SolidWorks2018 机构运动仿真教程

合集下载

SolidWorks三维设计及运动仿真实例教程 实例22 曲柄滑块机构分析

SolidWorks三维设计及运动仿真实例教程 实例22 曲柄滑块机构分析
22.1 问题导入
问题导入 仿真分析 机构仿真步骤
已知在如图所示的曲柄滑块机构中,曲柄1的长度l1=350mm,连杆2的长 度l2=2350mm。全部零件的材料为普通碳钢,滑块3及其附件的质量为6kg。 曲柄1的转速n1=300r/min,试求曲柄1逆时针转动到θ1=45°时滑块3的位移 和惯性力。
Solidworks
三维设计及运动仿真实例教程
Solidworks
三维设计及运动仿真实例教程
教你玩转三维设计
实例22 曲柄滑块机构分析 -认识SolidWorks Motion
22.1问题导入 22.2仿真分析
22.3机构仿真步骤
Solidworks
三维设计及运动仿真实例教程
教你玩转三维设计
实例22 曲柄滑块机构分析 -认识SolidWorks Motion
3、过滤驱动按钮 :处于按下状态时,只显示引发运动或其他更改的项 目。
4、过滤选定按钮 :处于按下状态时,只显示当前选定的项目。 5、过滤结果按钮 :处于按下状态时,只显示Motion分析结果项目。
问题导入 仿真分析 机构仿真步骤
打开装配体进入仿真模块 工具栏按钮 模型设计树按钮 时间线视图区按钮
设置曲轴驱动力参数 仿真计算 查看结果
1、计算按钮 :单击它,软件对所设计的运 动算例进行求解计算。
2、从头播放按钮 :单击它,模拟动画从仿真开始时刻播放。
3、播放按钮 :单击它,模拟动画从当前设定时刻开始播放。
4、停止按钮 :单击它,停止模拟动画的播放。
5、播放速度
:单击下拉菜单,可设定10种动画播放速度,其中
打开装配体进入仿真模块 设置曲轴驱动力参数 仿真计算 查看结果
专家提示:选择【工具】【插件】命令,弹 出如图所示的【插件】属性管理器,选中 “SolidWorks Motion”复选框后,单击【确定】 按钮将Motion插件载入,如果只选中左边复选框, 插件只在本次运行中载入,若同时选中左、右两 边复选框,插件会在软件

SolidWorksMotion虚拟样机运动仿真

SolidWorksMotion虚拟样机运动仿真
应用场景:复杂运动副常用于模拟具有复杂运动关系的机械系统,例如多轴联动数 控机床、机器人手臂等。
注意事项:在建立复杂运动副时,需要注意运动副之间的约束关系是否合理,避免 出现运动学奇异或动力学不稳定的情况。
运动仿真结果分析
运动学分析:对运动过程中各部 件的位置、速度、加速度等参数 进行计算和评估
SolidWorks Motion与 Adams软件无缝 集成,实现运动 仿真与动力学分 析的完美结合。
通过Adams软 件进行更深入 的动力学分析, 包括碰撞检测、 振动分析等。
方便地在 Adams软件中 进行优化设计, 提高产品的性 能和可靠性。
实现从 SolidWorks到 Adams的模型 传递,保持数 据的一致性和 完整性。
结果分析:通过仿真结果分析船舶推进系统的性能表现,如推进效率、稳定性等,为优化 设计和改进提供依据。
PART 07
SolidWorks Motion未来发
展与展望
新功能与技术趋势
人工智能与机器学习在SolidWorks Motion中的应用,提高仿真效率和准确性。 云技术与实时协作功能,实现异地团队共同进行运动仿真与分析。 虚拟现实与增强现实技术,提供更真实的运动仿真体验和可视化效果。
04 S o l i d W o r k s Motion高级功能
06 S o l i d W o r k s Motion应用案例
PART 01 添加章节标题
PART 02
SolidWorks Motion概述
定义与功能
添加标题
定义:SolidWorks Motion是一款基于SolidWorks平台的运动仿真插件,用于对机械系统进行运 动学和动力学仿真。
PART 06

SolidWorks三维设计及运动仿真实例教程 实例18 轴类零件图创建

SolidWorks三维设计及运动仿真实例教程 实例18 轴类零件图创建

正确标注键槽尺寸
标注尺寸公差
创建视图 标注尺寸 添加其他注解 输出图纸
标注驱动尺寸
选择所有尺寸,右击空白处,在弹出的快捷菜单中选择
调整驱动尺寸
“对齐”“自动排列”命令,单击“确定”按钮;手工拖动 位置不恰当的尺寸,在视图之间移动尺寸时按下“Shift”键。
正确标注键槽尺寸 删除不恰当的尺寸,单击“注解”工具栏上的“智能尺寸”
Solidworks
三维设计及运动仿真实例教程
教你玩转三维设计
实例18 轴类零件图创建
18.3 添加其他注解
创建视图 标注尺寸 添加其他注解 输出图纸
添加中心符号线和中心线
单击“注解”工具栏上的“中心符号线”
插入粗糙度符号
按钮,在视图中的圆线上单击“确定”按钮; 单击“注解”工具栏上的“中心线”按钮,
标注尺寸公差
按钮,重新标注。
创建视图 标注尺寸 添加其他注解 输出图纸
标注驱动尺寸
对于键槽尺寸,系统自动标注的尺寸有16、6和27.5三
调整驱动尺寸
个;正确的标注方法是:删除6和27.5;用智能尺寸标注键 槽底部到圆心的尺寸21.5,然后在“尺寸”对话框的“引线”
正确标注键槽尺寸 选项卡中选择“第一圆弧条件”为“最大”。然后单击“确
创建视图 标注尺寸 添加其他注解 输出图纸
打开模型选用GB工程图模板
在“模型视图”对话框中,执行下列操作:
生成主视图 设定比例
在“要插入的零件/装配体”选项组中,选择 “轴”。单击“下一步”按钮,在“方向”选项 组中,单击“标准视图”中的“前视”,选择
生成移出剖面视图
“预览”复选框,在图形区域中显示预览。然后,
生成移出剖面视图

SolidWorks_Simulation教程

SolidWorks_Simulation教程

SolidWorks_Simulation教程SolidWorks是一种三维CAD软件,可以用于设计和模拟物理系统。

SolidWorks Simulation是SolidWorks的一个模块,它可以用于进行结构、流体和热传递等各种仿真分析。

本教程将介绍SolidWorksSimulation的基本使用方法。

1. 启动SolidWorks并创建一个新的部件文档。

选择适当的模板,例如“英制部件”。

2. 在新建部件中,选择“评估”选项卡,然后选择“模拟Xpress”。

3.在弹出的窗口中,选择要进行的仿真类型,例如“静态仿真”。

4.在仿真设置向导中,定义要仿真的材料属性。

可以选择现有材料库中的材料,也可以定义新的材料。

6.在“区域”页上,定义要进行仿真的区域。

这可以是整个部件或特定的几何区域。

8.完成设置后,单击“运行仿真”按钮开始仿真分析。

9.在仿真运行完成后,可以查看仿真结果。

选择“报告”选项卡上的“结果”按钮。

这将显示不同的结果图,例如位移、应力、应变等。

10.根据需要进行结果分析。

可以选择并查看不同的结果图,调整显示参数,比较不同的设计方案等。

11. 如果需要修改部件的设计,则可以返回到SolidWorks中进行修改。

然后再次运行仿真以验证更改后的设计。

12.导出结果。

可以导出仿真结果以便进一步分析或与他人共享。

选择“文件”选项卡上的“导出图像”或“导出3D图形”按钮来导出结果。

总的来说,SolidWorks Simulation是一款强大的工具,可以帮助设计师分析和优化他们的设计。

通过本教程,您应该能够了解SolidWorks Simulation的基本使用方法,并开始进行各种仿真分析。

但请注意,这只是起点,深入了解和应用SolidWorks Simulation需要更多的实践和学习。

SolidWorks三维设计及运动仿真实例教程 实例24 认识配置和设计表

SolidWorks三维设计及运动仿真实例教程 实例24 认识配置和设计表
如“自由状态”即可切换到高度为240mm的自由状态;亦可右击 “自由状态”,在弹出的菜单中选择“显示配置”,或点击“删除” 以删除配置。
手动配置 设计表
生成配置 装配时使用工作状态配置 出图时使用自由状态配置
使用配置
新建装配体,并插入已经生 成配置的“弹簧.SLDPRT”,在 装配设计树中,右击弹簧,有两 种方法可以改变配置,如图所示, 方法一:在弹出的菜单中,点击 最上方的下三角板,选择“工作 状态”,点击“确定”;方法二: 在弹出的快捷菜单中选择“属 性”,弹出“零部件属性”对话 框中,选择“所参考的配置”为 “工作状态”。单击“确定”按 钮。
配置使用 空白区,单击“确定”按钮✓,生成系列零件。另存为“平垫
(设计表)带表格.SLDPRT”。
手动配置 设计表
创建零件模型 新建装配文件,插入“实例24”目录下的“阶梯轴(系列
插入设计表
表).SLDPRT”。单击“插入零部件”按钮,选择“实例24”目 录下的“平垫片(设计表)带表格.SLDPRT”,点击“确定”完
Solidworks
三维设计及运动仿真实例教程
Solidworks
三维设计及运动仿真实例教程
教你玩转三维设计
实例24 认识配置和设计表
24.1手动配置 24.2设计表
Байду номын сангаас
Solidworks
三维设计及运动仿真实例教程
教你玩转三维设计
实例24 认识配置和设计表
24.1 手动配置
手动配置 设计表
在建模过程中,经常会遇到形状基本相似,但尺寸大小不一样的零件。逐 个设计这些相似的零件会花费大量的精力和时间去做重复的工作,降低了设计 的效率,且容易出错。
填写系列尺寸 成,零件装配。

SolidWorks运动仿真完全教程

SolidWorks运动仿真完全教程
约束构件1的Z轴,始终垂直于构件2的Z轴 即:构件1只能绕构件2的二个轴旋转
15
运动副基础知识(6)
In Line点在直线上
In Plane点在面内
方向
指定 的面
连接点
连接点
X参考轴
约束2个移动自由度
约束构件1的连接点,只能沿着构件2连接点 标记的Z轴运动
© 2007 SolidWorks Corp. Confidential.
a Concentric joint.
– 一个正交同轴配合转化为同轴副
One Coincident and One Orthogonal Concentric mates in
SolidWorks becomes a Revolute joint.
– 一个重合和一个正交同轴配合转化为一个转动 副
One Point to Point coincident mate in SolidWorks
Pendulum restrained to pivot about mounting point
5
Constraint Mapping约束映射
▪ Mapping of SolidWorks assembly mates (constraints) to COSMOSMotion joints.
映射SolidWorks装配体配合(约束)为 COSMOSMotion的运动副
运动约束 PointPoint PointPointDist PointLine PointLineDist PointPlaneDist PointPlaneDist PointLineDist PointLine LineLine LineLineDist LineLineAng LineLineAng (0 deg.) LineLineAng (90 deg.)

实验指导书实验六SolidWorks运动仿真

实验指导书实验六SolidWorks运动仿真

实验一 S o l i d W o r k s 运动仿真 一、 实验目的 1.掌握SolidWorks 图形装配方法 2. 掌握SolidWorks 装配图的motion 分析操作方法二、 实验内容完成下列3个模型的装配及运动仿真三、 实验步骤压榨机机构的装配与仿真3.1 压榨机机构的装配3.1.1 选择【文件】/【新建】/【装配体】命令,建立一个新装配体文件。

依次将机架和压榨杆添加进来,添加机架与压榨杆的同轴心配合。

如图4。

再将滑块添加进来,添加滑块与压榨杆的重合配合,如图5。

3.1.2 添加滑块端面与机架端面的重合配合,以及滑块前视基准面与机架前视基准面的重合配合(点击图形区域左边的装配体下的机架前的“+”号即可找到前视基准面)最后将滑块拖动到中间位置。

图1压榨机机构 图2凸轮机构图3夹紧机构图4机架与压榨杆的同轴心配合 图5滑块与压榨杆的重合配合3.2 压榨机机构的运动仿真3.2.1 仿真前先将“solidworks motion ”插件载入,单击工具栏中按钮“”的下三角形,选择其中的“插件”,在弹出的“插件”设置框中,选中“solidworks motion ”的前后框,如下图8所示。

在装配体界面,单击左下角的【运动算例】,再在【算例类型】下拉列表中选择【motion 分析】如下图9所示。

3.2.2添加实体接触:单击工具栏上的“接触按钮”,在弹出的属性管理器中【接触类型】栏内选择“实体接触”,在【选择】栏内,点击视图区中压榨杆和滑块,“材料”栏内都选择“steel (dry)”, 单击“确定”按钮“”,如下图10所示。

同理再为滑块与机架添加实体接触,参数设置与压榨杆与滑块之间的一样。

图8载入插件 图9 motin 分析图6机架与滑块的重合配合 图7机架与滑块前视基准面的重合配合3.2.3 添加驱动力:物体对压榨杆的反作用力即为驱动力,故在压榨杆上添加一恒力即可。

单击工具栏中的“力”按钮“”,在弹出的【力/扭矩】属性管理器中,【类型】选择“力”,【方向】选择“只有作用力”,“作用零件和作用应用点”,选择压榨杆上表面,单击改变力的方向向下,【力函数】选择“常量”,大小输入50牛顿,单击确定按钮。

Solidworks-Motion-运动仿真培训

Solidworks-Motion-运动仿真培训

学习方式 用实际案例来学命令
目录
基本设置 案例分析 失败因素
1.1 设置文档的单位
单击【工具】/【选项】/【文档属性】/【单位】, 确保选中[MMGS(毫米,克,秒)]。
1.2 加载Motion插件
单击【工具】/【插件】,选中Solidworks motion插 件(默认是未开启)。
1.3 运动算例
每个零件或装配体都自动生成一个运动算例选项卡, 单击运动算例就可以切换到运动仿真界面,选择Motion分析 。
1.4 界面
1、计算 2、运动播放、视频输出 3、键码设置与时间轴 4、外界条件添加 5、后处理
2.1 配合与冗余
常见的运动分类 1、旋转 使用铰链代替同轴+面重合 2、平移 使用线线重合+点面重合 3、随动 使用锁定配合 4、齿轮配合、螺旋配合、万向节配合
冗余 不受约束的物体在空间上有6个自由度,3个旋转
和3个平移。一旦对物体的约束超过6个或是对某方向平 移旋转重复约束,就造成冗余。也可以理解成过约束。 而在motion中冗余将被自动压缩,使得配合丢失,导致 仿真计算失败。
2.2 运动单元
运动单元种类 1、马达 分为直线马达、旋转马达、路径配合马达 2、弹簧 分为线性弹簧、扭转弹簧簧 3、阻尼 分为线性阻尼、扭转阻尼 跟空气阻力类似 4、力 分为力和力矩 5、接触 分为实体和曲线 如果不使用接触,零部件将彼此穿 越。使用接触后才有摩擦力 6、引力 重力,需要对零件添加材质属性
SolidWorks Motion
运动仿真培训
By Calon
Motion 概述
Solidworks Motion是一个运动仿真工具,能 够对已设计好的机构进行运动模拟和受力分析,帮助 设计师在设计前期判断设计是否能达到预期目标。

SolidWorks三维设计及运动仿真实例教程 实例23 凸轮机构运动仿真

SolidWorks三维设计及运动仿真实例教程 实例23 凸轮机构运动仿真

添加马达 仿真参数设置 曲线接触运动仿真 实体接触动力学仿真
工作原理 零件造型 装配 仿真
在MotkmManager界面中,拖动键 码将时间的长度拉到1s,单击工具栏上的 “运动算例属性”按钮,在弹出的“运动 算例属性”管理器中的【Motion分析】 栏内将每秒帧数设为“100”,选中【3D 接触分辨率】下的【使用精确接触】复选 框,其余参数采用默认设置,如图所示, 单击“确定”按钮,完成仿真参数的设置。
工作原理 零件造型 装配 仿真
创建凸轮
坐标数据将显示在“曲线文件”中;单击【确定】,
创建滚子、摆杆和机架 凸轮理论廓线被绘制出来,如图所示。
工作原理 零件造型 装配 仿真
创建凸轮 创建滚子、摆杆和机架
点击【草图】【草图绘制】 命令,选择【前视基准面】;点 击【等距实体】命令,单击前面 绘制好的曲线,输入摆杆滚子半 径12mm,点击【反向】,点击 【确定】,将曲线转换成草图曲 线,得到凸轮实际轮廓曲线,如 图所示。
右击 FeatureManager设 计树中的“材质<未指定>”, 在弹出的菜单中选择 “普通碳 钢”。最后以文件名“凸轮”保 存该零件。
工作原理 零件造型 装配 仿真
创建凸轮
根据已知条件:滚子半径=12mm,摆杆长度=
创建滚子、摆杆和机架
120mm,凸轮与摆杆转动中心距离= 150mm,根据以下 三个草图,以距离10mm两侧对称拉伸草图轮廓,得到
入,单击布局选项卡中的【运动算例1】, 在 MotionManager工具栏中的【算例类型】下拉列表中 选择“Motion分析”。
实体接触动力学仿真
单击MotionManager 工具栏中的“马达”按钮 ,为 凸轮添加一逆时针等速旋转 马达,如图所示,凸轮转速 n=72RPM = 432° /s,马达 位置为凸轮轴孔处。

SolidWorks 2018有限元:运动仿真与流场分析自学

SolidWorks 2018有限元:运动仿真与流场分析自学

12.2.1 SolidWorks Flow Simulation的应用领域 12.2.2 SolidWorks Flow Simulation的使用流程 12.2.3 SolidWorks Flow Simulation的网格技术
12.3.1模型准备 12.3.2定义条件 12.3.3分析求解
4
5.4零部件镜 像
5
5.5子装配
1
5.6零件顺序
5.7基于装配 2
约束的关联设 计技术
3
5.8爆炸视图
4
5.9干涉检查
5 5.10综合实
例——传动装 配体
5.7.1利用装配约束设计零件的参数 5.7.2基于已有零件轮廓投影进行关联设计
5.8.1生成爆炸视图 5.8.2编辑爆炸视图
5.9.1动态干涉检查 5.9.2静态干涉检查
SolidWorks 2018有限元:运动仿 真与流场分析自学
读书笔记模板
01 思维导图
03 读书笔记 05 作者介绍
目录
02 内容摘要 04 目录分析 06 精彩摘录
思维导图
本书关键字分析思维导图
技术
模型
流场
中心
第章
草图
草图
分析
设计
分析 实例
运动
运动
分析
设置
零件
设计
技术
综合
内容摘要
本书包含SolidWorks 2018建模设计和高级分析两大部分,以机械工程设计与分析为中心,贯穿从初级建模 到高级分析的工程实践全过程。全书包括草图设计技术、零件造型技术、装配技术、基于装配的关联设计技术和 有限元分析技术、多体动力学运动仿真技术和流场分析技术。
9.11综合实 例——轴承座 分析

基于SolidWorks的连杆机构的运动分析与仿真共3篇

基于SolidWorks的连杆机构的运动分析与仿真共3篇

基于SolidWorks的连杆机构的运动分析与仿真共3篇基于SolidWorks的连杆机构的运动分析与仿真1基于SolidWorks的连杆机构的运动分析与仿真引言机械工程是一门涵盖广泛领域的学科,而其核心是机械设计。

机械设计在现代化社会中具有举足轻重的地位,是实现生产自动化、机械化和数字化的必不可少的手段。

在机械设计中,连杆机构是一种非常重要的机械构件,因其能够将单向的直线运动转换为复杂的曲线运动。

因此,了解和掌握连杆机构的运动特点对于机械工程师和设计师具有非常大的实用价值。

本文将介绍基于SolidWorks的连杆机构的运动分析与仿真。

正文SolidWorks是目前应用最广泛的三维计算机辅助设计(CAD)软件之一,其主要功能是建立三维模型和进行工程分析。

在SolidWorks中,连杆机构是一种常用的机构,在机械设计中有着广泛的应用。

通过 SolidWorks 可以进行连杆机构的建模、运动分析和仿真等全过程,以便更好地理解该机构的运动特点,为机械设计提供便利。

连杆机构是一种具有连杆、销轴和铰链等构件相互连接而成的复杂机械结构。

通过连杆机构可以将旋转运动和直线运动相互转换,实现有效的动力传递和力量转换。

对于机械设计师而言,了解连杆机构的运动特点是非常重要的。

在SolidWorks中,连杆机构的建模首先需要考虑构件的建立。

构件的建立应符合物理规律和机械原理,并使得机构具有合适的运动特性。

比如,在连杆机构中,需要考虑杆件的长度、销轴的直径、铰链的设计等因素。

在建模过程中,需要给予合适的参数设定,从而实现模型的运动模拟。

模型建立完毕后,可进行三维建模、组装和运动仿真。

通过连杆机构的仿真,可以深入地理解机械运动规律和性能特点,为机械设计提供便利。

此外,连杆机构的运动分析也是非常重要的一步。

通过对运动分析的深入研究,可以了解动力学和运动学的相关规律,为机械设计提供依据。

具体地,运动分析包括以下几个方面:速度和加速度分析、运动轨迹分析、力学分析等。

SolidWorksMotion运动仿真教程

SolidWorksMotion运动仿真教程
定义运动副和驱动
运动副:连接两个零件并定义其相对运动的机构
驱动:定义运动副的运动类型和参数,如旋转、平移等
创建运动副:在SolidWorks Motion中,选择要创建运动副的零件并定义其类型和参数
添加驱动:为运动副添加驱动,定义其运动类型和参数,以及运动范围和方向等
添加力和扭矩
在Motion分析中,选择“力和扭矩”选项
创建复杂运动副的方法:通过选择相应的运动副工具,如“旋转-旋转”、“滑块-滑块”等,并按照向导步骤进行操作,即可创建出所需的复杂运动副。
调整复杂运动副参数:在创建完复杂运动副后,可以通过调整其参数来改变运动副的运动特性,如旋转角度、滑块行程等。
注意事项:在创建和调整复杂运动副时,需要注意运动副的正确性、可行性和实际应用性,以确保仿真结果的准确性和可靠性。
案例描述:模拟一个机械手臂在生产线上的运动,实现抓取和放置物体的功能
仿真结果:展示优化后的机械手臂运动轨迹和关节角度,以及运动过程中的动态效果
应用价值:通过运动仿真优化机械手臂的设计,提高生产效率和降低生产成本
齿轮箱的运动仿真
齿轮箱运动仿真的目的和意义
齿轮箱运动仿真的建模过程
齿轮箱运动仿真的参数设置和优化
解决方案:检查模型定义、约束、驱动条件等是否正确
解决方案:检查模型是否存在几何问题、接触定义等,并尝试调整仿真参数
解决方案:检查模型中是否存在非线性因素,如摩擦、柔性连接等,并尝试调整仿真参数
解决方案:优化模型复杂度、调整仿真参数、使用更高效的求解器等
问题:仿真速度过慢 解决方案:优化模型复杂度、调整仿真参数、使用更高效的求解器等
汇报人:XX
XX,a click to unlimited possibilities

SolidWorks三维设计及运动仿真实例教程-实例22-曲柄滑块机构分析精选全文完整版

SolidWorks三维设计及运动仿真实例教程-实例22-曲柄滑块机构分析精选全文完整版

问题导入 仿真分析 机构仿真步骤
打开装配体进入仿真模块 工具栏按钮 模型设计树按钮 时间线视图区按钮 设置曲轴驱动力参数 仿真计算 查看结果
1、无过滤按钮 :处于按下状态时,在MotionManager设计树中显示 所有项目。
2、过滤动画按钮 :处于按下状态时,只显示在动画过程中移动或更改 的项目。
设置曲轴驱动力参数
仿真计算
查ห้องสมุดไป่ตู้结果
扩展知识:添加驱动 驱动是驱使机械设备中原动件运动的动力源,例如汽车中发动机燃油点燃 时释放给原动件活塞的动力、电动机的输出转矩等。用SolidWorks进行 Motion仿真分析时,添加马达即可为原动件添加驱动。 SolidWorks Motion可利用“马达”改变运动参数(位移、速度或加速度) 来定义各种运动;还可以利用力、引力、弹簧、阻尼、接触等改变动力参数来 影响运动,各种驱动元素的作用和添加方法如表所示。
问题导入 仿真分析 机构仿真步骤
打开装配体进入仿真模块 添加驱动 添加力 弹簧 阻尼 3D接触与碰撞 设置曲轴驱动力参数 仿真计算 查看结果
专家提示:马达添加成功后, 会显示在“Motion管理器”中, 如图所示。
问题导入 仿真分析 机构仿真步骤
打开装配体进入仿真模块 添加驱动 添加力 弹簧 阻尼 3D接触与碰撞
打开装配体进入仿真模块 设置曲轴驱动力参数 仿真计算 查看结果
专家提示:选择【工具】【插件】命令,弹 出如图所示的【插件】属性管理器,选中 “SolidWorks Motion”复选框后,单击【确定】 按钮将Motion插件载入,如果只选中左边复选框, 插件只在本次运行中载入,若同时选中左、右两 边复选框,插件会在软件启动时自动载入。
设置曲轴驱动力参数 仿真计算 查看结果

SolidWorks三维设计及运动仿真实例教程 实例7 普通V带(A型)-扫描特征建模

SolidWorks三维设计及运动仿真实例教程 实例7 普通V带(A型)-扫描特征建模

普通V带(A型)建模过程分析 操作步骤
新建零件文档
在【特征】工具栏中单击【扫描】按钮,单击V带截面草
先草图 扫描生成V带 添材料
图作为扫描轮廓,单击V带轮廓草图作为扫描路径,单击【确 定】按钮,如图所示。
普通V带(A型)建模过程分析 操作步骤
新建零件文档 先草图 扫描生成V带 添材料
在特征树中,右击【材质】,在弹出的快捷菜单中选择 【橡胶】。
普通V带(A型)建模过程分析 操作步骤
新建
先草图
绘制V带的轮廓草图 栏中的【草图绘制】按钮,绘制如图所示
扫描生成V带 绘制V带的截面草图 的V带轮廓草图,点击【确定】。 添材料
普通V带(A型)建模过程分析 操作步骤
新建零件文档
改视向:如图所示,单击【视图】工
7.1 建模过程分析
普通V带(A型)建模过程分析 操作步骤
本例重点掌握扫描特征操作。 本例将要创建的普通V带(A型)(以下简称V带)如图所示。
V带的建模过程为: 首先,绘制V带的轮廓草图; 然后,绘制V带的截面草图; 最后,用扫描特征使V带的截面草图沿其 轮廓草图扫描生成V带。
Solidworks
添材料
专家提示:扫描命令里面最主要的几何 约束关系就是穿透。穿透的要领就是【点】 【线】之间才可以是穿透关系,即线穿透点! 注意三点:(1)穿透必须相触(锁在曲线上), 重合则不一定,即穿透是重合的一个特例。 (2)重合不一定穿透,穿透一定重合;因为 重合关系只是一种投影关系。(3)也可以把 穿透理解为真正意义上的空间上的重合。
先草图
绘制V带的轮廓草图 具栏上的【视向选择】【等轴测】按钮,
扫描生成V带 绘制V带的截面草图 以显示整个矩形的全图并使其居中于图形 添材料

SolidWorks Motion 运动仿真PPT培训课件

SolidWorks Motion 运动仿真PPT培训课件
SolidWorks Motion 运动仿真培训
课程 前言 第 01 课 第 02 课 第 03 课 第 04 课 第 05 课 第 06 课 第 07 课 第 08 课 第 09 课
内容 运动仿真基础 运动仿真流程 配合及后处理 接触、弹簧及阻尼简介 实体接触 曲线接触 凸轮合成 运动优化 输出结果到FEA 基于事件的仿真
运动算例标签
过滤器 运动仿真树
滚动条 工具条
时间条
时间线
键码
变化条
运动仿真流程
课程要点:
1. 理解动画、运动、Motion 2. 应用运动连接理解复合运动 3. 后处理创建结果图解
分析实例:车用千斤顶 问题描述:马达转速100rpm,顶部施加8900N载荷模拟重物,模拟机械 起重机顶起重物的过程,并考虑重力影响下的机构运动状况。 分析目标:查看马达能量消耗状况。
▪ 承载面
配合所应用的面,点和线是无效的 设置正确才能得到合理的FEA结果
最大Von Mises应力(485 MPa).
最大位移(0.115 mm).
Von Mises 应力
位移
课程要点:
1. 添加伺服马达 2. 添加传感器 3. 创建事件的具体时间和逻辑关系
分析实例:传动轴
问题描述:输入端添加旋转马达2800RPM;输出端 添加力矩15000000N·mm;设置每秒2000帧,并运行 0.05秒。 分析目标:查看运动图解并输入FEA进行刚度强度校 核。
单位系统
SolidWorks Motion 单 位系统使用全局单位
您可从运动算例使用 MotionManager,此为基于时间线的界面,包括 有以下运动算例工具: 动画:可使用动画形式装展示配体的运动。 基本运动:您可使用基本运动在装配体上模仿马达、弹簧、碰撞、以 及引力。 运动分析:您可使用运动分析装配体上精确模拟和分析运动单元的效 果(包括力、弹簧、阻尼、以及摩擦)。

SolidWorks仿真插件中文教程

SolidWorks仿真插件中文教程

Slide 2
机构运动分析 用户界面
下拉菜单 Motion 工具条
Motion 浏览器
Slide 3
机构运动分析用户界面一览
Motion 零件
指定可动的和固定的零件,并从零件中 定义主运动物体。 不考虑质量属性,定义零件初始的状态。
Slide 4
机构运动分析用户界面一览
Motion Joints
Slide 11
选项对话框-动画 选项对话框-
动画播放的设置,播放速度和 时间范围
缺省时,运动学符号在动画播 放时是隐藏的
在VRML中用户设定的动画播 放时间 (如在VRML 播放器中 播放动画的时间)
Slide 12
常用的运动副类型
Revolute铰接副 Cylindrical圆柱副
方向
方向
构件1
In Line点在直线上 In Plane点在面内
Slide 5
机构运动分析用户界面一览
Motion 力
Slide 6
机构运动分析用户界面一览
Slide 7
机构运动分析下拉菜单
Slide 8
选项对话框 - World
设置力和时间的单位
指定重力加速度,或者点击地 球图标重新设置重力加速度
在整体坐标系中快速指定重力 的方向
Slide 9
选项对话框 – 显示
方向
轴2
连接点
轴1
原点
约束1个旋转,3个移动自由度
约束2个旋转, 1个移动自由度
Slide 15
常用的运动副类型
Fixed固定副 Screw螺旋副
移动和旋转轴
螺距
原点
约束3个旋转,3个移动自由度
约束1个自由度

SolidWorks Motion运动仿真教程PPT教学课件

SolidWorks Motion运动仿真教程PPT教学课件

About this course关于本课程
Prerequisites前提条件 Course Design Philosophy课程设计原理 Using this book本书使用方法 A note about files配套光盘说明 Conventions used in this book本书中采用的原理 Class Introductions课程介绍
Motion of a system is determined by
运动系统定义:
– Mechanical joints connecting the parts 零件的机械连接
– The mass and inertia properties of the components 部件的质量和惯性特性
Motion 运动仿真培训
Image courtesy of National Optical Astronomy
1 Observatory, operated by the Association of Universities
for Research in Astronomy, under cooperative agreement with the National Science Foundation.
– Applied forces to the system (Dynamics) 系统的作用力(动力学)
– Driving motions (Motors or Actuators) 驱动运动(运动或致动器)
– Time 时间
4
Mechanism types机构类型
Kinematic System运动学系统
Degrees of freedom自由度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档