Shipping†MAX810RTR 2.63140−460Push−Pull RESET SPX SOT23−33000 / Tape & ReelMAX810RTRG 2.63140−460SPX SOT23−3(Pb−Free)MAX810STR 2.93140−460SPY SOT23−3MAX810STRG 2.93140−460SPY SOT23−3(Pb−Free)MAX810TTR 3.08140−460SPZ SOT23−3MAX810TTRG 3.08140−460SPZ SOT23−3(Pb−Free)MAX810MTR 4.38140−460SQA SOT23−3MAX810MTRG 4.38140−460SQA SOT23−3(Pb−Free)MAX810LTR 4.63140−460SQB SOT23−3MAX810LTRG 4.63140−460SQB SOT23−3(Pb−Free)MAX810SN120T1G 1.20140−460SSS SOT23−3(Pb−Free)MAX810SN293D1T1G 2.931−3.3SST SOT23−3(Pb−Free)MAX810SN293D2T1G 2.9320−66SSU SOT23−3(Pb−Free)MAX810SN293D3T1G 2.93100−330SSZ SOT23−3(Pb−Free)MAX810SQ120T1G 1.20140−460ZN SC70−3(Pb−Free)MAX810SQ263T1G 2.63140−460ZO SC70−3(Pb−Free)MAX810SQ293T1G 2.93140−460ZP SC70−3(Pb−Free)MAX810SQ438T1G 4.38140−460ZQ SC70−3(Pb−Free)MAX810SQ463T1G 4.63140−460ZR SC70−3(Pb−Free)MAX810SQ293D1T1G 2.931−3.3ZS SC70−3(Pb−Free)MAX810SQ293D2T1G 2.9320−66ZT SC70−3(Pb−Free)MAX810SQ293D3T1G 2.93100−330ZU SC70−3(Pb−Free)†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.*Contact your ON Semiconductor sales representative for other threshold voltage options.PACKAGE DIMENSIONSSOT−23 (TO236)CASE 318−08ISSUE AN*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*ǒmm inchesǓSCALE 10:1NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEADTHICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4.318−01 THRU −07 AND −09 OBSOLETE, NEW STANDARD 318−08.VIEW CDIM A MIN NOM MAX MINMILLIMETERS0.89 1.00 1.110.035INCHES A10.010.060.100.001b 0.370.440.500.015c 0.090.130.180.003D 2.80 2.90 3.040.110E 1.20 1.30 1.400.047e 1.78 1.90 2.040.070L 0.100.200.300.0040.0400.0440.0020.0040.0180.0200.0050.0070.1140.1200.0510.0550.0750.0810.0080.012NOM MAX L1 2.102.40 2.640.0830.0940.104H E0.350.540.690.0140.0210.029MAX809 Series, MAX810 SeriesPACKAGE DIMENSIONSSC−70 (SOT−323)CASE 419−04ISSUE Mǒmm inchesǓSCALE 10:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION元器件交易网。
MAX706中文资料_数据手册_参数
UNREGULATED DC
MAX667 +5V DC LINEAR
REGULATOR
PUSHBUTTON SWITCH
VCC
RESMR
MAX706 MAX813L
PFO
µP
VCC RESET I/O LINE NMI INTERRUPT
___________________________Features
o Available in Tiny µMAX Package
o Guaranteed RESET Valid at VCC = 1V o Precision Supply-Voltage Monitor
4.65V in MAX705/MAX707/MAX813L 4.40V in MAX706/MAX708
Output Current (all outputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA Continuous Power Dissipation (TA = +70°C)
Plastic DIP (derate 9.09mW/°C above +70°C) . . . . . . . 727mW SO (derate 5.88mW/°C above +70°C) . . . . . . . . . . . . . . . 471mW µMAX (derate 4.10mW/°C above +70°C) . . . . . . . . . . . . 330mW
3) A 1.25V threshold detector for power-fail warning, low-battery detection, or for monitoring a power supply other than +5V.
MAX2605-MAX2609中文资料
General DescriptionThe MAX2605–MAX2609 evaluation kits (EV kits) simplify evaluation of this family of voltage-controlled oscillators (VCOs). These kits enable testing of the devices’ per-formance and require no additional support circuitry.Both signal outputs use SMA connectors to facilitate connection to RF test equipment.These EV kits are fully assembled and tested. Their oscil-lation frequencies are set to approximately the midrange of the respective VCOs.Featureso Easy Evaluationo Complete, Tunable VCO Test Board with Tank Circuit o Low Phase Noiseo Fully Assembled and TestedEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits19-1673 Rev 0; 9/00Ordering InformationComponent SuppliersFor free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.MAX2606 Component ListMAX2605 Component ListE v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 2_______________________________________________________________________________________Quick StartThe MAX2605–MAX2609 evaluation kits are fully assembled and factory tested. Follow the instructions in the Connections a nd Setup section for proper device evaluation.Test Equipment Required•Low-noise power supplies (these are recommended for oscillator noise measurement). Noise or ripple will frequency-modulate the oscillator and cause spectral spreading. Batteries can be used in place of power supplies, if necessary.– Use a DC power supply capable of supplying +2.7V to +5.5V. Alternatively, use two or three 1.5V batteries.– Use a DC power supply capable of supplying +0.4V to +2.4V, continuously variable, for TUNE.Alternatively, use two 1.5V batteries with a resistive voltage divider or potentiometer.•An RF spectrum analyzer that covers the operating frequency range of the MAX2605–MAX2609• A 50Ωcoaxial cable with SMA connectors •An ammeter (optional)Connections and Setup1)Connect a DC supply (preset to +3V) to the V CC and GND terminals (through an ammeter, if desired) on the EV kit.2)Turn on the DC supply. If used, the ammeter readingMAX2607 Component ListMAX2608 Component ListEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________3approximates the typical operating current specified in the MAX2605–MAX2609 data sheet.3)Connect the VCO output (OUT+ or OUT-) to a spec-trum analyzer with a 50Ωcoaxial cable.4)Apply a positive variable DC voltage between 0.4V and 2.4V to TUNE.5)Check the tuning bandwidth on the spectrum analyz-er by varying the tuning voltage (+0.4V to +2.4V).Layout ConsiderationsThe EV kit PC board can serve as a guide for laying out a board using the MAX2605–MAX2609. Generally, the VCC pin on the PC board should have a decoupling capacitor placed close to the IC. This minimizes noisecoupling from the supply. Also, place the VCO as far away as possible from the noisy section of a larger sys-tem, such as a switching regulator or digital circuits.The VCO ’s performance is strongly dependent on the availability of the external tuning inductor. For best per-formance, use high-Q components and choose their val-ues carefully. To minimize the effects of parasitic ele-ments, which degrade circuit performance, place the tuning inductor and C BYP close to the VCO. For higher-frequency versions, include the parasitic PC board inductance and capacitance when calculating the oscillation frequency. In addition, remove the ground plane around and under the tuning inductor to minimize the effect of parasitic capacitance.Noise on TUNE translates into FM noise on the outputs;therefore, keep the trace between TUNE and the control circuitry as short as possible. If necessary, use an RC filter to further suppress noise, as done on the EV kits.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 4_______________________________________________________________________________________Figure 2. MAX2608/MAX2609 EV Kits SchematicFigure 1. MAX2605/MAX2606/MAX2607 EV Kits SchematicEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________5Figure 3. MAX2605/MAX2606/MAX2607 EV Kits ComponentPlacement Guide—Top Silk ScreenFigure 4. MAX2608/MAX2609 EV Kits Component PlacementGuide—Top Silk ScreenFigure 5. MAX2605/MAX2606/MAX2607 EV Kits PC BoardLayout—Component SideFigure 6. MAX2608/MAX2609 EV Kits PC Board Layout—Component SideMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.6_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits Figure 7. MAX2605/MAX2606/MAX2607/MAX2608/MAX2609EV Kits PC Board Layout—Ground Plane。
MAX1972中文资料
Features
o Current-Mode, 1.4MHz Fixed-Frequency PWM Operation o 180° Out-of-Phase Operation Reduces Input Capacitor o ±1% Output Accuracy Over Load, Line, and Temperature Ranges o 750mA Guaranteed Output Current o 2.6V to 5.5V Input o Power-On Reset Delay of 16.6ms (MAX1970) or 175ms (MAX1971 and MAX1972) o Power-Fail Output (MAX1970 and MAX1972 Only) o Power-On Reset Input (MAX1971 Only) o Operation Outside xDSL Band o Ultra-Compact Design with Smallest External Components o Outputs Adjustable from 0.8V to VIN or 1.8V/3.3V and 1.5V/2.5V Preset o All-Ceramic Capacitor Application o Soft-Start Reduces Inrush Current
Pin Configuration
TOP VIEW
RSI EN
RSI EN
IN
VCC
POR POR LX1 OUT1 1.8V 750mA
LX1 1 VCC 2 COMP1 3 FB1 4
16 PGND 15 LX2 14 IN
MAX1971 COMP1 COMP2 VCC FBSEL1 FB1
MAX976-MAX998中文资料
Single/Dual/Quad, SOT23, Single-Supply, High-Speed, Low-Power Comparators MAX976/MAX978/MAX998
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC).............................................................+6V SHDN (MAX998) .........................................................-0.3V to 6V All Other Pins..............................................-0.3V to (VCC + 0.3V) Duration of Output Short Circuit to GND or VCC ........Continuous Continuous Power Dissipation (TA = +70°C) 6-Pin SOT23-6 (derate 7.1mW/°C above +70°C) .........571mW 8-Pin µMAX (derate 4.10mW/°C above +70°C) ............330mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ..696mW 16-Pin QSOP (derate 8.33mW/°C above +70°C)..........667mW Operating Temperature Range ..........................-40°C to +85°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C
D1267中文资料
Topr
–25 to +85
°C
• Storage temperature
Tstg
–40 to +125
°C
Recommended Operating Conditions
• Supply voltage
VH
14.5 to 15.5
V
• Supply voltage
VM
0
V
• Supply voltage
9 XV4
10
DCOUT 18
VSHT 17
VL 16 Vφ2
15 Vφ1
14
VM 13 Vφ3
12 Vφ4
11
Pin Description
Pin No. Symbol
1
CPP3
2
VH
3
DCIN
4
XSHT
5
XV2
6
XV1
7
XSG1
8
XV3
9
XSG2
10 XV4
11
Vφ4
12
Vφ3
13
VM
14
Vφ1
15
Vφ2
16
VL
17 VSHT
18 DCOUT
19 CPP2
20 CPP1
I/O
Description
O Charge pump
— Power supply (15V)
I Operational amplifier input
I Output control (VSHT)
I Output control (Vφ2)
V
Output noise voltage
MAX1978中文数据手册
用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。
可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。
内部MOSFET的开关速度经过优化, 可降低噪声和EMI。
超低漂移斩波放大器可保持±0.001°C的温度稳定性。
直接控制输出电流而不是电压, 以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。
真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC 电流。
MAX1979提供高达6A的单极性输出。
提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。
仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。
提供模拟输出以监控TEC温度和电流。
此外, 单独的过热和欠温输出表明当TEC温度超出范围时。
片上电压基准为热敏电阻桥提供偏置。
MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。
采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。
评估套件可用于加速设计。
应用光纤激光模块典型工作电路出现在数据手册的最后。
WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。
LA1267中文资料
Ordering number : EN2012ASANYO Electric Co.,Ltd. Semiconductor Bussiness HeadquartersTOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPANFunctionsFM : IF amplifier, quadrature detector, AF preamplifier,signal meter, tuning indicator drive output (commonwith stop signal, muting drive output).AM : RF amplifier, MIX, OSC (with ALC), IF amplifier,detector, AGC, signal meter, tuning indicator drive output (common with stop signal), IF signal output.Features• Minimum number of external parts required.• Excellent S/N.• Local OSC with ALC.• Local OSC buffer.• Tuning indicator pin (common with narrow-band stop signal and muting drive output).• Variable stop sensitivity (variable separately for FM,AM)• Low whistle.• Signal meter pin.• Espesially suited for AM stereo, IF count electronic tuning because of AM IF signal output.[LA1267]SANYO : DIP24SConditionsRatingsUnit 16V 20mA 1mA 2mA 650mW –20 to +70°C –40 to +125°CConditionsRatingsUnit 8.5V 6 to 14VOperating Characteristics at Ta=25°C, V CC =8.5V, See specified Test CircuitParameterSymbolConditionsRatings mintyp maxUnit[AM : f=1MHz]Quiescent current Icco No input1826mA Detection output V O 1V IN =20dBµ, 400Hz, 30% mod.305090mV V O 2V IN =80dBµ, 400Hz, 30% mod.110160220mV S/NS/N1V IN =20dBµ1620dB S/N2V IN =80dBµ4954dB Total harmonic distortion THD1V IN =80dBµ, 400Hz, 30% mod.0.3 1.0%THD2V IN =107dBµ, 400Hz, 30% mod.0.5 2.0%Signal meter output V SM 1No input 000.2V V SM 2V IN =80dBµ 2.4 2.8 3.1V LED lighting sensitivity VLED on I LED =1mA 152433dBµLocal OSC buffer output V OSCf OSC =1.45MHz220275330mV[FM : f=10.7MHz]Quiescent current Icco No input2028mA Input limiting sensitivity –3dBL.S.3dB down, 400Hz, 100% mod.3137dBµDemodulation output V O V IN =100dBµ, 400Hz, 100% mod.240330460mV S/NS/N V IN =100dBµ7884dB Total harmonic distortion THD V IN =100%dBµ, 400Hz, 100% mod.0.030.3%Signal meter output V SM 1No input 000.2V V SM 2V IN =100dBµ 1.5 2.7 3.1V LED lighting sensitivity LED-on I LED =1mA355065dBµLED lighting bandwidth LED-BW V IN =100dB, I LED =1mA 90120160kHz AM rejection ratioAMRV IN =100dBµ, FM=400Hz 4560dB100% mod. AM=1kHz 30% mod.Note : Be fully careful of dielectric breakdown.Ambient temperature, Ta – °CA l l o w a b l e p o w e r d i s s i p a t i o n , P d m a x – m WHow to use the LA12671. LED lighting, muting drive output, stop signal (SD).• For LED lighting, muting drive output, stop signal, the output at pin 8 is used.• The voltage on pin 8, when tuned, turns from "H" to "L".(Active-Low)• Signal bandwidth at pin 8.– For AM, the bandwidth depends on the CF (BFU450CN) at pin 11. If a capacitor is connected in place of the CF, the bandwidth will get wider.– For FM, the bandwidth depends on the resistance across pins 9 and 22. If the resistance is increased, the bandwidth will get narrower. R=15k Ωmakes the bandwidth approximately120kHz.• Sensitivity adjustment of LED, muting, stop signal.– For FM, the semifixed variable resistor across pin 15 and GND is used.– For AM, the semifixed variable resistor across pins 15 and 16 is used. Be sure to start adjustment for FM, and then make adjustment for AM. For the stop signal sensitivity and FM stop signal bandwidth, the variations should be considered and it is recommended to use the semifixed variable resistor for adjustment. • LED lighting sensitivity setting for AM.For the LED lighting sensitivity setting for AM, it is desirable that the IC input be 30dBµ(antenna input :approximately 50dB/m). In this case, the value of VR1 is 30k Ω.Equivalent Circuit Block DiagramResistance across pins 9 and 22 – k ΩLED Lighting Bandwidth – Resistance across pins 9 and 22L E D l i g h t i n g b a n d w i d t h – k H z3. Local OSC buffer output• When local OSC buffer output wave form is saw-toothed at the SW mode, connect a resistance of 1.2k Ωor thereabouts across pin 24 and GND.4. AM input pin• It is desirable that the AM input pin (pin 21) be L-coupled to pin 20.• Inputting to pin 21 can be done by DC-cutting with a capacitor. However, an unbalance in the RF amplifier(differential amplifier) causes gain drop and whistle worsening.5. Capacitance across pin 9 and GND.A large capacitance across pin 9 and GND may cause a misstop at an adjacent channel when the channel select speed is made faster at the automatic channel select mode. In this case, decrease the capacitance across pin 9 and GND. However, if toodecreased, the LED will flutter at low modulation frequencies at the time of detuning. Therefore, it is recommended to fix the capacitance across pin 9 and GND to be 3.3µF to 10µF. The relation between modulation frequency and demodulation output voltage on pin 9 with the capacitance across pin 9 and GND as a parameter is shown right.• LED lighting sensitivity setting for FM.For the LED lighting sensitivity setting for FM, the IC inputmay be 45dBµto 60dBµ. With the variations in the front endconsidered, it is ideal that the IC input in a standard receiving set be 51dBµto 54dBµ. The lower value of VR2 for theLED lighting sensitivity setting is as illustrated right. Sincethe variations in the front end cause the IC input setting sensitivity to vary, it is recommended to use a value of VR2at an input voltage lower than a standard setting by 6dB or greater. For example, if IC input 53dBµis taken as a standard, use VR2≤100k Ωat IC input 47dBµ.2. AM/FM changeover• Two selections are available for changeover as shown below: (A) pin 19-used method and (B) pin 20-used method.• For (A), the voltage on pin 19 relative to V CC (pin 7) must be within the range of –0.8V to +0.1V. If not within this range, distortion and selectivity will get worse.• For (A), a resistance of 68k Ωat the IFT cold terminal, which is used to prevent the changeover circuit from malfunctioning, must be connected.(A) pin 19-use method for AM/FM changeover (B) Pin 20-used method for AM/FM changeoverIC input – dBµSemifixed Variable Resistor for FMV R 2 s e m i f i x e d v a r i a b l e r e s i s t o r v a l u e – k ΩLED lighting sensitivity setting for FM Ideal setting range Modulation frequency – HzV9 – Modulation FrequencyFM6. If the coupling coefficient of the local OSC coil is small and an antiresonance point of approximately 100MHz is present or the stray capacitance across pins 24 and 23 is large, a parasitic oscillation of approximately 100MHz may occur in the buffer output (pin 24). In this case, connect a capacitance of approximately 30pF across pin 24 and GND.7. AM OSC coilGenerally speaking, the following should be noted. Avoid winding with loose coupling between primary side and secondary side (especially SW1, SW2). To put it concretely, the pot core type is better than the screw core type which is loose in coupling. This prevents the local OSC frequency from turning third resonance frequency related to the coupling coefficient.8. Resistance across pin 8 and V DD .If pin 8 is used for the stop signal (SD) only, without using LED, it is recommended to fix resistance R L across pin 8and GND to be 51k Ωto 100k Ω.9. To prevent whistle from worsening, make the pattern of AM output pin 14 as short as possible.Input/Output AdmittanceTest Circuit : FM, AM-MWT1 : 4147-1457-177 (Sumida)T2 : HW-40174 (Mitsumi)T3 : HW-40130, 40131 (Mitsumi)Unit (resistance : Ω, capacitance : F)IF input voltage – dBµFM Input/Output CharacteristicsD e t e c t i o n o u t p u t , N o i s e v o l t a g e – d B mNoise voltageDetection outputIF input voltage – dBµFM Signal Meter Current Characteristic S i g n a l m e t e r c u r r e n t , I S M – m ANon-modulation See test circuit.Antenna input voltage – dBm MW Input/Output CharacteristicsN o i s e v o l t a g e , D e t e c t i o n o u t p u t – d B mT o t a l h a r m o n i c d i s t o r t i o n , T H D – %1MHz reception Mod. 400Hz, 30%D e t ec t i o n ou t p u t Antenna input voltage – dBmAM Signal Meter Voltage Characteristic S i g n a l m e t e r v o l t a g e , V S M – VAntenna input voltage – dBm AM Signal Meter Current Characteristic S i g n a l m e t e r c u r r e n t , I S M – m ANon-modulation See test circuit.Non-modulation See test circuit.Modulation frequency – HzMW Fidelity Characteristics A t t e n u a t i o n – d BT o t a l h a r m o n i c d i s t o r t i o n , T H D – %1MHz receptionAttenuationDistortioninputN o i s e vo l t a g e IF input voltage – dBµFM Signal Meter Voltage Characteristic S i g n a l m e t e r v o l t a g e , V S M – VNon-modulation See test circuit.IF input voltage – dBµT o t a l h a r m o n i c d i s t o r t i o n , T H D – %A Mo ut p utReceiving frequency, f r – kHz MW Reception CharacteristicS e n s i t i v i t y – d B /m I n t e r f e r e n c e – d BTracking adjust at each frequency IF interferenceFrequency deviation, ∆f – HzMW Detuning CharacteristicD e t e c t i o n o u t p u t – d B mSupply voltage, V CC – V L o c a l O S C b u f f e r o u t p u t , V O S C – m VL o c a l O S C b u f f e r o u t p u t , V O S C – m VIF input voltage – dBµC u r r e n t d r a i n , I C C – m AReceiving frequency, f r – kHz Frequency deviation, ∆f – kHz Selectivity CharacteristicA t t e n u a t i o n – d BOutput 25mV const.Frequency, f – HzSpurious CharacteristicR e s p o n s e – d BReception : 1kHz(400Hz-30% mod.,detection output 20mV)M a x . s e ns i t i v i t yUsab le se nsiti vity (400Hz-30% m od., S/N=20dB )I m a g e i nt e r f e r e n c eFM Current Drain CharacteristicAntenna input voltage – dBmC u r r e n t d r a i n , I C C – m AAM Current Drain CharacteristicI CC (in cl ud in g no L ED cu rre nt )(including no LED current)Ambient temperature, Ta – °CAmbient temperature, Ta – °CFM Temperature Characteristics FM V CC CharacteristicsAM Temperature CharacteristicsS e n s i t i v i t y – d B µD e t e c t i o n o u t p u t – d B mS e n s i t i v i t y – d B µS m e t e r v o l t a g e , V S M – VC u r r e n t d r a i n , I C C – m AT o t a l h a r m o n i c d i s t o r t i o n , T H D – %T o t a l h a r m o n i c d i s t o r t i o n ,T H D – %B a n d w i d t h , L E D -B W – k H zS e n s i t i v i t y – d B µN o i s e v o l t a g e , V N – d B m D e t e c t i o n o u t p u t – d B m S m e t e r v o l t a g e , V S M – VS m e t e r v o l t a g e , V S M – VN o i s e v o l t a g e , V N – d B mD e t e c t i o n o u t p u t – d B mDetection outputInputinputinputin p u tD et ec tio n ou tp utin pu tinputinputno inputS/N=20dB sensitivity 400Hz-100% mod.Outp ut 20mV sens itivit yLE D lig hti ng sen sit ivi tyin p u ti n p u tin pu tno inputDetection output (Input=100dBµ)–3dB limiting sensitivityS meter voltageInput=0dBµL E D l ig h ti n g s e n siti v it yI n p u t=100d BµIn p u t=50d B µCu r r e n t d r a i n , I C C N o s i gn a l –3d B li mit ing sen sitiv ityLED lig htin g sen sitiv ityin p u tTest Circuit : SW2Unit (resistance : Ω, capacitance : F)T1 : 4147-1457-177 (Sumida)T2 : HW-40174 (Mitsumi)T3 : HW-40130, 40131 (Mitsumi)Supply voltage, V CC – VAM V CC CharacteristicsD e t e c t i o n o u t p u t – d BS e n s i t i v i t y – d B mS m e t e r v o l t a g e , V S M – VC u r r e n t d r a i n , I C C – m AC ur r e n t d r a i n , I C C N o s i gn a l Detection output (Input=100dBµ)Ou tp ut 20V se ns iti vi tyLE D lig ht in g se ns iti vi tyIn pu t=100d B/mIn p u t=50d B /mS meter voltageInput=0dB/mDummyIEC input voltage – dBµDetection output SW2 Input/Output CharacteristicsN o i s e v o l t a g e , D e t e c t i o n o u t p u t – d B mT o t a l h a r m o n i c d i s t o r t i o n , T H D – %IEC input voltage – dBµSW2 Input/Output CharacteristicsN o i s e v o l t a g e , D e t e c t i o n o u t p u t – d B mReceiving frequency, f r – MHzU s a b l e s e n s i t i v i t yI m a g es e n s i t i v i t yM a x . s e n s i t i v i t y I n p u t a t d e t e c t i o n o u t pu t 20m V I m a g e i n t e r f e r e n c e – d B S e n s i t i v i t y – d B µFrequency, f – MHz8.5MHz Spurious CharacteristicsS p u r i o u s – d BR e c e i v i n g f r e q u e n c yI m a g e f r e q u e n c yT o t a l h a r m o n i c d i s t o r t i o n , T H D – %IEC input voltage – dBµD e t e c t i o n ou t p u tSW2 Input/Output CharacteristicsN o i s e v o l t a g e , D e t e c t i o n o u t p u t – d B m T o t a l h a r m o n i c d i s t o r t i o n , T H D – %N o i s e v o l t a g eN o i s e v o l t a g eD e te c ti o n o u tp u tN o i s e v o l t a g eD e te c ti o n o u tp u tReferenced to output –20dBmReceiving frequency, f r – MHz8.5 to 9.4MHz Spurious CharacteristicsS p u r i o u s – d BR e c e i v i n g f r e q u e n c yI m a g e f r e q u e n c yReferenced to output –20dBmS /N =20d BCoil SpecificationsMW antennaBar antenna (for PVC22KTL)• TN-10896 (Mitsumi)Tight solenoid direct winding17T 0.5φspace winding 4T tight solenoid windingLoop antenna (for SVC321)• LA300 (Korin Giken)Loop antenna matching coil • KT-412MW OSC• 4147-1457-177 (Sumida)For PVC22KTL• KO-387 (Korin Giken)For SVC321AM-IFTMatching coil for SFU450B (1-element type)Matching coil for SFZ450B (2-element type)FM single tuning detection coil(Mitsumi)Internal 180pF (Sumida)Internal 180pF(Mitsumi)Internal 180pF (Sumida)Internal 180pF(Mitsumi)Internal 82pF±10%Damping resistance Internal 82pF±10%Damping resistance(Sumida)FM double tuning detection coil(Mitsumi)(Mitsumi)Internal 100pF±10%Internal 100pF±10%(Sumida)(Sumida)Internal 62pF±10%Internal 82pF±10% Unit (resistance : Ω)Sample Application Circuit : LA1186N + LA1265 (US Band)U n i t (r e s i s t a n c e : Ω, c a p a c i t a n c e : F )B .P . F S N Y -2101 (S u m i d a )T 1: Y T -30224 (M i t s u m i )T 2: K L 412 (K o r i n )T 3: K O 387 (K o r i n )T 4: H W -40174 (M i t s u m i ), 2150-2061-049 (S u m i d a )T 5a : H W -40130 (M i t s u m i ), 2231-077 (S u m i d a )T 5b : H W -40131 (M i t s u m i ), 2231-078 (S u m i d a )L 1: Y T -30196 (M i t s u m i ), 0708-700 (S u m i d a )L 2: H W 50433 (M i t s u m i ), 0267-034 (S u m i d a )This catalog provides information as of November, 1997. Specifications and information herein are subject to change without notice.LA1186N+LA1267 Overall CharacteristicsInput – dBµDetection output (75k dev)Signal meterNoise voltage A Mo u t p u t(1kH z-30%)N o i s e v o l t a g e , A M o u t p u t , D e t e c t i o n o u t p u t – d B mT o t a l h a r m o n i c d i s t o r t i o n , T H D – %S i g n a l m e t e r – VLA1186N+LA1267 Overall CharacteristicsInput – dB/mD et e c t i o no u t p u t(30%)Signal meterN o i s e v o l t a g eN o i s e v o l t a g e , A M o u t p u t , D e t e c t i o n o u t p u t – d B mT o t a l h a r m o n i c d i s t o r t i o n , T H D – %S i g n a l m e t e r – V。
MAX1268BCEG+;MAX1268BEEG+;MAX1266BEEI+;MAX1268BCEG+T;MAX1266BCEI+T;中文规格书,Datasheet资料
o Low Current 2.8mA (420ksps) 1.0mA (100ksps) 400µA (10ksps) 2µA (Shutdown)
o Internal 6MHz Full-Power Bandwidth Track/Hold
PARAMETER DC ACCURACY (Note 1) Resolution
Relative Accuracy (Note 2)
Differential Nonlinearity Offset Error Gain Error Gain Temperature Coefficient
SYMBOL
/
MAX1266/MAX1268
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs with +2.5V Reference and Parallel Interface
ABSOLUTE MAXIMUM RATINGS
VDD to GND ..............................................................-0.3V to +6V CH0–CH5, COM to GND ............................-0.3V to (VDD + 0.3V) REF, REFADJ to GND.................................-0.3V to (VDD + 0.3V) Digital Inputs to GND ...............................................-0.3V to +6V Digital Outputs (D0–D11, INT) to GND.......-0.3V to (VDD + 0.3V) Continuous Power Dissipation (TA = +70°C)
Maxcell称重显示器使用说明书
.................................. 37
1
Maxcell
2-3-12 RS485 ID 输入 (选配功能)
............................................. 38
命令格式说明 ...................................................................................................................... 39
2-3-9 RS232 一般或简易输出重量 6 位或 7 位选择
..................... 35
2-3-10 RTC 时间调整
............................................................... 36
2-3-11 调整打印时年月日或日月年显示方式
2-3-3 输出格式选择
.................................................................... 29
2-3-4 传送方式设定
.................................................................... 30
使用前之准备工作
一. 请将本机放置于稳固且平坦之桌面上使用,勿放于摇动或振动之台架上。 二. 避免将本机放置于温度变化过大或空气流动剧烈之场所,如日光直射或冷气机之出风口。 三. 请使用独立之电源插座,以避免其它电器用品干扰。 四. 打开电源时,秤盘上请勿放置任何东西。 五. 产品使用时,秤物之重心须位于秤盘之中心点,且秤物不超出秤盘范围,以确保其准确度。 六. 使用本机前,请先温机 15 ~ 20 分钟。 七. 请注意当低电源警示之符号( )闪烁时,则表示须再行充电。 八. 如对本产品有任何建议,请不吝指正。
MAX14878-MAX14880 高速传输接收器的中文名字说明书
General DescriptionThe MAX14878–MAX14880family of high-speed trans-ceivers improve communication and safety by integrating galvanic isolation between the CAN protocol controller side of the device and the physical wires of the network (CAN)bus.Isolation improves communication by breaking ground loops and reduces noise where there are large differences in ground potential between ports.The MAX14879provides up to2750V RMS(60s)of galvanic isolation,while the MAX14878/MAX14880provide up to 5000V RMS(60s)of galvanic isolation in8-pin and16-pin SOIC packages.All transceivers operate up to the maximum high-speed CAN data rate of1Mbps.The MAX14879/MAX14880fea-ture an integrated standby input(STB)on the isolated side of the transceiver to disable the driver and place the trans-ceiver in a low-power standby mode.The MAX14878does not include the standby input.The MAX14878–MAX14880transceivers feature integrat-ed protection for robust communication.The receiver input common-mode range is±25V,exceeding the ISO11898 specification of-2V to+7V,and are fault tolerant up to ±54V.Driver outputs/receiver inputs are also protected from±15kV electrostatic discharge(ESD)to GNDB on the bus side, as specified by the Human Body Model (HBM). Interfacing with CAN protocol controllers is simplified by the wide1.71V to5.5V supply voltage range(V DDA)on the controller side of the device.This supply voltage sets the interface logic levels between the transceiver and con-troller.The supply voltage range for the CAN bus side of the device is 4.5V to 5.5V (V DDB).The MAX14878–MAX14880are available in a wide-body 16-pin SOIC package with8mm of creepage and clear-ance.The MAX14878is also available in8-pin wide-body SOIC packages with5mm(MAX14878)and8mm (MAX14878W)creepage.All devices operate over the -40°C to +125°C temperature range.Applications●Industrial Controls●HVAC●Building Automation●Switching Gear Benefits and Features●Integrated Protection for Robust Communication• 2.75kV RMS, 3.5kV RMS, or 5kV RMS Withstand Isolation Voltage for 60s (Galvanic Isolation)•±25V Receiver Input Common-Mode Range•±54V Fault Protection on Receiver Inputs●High-Performance Transceiver Enables FlexibleDesigns•Wide 1.71V to 5.5V Supply for the CAN Controller Interface•Available 16-pin and 8-pin SOIC Package Pin Configurations•Data Rates up to 1Mbps (Max)•Dominant Timeout ProtectionSafety Regulatory Approvals●UL According to UL1577 (Basic Insulation) (16-PinPackage Devices Only)Ordering Information appears at end of data sheet.Click here to ask about the production status of specific part numbers.MAX14878–MAX14880 2.75kV, 3.5kV, and 5kV Isolated CANTransceiversSimplified Block DiagramAbsolute Maximum RatingsV DDA to GNDA.........................................................-0.3V to +6V V DDB to GNDB.........................................................-0.3V to +6V TXD to GNDA...........................................................-0.3V to +6V RXD to GNDA...........................................-0.3V to (V DDA+ 0.3V) STB to GNDB...........................................................-0.3V to +6V I.C. to GNDB.............................................-0.3V to (V DDB+ 0.3V) CANH or CANL to GNDB, (Continuous).................-54V to +54V Short-Circuit Duration (CANH to CANL).....................Continuous Short-Circuit Duration (RXD to GNDA or V DDA)........Continuous Continuous Power Dissipation (T A= +70ºC)16-pin W SOIC (derate 14.1mW/°C above +70°C)..1126.8mW 8-pin W SOICW8MS+1 (derate 9.39mW/°C above +70°C)........751.17mW W8MS+5 (derate 11.35mW/°C above +70°C)......908.06mW Operating Temperature Range.............................-40ºC to 125ºC Junction Temperature.......................................................+150ºC Storage Temperature Range..............................-60ºC to +150ºC Lead Temperature (soldering, 10s)...................................+300ºC Soldering Temperature (reflow)........................................+260ºCNOTE:See the Isolation section of the Electrical Characteristics table for maximum voltage from GNDA to GNDBStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Package InformationFor the latest package outline information and land patterns (footprints), go to /packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using afour-layer board. For detailed information on package thermal considerations, refer to / thermal-tutorial.Electrical Characteristics(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V. (Notes 1, 2)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWERProtocol Controller Side(A-Side) Voltage SupplyV DDA 1.71 5.5V CAN Bus Side (B-Side)Voltage SupplyV DDB 4.5 5.5VV DDA Supply Current I DDA V DDA= 5V0.340.83mA V DDA= 3.3V0.340.76V DDA= 1.8V0.330.64V DDB Supply Current I DDB V DDB= 5V, TXD = GNDA,R L= open4.37.3mA V DDB= 5V, TXD = GNDA, R L= 60Ω47.667.3V DDB= 5V, TXD = V DDA, R L= 60Ω 3.2V DDB= 5V, CANH shorted to CANL,TXD = V DDA3.2V DDB= 5V, CANH shorted to CANL,TXD = GNDA94140V DDB= 5V, TXD = V DDA, R L= 60Ω,STB = V DDB(MAX14879/MAX14880)0.40.8V DDA UndervoltageLockout Threshold,RisingV DDAUVLO_R 1.66VV DDA Undervoltage-Lockout Threshold,FallingV DDAUVLO_F 1.3 1.55VV DDB Undervoltage-Lockout Threshold,RisingV DDBUVLO_R 4.25VV DDB Undervoltage-Lockout Threshold,FallingV DDBUVLO_F 3.45V CANH, CANL TRANSMITTERDominant Output Voltage V O(DOM)V TXD= 0V,R L= 50Ω to 65ΩCANH 2.75 4.5VCANL0.5 2.25Electrical Characteristics (continued)(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V. (Notes 1, 2)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSDominant Differential Bus Output Voltage V OD(V CANH- V CANL),V TXD= 0V,R L= 50Ω to65Ω, Figure 1R CM is open 1.53V (V CANH- V CANL),V TXD= 0V,R L= 50Ω to65Ω, Figure 2R CM= 1.25kΩ,-17V < V CM<+17V1.53(V CANH- V CANL),V TXD= 0V,R L= 50Ω to65Ω, Figure 3RCM = 1.25kΩ,-25V < VCM <+25V1.13Recessive Voltage Output V ORV TXD= V DDA,No loadCANH23VCANL23Short-Circuit Current I SHORT V TXD= 0V CANH shorted toGNDB5075100mA CANL shorted toVDDB5075100Recessive Differential Bus Output Voltage V ODR(V CANH- V CANL),V TXD= V DDARL is open-500+50mVRL = 60Ω-120+12CANH/CANL OutputVoltage in Standby Mode V STBMAX14879/MAX14880 only,V TXD= V DDA, No load, STB = V DDB70175mVDC BUS RECEIVER (CANH and CANL externally driven)Common Mode Input Range V CMCANH or CANL toGNDB, RXDoutput validNormal operation-25+25VStandby mode(MAX14879/MAX14880 only)-12+12Differential Input Voltage V DIFF V TXD= V DDA Recessive0.5V Dominant, No load0.9Differential InputHysteresisV DIFF(HYST)125mVStandby Mode Differential Input Voltage MAX14879/MAX14880 only,V TXD= V DDA,V STB= V DDBRecessive0.45VDominant 1.15Common-Mode Input Resistance R INV TXD= V DDA, R IN= ΔV/∆I,∆V = +300mV, V STB= GNDB(MAX14879/MAX14880)1050kΩDifferential Input Resistance R IDV TXD= V DDA, R IN= ∆V/∆I,∆V = +300mV, V STB= GNDB(MAX14879/MAX14880)20100kΩInput Leakage Current I LKG V DDB= 0V, V CANH= V CANL= 5V310μA Input Capacitance C IN CANH or CANL to GNDB (Note 3)14.420pFElectrical Characteristics (continued)(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V. (Notes 1, 2)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Differential InputCapacitanceC IND CANH to CANL (Note 3)7.210pF LOGIC INTERFACE (RXD, TXD, STB)Input High Voltage V IH TXD 1.71V ≤ V DDA<2.25V0.75 xV DDAV 2.25V ≤ V DDA≤5.5V0.7 xV DDASTB (MAX14879/MAX14880 only)0.7 xV DDBInput Low Voltage V IL TXD, 1.71 ≤ V DDA< 2.25V0.7V TXD, 2.25V ≤ V DDA≤ 5.5V0.8STB (MAX14879/MAX14880 only)0.8Output High Voltage V OH RXD, I SOURCE= 4mA V DDA-0.4VOutput Low Voltage V OL RXD, I SINK= 4mA0.4V Input Pullup Current I PU TXD-10-5-1.5μA Input PulldownResistanceR PD STB (MAX14879/MAX14880 only)75250kΩInput Capacitance5pF PROTECTIONFault Protection Range CANH to GNDB, CANL to GNDB-54+54VESD Protection (CANH and CANL to GNDB)IEC 61000-4-2 Air-Gap Discharge±10kV IEC 61000-4-2 Contact Discharge±5Human Body Model±15ESD Protection (CANH and CANL to GNDA)IEC 61000-4-2 Contact Discharge±3kV IEC 61000-4-2 Air Gap Discharge, 330pFcapacitor connected between GNDA andGNDB±10ESD Protection (AllOther Pins)Human body model±2kV Thermal ShutdownThresholdTemperature rising+160°C Thermal ShutdownHysteresis13°CElectrical Characteristics - Switching(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V, STB = GNDB.)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSDifferential Driver Output Rise Time t RR L= 60Ω, C L= 100pF, R CM isopen, Figure 120nsElectrical Characteristics - Switching (continued)(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V, STB = GNDB.)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSDifferential Driver Output Fall Time t FR L= 60Ω, C L= 100pF, R CM isopen, Figure 133nsTXD to RXD Loop Delay t LOOP R L= 60Ω, C L= 100pF,C RXD= 15pF, Dominant to recessive andrecessive to dominant. Figure 2210nsTXD Propagation Delay t PDTXD_RDR L= 60Ω,C L= 100pF,R CM open,Figure 1Recessive toDominant95ns t PDTXD_DRR L= 60Ω,C L= 100pF,R CM open,Figure 2Dominant toRecessive95RXD Propagation Delay t PDRXD_RDC L= 15pF,Figure 3Recessive toDominant115ns t PDRXD_DRC L= 15pF,Figure 4Dominant toRecessive115TXD Dominant Timeout t DOM(Note 4) 1.4 4.8msUndervoltage Detection Time to Normal Operation t UV(VDDA),t UV(VDDB)110230μsWake-up Time to Dominant State t WAKEMAX14879/MAX14880 only, Instandby mode (V STB= V DDB), Figure 40.55μsStandby Propagation Delay MAX14879/MAX14880 only, RXD,Dominant to recessive, V STB= V DDB,C L= 15pF285500nsStandby to NormalMode Delayt EN MAX14879/MAX14880 only40μsNormal to Standby Dominant Mode Delay MAX14879/MAX14880 only,(V CANH- V CANL) > 1.2V65μsElectrical Characteristics–Package Insulation and Safety Related Specifications: W 16-SOIC(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V, STB = GNDB.) (Note 5)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Insulation Resistance RIO T A= 25°C, V IO= 500V>1012ΩBarrier Capacitance C IO GNDA to GNDB2pF Minimum CreepageDistanceCPG8mm Minimum ClearanceDistanceCLR8mm Internal Clearance Distance through insulation0.015mmElectrical Characteristics–Package Insulation and Safety Related Specifications: W 16-SOIC (continued)(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V, STB = GNDB.) (Note 5)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Comparative TrackingIndexCTI550Electrical Characteristics–Package Insulation and Safety Related Specifications: W 8-SOIC(V DDA-V GNDA=1.71V to5.5V,V DDB-V GNDB=1.71V to5.5V,C L=15pF,T A=-40°C to+125°C,unless otherwise noted.Typical values are at V DDA- V GNDA= 3.3V, V DDB- V GNDB= 3.3V, GNDA = GNDB, T A= 25°C, unless otherwise noted.) (Notes 2,3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Insulation Resistance RIO T A= 25°C, V IO= 500V> 1012ΩBarrier Capacitance C IO GNDA to GNDB2pFMinimum Creepage Distance CPGMAX14878 5.5mm MAX14878W8Minimum Clearance Distance CLRMAX14878 5.5mm MAX14878W8Internal Clearance Distance through insulation0.015mm Comparative TrackingIndexCTI>400Electrical Characteristics–Insulation Characteristics (As Defined by VDE 0884-10): W 16-SOIC(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V, STB = GNDB.) (Note 5)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSPartial Discharge V PR Method B1 =V IORM x 1.875(t = 1s, partialdischarge < 5pC)MAX148791182V PMAX14878/MAX148802250Maximum Repetitive Peak Voltage V IORMMAX14879630V P MAX14878/MAX148801200Maximum Working Voltage V IOWMGNDA to GNDBcontinuousMAX14879445V RMSMAX14878/MAX14880848Maximum Transient Overvoltage V IOTMMAX148794600V P MAX14878/MAX148808400Isolation Voltage V ISO GNDA to GNDB for60sMAX14879 2.75kV RMSMAX14878/MAX148805Electrical Characteristics–Insulation Characteristics (As Defined by VDE 0884-10): W 16-SOIC (continued)(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V, STB = GNDB.) (Note 5)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Maximum SurgeIsolation VoltageV IOSM IEC 61000-4-5, Basic insulation10kV Barrier Resistance R S T A= +150°C, V IO= 500V>109ΩClimate Category 40/125/21Pollution Degree DIN VDE 0110, Table 12Electrical Characteristics–Insulation Characteristics: W 8-SOIC(V DDA=1.71V to5.5V,V DDB=4.5V to5.5V,T A=-40°C to+125°C,STB or I.C.=GNDB.Typical values are at T A=+25°C with GNDA = GNDB, V DDA= 3.3V, V DDB= 5V, STB = GNDB.) (Note 5)PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITSMaximum Repetitive Peak Voltage V IORMMAX14878630V P MAX14878W1200Maximum Working Voltage V IOWMGNDA to GNDBcontinuousMAX14878445V RMSMAX14878W848Maximum Transient Overvoltage V IOTMMAX148785000V P MAX14878W8400Isolation Voltage V ISO GNDA to GNDB for60sMAX14878 3.5kV RMSMAX14878W5Maximum SurgeIsolation VoltageV IOSM IEC 61000-4-5, Basic insulation10kV Barrier Resistance R S T A= +150°C, V IO= 500V>109ΩClimate Category 40/125/21Pollution Degree2Note 1:All devices 100% production tested at T A= +25°C. Specifications over temperature are guaranteed by design.Note 2:All currents into the device are positive.All currents out of the device are negative.All voltages referenced to their respective ground (GNDA or GNDB), unless otherwise noted.Note 3:Not production tested. Guaranteed at T A= +25°C.Note 4:The dominant timeout feature releases the bus when TX is held low longer than t DO.CAN protocol guarantees a maximum of11successive dominant bits in any transmission.The minimum data rate allowed by the dominant timeout,then,is11/ t DO(min).Note 5:All16-pin package devices are100%production tested for high voltage conditions(this does not apply to the8-pin MAX14878AWA).Typical Operating Characteristics(V DDA= 3.3V, V DDB= 5V, 60Ω load between CANH and CANL, T A= +25°C, unless otherwise noted.)Typical Operating Characteristics (continued)(V DDA= 3.3V, V DDB= 5V, 60Ω load between CANH and CANL, T A= +25°C, unless otherwise noted.)Pin DescriptionPINNAME FUNCTIONREFSUPPLYTYPEMAX14878 16-PIN MAX148788-PINMAX14879,MAX14880CONTROLLER SIDE (A-SIDE)131V DDA Power Supply Input for theController Side/A-Side. BypassV DDA to GNDA with 0.1μFcapacitor as close to the deviceas possible.V DDA Power2, 842, 8GNDA Controller Side/A-Side Ground V DDA Ground315RXD Receiver Output. RXD is highwhen the bus is in the recessivestate. RXD is low when the bus isin the dominant state.V DDA Digital Output4, 5, 7-4, 6, 7N.C.No Connection. Not internally connected. Connect to GNDA, V DDA, or leave unconnected.623TXD Transmit Data Input. CANH andCANL are in the dominant statewhen TXD is low. CANH andCANL are in the recessive statewhen TXD is high.V DDA Digital InputCAN BUS SIDE (B-SIDE)9, 1559, 15GNDB CAN Bus Side/B-Side Ground V DDB Ground10, 14-10I.C.Internally Connected. Connect to GNDB or leave unconnected.11-11I.C Internally Connected. Connect to GNDB, V DDB, or leave unconnected.12612CANL Low-Level CAN Differential BusLineV DDBDifferentialI/O13713CANH High-Level CAN Differential BusLineV DDBDifferentialI/OPin Description (continued)PINNAME FUNCTIONREFSUPPLYTYPEMAX14878 16-PIN MAX148788-PINMAX14879,MAX14880--14STB Standby Input, Active High. DriveSTB high to disable the CAN busdriver and place the transceiverin low-power standby mode.Drive STB low for normaloperation.V DDB Digital Input16816V DDB Power Supply Input for the CANBus Side/B-Side. Bypass V DDBto GNDB with a 0.1μF capacitoras close to the device aspossible.V DDB PowerDetailed DescriptionThe MAX14878–MAX14880isolated controller area network(CAN)transceivers provide2750V RMS or5000V RMS(60s) of galvanic isolation between the cable side(B-side)of the transceiver and the controller side(A-side).These devices allow up to1Mbps communication across an isolation barrier when a large potential exists between grounds on each side of the barrier.CANH and CANL outputs are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.IsolationData isolation is achieved using integrated capacitive isolation that allows data transmission between the controller side and cable side of the transceiver.Fault ProtectionThe MAX14878–MAX14880feature±54V fault protection on the CANH and CANL bus lines.When CANH or CANL is pulled above+30V(typ)or below-30V(typ),the I/O is set to high impedance.This wide fault protection range simplifies selecting external TVS components for surge protection.TransmitterThe transmitter converts a single-ended input signal(TXD)from the CAN controller to differential outputs for the bus lines (CANH, CANL). The truth table for the transmitter and receiver is given in Table 1.Transmitter Dominant TimeoutThe MAX14878–MAX14880feature a transmitter-dominant timeout(t DOM)that prevents erroneous CAN controllers from clamping the bus to a dominant level by maintaining a continuous low TXD signal.When TXD remains in the dominant state (low) for greater than t DOM, the transmitter is disabled, releasing the bus to a recessive state (Table 1).After a dominant timeout fault, normal transmitter function is re-enabled on the rising edge of a TXD.The transmitter-dominant timeout limits the minimum possible data rate to 9kbps for standard CAN protocol.Driver Output ProtectionThe MAX14878–MAX14880feature integrated circuitry to protect the transmitter output stage against a short-circuit to a positive or negative voltage by limiting the driver current.The transmitter returns to normal operation once the short is removed.Thermal shutdown further protects the transceiver from excessive temperatures that may result from a short by setting the transmitter outputs to high impedance when the junction temperature exceeds+160°C(typ).The transmitter returns to normal operation when the junction temperature falls below the thermal shutdown hysteresis.ReceiverThe receiver reads the differential input from the bus(CANH,CANL)and transfers this data as a single-ended output (RXD)to the CAN controller.During normal operation,a comparator senses the difference between CANH and CANL, V DIFF=(V CANH-V CANL),with respect to an internal threshold of0.7V(typ).If V DIFF>0.9V,a logic-low is present on RXD. If V DIFF< 0.5V, a logic-high is present.The CANH and CANL common-mode range is±25V.RXD is logic-high when CANH and CANL are shorted or terminated and undriven.Thermal ShutdownIf the junction temperature exceeds+160°C(typ),the device is switched off.During thermal shutdown,CANH and CANL are high-impedance and all IC functions are disabled.The transmitter outputs are re-enabled and the device resumes normal operation when the junction temperature drops below 147°C (typ).Table 1. Transmitter and Receiver Truth Table When Not Connected to the Bus TXD TXD LOW TIME CANH CANL BUS STATE RXD LOW< t DOM HIGH LOW DOMINANT LOW LOW> t DOM V DDB/2V DDB/2RECESSIVE HIGH HIGH X V DDB/2V DDB/2RECESSIVE HIGHApplications InformationReduced EMI and ReflectionsIn multidrop CAN applications,it is important to maintain a single linear bus of uniform impedance that is properly terminated at each end. A star configuration should never be used.Any deviation from the end-to-end wiring scheme creates a stub.High-speed data edges on a stub can create reflections back down the bus.These reflections can cause data errors by eroding the noise margin of the system.Although stubs are unavoidable in a multidrop system,care should be taken to keep these stubs as short as possible,especially when operating with high data rates.Typical Operating CircuitOrdering InformationPART NUMBER ISOLATION VOLTAGE (kV RMS)STANDBY OPERATING TEMPERATURE PACKAGE MAX14878AWA+ 3.5NO-40°C to +125°C W 8-SOIC MAX14878AWA+T 3.5NO-40°C to +125°C W 8-SOIC MAX14878AWE+5NO-40°C to +125°C W 16-SOIC MAX14878AWE+T5NO-40°C to +125°C W 16-SOIC MAX14878WAWA+5NO-40°C to +125°C W 8-SOIC MAX14878WAWA+T5NO-40°C to +125°C W 8-SOIC MAX14879AWE+ 2.75YES-40°C to +125°C W 16-SOIC MAX14879AWE+T 2.75YES-40°C to +125°C W 16-SOIC MAX14880AWE+5YES-40°C to +125°C W 16-SOIC MAX14880AWE+T5YES-40°C to +125°C W 16-SOICRevision HistoryREVISION NUMBER REVISIONDATEDESCRIPTIONPAGESCHANGED06/17Initial release—18/17Updated parameters in Electrical Characteristics table and added Typical Operating Circuit7, 14 210/17Corrected the Pin Description section for internally connected pins; updated Figure 29, 12 33/18Updated the Safety Regulatory Approvals section1 46/18Updated Pin Description table1253/19Updated the General Description, Benefits and Features, Package Information, Electrical Characteristics, Pin Configuration, and Pin Description to add a Wide 8-Pin SOIC package;added MAX14878AWA+ and MAX14878AWA+T to the Ordering Information table1, 3, 8,12, 1465/19Updated the General Description, Benefits and Features, Safety Regulatory Approvals,Electrical Characteristics–Package Insulation and Safety Related Specifications: W 8-SOIC, Electrical Characteristics–Insulation Characteristics (As Defined by VDE 0884-10): W16-SOIC, Electrical Characteristics–Insulation Characteristics: W 8-SOIC, and OrderingInformation sections1–16709/20Updated the General Description, Absolute Maximum Ratings, Package Information,Electrical Characteristics–Package Insulation and Safety Related Specifications: W 8-SOIC,Electrical Characteristics–Insulation Characteristics: W 8-SOIC, and Ordering Informationsections1, 3, 8-9,19For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https:///en/storefront/storefront.html. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.。
MAX266中文数据手册
MAX266中文数据手册MAX266/265中文数据手册By Hi_Cracker @whu引脚电阻可编程通用高效滤波器-----MAX266/265General Description和MAX265是高效的容滤波器,专门设计用于需要高精度滤波的应用MAX266场合。
内置了两个独立的滤波模块,可以配置成低通,高通,带通,带阻,全通滤波器。
中心频率或者截止频率的控制需要外接电阻以及6 Pin-Strapped 的输入特性来编程实现,然而,Q值仅用电阻连接实现。
各种各样类型的滤波器都可以实现(巴特沃斯,切比雪夫,椭圆滤波器等等)。
内部集成了两个运算放大器。
MAX265可以将中心/截止频率可以最高调到40Khz,然而,MAX266,通过使用一个低范围的fclk/fo比例系数,可以将fos 调到140Khz。
4MHZ系统时钟,可以通过一个晶振或是额外的源获得。
滤波器的操作电压为从±2.37v到±6.3v或者+5V的单电源供电。
Application:声纳电子设备Anti-Aliasing 滤波器数字信号处理震动音频分析远程通信测试仪器Features滤波器参数设置软件化256bit的频率控制字电阻调整Q值和fo140Khz频率调节范围±5V或者单电源﹢5V操作电压Introduction每个MAX266/265都包含的两个可配置滤波器模块已经显示在数据手册前面的功能框图上。
fclk/fo编程输入(F0-F5)被两个滤波模块共用,然而,每个部分的fo仍然受到各自外接电阻的独立调节。
各个模块的的Q值也是受到各自的外接电阻的独立调节的。
MAX266使用比MAX265更低范围的取样比率(fclk/fo),这样就可以产生更高的信号带宽以及fo的可编程范围。
降低fclk/fo产生的影响主要就是比MAX265的滤波器参数的连续性稍微差了一些,但是这些不同可以通过使用图23所示的图形或是美信得滤波器软件来补偿。
MAX267BCWG-T中文资料
Package InformationMAX263/MAX264/MAX267/MAX268Pin Programmable Universal and Bandwidth Filters (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline informationgo to /packages.)M A X 263/M A X 264/M A X 267/M A X 268Pin ProgrammableUniversal and Bandwidth Filters 24______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)Package Information (continued)MAX263/MAX264/MAX267/MAX268Pin Programmable Universal and Bandwidth Filters (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline informationgo to /packages.)M A X 263/M A X 264/M A X 267/M A X 268Pin ProgrammableUniversal and Bandwidth Filters 26______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX263/MAX264/MAX267/MAX268Pin ProgrammableUniversal and Bandwidth Filters______________________________________________________________________________________27Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages.)M A X 263/M A X 264/M A X 267/M A X 268Pin ProgrammableUniversal and Bandwidth Filters Maxim cannot assum e responsibility for use of any circuitry other than circuitry entirely em bodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.28____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2008 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D1 9 D0 10 INT 11 RD 12 WR 13 CLK 14
MAX1267AEEG -40°C to +85°C MAX1267BEEG -40°C to +85°C
QSOP Pin Configurations continued at end of data sheet. Typical Operating Circuits appear at end of data sheet.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D6 4 D5 5 D4 6 D3 7 D2 8
MAX1265
23 GND 22 COM 21 CH0 20 CH1 19 CH2 18 CH3 17 CH4 16 CH5 15 CS
Ordering Information
PART MAX1265ACEI MAX1265BCEI MAX1265AEEI MAX1265BEEI MAX1267ACEG MAX1267BCEG TEMP RANGE 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C PIN-PACKAGE 28 QSOP 28 QSOP 28 QSOP 28 QSOP 24 QSOP 24 QSOP 24 QSOP 24 QSOP INL (LSB) ±0.5 ±1 ±0.5 ±1 ±0.5 ±1 ±0.5 ±1
Features
MAX1265/MAX1267
Pin Configurations
TOP VIEW
D9 1 28 D10 27 D11 26 VDD 25 REF 24 REFADJ D8 2 D7 3
Applications
Industrial Control Systems Energy Management Data-Acquisition Systems Data Logging Patient Monitoring Touch Screens
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
元器件交易网
19-2721; Rev 0; 04/03
265ksps, +3V, 6-/2-Channel, 12-Bit ADCs with +2.5V Reference and Parallel Interface
General
The MAX1265/MAX1267 low-power, 12-bit analog-todigital converters (ADCs) feature a successive-approximation ADC, automatic power-down, fast wake-up (2µs), an on-chip clock, +2.5V internal reference, and a high-speed 12-bit parallel interface. They operate with a single +2.7V to +3.6V analog supply. Power consumption is only 5.4mW at the maximum sampling rate of 265ksps. Two software-selectable power-down modes enable the MAX1265/MAX1267 to be shut down between conversions; accessing the parallel interface returns them to normal operation. Powering down between conversions can reduce supply current below 10µA at lower sampling rates. Both devices offer software-configurable analog inputs for unipolar/bipolar and single-ended/pseudo-differential operation. In single-ended mode, the MAX1265 has six input channels and the MAX1267 has two (three input channels and one input channel, respectively, when in pseudo-differential mode). Excellent dynamic performance and low power, combined with ease of use and small package size, make these converters ideal for battery-powered and dataacquisition applications or for other circuits with demanding power-consumption and space requirements. The MAX1265 is offered in a 28-pin QSOP package, while the MAX1267 comes in a 24-pin QSOP. For pin-compatible +5V, 12-bit versions, refer to the MAX1266/MAX1268 data sheet. o 12-Bit Resolution, ±0.5 LSB Linearity o +3V Single-Supply Operation o Internal +2.5V Reference o Software-Configurable Analog Input Multiplexer 6-Channel Single Ended/ 3-Channel Pseudo Differential (MAX1265) 2-Channel Single Ended/ 1-Channel Pseudo Differential (MAX1267) o Software-Configurable Unipolar/Bipolar Analog Inputs o Low Current 1.9mA (265ksps) 1.0mA (100ksps) 400µA (10ksps) 2µA (Shutdown) o Internal 3MHz Full-Power Bandwidth Track/Hold o Parallel 12-Bit Interface o Small Footprint 28-Pin QSOP (MAX1265) 24-Pin QSOP (MAX1267)
元器件交易网
265ksps, +3V, 6-/2-Channel, 12-Bit ADCs with +2.5V Reference and Parallel Interface MAX1265/MAX1267
ABSOLUTE MAXIMUM RATINGS
VDD to GND ..............................................................-0.3V to +6V CH0–CH5, COM to GND ............................-0.3V to (VDD + 0.3V) REF, REFADJ to GND.................................-0.3V to (VDD + 0.3V) Digital Inputs to GND ...............................................-0.3V to +6V Digital Outputs (D0–D11, INT) to GND.......-0.3V to (VDD + 0.3V) Continuous Power Dissipation (TA = +70°C) 24-Pin QSOP (derate 9.5mW/°C above +70°C)..........762mW 28-Pin QSOP (derate 8.0mW/°C above +70°C)..........667mW Operating Temperature Ranges MAX1265_C_ _ /MAX1267_C_ _ ........................0°C to +70°C MAX1265_E_ _ /MAX1267_E_ _ ......................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C