2014年高三数学练习
2014届高三数学每日一练14(含答案)
1、已知集合{}{}2,3,12,3,1m B m A =--=,若A A B = ,则实数_______=m 12、不等式21≥x 的解集是_________⎥⎦⎤ ⎝⎛210, 3、(理)已知θ是第二象限角,若54sin =θ,则_________42tan =⎪⎭⎫ ⎝⎛-πθ31 (文)变量y x ,满足约束条件:⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最小值为______24、函数()x f y =存在反函数)(1x f y -=,若函数()1-=x f y 的图像经过点()1,3,则________)1(1=-f 25、若0x 是函数()x x f xlg 21-⎪⎭⎫ ⎝⎛=的零点,且010x x <<,则()1x f 与0的大小关系是_______()01>x f 6、已知条件21:≤+x p ;条件a x q ≤:,若p 是q 的充分不必要条件,则a 的取值范围是_________[)∞+,1 7、ABC ∆中,AB D ACB BC AC 为,32,1,2π=∠==上的点,若DB AD 2=,则________=∠CDB 147arccos 8、不等式042<++ax x 的解集不是空集,则实数a 的取值范围是_______________()()∞+∞,,44--9、将⎪⎭⎫ ⎝⎛+=63cos 2πx y 的图像上所有的点的横坐标缩短到原来的21,纵坐标不变,然后将图像 向左平移4π个单位,再向下平移2个单位,所得图像的解析式为_________2332cos 2-⎪⎭⎫ ⎝⎛+=πx y 10、函数x a x y cos 3sin +⎪⎭⎫ ⎝⎛-=π是奇函数,则_______=a 23 11、函数x x y 2sin 3sin 22-=的最大值是____________101+12、若不等式()1,00log 2≠><-a a x x a 在⎪⎭⎫ ⎝⎛210,内恒成立,则实数a 的取值范围是_____ __⎪⎭⎫⎢⎣⎡1161, 13、若函数()1222+-+⋅=x x a a x f 为奇函数,求实数a 的值 答案:1=a 14、已知函数()()R c b c bx x x f ∈++=,2,且当1≤x 时,()0≥x f ,当31≤≤x 时,()0≤x f 恒成立(1)求c b ,之间的关系式(2)当3≥c 时,是否存在实数m 使得()()x m x f x g 2-=在区间()∞+,0上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由。
2014年高三数学选择题专题训练(12套)有答案
高三数学选择题专题训练(一)1.已知集合{}1),(≤+=y x y x P ,{}1),(22≤+=y x y x Q ,则有 ( )A .Q P ⊂≠ B .Q P = C .P Q P = D .Q Q P =2.函数11)(+-=x x e e x f 的反函数是( )A .)11( 11)(1<<-+-=-x x xLn x f B .)11(11)(1-<>+-=-x x x x Ln x f 或 C .)11( 11)(1<<--+=-x x x Lnx fD .)11(11)(1-<>-+=-x x xxLn x f 或 3.等差数列{}n a 的前n 项和为n S ,369-=S ,10413-=S ,等比数列{}n b 中,55a b =,77a b =,则6b 的值 ( ) A .24 B .24- C .24± D .无法确定4.若α、β是两个不重合的平面, 、m 是两条不重合的直线,则α∥β的一个充分而非必要条件是 ( ) A . αα⊂⊂m 且 ∥β m ∥β B .βα⊂⊂m 且 ∥m C .βα⊥⊥m 且 ∥m D . ∥α m ∥β 且 ∥m 5.已知n n n x a x a a x x x +++=++++++ 102)1()1()1(,若n a a a n -=+++-509121,则n 的值 ( ) A .7 B .8 C .9 D .106.已知O ,A ,M ,B 为平面上四点,则)1(λλ-+=,)2,1(∈λ,则( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点共线 7.若A 为抛物线241x y =的顶点,过抛物线焦点的直线交抛物线于B 、C 两点,则AC AB ⋅等于 ( ) A .31-B .3-C .3D .43- 8.用四种不同颜色给正方体1111D C B A ABCD -的六个面涂色,要求相邻两个面涂不同的颜色,则共有涂色方法 ( ) A .24种 B .72种 C .96种 D .48种9.若函数x x a y 2cos 2sin -=的图象关于直线π87=x 对称,那么a 的值 ( )A .2B .2-C .1D .1-10.设1F ,2F 是双曲线12222=-by a x ,)00(>>b a ,的两个焦点,P 在双曲线上,若021=⋅PF PF,ac 2=,(c 为半焦距),则双曲线的离心率为 ( ) A .231+ B .251+ C .2 D .221+高三数学选择题专题训练(二)1.已知集合S={}{}01,211x x T x x <<=-≤,则S T 等于 A S B T C {}1x x ≤ D Φ 2.已知抛物线y =34x 2,则它的焦点坐标是A (0,316 )B ( 316 ,0)C (13 ,0)D (0, 13)3.设等差数列{a n }的前n 项和为S n ,且S 1=1,点(n , S n )在曲线C 上,C 和直线x -y +1=0交于A,B 两点,|AB|= 6 ,那么这个数列的通项公式是A 21n a n =-B 32n a n =-C 43n a n =-D 54n a n =- 4.已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),(a -c )∥b ,则锐角x 等于 A 15° B 30° C 45° D 60°5.函数y =f (x )的图像与函数y =lg(x -1)+9的图像关于直线y =x 对称,则f (9)的值为 A 10 B 9 C 3 D 2 6.若tan 2α=,则sin cos αα的值为 A .12B .23C .25D .17..坐平面内区域M=()()⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--≤≤≤-+≥+-01100101y kx k y x y x y ,x 的面积可用函数f(x)表示,若f(k)=8,则k 等于( ) A.21B.31 C.22 D.23 8.函数11)(2-+-=x x a x f 为奇函数的充要条件是\A 、10<<a B 、10≤<a C 、1>a D 、1≥a9.若61()x展开式中的第5项是152,设12nn S x x x ---=+++ ,则lim n n S →∞=A .1B .12C .14D .16(文)点P 在曲线y =x 3-x +7上移动,过P 点的切线的倾斜角取值范围是 A.[0,π) B.(0,2π)∪[4π3,π)C.[0, 2π)∪(2π,4π3] D.[0, 2π)∪[4π3,π) 10.如图正方体ABCD -A 1B 1C 1D 1,在它的12条棱及12条面对角线所在直线中,选取若干条直线确定平面。
高三数学月考2014年10月1日
高三数学练习 一、填空题:(本大题共14小题,每小题5分)1.已知集合A={|2,x x x R <∈},集合B={|12,x x x R <<∈},则A B =____2. 函数()f x =的定义域为 .3.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A C ∙=______________.4. 已知双曲线221(0)y x m m-=>的离心率为2,则m 的值为 ___▲___. 5.已知点P (x,y )在不等式表示的平面区域上运动, 则z x y =+的最大值是_6.曲线y=x+sinx 在点(0,0)处的切线方程是____.7.若正实数x ,y 满足26xy x y =++ ,则xy 的最小值是 . 8. 已知函数()sin 2cos 2f x x m x =+的图象关于直线8x π=对称,则f(x)的单调递增区间为9. 由命题“存在x ∈R ,使x 2+2x +m ≤0”是假命题,求得m 的取值范围是(a ,+∞),则实数a 的值是_________.10.如图,在△ABC 中,D ,E 分别为边BC ,AC 的中点. F 为边AB 上. 的,且,则x+y 的值为____11.设函数f (x )是定义在R 上的偶函数,当x ≥0时,f(x) =2x+1.若f(a)=3,则实数a 的值为___12. 已知直线y=ax+3与圆22280x y x ++-=相交于A ,B 两点,点00(,)P x y 在直线y=2x 上,且PA=PB ,则0x 的取值范围为 .13.如图,已知过椭圆的左顶点A(-a,0)作直线1交y 轴于点P ,交椭圆于点Q.,若△AOP 是等腰三角形,且,则椭圆的离心率为____14、 已知函数)(x f 的值域为[][]0,4(2,2)x ∈-,函数()1,[2,2]g x ax x =-∈-,1[2,2]x ∀∈-,总0[2,2]x ∃∈-,使得01()()g x f x =成立,则实数a 的取值范围为 .高三数学练习(答题纸)一、填空题1、2、3、4、5、6、7、8、9、10、11、12、13、14、二、解答题:本大匆共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步璐.15. 已知集合A={x||x﹣a|<2,x∈R },B={x|<1,x∈R }.(1)求A、B;(2)若A⊆B,求实数a的取值范围.16 在锐角△ABC中,A,B,C所对的边分别为a,b,c.已知向量(1)求角A的大小;(2)若a=7,b=8,求△ABC的面积.17.已知椭圆C的中心在坐标原点,右准线为x=若直线y=t(t>o)与椭圆C交于不同的两点A,B,以线段AB为直径作圆M.(1)求椭圆C的标准方程;x+=截得的线段长。
2014年高三数学练习
2 2
A. 焦点在 x 轴上的椭圆 C. 焦点在 x 轴上的双曲线
18、设 a, b ,且 ab 0 ,那么直线 ax y b 0 和曲线 bx ay ab 所表示的图形可能是__________.
y
y
y
y
O
侧,则实数 a 的取值范围是_________________. 10、已知函数 y a cos x 3 sin x 的最小值为 3 ,则实数 a 的取值范围是_______________.
2
1
11、已知数列 an 定义如下: a1 1, a2 2 , an 2 正整数 m 的最小值为__________.
2 n 1 n 2013 an 1 an n 1, 2, . 若 am 2 ,则 n2 n2 2014
12、已知对任意的正实数 ,已知关于 x 的方程 xe a 的解存在且唯一,记该方程的解记为 lw a . 我们可以用符
x
号“ lw ”来表示一些方程的解,例如方程 tan x e 解用“ lw ”可表示为____________________.
tan x
2 的解为 k arctan lw 2 ,k . 那么方程 2 x 7 x 的
sin A cot C cos A 的取值范围是________________. sin B cot C cos B
13、设 ABC 的内角 A、B、C 所对的边 a、b、c 成等比数列,则
6、某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界) ,其边界是长轴长为 2a ,短轴长为 2b 椭圆. 已知岛上甲、 乙导航灯的海拔高度分别为 h1 , h2 , 且两个导航灯在海平面上的投岸恰好落在椭圆的两个焦点上. 现有船只经过该海域(船只的大小忽略不计) ,在船上测得甲、乙导航灯的仰角分别为 1 、 2 ,那么船只已进入该 浅水区的判别条件是___________________. 7、若点 x0 使得 f x0 x0 ,则我们称 x0 是函数 f x 的一个不动点,那么函数 f x 动点组成的集合为_______________. 8、函数 f x x
2014届高三数学每日一练13(含答案)
富顺一中高2014届1班王和远 高三数学天天练131、集合{}**∈∈+-==N y N x y x x A ,,62的真子集的个数有____3____个2、已知全集{}11,,021≤-=⎭⎬⎫⎩⎨⎧∈≥--==x x B R x x x x A R U ,,则()________=B A C R (]2,1 3、设点()y P ,5-是角α终边上的一点,且满足条件32sin =α,则_______=y 2 4、已知函数()x f 是奇函数,当0>x 时,()()x x x f +=1,则当0<x 时,()________=x f ()x x -15、在ABC ∆中,c b a ,,分别是三个内角C B A ,,所对应的三边,已知bc c a b +-=222,则_______cos =A 21 6、函数()()02>+=x x x x f 的值域为____________[)∞+,22 7、已知函数()______41,12321=⎪⎭⎫ ⎝⎛+⋅=-f x f x x则0 8、已知不等式1<-m x 成立的一个充分非必要条件是2131<<x ,则实数m 的取值范围是______⎥⎦⎤⎢⎣⎡3421-, 9、设ABC ∆的三个内角C B A ,,所对的边长分别为c b a ,,,且Cc A a sin cos =,则______=A 4π 10、函数x x y 2sin 23sin +⎪⎭⎫ ⎝⎛-=π的最小正周期是_________π 11、已知奇函数()x f 在()∞+,0上单调递增,且()05=f ,则不等式()0<x xf 的解集是_____()()5,00,5-12、若方程x a x x ⎪⎭⎫ ⎝⎛+=-212有两个非零的实数解,则实数a 的取值范围是______⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121-21-23-,, 13、解不等式()()54log 523log 221221-+≤--x x x x 答案:⎪⎭⎫⎢⎣⎡45-3-, 14、已知函数()x x a x f -⋅+=44是偶函数,求a 的值 答案:1=a15、已知函数()[]5,2,122∈+-=x tx x x f 有反函数,且函数()x f 的最大值为8,求实数t 的值⎪⎭⎫ ⎝⎛=59t 16、已知()x f 是定义在R 上的恒不为零的函数,且对于任意的R y x ∈,都满足: ()()()y x f y f x f +=⋅(1)求()0f 的值 (()10=f )(2)证明对任意的R x ∈,都有()0>x f(3)设当0<x 时,都有()()0f x f >,证明()x f 在()∞+∞,-上是减函数。
2014届高三数学综合练习(一)
2014届高三数学练习一(理)一:选择题1.巳知全集U R =,集合{212}M x x =-≤-≤和{31,}N x x k k N ==-∈的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有A .1个 B.2个 C.3个 D.无穷个 2.已知命题11:242x p ≤≤,命题15:[,2]2q x x +∈--,则下列说法正确的是 A .p 是q 的充要条件 B .p 是q 的充分不必要条件 C .p 是q 的必要不充分条件 D .p 是q 的既不充分也不必要条件A.第10项B.第9项C.第8项 D :第7项4.若0x 是方程31)21(x x=的解,则0x 属于区间为A . (1,32). B .(32,21). C .(21,31) D .(31,0) 5.设c b a ,,均为正数,且a a21log 2=,b b21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C . b a c <<D . c a b << 6.执行右面的框图,若输出结果为21, 则输入的实数x 的值是 A .23B .41C .22 D .27. 已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34-8. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≥243x y x xy ,则y x z 3-=的最大值为A.10B.8C.6D.49. 函数f (x )=log a (x 3–ax )(a>0且a≠1)在(2,+∞)上单调递增,则a 的取值范围是 A .a>1 B .1<a<12 C .1<a≤12D .1<a≤410.函数y =的图象上至少有三个点到原点的距离成等比数列,则公比q 的取值范围是A .(⎫⎪⎪⎣⎭ B.⎣ C.)⎛+∞ ⎝⎦ D.(⎛ ⎝⎦二:填空题11. 某几何体的三视图如图所示,则这个 几何体的体积是 12. 函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_________。
大同中学2014年高三数学练习(文)答案
大同中学2014年高三数学练习(文) 2014-5班级 姓名一、填空题(14×4=56分) 1. 已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +2. 已知线性方程组的增广矩阵为116 02a ⎛⎫⎪⎝⎭,若该线性方程组解为42⎛⎫ ⎪⎝⎭a=_ 1_.3. 执行如右上图所示的程序框图,若输入2x =,则输出y 的值为 .324. 若nxx 2(2+是 1805. 已知集合{}|4||1|5M x x x =-+-<,{}6N x a x =<<,且()2,M N b =,则=+b a 76. .中心在原点,焦点在x 轴上的双曲线的一条渐近线为x y 43=,焦点到渐近线的距离为3,则该双曲线的方程为______191622=-y x 7. 已知0()(1)1x x f x f x x π≤=-+>⎪⎩,则2()3f 的值为= 21-8. 已知3sin(265x π+,[,]42x ππ∈,则cos 2x =( ) 310- 9. 有一个正四面体的棱长为3,现用一张圆形的包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小半径为 . 3210. 正项等比数列{}n a 中,存在两项,m n a a 14a =,且6542a a a =+,则14m n +最小值 3211. 已知实数,x y 满足00220y x y x y ≥⎧⎪-≥⎨⎪--≤⎩,记11y t x -=+的最大值为m ,最小值为n ,则m-n=________ 4312. 如图,矩形n n n n D C B A 的一边n n B A 在x 轴上,另外两个顶点n n D C ,在函数())0(1>+=x xx x f 的图象上.若点n B 的坐标为()),2(0,+∈≥N n n n , 记矩形n n n n D C B A 的周长为n a ,则=+++1032a a a 21613. 若P 为ABC ∆内一点,且20PB PC PA ++=,在ABC ∆内随机撒一颗豆子,则此豆子落在PBC ∆内的概率为214. (文)已知函数()(f x x ∈R)是偶函数,且(2)(2)f x f x +=-,当[0,2]x ∈时,()1f x x =-,则方程1()||f x x =-在区间[10,10]-上的解的个数是 10 二、选择题(5×4=20分)15. 若l ,m 为空间两条不同的直线,α,β为空间两个不同的平面,则l 丄α的一个充分条件是( )CA,l//β且α丄β B. l β⊂且α丄β C.l 丄β且α//β D.l 丄m 且m//α16. 某中学高二年级的一个研究性学习小组拟完成下列两项调查: ①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标; ②从本年级12名体育特长生中随机选出5人调查其学习负担情况; 则该研究性学习小组宜采用的抽样方法分别是( ) D A .①用系统抽样,②用随机抽样 B .①用系统抽样,②用分层抽样 C .①用分层抽样,②用系统抽样 D .①用分层抽样,②用随机抽样17. 将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )A18. 若函数)(log )(b x x f a +=的图象如右图1,其中b a ,为常数.则函数b a x g x +=)(的大致图象是( )D三、解答题(12+14+14+16+18=72分)19. (本题满分12分,第(1)题6分,第(2)题6分)在如图所示的组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截 面,C 是圆柱底面圆周上不与A 、B 重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C 是弧AB 的中点时,求异面直线C A 1 与1AB 的所成角的大小;E F DIA H GBC EF D AB C侧视 图1图2 BEA .BEB . BEC .BED .(Ⅱ)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比. (Ⅰ)63arccos(Ⅱ)设圆柱的底面半径为r ,母线长度为h , K K K ^^^S S S ***555当点C 是弧AB的中点时,,AC BC ==111212))33A BCCB V h r h -=⋅⋅⋅=,2=V r h π圆柱, ∴111=2:3A BCC B V V π-圆柱:.20. (本题满分14分,第(1)题6分,第(2)题,8分)如图,某市准备在道路EF 的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC .该曲线段是函数()2πsin()0,0,[4,0]3y A x A x ωω=+>>∈-时的图象,且图象的最高点为(1,2)B -,千米的直线跑道CD ,且CD //EF ;赛道的后一部分是以O 为圆心的一段圆弧DE .(Ⅰ)求ω的值和DOE ∠的大小;(Ⅱ)若要在圆弧赛道所对应的扇形ODE 区域内建一个 “矩形草坪”,矩形的一边在道路EF 上,一个顶点在 半径OD 上,另外一个顶点P 在圆弧DE 上,求“矩形 草坪”面积的最大值,并求此时P 点的位置.【解答】(Ⅰ)由条件,得2A =,34T =. ∵2πT ω=,∴π6ω=.∴ 曲线段FBC 的解析式为π2π2sin()63y x =+.当x =0时,y OC =又CD∴ππ44COD DOE ∠=∠=,即.(Ⅱ)由(Ⅰ)知OD =.当“矩形草坪”的面积最大时,点P 在弧DE上,故OP设POE θ∠=,π04θ<≤,“矩形草坪”的面积为)()26sin cos sin S θθθθθθ=-=-=111π6(sin 2cos2))32224θθθ+-=+-.∵π04θ<≤,故πππ2=428S θθ+=当时,时,取得最大值3.21. (本题满分14分,第(1)题3分,第(2)题5分第(3)题6分) 已知函数.2)(2x x x f +-=(1)求函数)(x f 的定义域;(2)若1021<<<x x ,试比较2211)()(x x f x x f 与的大小;(3)设2)()(--=kx x f x g ,若函数)(x g 有且只有一个零点,求实数k 的取值范围。
2014年高三数学练习
2、若实数 x 、 y 满足 x 5 y 12 14 ,则 x y 的最小值是__________.
2 2 2 2 2
3、直线
x2 y 2 x y 1 相交于 A 、 B 两点,椭圆上有点 P ,使得 PAB 面积等于 3. 这样的点 P 共 1 与椭圆 4 3 16 9有_Leabharlann ________个.4、不等式
1 3 2 的解集为____________________. log 1 x 2
2
5、已知两个实数集合的子集 A a1 , a2 ,..., a100 与 B b1 , b2 ,..., b50 . 若从 A 到 B 的映射 f 使得 B 中每个元素都 有原像,且 f a1 f a2 ... f a100 ,则这样的映射共有__________个.
D、
b a a b
18、如右图,所示在平面直角坐标系中, 是一个与 x 轴的正半轴、 y 轴的正半轴 分别相切于点 C、D 的定圆所围成的区域(含边界) , A、B、C、D 是被圆的四等 分点. 若点 P x, y 、 点 P ' x, y 满足 x x ' 且 y y ' , 则称 P 优于 P ' . 如果 中的点 Q 满足:不存在 中的其它点优于 Q ,那么所有这样的点 Q 组成的集合是 劣弧__________. A. AB
2 2
13、如左下图所示,已知点 A 0, 2 和抛物线 y x 4 上两点 B 、 C ,使得 AB BC . 则点 C 的纵坐标的取值范
2
围为__________.
14、如右上图所示,有一列曲线 P0 , P 1, P 2 ,... ,已知 P 0 所围成的图形是面积为 1 的等边三角形, P k 1 由 P k 进行如下 操作得到:将 Pk 每条边三等分,以每边中间部分的线段为边,向外做等边三角形,再将中间部分的线段去掉. 记 S n 为曲线 Pn 所围成的图形的面积. 则 lim S n __________.
(完整word版)2014年高考数学理科(高考真题+模拟新题)分类汇编:D单元数列,推荐文档
数学D单元数列D1数列的概念与简单表示法17. 、[2014江西卷]已知首项都是1的两个数列{a n}, {b n}(b n M 0, n€ N*)满足a n b n+1 一a n+ 1b n+ 2b n+ 1b n= 0.(1) 令C n= ”,求数列{C n}的通项公式;b n⑵若b n= 3厂,求数列{a n}的前n项和S n.* a n+1 a n17 .解:(1)因为a n b n+ 1 —a n+ 1b n+ 2b n + 1b n = 0, b n M 0( n€ N ),所以 b + 1 —b = 2, 即卩C n一C n = 2 ,+ 1所以数列{ C n}是以C1 = 1为首项,d = 2为公差的等差数列,故C n= 2n— 1.(2) 由b n= 3n—1,知a n = (2n—1)3n—1,于是数列{a n}的前n 项和S n= 1 x 30+ 3X 31+ 5X 32 + •••+ (2n—1)x 3n —1, 35= 1 x 31+ 3x 32+ •••+ (2n—3)x 3n—1+ (2n —1)x 3n,将两式相减得—2S n= 1 + 2x (31+ 32+…+ 3n—1) —(2n—1) x 3n=—2 —(2n —2) x 3n,所以S n= (n—1)3n+ 1.17. [2014新课标全国卷I ]已知数列{a n}的前n项和为S n, a1= 1, a n^ 0, a n a n+1=入n —1,其中入为常数.(1) 证明:a n+2—a n=入⑵是否存在入使得{a n}为等差数列?并说明理由.17. 解:(1)证明:由题设,a n a n+1 =入n —1, a n+1a n+2 =入S1 —1,两式相减得a n + 1(a n+2 —a n)=入a 1.因为a n+ 1工0,所以a n + 2 —a n=入(2) 由题设,a1 = 1, a1a2=入1—1,可得a2= 一1,由(1)知,a3= + 1.若{a n}为等差数列,则2a2= a1 + a3,解得=4,故a n+ 2—a n= 4.由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n—1= 4n—3;{a2n}是首项为3,公差为4的等差数列,a2n= 4n — 1.所以a n= 2n—1, a n+1 —a n= 2.因此存在入=4,使得数列{a n}为等差数列.17. 、[2014新课标全国卷n ]已知数列{a n}满足a1= 1, a n+1 = 3a n+ 1.1(1) 证明a n + 2是等比数列,并求{a n}的通项公式;1 1 1 3(2) 证明匸+丁+…+.a1 a2 a n 21 117.解:(1)由a n+1= 3a n + 1 得a n+1 + ? = 3 a n + -.又a1 +1 = 3,所以a n+ 2是首项为§公比为3的等比数列,所以a n+1 f,因此数n— 13列{ a n}的通项公式为a n= ~2~ .1 2(2)证明:由⑴知丛=3n—1.因为当n > 1 时,3n— 1 > 2 x 3n —1,1 1 12 1 所以3^ w 2x 3n_1,即a n=3nT i w 厂. 于是丄+丄+…十丄w 1+3+-+ =31 -3 <2.a1 a2 a n 3 3 2 3 21 , 1 3所以—I ------- --- ----- v二a1 a2 a n 2'22., , [2014 重庆卷]设a1 = 1, a n+1=<a§—2a n+ 2 + b(n € N*).(1)若b = 1,求a2, a3及数列{a n}的通项公式.⑵若b =—1,问:是否存在实数c使得a2n<c<a2n+1对所有n€ N*成立?证明你的结论.22.解:(1)方法一:a2= 2, a3= ,2+ 1.再由题设条件知(a n+ 1—1)2= (a n—1)2+ 1.从而{(a n —1)2}是首项为0,公差为1的等差数列,故(a n—1)2= n—1,即卩a n= n— 1 + 1(n€ N*).方法二:a2= 2, a3= 2 + 1.可写为a1= 1—1 + 1, a2= 2— 1 + 1, a3= 3—1 + 1•因此猜想a n= n—1 + 1.下面用数学归纳法证明上式.当n = 1时,结论显然成立.假设n= k时结论成立,即a k= ''k—1+ 1,贝Va k+1= , (a k —1) 2+1 + + 1,这就是说,当n= k+ 1时结论成立.所以a n=甘n — 1 + 1(n € N ).⑵方法一:设f(x) = . (x—1) 2+1 —1,贝y a n+1= f(a n).令 c = f(c), 即卩c= ( c—1) 2+ 1 —1,解得c=下面用数学归纳法证明命题a2n<c<a2n +1<1.1当n = 1 时,a2= f(1) = 0, a3= f(0) = 2 —1,所以a2<4<a3<1,结论成立.假设n= k时结论成立,即a2k<c<a2k +1<1.易知f(x)在(—g, 1]上为减函数,从而c= f(c)> f(a2k +1)>f(1) = a2, 即卩1>C>a2k + 2> a2.再由f(x)在(—m, 1]上为减函数,得c= f(c)<f(a2k+2)<f(a2)= a3<1,故c<a2k+ 3<1,因此a2(k+ 1)<c<a2(k +1)+1<1,这就是说,当n = k+ 1时结论成立.1综上,存在c=;使a2n<C<a2a +1对所有n€ N*成立.4方法二:设f(x) =g ( X — 1 ) 2+ 1 —1,则a n+ 1= f(a n).先证:0w a n w 1(n€ N*). ①当n = 1时,结论明显成立.假设n= k时结论成立,即0 w a k w 1.易知f(x)在(—g, 1]上为减函数,从而0= f(1)w f(ak)w f(0) = ■,2—1<1.即0 w a k+1 w 1.这就是说,当n= k+ 1时结论成立.故①成立.再证:a2n<a2n +1(n€ N*). ②当n = 1 时,a2= f(1) = 0, a3= f(a2) = f(0)= . 2 —1,所以a2<a3,即n= 1 时②成立. 假设n= k时,结论成立,即a2k<a2k+1.由①及f(x)在( —g, 1]上为减函数,得a2k +1 = f(a2k)>f(a2k+ 1)= a2k+2,a2(k+ 1)= f(a2k+ 1)<f(a2k+2)= a2(k + 1) + 1.这就是说,当n= k+ 1时②成立•所以②对一切n€ N*成立.由②得a2n< a2n —2a2n+ 2— 1 , 即(a2n+ 1)2<a2n —2a2n+ 2,1因此a2n<4*③又由①②及f(x)在(一8, 1]上为减函数,得f(a2n)> f(a2n+ 1),即a2n + 1>a2n+2. 所以a2n + 1> a2n+ 1 —2a2n + 1+ 2—1,解得a2n+ 1>4・④1综上,由②③④知存在c=4使a2n<c<a2n+1对一切n € N*成立.D2等差数列及等差数列前n项和12. _____________ 、[2014安徽卷]数列{ a n}是等差数列,若a1 + 1, a3+ 3, a5+ 5构成公比为q的等比数列,贝U q = .12. 1 [解析]因为数列{a n}是等差数列,所以a1+ 1, a3 + 3, a5 + 5也成等差数列•又a1+ 1,a3+ 3, a5+ 5构为公比为q的等比数列,所以a1 +1, a3+ 3, a5 + 5为常数列,故q =1.12. [2014北京卷]若等差数列{a n}满足a7+ a8+ a9>0, a7 + a10<0,则当n = ___________ 时,{a n}的前n项和最大.12. 8 [解析]■/ a7+ a8 + a9= 3a8>0, a7 + a10= a8+ a9<0,,. a8>0, a9<0,「. n= 8 时,数列{a n}的前n项和最大.3. [2014福建卷]等差数列{a n}的前n项和为S n,若a1 = 2, S3= 12,则a6等于()A. 8B. 10C. 12D. 143. C [解析]设等差数列{a n}的公差为d,由等差数列的前n项和公式,得S3= 3X 23 X 2+ 〒d= 12,解得 d = 2,贝V a6= a1+ (6 —1)d = 2 + 5X 2= 12.18. 、[2014湖北卷]已知等差数列{a n}满足:a1 = 2,且a1, a2, a5成等比数列.(1) 求数列{a n}的通项公式.⑵记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+ 800?若存在,求n 的最小值;若不存在,说明理由.18. 解:(1)设数列{a n}的公差为d,依题意得,2, 2+ d, 2 + 4d成等比数列,故有(2 + d)2= 2(2 + 4d),化简得d2—4d = 0,解得d = 0或d = 4.当 d = 0 时,a n= 2;当 d = 4 时,a n= 2 + (n—1) 4= 4n — 2.从而得数列{a n}的通项公式为a n = 2或a n= 4n — 2.(2) 当a n= 2 时,S n = 2n,显然2n<60n+ 800,此时不存在正整数n,使得S n>60n + 800成立.当a n= 4n— 2 时,S = ? = 2n .令2n2>60n+ 800,即n2—30n—400>0,解得n>40或n<—10(舍去),此时存在正整数n,使得S n>60n + 800成立,n的最小值为41.综上,当a n= 2时,不存在满足题意的正整数n;当a n= 4n—2时,存在满足题意的正整数n,其最小值为41.20.、[2014 湖南卷]已知数列{a n}满足a1= 1, |a n+1—a n|= p n, n€ N*.Kru-n-HIP —fea 2 = p + 1, a 3= p 2+ p + 1 •又 a 1, 2a 2, 3a 3 成等差数列,所以1 解得p = 3或p = 0. 31当p = 0时,a n +1 = a n ,这与{a n }是递增数列矛盾,故 p = 3.1 1 、尹<尹刊,所以 |a 2n + 1— a 2n |<|a 2n — a 2n -1|.②1 1 ,,a n = a 1 + (a 2 — a 1) + (a 3 — a 2) +•••+ (a n — a n — 1) = 1 + ~ —歹 +…+[2014 •宁卷]设等差数列{a n }的公差为d.若数列{2 a 1 a n }为递减数列,—a n ) = 2a 1d<1,所得 a 1d<0.18. 、[2014全国卷]等差数列{a n }的前n 项和为3•已知a 1= 10, a 2为整数,且(1)求{a n }的通项公式;18. 解:(1)由a 1= 10, a 2为整数知,等差数列{a n }的公差d 为整数. 又 S n w S 4,故 a 4》0, a 5 w 0,10+ 3d > 0, 10 + 4d w 0, 解得—d w — 5,3 2 因此d =— 3.故数列{a n }的通项公式为a n = 13 — 3n. —1,其中入为常数.(1)若{a n }是递增数列,且a i . 2a 2, 3a 3成等差数列,求p 的值; ⑵若p = 2,且{a 2n -1}是递增数列, {a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以 a n + 1 一 a n = |a n +1 — a n | = p n .而 a i = 1,因此 4a 2= a 1 + 3a 3,因而 3p 2 — p = 0, ⑵由于{a 2n - 1}是递增数列,因而 a 2n + 1 —a 2n —1>0,于是 (a 2n + 1 — a 2n ) + (a 2n — a 2n -1)>0. 因为2n — 1 由①②知, a2n — a 2n —1>0,因此 a 2n — (—1) 2n a 2n — 1 = 22n -12n 因为{a 2n }是递减数列,同理可得,a 2n + 1 —a 2n <0,故 a 2n +(—1)2n + 1由③④可知, a n +1— a n = (—1) n +2n1 — a 2n = —?2n =4+3- (—1) 2门-1故数列{a n }的通项公式为(—1) 2n(—1) 2门-1 d<0 B . d>0 C . a 1d<0 D . a 1d>0C [解析]令b n = 2a 1a n ,因为数列{2 a 1 a n }为递减数列,所以b n +1 2a 1a n +1b n 2a 1a n2a 1(a n +1S n W S .⑵设b n =a n a n +1,求数列{b n }的前n 项和T n .⑵b n = (13 — 3n )(10— 3n )10 — 3n 13— 3n1.于是 T n = b 1 + b 2 + …+ b n =-17.、 10— 3n13— 3n 3 10— 3n 10 10 (10—3n )- [2014新课标全国卷I ] 已知数列{a n }的前n 项和为 S n , a 1= 1, a n ^ 0, a n a n +1=入n⑴证明:a n + 2— a n =入⑵是否存在 入使得{a n }为等差数列?并说明理由. 17. 解:⑴证明:由题设, a n a n + 1 =入 6— 1 , a n +i a n +2=入 S 1 — 1,两式相减得 a n + 1(a n +2 — a n )=入a 1. 因为a n + 1工0,所以a n + 2 — a n =入(2)由题设,a 1 = 1, a 1a 2=入 1— 1,可得 a 2= — 1, 由(1)知,a 3= + 1. 若{a n }为等差数列,则 2a 2= a 1 + a 3,解得 =4,故a n + 2— a n = 4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n—1= 4n — 3;{a 2n }是首项为3,公差为4的等差数列,a 2n = 4n — 1. 所以 a n = 2n — 1, a n +1 — a n = 2.因此存在 入=4,使得数列{ a n }为等差数列.19., , [2014山东卷]已知等差数列{a n }的公差为2,前n 项和为3,且S, 比数列. (1)求数列{a n }的通项公式;—4n ⑵令b n = ( — 1)n 1 ,求数列{b n }的前n 项和T n .a n a n +12X 119. 解:(1)因为 Si = a 1, S 2= 2a 1 + ~2~ x 2= 2a 1 + 2,4 x 3®= 4a 1+x 2= 4a 1+ 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1, 所以 a n = 2n — 1.⑵由题意可知,(—1)n —14n_')(2n — 1)( 2n + 1)=2n 2n + 1.当n 为奇数时, 1+ 1 +•••—亠+亠+ 亠+亠 3 5 2n — 3 2n — 1 2n — 1 2n + 11 2n + 1=(—1)n —112n — 1 12n + 1当n 为偶数时,1V 11 1T n = 1 +1 —3+ 5 十…十 2n — 3+2n — 1 =1- 12n + 11 2n — 11 +2n + 1 S 2, S 4成等 b n = (— 1)n — 14n a n a n + 11Tn= 1 + 316.,[2014陕西卷]△ ABC 的内角A , B , C 所对的边分别为 a , b , c.(1) 若 a , b , c 成等差数列,证明: sin A + sin C = 2sin(A + C); ⑵若a , b ,c 成等比数列,求 cos B 的最小值. 16. 解:⑴■/a , b , c 成等差数列,••• a + c = 2b. 由正弦定理得 sin A + sin C = 2si n B.■/ sin B= sin[ n — (A + C)] = sin(A + C),• sin A + sin C = 2sin(A + C).(2) •/ a , b , c 成等比数列,• b 2= ac. 由余弦定理得a 2+ c 2—b 2 a 2+c 2— ac 2ac — ac 1cos B- 2ac 2ac " 2ac 2,当且仅当a = c 时等号成立, 1• cos B 的最小值为》 11.[2014天津卷]设{ a n }是首项为a 1,公差为—1的等差数列,S n 为其前n 项和.若 S 1, S 2,S 4成等比数列,则a 1的值为 ___________________ .1” - 4 X 311. —[解析]T S 2= 2a 1 — 1, S 4= 4a 1+ — X (— 1) = 4a 「6, S 1, S 2, S 4成等比数列,1•- (2a 1 — 1尸=a 1(4a 1 — 6),解得 a 1 = —》22. , [2014 重庆卷]设 a 1 = 1, a n +1=p a §— 2a n + 2 + b(n € N *). (1)若b = 1,求a 2, a 3及数列{a n }的通项公式.⑵若b =— 1,问:是否存在实数 c 使得a 2n <c<a 2n +1对所有n € N *成立?证明你的结论. 22.解:(1)方法一:a 2= 2, a 3=, 2+ 1. 再由题设条件知(a n + 1— 1)2= (a n — 1)2+ 1.从而{(a n — 1)2}是首项为0,公差为1的等差数列, 故(a n — 1)2= n — 1,即 a n = ^j n — 1 + 1(n € N ). 方法二:a 2= 2, a 3= 2 + 1.可写为 a 1= 1 — 1 + 1, a 2= 2— 1 + 1, a 3=、』3— 1 + 1.因此猜想 a n = n — 1+ 1. 下面用数学归纳法证明上式.当n = 1时,结论显然成立.假设n = k 时结论成立,即a k = .''k — 1+ 1,贝ya k +1 = \' (a k — 1) 2 +1 + 1 =百(k — 1) + 1 +1 = ::/ ( k + 1) — 1 + 1, 这就是说,当n = k + 1时结论成立.所以 a n =雪n — 1 + 1(n € N ).⑵方法一:设 f(x) = . (x — 1) 2 +1 — 1,则 a n +1= f(a n ). 令 c = f(c),即 c =( c — 1) 2+ 1 — 1,解得 c = 7.4下面用数学归纳法证明命题 2n + 2 2n + 1.所以T n =, n 为奇数,2n + 1 2n冇,n 为偶数.或 “ 2n + 蔦(—;)n—12n + 1a2n<C<a2n + 1<1.1当n = 1 时,a2= f(1) = 0, a3= f(0) = 2 —1,所以a2<4<a3<1,结论成立.假设n= k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(—g, 1]上为减函数,从而c= f(c)> f(a2k +1)>f(1) = a2,即卩1>C>a2k + 2> a2.再由f(x)在(—m, 1]上为减函数,得c= f(c)<f(a2k+2)<f(a2)= a3<1,故c<a2k+ 3<1,因此a2(k+ 1)<c<a2(k +1)+1<1,这就是说,当n = k+ 1时结论成立.1综上,存在c= 4使a2n<C<a2a+1对所有n€ N*成立.方法—:设f(x) = '...;( X —1) 2+ 1 —1,贝U an+ 1 = f(an).先证:0w a n W 1(n€ N*). ①当n = 1时,结论明显成立.假设n= k时结论成立,即0 w a k< 1.易知f(x)在(—g, 1]上为减函数,从而0= f(1) w f(a k) w f(0) = 2—1<1.即0 w a k+1 w 1•这就是说,当n= k+ 1时结论成立.故①成立.再证:a2n<a2n+ 1(n€ N ). ②当n = 1 时,a2= f(1) = 0, a3= f(a2) = f(0) =, 2 —1,所以a2<a3,即n= 1 时②成立. 假设n= k 时,结论成立,即a2k<a2k+1.由①及f(x)在( —g, 1]上为减函数,得a2k +1 = f(a2k)>f(a2k+ 1)= a2k+2,a2(k+ 1)= f(a2k+ 1)<f(a2k+2)= a2(k + 1)+1.这就是说,当n= k+ 1时②成立.所以②对一切n€ N*成立.由②得a2n<:-Ja2n —2a2n+ 2—1 ,即(a2n+ 1)2<a2n —2a2n+ 2 ,因此a2n<:③4又由①②及f(x)在(—g, 1]上为减函数,得f(a2n)> f(a2n +1), 即卩a2n + 1>a2n+2., _____________ 1所以a2n + 1> , a2n+1 —2a2n + 1+ 2—1,解得a2n+ 1>[. ④综上,由②③④知存在c=1使a2n<c<a2n+1对一切n € N*成立.4D3等比数列及等比数列前n项和2. [2014重庆卷]对任意等比数列{a n},下列说法一定正确的是()A. a1, a3, a9成等比数列B. a2, a3, a6成等比数列C. a2, a4, a8成等比数列D. a3, a6, a9,成等比数列2. D [解析]因为在等比数列中a n, a2n, a3n,…也成等比数列,所以a3, a6, a9成等比数列.12. 、[2014安徽卷]数列{a n}是等差数列,若a1+ 1, a3+ 3, a5+ 5构成公比为q的等比数列,贝U q = ______ .12. 1 [解析]因为数列{a n}是等差数列,所以a1+ 1, a3 + 3, a5 + 5也成等差数列.又a1+ 1, a3+ 3, a5+ 5构为公比为q的等比数列,所以a1 +1, a3+ 3, a5 + 5为常数列,故q =1.13. 、[2014广东卷]若等比数列{a n}的各项均为正数,且a10an+ a9a12 = 2e5,贝V In a1-3. 12+ In a 2 + …+ In a 20=13.50 [解析]本题考查了等比数列以及对数的运算性质. + a 9a i2 = 2e 5,cc二 a io a ii + a 9a i2 = 2a io a ii = 2e ,「• a io a ii = e , --|n a i + In a 2+…+ In a 2o = In(a i a 2…a 2o ) = In (a io a ii )io = In (e 5)i0= In e 50= 50.i0. [20i4全国卷]等比数列{a n }中,a 4= 2, a 5= 5,则数列{Ig a n }的前8项和等于(C . 4的最小值;若不存在,说明理由.18. 解:(1)设数列{a n }的公差为d , 依题意得,2, 2+ d , 2 + 4d 成等比数列,故有(2 + d)2= 2(2 + 4d),化简得d 2— 4d = 0,解得d = 0或d = 4.又a i + j j 所以a n + 是首项为2■,公比为3的等比数列,所以■/ {a }10. C [解析]设数列{a n }的首项为a 1, 公比为q ,根据a i q 3= 2,a i q 4= 5,解得16 a i = 125'所以 a n = a i q n 1=16n—4125,所以 Ig a n = Ig 2 + (n —4)Ig|,所以前8项的和为5 5 58Ig 2 + (— 3 — 2— 1 + 0 + 1+ 2+ 3 + 4)Ig- = 8Ig 2+ 4lg?= 4Ig 4X- = 4.18.、 [2014湖北卷]已知等差数列{ a n }满足:a i = 2,且a i , a 2, a 5成等比数列. (1)求数列{a n }的通项公式.⑵记S n 为数列{a n }的前n 项和,是否存在正整数n,使得S n >60n + 800?若存在,求 当d = 0时, a n = 2;当d = 4时, a n = 2 + (n — 1) 4 = 4n — 2.-3.12⑵当 a n = 2 时,S n = 2n ,显然 2n<60n + 800, 解得n>40或n<— 10(舍去),1 117. 解:(1)由 a n +1 = 3a n + 1 得 a n +1 + ? = 3 a n + —.此时存在正整数 n , 使得S n >60n + 800成立, n 的最小值为41.综上,当a n = 2时,不存在满足题意的正整数 n; 当a n = 4n — 2时,存在满足题意的正整数 其最小值为41.17.、 、[2014新课标全国卷n ]已知数列{a n }满足 a i = 1, a n + 1= 3a n + 1. (1)证明 a n + 2疋等比数列,并求{a n }的通项公式;1 1⑵证明二+ £+…+a n从而得数列{a n }的通项公式为 a n = 2 或 a n = 4n — 2. 此时不存在正整数 n ,使得 S n >60n + 800 成立.当 a n = 4n — 2 时, S n =n[2 +( 4n — 2)] =2n 2 令 2n 2>60n + 800, 即 n 2— 30n — 400>0,an + 2 = ,因此数1 2⑵证明:由⑴知a n =3n —i.因为当 n > 1 时,3n — 1 > 2 X 3n —1所以2+1+…+丄<3a 1 a 2 a n 219., , [2014 •东卷]已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1, S 2, 比数列.(1)求数列{a n }的通项公式; ⑵令b n = ( — 1)n—1—,求数列{b n }的前n 项和T n . a n a n +119. 解:(1)因为 S 1 = a 1, S 2= 2a 1 +X 2=2a 1+ 2,4 X 3 小S 4= 4a 1 + ~2~X 3= 4a 1 + 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1, 所以 a n = 2n — 1.⑵由题意可知,2 2n + 1 2n + 2 2n + 1.列{a n }的通项公式为3n — 1 a n = 21 a 21 2X 3n —1 即a n =右3 132 1 ― 3n <2.S 4成等 b n = (— 1)n — 14na n a n + 1=(—1)n4n(2n — 1)~( 2n + 1) =(—1)n —11_ + _J_2n — 1 2n + 1当n 为偶数时, 1 V 1 1 丄 1T n = 1 + 3 — 3+ 5 +…+ 廿+乔1 2n — 11 2n + 11 2n + 1=2n 2n + 1. 当n 为奇数时,1Tn= 1 +31 1一 + 一+…— 1 + 1 _L + 1 2n — 3+ 2n — 1 + 2n —1+2n + 1所以a1Kru-n-HIP—fe⑵若a , b , c 成等比数列,求 cos B 的最小值. 16.解:(1) •/a , b , c 成等差数列,••• 由正弦定理得 sin A + sin C = 2si n B. • sin A + sin C = 2sin(A + C). (2) •/ a , b , c 成等比数列,• b 4= ac. 由余弦定理得4 3},可得 A = {0 , 1 , 2, 3, 4, 5, 6, 7}.2n + 2 所以T n =2n + 1 ,n 为奇数, 2n + 1+(— 1)2n 2n + 1,n 为偶数.2n + 116.,, [2014陕西卷]△ ABC 的内角A , B , C 所对的边分别为a ,b , c. (1)若a ,b ,c 成等差数列,证明: sin A + sin C = 2si n(A + C); a + c = 2b.■/ sin B = sin[ 7t —(A + C)] = sin (A + C),cos B =0^^ = a^2—^ , 2ac —ac2ac 2ac2ac2'当且仅当a = c 时等号成立,1• cos B 的最小值为111. [2014天津卷]设{ a n }是首项为a 1,公差为—1的等差数列, S 1, S 2, S 4成等比数列,贝y a 1的值为2,…,n 证明:若 a n <b n ,贝U s<t.=—1<0, 所以s<t.D4数列求和—a n + 1b n + 2b n +1b n = 0.(2)证明:由 s , t € A , s = a 1 + a 2q +…+ a n q n,t = b 1+ b 2q + •••+ b n q n ai ,b i € M , i=1, 2,…,n 及 a n <b n ,可得 s —1= (a 1 — b 1) + (a 2— b 2)q + …+ (a n -1 —b n -1)q n 2+ (a n — b n )q n 1 w (q — 1) + (q — 1)q + …+ (q — 1)q n —2— qn—1(q — 1)( 1 — q n —9—q n S n 为其前n 项和.若11.[解析]T S 2= 2a 1 — 1, S 4= 4a 1 +X (— 1) = 4a 1 — 6, S 1, S 2, S 4成等比数列,•- (2a 1 — 1)2= a 1(4a 1 — 6),解得 a 1 =—2'19.、[2014天津卷]已知q 和n 均为给定的大于1的自然数.设集合M = {0,1 ,2,…, q — 1},集合 A = {x|x =X 1 + x 2q +•••+ x n q n —1 ,X i € M , i = 1, 2,…,n}.(1)当q = 2, n = 3时,用列举法表示集合 A.(2)设 s , t € A , s = a 1+ a 2q +…+ a n q n 1 t = b 1 + b 2q + …+ b n q n 1 ,其中a i , b i € M , i = 1,19.解:(1)当 q = 2, n = 3 时,M = {0 , 1}, A = {x|x = X 1+ X 2 - 2 + X 3 - 22, X i €M , i = 1, 17.、 、[2014江西卷]已知首项都是1的两个数列 { a n } , {b n }(b n M 0, n € N *)满足 a n b n + 11b n = (— 1)n —14na n a n + 1 =(—1)n4n(2n — 1)( 2n + 1)=(—1)n2n — 1 + 2n + 1 'n(1)令C n =—,求数列{ C n }的通项公式;(2)若 b n = 3n —1,求数列{a n }的前n 项和S n .17.解:(1)因为 a n b n +1 — a n + l b n + 2b n +l b n = 0, b n 工 0(n € N ),所以a n + 1b n + 1an= 2,即 C n + 1b n所以数列{ C n }是以C 1 = 1为首项,d = 2为公差的等差数列,故 c n = 2n — 1.(2) 由 b n = 3n ,知 a n = (2 n — 1)3n ,于是数列{a n }的前n 项和S n = 1 x 3°+ 3X 31 + 5X 32 + …+ (2n — 1)x 3n —1, 3S n = 1 x 31 + 3x 32 + …+ (2n — 3)x 3n —1+ (2n — 1)x 3n ,将两式相减得 —2S n = 1 + 2X (31+ 32+…+ 3n —1) — (2n — 1) x 3n =— 2 — (2n — 2) x 3n ,所以 S n = (n — 1)3n + 1. 18. 、[2014且 S n W S t .(1)求{a n }的通项公式;⑵设b n =a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1= 10, a 2为整数知,等差数列 {a n }的公差又 S n W S 4,故 a 4> 0, a 5< 0,10+ 3d > 0, 10 + 4d w 0, 10 5解得一d W — 5, 3 2 因此d =— 3.故数列{a n }的通项公式为a n = 13 — 3n. (2) b n = (13 — 3n )(10— 3n )10 — 3n 13— 3n.于是 T n = b 1 + b 2 +7- 110 +10— 3n 13— 3n 3 10— 3n 1010 (10—3n )'19., [2014 •东卷]已知等差数列{a n }的公差为2,前n 项和为3,且S,S 2, S 4成等比数列.(1)求数列{a n }的通项公式;⑵令 b n = ( — 1)n 4n a n a n +1 ,求数列{b n }的前n 项和T n .19.解:(1)因为 Si = a 1, S 2= 2a 1 +2X 1x 2= 2a 1+ 2,S 4= 4a 1 +x 2= 4a 1+ 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1,所以 a n = 2n — 1. (2)由题意可知,=1 +1 —2 4+ 3当n 为偶数时,2n当n 为奇数时,2n + 1 2n + 22n + 120. 、[2014 湖南卷]已知数列{a n }满足 a 1= 1, |a n +1— a n |= p n , n € N .因为2n — 1 由①②知, a 2n —a 2n —1>0,因此 a 2n — a 2n —1 = (—1) 2n因为{a 2n }是递减数列,同理可得, a 2n + 1 由③④可知,a n +1— a n =(—1)n +2n22 n —1—a 2n <0,故 a 2n + a 2n =— 2n(—1)?2n2n + 1T n = 1 + 1 1 3+ 52n — 3+ 2n - 12n — 1 + 2n + 1=1-2n + 1 T n = 1 + § ―1+ 12n — 3 + 2n — 12n — 12n + 12n + 2 所以T n =2n + 1‘ n 为奇数, 2n + 1 +(—1) 2n 2n + 1'n 为偶数.2n + 1D5单元综合 (1)若{a n }是递增数列,且 a 1, 2a 2, 3a 3成等差数列,求p 的值; ⑵若p = 2,且{a 2n -1}是递增数列, {a 2n }是递减数列,求数列{a n }的通项公式. 20、解:(1)因为{a n }是递增数列,所以a n + 1 — a n = |a n +1 — a n | = p n .而 a 1 = 1,因此a 2 = p + 1, a 3= p 2+ p + 1 •又 a 1, 2a 2, 3a 3 成等差数列,所以 4a 2= a 1 + 3a 3,因而 3p 2 — p = 0,1解得p = 3或p = 0.3当p = 0时, a n +1 =a n ,1这与{a n }是递增数列矛盾,故 p = 3.⑵由于{a 2n - 1}是递增数列,因而 a 2n + 1— a 2n —1>0,于疋 (a 2n +1 — a 2n )+ (a 2n — a 2n —1)>0.①(—1) 2“-1=1 +1 —24+31 亠a n = a 1 + (a 2 — a 1) + (a 3 — a 2) +•••+ (a n — a n T ) = 1 + ? — ?2 + …+(—1)故数列{a n }的通项公式为 a n = (—1)2*-121. 、[2014安徽卷]设实数c >0,整数p > 1, n € N *.⑴证明:当 x >— 1 且 X M 0 时,(1 + x)p> 1 + px ;21.证明:(1)用数学归纳法证明如下.①当p = 2时,(1 + x)2= 1 + 2x + x 2>1 + 2x ,原不等式成立. ②假设p = k(k > 2, k € N *)时,不等式(1 + x)k >1 + kx 成立. =(1 + x)(1 + x)k >(1 + x)(1 + kx)= 1 + (k + 1)x + kx 2>1 + (k + 1)x.所以当p = k + 1时,原不等式也成立.综合①②可得,当x>— 1, X M 0时,对一切整数1 c .1 +"a p— 5.5由此可得,f(x)在[c-,+8 )上单调递增,p1⑵数列{ a n }满足a 1 > cp , a n +1 =pa n + pa n —p,证明: a n > a n +1 > c p. ⑵方法一:先a n >C_. p1①当n =1时,由题设知a1>c 1成立.②假设n = k(k > 1, k € N *)时,不等式 a k > c p 成立. 由 a n + 1 =P — 1丄 c 1a n + a n p p 易知 a >0,当n = k + 1时,a k +1p — 1 , c = +_a kpa k p当 p = k + 1 时,(1 + x)p>1,不等式(1+ x)P >1 + px 均成立.由 a k >cr>0 得一 1< 一 <一-p a p -1<0.由(1)中的结论得 a k +1a k 1+pOr 1>1 + p •—ap.因此a p + 1>c,即a k +1>c —,所以当n = k + 1时,不等式1 an >cp 也成立.综合①②可得,对一切正整数n,不等式a n >c1均成立.再由a n +1a na p可得a n + 1a n<1,即a n+ 1<a n.因而,当1 1 1 x莓时,蚀>%)=c p.综上所述, a n> a n+1 >Cp ,n€ N*方法二:设f(x)=x+px11x> c1,贝y x p> c,p所以f'x)=p—1 c+p(1 —p)xp—J _c1 —x p >°.Kru-n-HIP —fe1①当n = 1时,由a 1>c _>0 ,即卩a 1>c 可知 p1故当n = 1时,不等式a n >a n +1>c~成立. P所以当n = k + 1时,原不等式也成立.(1)求数列{a n }的通项公式. 的最小值;若不存在,说明理由.18. 解:(1)设数列{a n }的公差为d , 依题意得,2, 2+ d , 2 + 4d 成等比数列, 故有(2 + d)2= 2(2 + 4d),化简得d 2- 4d = 0,解得d = 0或d = 4.解得n>40或n<— 10(舍去),a 2 =p -1 C 1—p 1 c 彳a1+ p a1 p = a1 1 + paT 11<a 1,并且 a 2= f(a 1)>cp ,从而可得 a 1 >a 2②假设n = k(k > 1,k € N *)时,不等式 1)>f(cp),即有a k + 1>a k +2>「p综合①②可得,对一切正整数n ,不等式 a n >a n + 11 >C-均成立. p18.、、[2014湖北卷]已知等差数列{a n }满足: a 1 = 2,且 a 1, a 2,a 5成等比数列. ⑵记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n + 800?若存在,求 当d = 0时, a n = 2;当d = 4时, a n = 2 + (n - 1) 4 = 4n — 2.从而得数列{a n }的通项公式为 a n = 2 或 a n = 4n — 2. ⑵当 a n = 2 时,S n = 2n ,显然 2n<60n + 800, 此时不存在正整数 n , 使得S n >60n + 800成立. 当 an = 4n — 2 时,n[2 +( 4n — 2)]=2n 2令 2n 2>60n + 800,即 n 2— 30n — 400>0,此时存在正整数 n , 使得S n >60n + 800成立, n 的最小值为41.综上,当a n = 2时,不存在满足题意的正整数 n; 当a n = 4n — 2时,存在满足题意的正整数 其最小值为41. ,则当 n = k + 1 时,f(a k )>f(a k + a k > a k +1>、[2014江西卷]已知首项都是1的两个数列{a n }, {b n }(b n M 0, n € N *)满足a n b n +1—a n + 1b n + 2b n + 1b n = 0.+ …+ (2n — 1)x 3n —1, 3S n = 1 x 31 + 3x 睜 + …+ (2n — 3)x 3n —1—2S n = 1 + 2X (31+ 32+-+ 3n —1) — (2n — 1) x 3n =— 2 — (2n — 2)x 3n ,所以S n = (n — 1)3n + 1. 17.、(1)令 C n =a nbn'求数列{c n }的通项公式; (2)若 b n = 3n —1 ,求数列{a n }的前n 项和S n .17 .解:(1)因为 a n b n + 1 — a n + 1b n + 2b n + 1b n = 0, b n M 0( n € N ),所以a n +1 a nb n + 1b n=2, 即 卩 C n1所以数列{C n }是以 C 1 = 1为首项,d = 2为公差的等差数列,故C n = 2n — 1.(2)由 b n = 3n —1 ,知 a n = (2n — 1)3n —1,于是数列{a n }的前n 项和S n = 1 x 30 + 3X 31 + 5X 32 + (2n — 1)x 3n ,将两式相减得17.、 、[2014新课标全国卷n ]已知数列{a n }满足 a 1 = 1, a n +1 = 3a n + 1.1 , 3 t , n2T n = 1+ 2 + 歹+…+盯,因此,2T n — T n = 1 + 1 + 2^+…+ 21—1-加 2 —十—加 2n 219. [2014浙江卷]已知数列{a n }和{b n }满足a£2a 3…a n = ( . 2)b n (n € N *).若{a n }为等比 数列,且 a 1 = 2, b 3= 6 + b 2.sV1 (1) 证明a n + 2是等比数列,并求{a n }的通项公式; 1 1 1 3(2) 证明一 +—+•••+—<;.a 1 a 2 a n 21 1 17.解:(1)由 a n +1= 3a n + 1 得 a n +1 + ㊁=3 a n +2 .1 3 1 3又a 1 + = 2,所以a n +1是首项为3■,公比为3n— 1列{a n }的通项公式为a n =1 3n3的等比数列,所以a n + 2 = 3,因此数 1⑵证明:由⑴知乳=3n —1.因为当 n > 1 时,3n — 1 > 2 x 3n —1,I I 1所以 3n — 1w 2X 3n —1,即 a n = 3n — 1w 3n —1.于是丄+1+…+丄< 1+3+…+尙=21— a 1 a 2 a n 3 3 2丄 3耳<2.所以丄+1 +…+ -<3. a 1 a 2 a n 219., (n € N *).(1)若 [2014四川卷]设等差数列{a n }的公差为d ,点(a n , b n )在函数f(x) = 2x 的图像上a i =— 2,点(a 8, 4b 7)在函数f(x)的图像上,求数列{a n }的前n 项和S n ; ⑵若1 a na 1= 1,函数f(x)的图像在点(a 2,b 2)处的切线在x 轴上的截距为2 —花,求数列 厶的前n 项和T n .19.解:(1)由已知得,b 7= 2a 7, b 8= 2a 8= 4b 7,所以 2a 8= 4 x 2a 7 = 2a 7+ 2,解得 d = a 8— a 7= 2,n (n — 1)所以 S n = na 1 + d = — 2n +n(n — 1) = n 2— 3n.⑵函数f(x)= 2x 在点(a 2, b 2)处的切线方程为 y — 2a 2= (2a 2ln 2)(x — a 2), 其在X 轴上的截距为a 2—爲.1 1由题意有a 2— = 2 — ,解得a 2= 2.所以 d = a 2 — a 1= 1. 从而 a n = n , b n = 2n ,a n n_ 所以数列{和的通项公式为b n = 2n , 所以Tn =1+釘討…+F?+2n ,2nn + 1 所以,T n =2— n — 22n(1)求 a n 与 b n .1 1 *⑵设C n = — — b (n € N ).记数列{C n }的前n 项和为S n . (i) 求 S n ;(ii) 求正整数k ,使得对任意n €均有S k > S n . 19. 解:(1)由题意 a£2a 3 …a n = (,2)b n , b 3 — b 2= 6, 知 a 3= Cj 2)b 3 — b 2= 8.又由a 1 = 2,得公比q = 2(q =— 2舍去),所以数列{a n }的通项为 所以,a 1a 2a 3…a n = 2“(叮 ° = ( . 2)n(n+"_ *€ N ).2门 、 2:所以,当n > 5时,C n <0. 综上,若对任意 n € N *恒有S k >S n ,则k = 4.4. [2014 •州调研]已知数列{a n }满足a 1 = 5,a n +1 =乙^打,n € N *.a n = 2n (n €2 故数列{b n }的通项为b n = n(n + 1)(n € N *).11111(2)(i)由(1)知 c n = a ;— b ;=列n n + 1(n € N *).(ii)因为 C 1= 0, C 2>0, C 3>0, 1当n > 5时,C n而n (n +1)2nn (n + 1)(n + 1)( n + 2) C 4>0 ,n (n + 1)—1 ,2n(n + 1)( n — 2)得 n ( n + 1)三 5X( 5 + 1)3. [2014闽南四校期末]若数列{a n }的前n 项和为2 1S n = ?a n + "3,则数列{a }为( A .B .C )a n =— 2n 1 a n = (— 2)n —1 a n = (— 2)n a n =— 2n2B [解析]由 a n = S n — &i -1(n > 2),得 a n = _a n — ^a nT ..,. a n ==(—2)n —1(n >2).又 a 1 = (— 2)1—1 = 1,二 a n = (— 2)n —1.3. —2a n -1.又 a i = 1 ,「• a n a n *6. [2014南昌联考]已知数列{a n }满足 a 1= 1, a n +1 =匚卫(n € N ).若 b n + 1 = (n —1 ,Z 0_ +1 , a n . b 1=— Z,且数列{b n }是递增数列,则实数 入的取值范围为( C . 6. v 2 B .入〉3 > 2 D .入v 31 2 1 1[解析]易知—=2 + 1,•— + 1 = 2- + 1."1 J a a a a n + 1 1 1 —又 a 1= 1 ,•••:+ 1 =7+ 12n 1= 2n ,. b n +1 = (n —入)2,' a n a 1 ' '• b n +1 — b n = (n —入)2~ (n — 1 —入)2 1 = (n —入 + 1)2n 1 >0, n —入 + 1 > 0.又 n € N ,二 Z 2.1(1)求证:数列一1为等比数列.a n⑵是否存在互不相等的正整数m, s, t,使m, s, t成等差数列,且a m—1, a s—1, a t —1成等比数列?如果存在,求出所有符合条件的m, s, t;如果不存在,请说明理由.m+1+ 2 X 3m + 2 X 3t = 32s + 4 X 3s因为 m + t = 2s ,所以 3m + 3t = 2X 3s . 这与m , s , t 互不相等矛盾,(1)求a 1及数列{a n }的通项公式; 即(a n — 1)2— a 2—1 = 0,所以数列{a n }是首项为1,公差为1的等差数列,4.解:⑴证3a n 2a n + 1 ,所以a n + 1 3a n所以a n +13a n1.3因为a1 = 5,所以 a 1所以数列 a n2 11是首项为3,公比为£的等比数列.3 3 1 (2)由(1)知,a ;—1= 2X ]n -1 2 3 3 3n ,所以a n = 3n3n + 2假设存在互不相等的正整数 m , s , t 满足条件,则有m +1 = 2s ,(a s — 1) 2=( a m — 1) (at — 1).由a n = 3n3“+ 2 与(as — 1)2 =(a m — 1)(a t — 1), 3s 2_3m3t3s + 23m + 23t + 2 —1, 又 3m + 3t > 23m+1= 2 X 3s ,当且仅当m = t 时,等号成立,所以不存在互不相等的正整数m , s ,t 满足条件. 2. [2014景德镇质检]已知递增数列、卄1 2{a n }满足 a 1 + a 2 + a 3 +…+ a n = 2(a n + n).⑵设c n = a n + , n 为奇数,a n —1 • 2 a n — 1 + 1, n 为偶数, 求数列{ C n }的前2n 项和T 2n . 2.解:(1)当 n = 1 时,a 1=*(a 2+ 1),解得a 1 = 1. a1 + a 2+ a 3+…+ a n — 1=*(a 2—1 +—1),a 1 + a 2 + a 3+…+ a n = 1 22(a n + n),所以a n =詁2—a n - 1+ 1),所以 a n — a n —1 =1 或 a n + a n —1 = 1(n 》2).又因为数列{a n }为递增数列,所以 a n —a n —1 = 1,则 T 2n = (2 + 4 + …+ 2n)+ [1 x 21 + 3X 23+…+ (2n — 1)x 22n —1] + n = n(n + 1) + [1 x 21 +3X 23+…+ (2n — 1) X 22n —1记 S n = 1 x 21 + 3X 23+…+ (2n — 1) X 22n —1,① 则 4S n = 1X 23+ 3X 25+…+ (2n — 1) X 22n +1 由①一②,得—3S n = 2 + 24+ 26+…+ 22n — (2n — 1)22n +1,所以a n = n.(2)由 C n a n + , n 为奇数, a n —1 • 2a n — 1 + 1, n 为偶数, 得C n =n + 1,n 为奇数, (n — 1) 2n —1+ 1, n 为偶数,]+ n. •②=22 + 24 + 26+…+ 22n — (2n — 1)22n +1 — 2, 4(1 — 4n ) 所以一3S n = 4(: 41 — 4 4 (1 — 4n )卜 —(2n — 1)2 2n +1— 2,所以S n = (2n — 1) 22n +1 9即 S n =( 6n - 5)22n +1 2卜2, 9 罟故 T 2n = g 5)22n +17. 比数列, 2 c 109 " + 2n +[2014福建闽南四校期末]已知数列{ a n }是公差为2的等差数列,且a 1, a 2, a 5成等 则a 2的值为( 3A [解析]T a 1, A . 7. 二 a 2= (a 2— 2)(a 2 + 6),解得 a 2= 3.)2 D . — 2 a 2, a 5成等比数列,a 2= a 1 - a 5, 10. [2014郑州质检]已知各项不为0的等差数列{a n }满足a 4— 2a 7 + 3a 8= 0,数列{b n } 疋等比数列, A . C . 10. 且 b 7= a 7,贝U b 2b 8bn 等于(B . D . [解析]由已知,得 2a 2= a 4 + 3a 8= a 1+ 3d + 3a 1+ 21d = 4a 1 + 24d = 4(a 1 + 6d)= 4a 7, 2n , D ••• a 7= 2 或 a 7 = 0(舍去), 二 b 7= 2,「. b 2b 8bn = b 1q - b 1q 7 • b 1q 10= b 3q 18 = (b 1q 6)3= b 3= 8. 17. [2014温州十校联考]1 n € N *,数列{a n }满足 a n + 1 (1)求数列{a n }的通项公式; ⑵记b n = , a n a n +1,求数列{b n }的前n 项和T n . 已知二次函数f(x)= ax 2+ bx 的图像过点(一4n , 0),且f ' (0= =f '丄,且 a 1= 4. a n 17.解: 由题意知 f ' (0) b = 2n , 16n 2a — 4nb = 0, 1• • a = _, 2,1又数列{a n }满足 1 *b = 2n ,「. f(x) = 2X 2+ 2nx , n € N *. 1 f '—, f'x) = x + 2n ,a n +1 a n11 门=一+ 2n , a n +1 a n1 1 c =2n. a na n + 1 1 1由叠加法可得 a n -4= 2+ 4 + 6i ・+ 2(n - 1) = n2- n ,化简可得 a n =(2n — 1)2(n >2). 当 n = 1时,a1= 4 也符合上式,•• a n = ~2(n € N ).=2-1(2n — 1)( 2n + 1) 2n — 1 2n + 1 b n =. a 1a 2+ Ja 2a 3+・・・+ ‘叮 a n a n +1 =1 1 1 4n (2) ■/ b n = . a n a n +1 = --T n = b 1 + b 2+…+11 1 ,,21—:+7—2+…+3 3 5=21 — 2n — 1 2n + 1 2n + 1 2n + 1'1 3 1 3所以|a2n+ 1—a2n|<|a2n —a2n —11.②2n。
盐城中学2014届高三数学练习6
一、填空题(本大题共14小题,每小题5分,计70分)1.已知{|A x y ==,(){|lg 11}B x x =-<则=⋂B A __________. 2.已知命题:p 对角线相等的四边形为矩形,则命题p 的否命题是____________. 3.函数)2(,)3sin(2πϕϕ<+=x y 的一条对称轴为12π=x ,则=ϕ_________.4.在等差数列{}n a 中, 若9753=++a a a , 则其前9项和9S 的值为 .5.已知向量,a b 满足0a b ⋅= ,||1,||2a b == ,则|2|a b -=_________.6.已知函数2,0()4,0x f x x x x ≥=--<⎪⎩,若(1)3f x +≤,则x 的取值范围是___________.7.过坐标原点作函数ln y x =图像的切线,则切线斜率为_____________.8.数列{}n a 满足12a =且对任意的*,m n N ∈,都有n m n m a a a +=⋅,则{}n a 的前n 项和n S =______________.9.已知数列{}n a 满足221221,2,(1cos)sin 22n n n n a a a a ππ+===+⋅+,则该数列的前10项的和为____________. 10.已知函数xmx x f -=ln )((R m ∈)在区间],1[e 上取得最小值4,则=m ___________. 11.已知函数))2,0((cos )(π∈=x x x f 有两个不同的零点21,x x ,且方程m x f =)(有两个不同的实根43,x x .若把这四个数按从小到大排列构成等差数列,则实数m 的值为__________. 12.在ABC ∆中,若tan :A tan :tan 1:2:3B C =,则A =________.13.在ABC ∆中,0120BAC ∠=,1,2AB AC ==,D 为线段BC 边上一点, DC BD λ=,则AD BC ⋅的取值范围为___________.14.把正整数按下表的规律排列,其中第i 行第j 列记为),(*N j i a j i ∈,如第2行第4列的数是15,记作154,2=a ,则=14,12a ______.1 4 5 16 17 362 3 6 15 18 35 9 8 7 14 19 34 10 11 12 13 20 33 25 24 23 22 21 32 26 27 28 29 30 31二、解答题(本大题共6小题,计90分.)15.已知在等边三角形ABC 中,点P 为线段AB 上一点,且(01)AP AB =≤≤λλ.(1)若等边三角形边长为6,且13=λ;(2)若CP AB PA PB ⋅≥⋅,求实数λ的取值范围.16.ABC ∆ 中,内角,,A B C 的对边分别是,,a b c ,已知,,a b c 成等比数列,且3cos 5B = (1)求cos cos AC 的值; (2)求tan tan A C +值.17.已知函数2()()xf x ax x e =+,其中e 是自然数的底数,a R ∈. (1)当0a <时,解不等式()0f x >;(2)当0a =时,求整数k 的所有值,使方程()2f x x =+在[],1k k +上有解;18.如图,AB 是沿太湖南北方向道路,P 为太湖中观光岛屿, Q 为停车场, 5.2PQ =km.某旅游团游览完岛屿后,乘游船回停车场Q ,已知游船以13/km h 的速度沿方位角θ的方向行驶,135sin =θ.游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点Q 与旅游团会合,立即决定租用小船先到达湖滨大道M 处,然后乘出租汽车到点Q(设游客甲到达湖滨大道后能立即乘到出租车).假设游客甲乘小船行驶的方位角是α,出租汽车的速度为66km/h(Ⅰ)设54sin =α,问小船的速度为多少/km h 时,游客甲才能和游船同时到达点Q ; (Ⅱ)设小船速度为10/km h ,请你替该游客设计小船行驶的方位角α,当角α余弦值的大小是多少时,游客甲能按计划以最短时间到达Q19.已知有穷数列{}n a 共有2k 项(整数2k ≥),首项12a =,设该数列的前n 项和为n S ,且12(1,2,3,,21).1n n a S n k a +-==-- 其中常数 1.a >⑴求{}n a 的通项公式;⑵若2212k a -=,数 列{}n b 满足2121log (),(1,2,3,,2),n n b a a a n k n== 求证:12n b ≤≤;⑶若⑵中数列{}n b 满 足不等式:12212333342222k k b b b b --+-++-+-≤ ,求k 的最大值.20.已知函数xae x f =)(,a x x g ln ln )(-=,其中a 为常数,且函数)(x f y =和)(x g y =的图像在其与坐标轴的交点处的切线互相平行.(1)求此平行线间的距离;(2)若存在x 使不等式x x f mx >-)(成立,求实数m 的取值范围; (3)对于函数)(x f y =和)(x g y =公共定义域中的任意实数0x ,我们把)()(00x g x f -的值称为两函数在0x 处的偏差.求证:函数)(x f y =和)(x g y =在其公共定义域内的所有偏差都大于2.。
盐城中学2014届高三数学练习10
一、填空题(本大题共14小题,每小题5分,计70分)1.设集合{}{}02,062=+==-+=mx x B x x x A ,若A B ⊆,则实数m 的取值集合是 .2. 圆上422=+y x 所有的点与直线01234=-+y x 距离的最小值是 .3.等比数列{}n a 中,63=a ,前三项和183=s ,则公比q 的值为 .4.已知变量,x y 满足⎪⎩⎪⎨⎧≤≥-+≤+01-,033,03-2y y x y x 若目标函数y x +=z 的最大值是_ .5.已知正△ABC 的边长为1,73CP CA CB =+ , 则CP AB ⋅= .6.已知)(,13)(R x x x f ∈+=,若a x f <-|4)(|的充分条件是b x <-|1|,)0,(>b a ,则b a ,之间的关系是 .7.若不论k 为何实数,直线1+=kx y 与圆0422222=--+-+a a ax y x 恒有交点,则实数a 的取值范围是 .8. 已知点),(n m P 在直线bc x b a y 2--=上移动,其中c b a ,,为某一直角三角形的三条边长,c 为斜边,则22n m +的最小值为 .9.在平面直角坐标系xOy 中,已知点A(0,2),直线:40l x y +-=.点B (,)x y 是圆22:210C x y x +--=的动点,,AD l BE l ⊥⊥,垂足分别为D 、E ,则线段DE 的最大值是 . 10.已知函数x x x x f cos 43sin 4121)(--=的图像在点()00,y x A 处的切线斜率为21,则=⎪⎭⎫ ⎝⎛+4ta n 0πx .11.设点O 是ABC ∆的三边中垂线的交点,且,0222=+-AB AC AC 则⋅的取值范围是 . 12.已知数列{}n a 满足341=a ,()*∈+=-+N n a a n n 61221,则=+++na a a 11121 . 13. 已知函数.1,21,1221,0,6131)(3⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈+⎥⎦⎤⎢⎣⎡∈+-=x x x x x x f 函数()226s i n +-=a x a x g π,其中0>a .若存在[],1,0,21∈x x 使得)()(21x g x f =成立,则实数a 的取值范围是 .14. 若不等式|3ln ax x -|≥1对任意(0,1]x ∈都成立,则实数a 取值范围是 .二、解答题(本大题共6小题,计90分. )15. 在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且满足()C b B c a cos cos 2=-. (1)求角B 的大小;(2)设()()()11,4,2cos ,sin >==k k A A ,且⋅的最大值是5,求实数k 的值.16.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点.(1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C .17.在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v (米/单位时间),单位时间内用氧量为2cv (c 为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为2v(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为y .(1)将y 表示为v 的函数;(2)设0<v ≤5,试确定下潜速度v ,使总的用氧量最少.18.已知⊙C :22(1)1x y +-=和直线l :1y =-,由⊙C 外一点(,)P a b 向⊙C 引切线PQ ,切点为Q ,且满足PQ 等于点P 到直线l 的距离. (1)求实数a 、b 满足的关系式;(2)设M 为⊙C 上一点,求线段PM 长的最小值; (3)当P 在x 轴上时,在l 上求点R,使得CR PR -最大.19.已知函数)1ln()(21++-=-x b x aex g x ,R b a ∈,(1)若0=a ,1=b ,求函数)(x g 的单调区间;(2)若()x g 的图象在()()00g ,处与直线01=+-ey x 相切, (ⅰ)求a 、b 的值;(ⅱ) 求证:对任意 x ∈)1,1(-,有22)(<x g .20.已知数列{}n a 中,12a =,对于任意的*,p q N ∈,有p q p q a a a +=+(1)求数列{}n a 的通项公式; (2)数列{}n b 满足:312423*********n b b b b a =-+-+++++……1*(1)()21n n n bn N -+-∈+,求数列{}n b 的通项公式;(3)设*3()n n n C b n N λ=+∈,是否存在实数λ,当*n N ∈时,1n n C C +>恒成立,若存在,求实数λ的取值范围,若不存在,请说明理由.。
2014届高三理科数学综合测试题(3)
图 1图22014届理科数学综合测试题(3)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数lg y x =的定义域为A ,{}01B x x =≤≤,则AB =( ) A .()0,+∞ B .[]0,1C .(]0,1D .[)0,12.设i 为虚数单位,若复数()()2231i z m m m =+-+-是纯虚数,则实数m =( )A .3-B .3-或1C .3或1-D .1 3.设函数sin 2y x x =的最小正周期为T ,最大值为A ,则( )A .T π=,A = B . T π=,2A = C .2T π=,A = D .2T π=,2A = 4.某由圆柱切割获得的几何体的三视图如图1所示,其中俯视图是 中心角为60︒的扇形,则该几何体的体积为( )A .3π B .23π C .π D .2π5.给定命题p :若20x ≥,则0x ≥;命题q ::已知非零向量,,a b 则 “⊥a b ”是“-+=a b a b ”的充要条件.则下列各命题中,假命题的是( )A .p q ∨B . ()p q ⌝∨C .()p q ⌝∧D .()()p q ⌝∧⌝6.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-<⎩.若()()2(1)f a f a f -+≤,则a 的取值范围是( )A .[1,0)-B .[]0,1C .[]1,1-D .[]2,2-7.执行如图2所示的程序框图,若输入n 的值为22,则输出的s 的值为( )A .232B .211C .210D .191 8.将2n 个正整数1、2、3、…、2n (2n ≥)任意排成n 行n 列的数表.对于某一个数表,计算各行和各列中的任意两个数a 、b (a b >)的比值ab,称这些比值中的最小值为这个 数表的“特征值”.当2n =时, 数表的所有可能的“特征值”最 大值为( )A .3B .43 C .2 D .32二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.一个总体分为甲、乙两层,用分层抽样方法从总体中抽取一个容量为20的样本.已知乙层中每个个体被抽到的概率都为19,则总体中的个体数为 . 10. 不等式321x x +>-的解集为_________.11.若420443322104,)1(a a a x a x a x a x a a x ++++++=-则的值为_______.12.设12,F F 是双曲线22124y x -=的两个焦点,P 是双曲线与椭圆2214924x y +=的一个公共点,则12PF F ∆的面积等于_________.13.如果实数x y 、满足30101x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,若直线10x ky +-=将可行域分成面积相等的两部分,则实数k 的值为______.(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:cos 1C ρθ=与2:4cos C ρθ=的交点分别为A 、B ,则AB = .15.(几何证明选讲) 如图,从圆O 外一点A 引圆的切线AD 和割线ABC , 已知3=AD ,33=AC ,圆O 的半径为5,则圆心O到AC 的距离为 .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且a =,B C =. (Ⅰ) 求cos B 的值;(Ⅱ) 设函数()()sin 2f x x B =+,求6f π⎛⎫⎪⎝⎭的值.A. .ACDBEF图5图6ABCD PEF佛山某中学高三(1)班排球队和篮球队各有10名同学,现测得排球队10人的身高(单位:cm )分别是:162、170、171、182、163、158、179、168、183、168,篮球队10人的身高(单位:cm )分别是:170、159、162、173、181、165、176、168、178、179. (Ⅰ) 请把两队身高数据记录在如图4所示的茎叶图中,并指 出哪个队的身高数据方差较小(无需计算);(Ⅱ) 利用简单随机抽样的方法,分别在两支球队身高超过170cm 的队员中各抽取一人做代表,设抽取的两人中身高超过178cm的人数为X ,求X 的分布列和数学期望.18.(本题满分14分)如图5,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如图6所示),连结AP 、EF 、PF ,其中PF =(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.19.(本题满分14分)如图7所示,已知椭圆C 的两个焦点分别为()11,0F -、()21,0F ,且2F 到直线90x -=的距离等于椭圆的短轴长. (Ⅰ) 求椭圆C 的方程;(Ⅱ) 若圆P 的圆心为()0,P t (0t >),且经过1F 、2F ,Q 是椭圆C 上的动点且在圆P 外,过Q 作圆P 的切线,切点为M ,当QM ,求t 的值.排球队篮球队图4图7数列{}n a 、{}n b 的每一项都是正数,18a =,116b =,且n a 、n b 、1n a +成等差数列,n b 、1n a +、1n b +成等比数列,1,2,3,n =.(Ⅰ)求2a 、2b 的值;(Ⅱ)求数列{}n a 、{}n b 的通项公式; (Ⅲ)证明:对一切正整数n ,有1231111211117n a a a a ++++<----.21.(本题满分14分)已知函数()1ln 2f x x x a x =+-. (Ⅰ)若1a =,求()f x 在点()()1,1f 处的切线方程; (Ⅱ)求函数()f x 的极值点;(Ⅲ)若()0f x >恒成立,求a 的取值范围.参考答案二、填空题:本大题共6小题,每小题5分,共30分.9.180 ;10.2,43⎛⎫-⎪⎝⎭;11.8 ;12.24 ;13.13 ;14.;15.2.三、解答题:本大题共6小题,共80分.16.(本小题满分12分)解法1:(Ⅰ) 因为B C =,所以c b =,……………………………………………………………2分又2a =,所以222cos 2a cb B ac +-=, ………………………………………3分23b==………………………………………………………5分 解法2:∵a =,∴sin A B =……………………………………………………2分 ∵B C =,且A B C ++=π,所以sin 2B B =………………………………………3分又2sin cos B B B =……………………………………4分 ∵sin 0B ≠,∴cos B =.…………………………………………………………………5分 (Ⅱ)由(Ⅰ)得sin B ==,……………………………………………………………7分 所以sin 63f B ππ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭………………………………………………………8分 sin cos cos sin 33B B ππ=+ …………………………………10分12=+………………………………………11分=…………………………………………………12分 17.(本小题满分12分)(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小. ……4分 (注:写对茎叶图2分,方差结论正确2分)(Ⅱ)排球队中超过170cm 的有4人,超过178cm 的有3人,篮球队中超过170cm 的有5人,超过178cm 的有2人, (注:正确描述人数各2分,共计4分)所以X 的所有可能取值为2,1,0则……………………5分 (注:正确写出X 的值1分)203)0(15141311===C C C C X P ,解法二图ABCD PEFH()1P X ==2011151413131211=+C C C C C C , ()2P X ==20615141213=C C C C ,………………………………………………………………………………10分 (注:正确写出概率表达式各1分,概率计算全部正确1分,共计4分,若概率计算错误超过两个,扣1,共计3分)所以X 的分布列为……………………………………………11分 所以X 的数学期望20232062*********=⨯+⨯+⨯=EX .……………………………………………12分 18.(本小题满分14分)(Ⅰ)由翻折不变性可知,6PB BC ==,9PE CE ==,在PBF ∆中,222201636PF BF PB +=+==,所以PF BF ⊥ ……………………………………2分在图1中,易得EF ==……………………………………3分在PEF ∆中,222612081EF PF PE +=+==,所以PF EF ⊥ ……………………………………4分又BF EF F =,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED . ……………6分(注:学生不写BF EF F =扣1分)(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,(6,8,P ,()0,3,0E ,()6,8,0F ,所以(AP=,(FP =,()6,5,0EF =, …………8分 设平面PEF 的法向量为(),,x y z =n ,则00FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即0650z x y ⎧=⎪⎨+=⎪⎩,解得560x yz ⎧=-⎪⎨⎪=⎩令6y =-,得()5,6,0=-n ,……………………………………………………………………………12分 设直线AP与平面PEF 所成角为θ,则sin AP AP θ⋅===n n. 所以直线AP 与平面PEF . ……………………………………………14分 方法二:过点A 作AH EF ⊥于H ,15 98由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又EF PF F =,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. ………………………………………………………9分在Rt APF ∆中,AP …………………………………………11分在AEF ∆中,由等面积公式得AF AD AHEF ⋅==………………………………………………13分在Rt APH ∆中,sin427AH APH AP ∠===所以直线AP 与平面PEF . ……………………………………………14分 19.(本小题满分14分)(Ⅰ)设椭圆的方程为22221x y a b +=(0a b >>),依题意,19242b -==, ……………………………………………………………………1分 所以2b = …………………………………………………………2分 又1c =, ………………………………………………………3分所以2225a b c =+=, ………………………………………………………4分所以椭圆C 的方程为22154x y +=. ………………………………………………………………………5分 (Ⅱ) 设(),Q x y (其中22154x y +=), ……………………………………………………………………6分 圆P 的方程为()2221x y t t +-=+,……………………………………………………………………7分因为PM QM ⊥,所以QM ==8分=…………………………………………………9分 当42t -≤-即12t ≥时,当2y =-时,QM 取得最大值, ……………………………………………10分且maxQM==,解得3182t =<(舍去). ……………………………………………11分当42t ->-即102t <<时,当4y t =-时,QM 取最大值, ………………………………………12分且max2QM==,解得218t =,又102t <<,所以4t =……………………………13分综上,当4t =,QM 的最大值为2. …………………………………………………………14分20.(本小题满分14分)(Ⅰ)由1122b a a =+,可得211224a b a =-=.…………………………………………………1分由2212a b b =,可得222136a b b ==.………………………………………………………………2分(Ⅱ)因为n a 、n b 、1n a +成等差数列,所以12n n n b a a +=+…①. ……………………………………3分因为n b 、1n a +、1n b +成等比数列,所以211n n n a b b ++=, ………………………………4分因为数列{}n a 、{}n b的每一项都是正数,所以1n a +…②.于是当2n ≥时,n a …③.………………………………………………………………4分将②、③代入①式,可得 ………………………………………………………5分因此数列是首项为4,公差为2的等差数列,(注:学生不写上述陈述扣1分)()122n d n -=+,于是()241n b n =+. ………………………………………………6分 由③式,可得当2n ≥时,()41n a n n +. ………………………………7分 当1n =时,18a =,满足该式子,所以对一切正整数n ,都有()41n a n n =+.………………………8分 (注:学生从特殊到一般归纳猜想出,n n a b 的解析式各1分,正确证明通项公式各2分) (Ⅲ)由(Ⅱ)可知,所证明的不等式为211112723474417n n ++++<+-L .………………………9分 方法一:首先证明2121144171n n n n ⎛⎫<- ⎪+-+⎝⎭(2n ≥). 因为22222121112778824417144177n n n n n n n n n n n n⎛⎫<-⇔<⇔+<+- ⎪+-++-+⎝⎭ ()()220120n n n n ⇔+->⇔-+>, ………………………10分 所以当2n ≥时,21111211111212723441772317727n n n n ⎡⎤⎛⎫⎛⎫+++<+-++-<+⨯= ⎪ ⎪⎢⎥+-+⎝⎭⎝⎭⎣⎦L L . …12分当1n =时,1277<. …………………………………………………………………13分综上所述,对一切正整数n ,有1231111211117n a a a a ++++<----……………………………14分 方法二:()()22111111441443212342123n n n n n n n n ⎛⎫<==- ⎪+-+--+-+⎝⎭.当3n ≥时,2111723441n n ++++-L 1111111111172345971123212123n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<++-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 111111112723457714147⎛⎫<+++<++= ⎪⎝⎭. …………………………………………………12分 当1n =时,1277<;当2n =时,11112723777+<+=. ………………………………………13分(验证不写扣1分)综上所述,对一切正整数n ,有7211...111111321<-++-+-+-n a a a a …………………………14分 方法三:()()2211111144141212122121n n n n n n n ⎛⎫<==- ⎪+---+-+⎝⎭.当4n ≥时,2111723441n n ++++-L 1111111111117234727991123212121n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+++-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥---+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1111272347147<+++<. …………………………………………………12分 当1n =时,1277<;当2n =时,11112723777+<+=;当3n =时,111111272347714147++<++=. ……13分(验证不写扣1分) 综上所述,对一切正整数n ,有7211...111111321<-++-+-+-n a a a a ……………………………14分 21.(本小题满分14分)()f x 的定义域为()0,+∞.……………………………………………………………………………1分(Ⅰ)若1a =,则()()11ln 2f x x x x =+-,此时()12f =.因为()1212f x x x '=+-,所以()512f '=, ………………………………………………2分 所以切线方程为()5212y x -=-,即5210x y --=. …………………………………………3分(Ⅱ)由于()1ln 2f x x x a x =+-,()0,x ∈+∞.⑴ 当0a ≥时,()21ln 2f x x ax x =+-,()21421222x ax f x x a x x+-'=+-=, ……………………………………………4分令()0f x '=,得10x =>,20x =<(舍去),且当()10,x x ∈时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在()10,x 上单调递减,在()1,x +∞上单调递增,()f x的极小值点为x =…5分⑵ 当0a <时,()221ln ,21ln ,02x ax x x a f x x ax x x a⎧+-≥-⎪⎪=⎨⎪---<<-⎪⎩. …………………………………6分① 当x a ≥-时,()24212x ax f x x +-'=,令()0f x '=,得1x =,2x a -(舍去).a ≤-,即a ≤()0f x '≥,所以()f x 在(),a -+∞上单调递增;a >-,即02a -<<, 则当()1,x a x ∈-时,()0f x '<;当()1,x x ∈+∞时,()0f x '>,所以()f x 在区间()1,a x -上是单调递减,在()1,x +∞上单调递增. ……………………………………7分② 当0x a <<-时,()21421222x ax f x x a x x---'=---=. 令()0f x '=,得24210x ax ---=,记2416a ∆=-, …………………………………8分 若0∆≤,即20a -≤<时,()0f x '≤,所以()f x 在()0,a -上单调递减;若0∆>,即2a <-时,则由()0f x '=得3x ,4x 且340x x a <<<-,当()30,x x ∈时,()0f x '<;当()34,x x x ∈时,()0f x '>;当()4,x x a ∈-时,()0f x '<,所以()f x 在区间()30,x 上单调递减,在()34,x x 上单调递增;在()4,x a -上单调递减. ……………9分综上所述,当2a <-时,()f x 的极小值点为x =和x a =-,极大值点为x =;当2a -≤≤,()f x 的极小值点为x a =-;当a >,()f x 的极小值点为x =…………………………………………………10分(Ⅲ)函数()f x 的定义域为()0,x ∈+∞. 由()0f x >,可得ln 2xx a x +>…(*) …………………………………………………11分 (ⅰ)当()0,1x ∈时,ln 02xx <,0x a +≥,不等式(*)恒成立;(ⅱ)当1x =时,ln 02xx=,即10a +>,所以1a ≠;………………………………………………12分(ⅲ)当1x >时,不等式(*)恒成立等价于ln 2x a x x <--恒成立或ln 2xa x x>-+恒成立.令()ln 2x g x x x =--,则()221ln 2x x g x x --+'=.令()21ln x x x ϕ=--+,则()211220x x x x x ϕ-'=-+=<, 而()2111ln120ϕ=--+=-<,所以()21ln 0x x x ϕ=--+<,即()221ln 02x xg x x --+'=<, 因此()ln 2xg x x x=--在()1,+∞上是减函数,所以()g x 在()1,x ∈+∞上无最小值, 所以ln 2xa x x<--不可能恒成立. 令()ln 2xh x x x=-+,则()2221ln 21ln 1022x x x h x x x --+-'=-+=<,因此()h x 在()1,+∞上是减函数, 所以()()11h x h <=-,所以1a ≥-.又因为1a ≠-,所以1a >-.综上所述,满足条件的a 的取值范围是()1,-+∞.………………………………………………………14分。
2014年高考数学有答案高三数学中档题10
高三数学中档题101.若22πβαπ<<<-,则βα-的取只范围是2.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为3.设α表示平面,b a ,表示直线,给定下列四个命题:①αα⊥⇒⊥b b a a ,//;②αα⊥⇒⊥b a b a ,//;③αα//,b b a a ⇒⊥⊥;④b a b a //,⇒⊥⊥αα. 其中正确命题的序号为4.已知正方形的边长为2,c AC b BC a AB ===,,+=5.设函数1(0)()0(0)1(0)x f x x x -<⎧⎪==⎨⎪>⎩,则当a b ≠时,()()2a b a b f a b ++-⋅-的值为6.F 1(-1,0)、F 2(1,0)是椭圆的两焦点,过F 1的直线l 交椭圆于M 、N ,若△MF 2N 的周长为8,则椭圆方程为 7.在ABC ∆中,ABC b A ∆=︒=∠,1,60的面积为23,则C B A c b a s i n s i n s i n ++++的值为 .8.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径为圆相切,又知C 的一个焦点与A 关于直线y=x 对称.则双曲线C 的方程为 ; 9.已知函数2())2sin ()()612f x x x x R ππ=-+-∈(I )求函数()f x 取得最大值的所有x 组成的集合. (II )求函数()f x 在π,0[]上的单调递增区间。
10.已知数列{}n n a 12-的前n 项和n S n 69-=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设)3log 3(2nn a n b -=,求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和.11.已知函数321()(2)13f x ax bx b x =-+-+在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.(1)证明0a >;(2)若z =a +2b ,求z 的取值范围。
2014年高三数学试题-三角形与三角函数(包含答案)
2014年高三数学试题-三角形与三角函数(包含答案)D即249255ACAC=++,整理得25240AC AC +-=,由于0AC >,解得3AC =,由正弦定理得sin 3sin sin sin 5AC AB B AC B C C AB =⇒==. 考点:1.余弦定理;2.正弦定理8.【广东省惠州市2014届高三第二次调研考试】若tan()2πα-=,则sin 2α= .9.在ABC ∆中,若120A ∠=,5AB =,7BC =,则AC = .10.已知}{n a 为等差数列,若1598a a a π++=,则)cos(82a a +的值为________.【答案】12-. 【解析】试题分析:由于数列{}na 为等差数列,所以159538a a a a π++==,所以1951623a aa π+==,故 ()19161cos coscos 5cos 3332a a ππππ⎛⎫+==+=-=- ⎪⎝⎭.考点:1.等差数列的性质;2.诱导公式二.能力题组1.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”. 给出下列函数:①()sin cos f x x x =; ②()2sin 4f x x π⎛⎫=+ ⎪⎝⎭; ③()sin 3cos f x x x=+; ④()2sin 21f x x =+.其中“同簇函数”的是 ( )A .①②B .①④C .②③D .③④2.已知3177cos ,45124x x πππ⎛⎫+=<<⎪⎝⎭,则2sin 22sin 1tan x xx+=-( )A.2875-B.2875C.21100- D.211003.在ABC ∆中,已知a 、b 、c 分别为A ∠、B ∠、C ∠所对的边,S 为ABC ∆的面积,若向量()2224,p a b c =+-,()1,q S =满足//p q ,则C ∠= .考点:1.平面向量共线;2.三角形的面积公式;3.余弦定理;4.同角三角函数的商数关系4.下面有四个命题:①函数44sin cos y x x =-的最小正周期是π; ②函数x x y cos 4sin 3+=的最大值是5;③把函数)32sin(3π+=x y 的图象向右平移6π得xy 2sin 3=的图象;④函数)2sin(π-=x y 在),0(π上是减函数. 其中真命题的序号是5.数列{}n a 满足:12a =,111n n a a -=-()2,3,4,n =,若数列{}na 有一个形如()3sin na n ωϕ=+12+的通项公式,其中ω、ϕ均为实数,且0ω>,2πϕ<,则ω=________,ϕ= .三.拔高题组1.在ABC ∆中,角A 、B 、C 对的边分别为a 、b 、c ,且2,60c C ==.(1)求sin sin a bA B++的值; (2)若a b ab +=,求ABC ∆的面积ABCS ∆.ABC S ∆=1sin 2ab C 计算ABC ∆的面积.2.已知向量(cos ,sin ),(cos ,cos )a x xb x x ==-,(1,0)c =-(1)若,,6x a c π=求向量的夹角; (2)当]89,2[ππ∈x 时,求函数)(x f =b a ⋅2+1的最大值.试题解析:(1)当6x π=时,31(,)2a = cos ,||||a ca c a c <>=3=0,a c π≤<>≤ 5,6a c π∴<>的夹角为;3.已知向量)1,(sin ),31cos ,3(x b x a =-=,函数ba x f•=)(.将函数()yf x 的图象上各点的纵坐标保持不变,横坐标先缩短到原来的12,把所得到的图象再向左平移3π个单位,得到函数()yg x 的图象.(1)求函数()f x 的单调递增区间;(2)若ba ⊥,求()yg x 的值.试题解析:(1)31cos sin 3)(-+=•=x x b a x f=31)6sin(2-+πx , )(22622Z k k x k ∈+≤+≤-∴πππππ4.设()6cos ,3a x =-,()cos ,sin 2b x x =,()f x a b =⋅.(1)求()f x 的最小正周期、最大值及()f x 取最大值时x 的集合;(2)若锐角α满足()323f α=-,求4tan 5α的值.()23236f x x π⎛⎫=++ ⎪⎝⎭,然后利用相关公式求出函数()f x 的最小正周期,并令226x k ππ+= ()k Z ∈求出函数()f x 的最大值以及取最大值时x 的取值集合;(2)先利用已知条件()323f α=-并结合角α为锐角这一条件求出角α的值,并最终求出4tan 5α的值.5.如图,已知点()3,4A ,()2,0C ,点O 为坐标原点,点B 在第二象限,且3OB =,记AOC θ∠=. (1)求sin 2θ的值;(2)若7AB =,求BOC ∆的面积.考点:1.三角函数的定义;2.二倍角公式;3.余弦定理;4.两角和的正弦公式;5.三角形的面积6.已知函数()()=-f x x x x2sin cos sin.(1)当0xπ<<时,求()f x的最大值及相应的x值;(2)利用函数siny x=的图象经过怎样的变换得到()f x的图象.方法2:把函数sin=图象上的点横坐标变为原来y x的12倍,7.已知函数(3sin 2cos 2f x x x=-).(1)求函数()f x 的最小正周期和最值; (2)求函数()f x 的单调递减区间.(2)由≤-≤+6222πππx k )(232z k k ∈+ππ, 得)(653z k k x k ∈+≤≤+ππππ,∴单调递减区间为)](65,3[z kk k ∈++ππππ. 考点:1.辅助角公式;2.三角函数的周期;3.三角函数的最值;4.三角函数的单调区间8.已知ABC ∆中,三条边a b c 、、所对的角分别为A 、B 、C ,且sin 3cos b A a B =.(1)求角B 的大小;(2)若2()3sin cos cos f x x x x =+,求()f A 的最大值.9.已知(22cos 3a x =,()1,sin 2b x =,函数()1f x a b =⋅-,()21g x b =-.(1)求函数()g x 的零点的集合;(2)求函数()f x 的最小正周期及其单调增区间.【答案】(1)函数()g x 的零点的集合是,2k x x k Z π⎧⎫=∈⎨⎬⎩⎭; (2)函数()f x 的最小正周期为π,单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. 【解析】10.在ABC ∆中,已知内角3A π=,边23BC =设内角B x =,ABC ∆的面积为y .(1)求函数()y f x =的解析式和定义域;(2)求函数()y f x =的值域.(2)203x π<<,72666x πππ∴-<-<,故1sin 2126x π⎛⎫-<-≤ ⎪⎝⎭, ()033f x ∴<≤,即函数()f x 的值域为(0,33.考点:1.正弦定理;2.三角形的面积公式;3.二倍角公式;4.辅助角公式;5.三角函数的最值 11.已知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的部分图像如图所示.(1)求函数)(x f 的解析式; (2)若),2,0(,1)62(πθπθ∈=+f 求).4cos(πθ-试题解析:(1)由图象知2A =()f x 的最小正周期54()126T πππ=⨯-=,故22Tπω== 将点(,2)6π代入()f x 的解析式得sin()13πϕ+=,又||2πϕ<, ∴6πϕ= 故函数()f x 的解析式为()2sin(2)6f x x π=+; (2)()2sin(2)6f x x π=+,2sin 2()2sin 2cos 1262662f θπθπππθθ⎛⎫⎡⎤⎛⎫+=++=+== ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭13cos 0sin 22πθθθ⎛⎫∴=∈= ⎪⎝⎭又,所以62cos cos cos sin sin 444πππθθθ+⎛⎫∴-=+= ⎪⎝⎭.考点:1.三角函数的图象;2.同角三角函数的平方关系;3.两角差的余弦公式12.已知函数()12sin 36f x x π⎛⎫=- ⎪⎝⎭,x R ∈.(1)求54f π⎛⎫ ⎪⎝⎭的值; (2)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,103213f πα⎛⎫+= ⎪⎝⎭,()6325f βπ+=,求()cos αβ+的值.所以()1235416cos cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=. 考点:1.同角三角函数的基本关系;2.两角和的余弦公式13.设向量()6cos ,3a x =-,()cos ,sin 2b x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)若23a =,求x 的值;(2)设函数()f x a b =⋅,求()f x 的最大、最小值.考点:1.平面向量模的计算;2.平面向量的数量积;3.二倍角公式;4.辅助角公式;5.三角函数的最值。
2014年高三数学练习
十进制 n位纯小数0.a a ...a
1 2
n
ai 只取0 或1 i 1, 2,..., n 1 , an 1 , Tn 是 M n 中的元素个数,S n 是
M n 中所有元素的和. 则 lim
Sn __________. n T n
二、选择题(本大题满分 16 分)本大题共有 4 题,每题有且只有一个正确答案,选对得 4 分,否则一律得零分. 15、定义平面向量之间的一种运算“ ”如下:对任意的 x m, n 、 y p, q ,令 x y mq np . 则下面说 法错误的是__________. A. 若 x 与 y 共线,则 x y 0 C. 对任意的 ,有
2
B. f x1 f x2
C. f x1 f x2
D. 不能确定
2
x 2 1 k 0 ,给出下列四个命题:
②存在 k ,使得方程恰有 4 个不同的实根; ④存在 k ,使得方程恰有 8 个不同的实根.
①存在 k ,使得方程恰有 2 个不同的实根; ③存在 k ,使得方程恰有 6 个不同的实根; 其中假命题的个数是__________. A. 0 B. 1
3 5 , log c d . 若 a c 9 ,则 b d ___________. 2 4
3 ,直线 AB 与 CD 的距离为 2,夹角为
3
. 则四面体 ABCD 的体积
4 9 y2
1 x
12、 已知 A x x 4 x 3 0, x ,B x 2
2
则实数 a a 0, x 2 2 a 7 x 5 0, x . 若 A B ,
2014年高考数学有答案高三数学中档题4
高三数学中档题41.已知正方体ABCD -A 1B 1C 1D 1,点M 、N 分别在AB 1,BC 1上,且AM=BN ,那么: ①AA 1⊥MN ;②A 1C 1∥MN ,③MN ∥平面A 1B 1C 1D 1,以上三个结论中,正确的结论的序号 为 ;(填上你认为正确的结论的序号) 2.三角形ABC 中AP 为BC 边上的中线,||AB =3,2-=⋅AP ,则||= ; 3.已知函数()122++=x x x f ,若存在实数t ,当[]m x ,1∈时,()x t x f ≤+恒成立,则实数m的最大值为______________.4.函数xe x x xf )2()(2-=在]2,(-∞上的值域为5.设函数()2x f x x x =⋅+,0A 为坐标原点,n A 为函数()y f x =图像上横坐标为*()n n N ∈的点,向量11n n k k k A A -==∑a ,(1,0)=i ,设n θ为n a 与i 的夹角,则1tan n k k θ=∑= .6.在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200x y s y x y x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变化范围是________7.若函数2()lg 22f x x a x =⋅-+在区间(1,2)内有且只有一个零点,那么实数a 的取值范围是 .8.设有限集合{|,,,}i A x x a i n i n +==≤∈∈+N N ,则1ni i a =∑叫做集合A 的和,记作.A S 若集合{|21,,4}P x x n n n +==-∈≤N ,集合P 的含有3个元素的全体子集分别为12k P P P 、、,则1kpi i S =∑= .9.有一密闭容器,下端为圆柱形,上端为半球形(如图),设此容器的容积V 固定,问圆柱底半径r 与高h 为何值时, 该容器的表面积S 最小。
10.已知数列{a n }的前n 项为和S n ,点(n ,S n n )在直线y =12 x +112上.数列{b n }满足:b n +2-2b n +1+b n =0(n ∈N *),且b 3=11,前9项和为153. (1)求数列{a n },{b n }的通项公式;(2)设c n = 3(2a n ―11)(2b n ―1),数列{c n }的前n 项和为T n ,求使不等式T n >k57对一切n ∈N *都成立的最大正整数k 的值;(3)设n ∈N *,f (n )= ⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数.问是否存在m ∈N *,使得f (m +15)=5f (m )成立?若存在,求出m 的值;若不存在,请说明理由.11.已知椭圆方程是22221(0)x y a b a b+=>>,12,F F 是它的左、右焦点,P 是椭圆上任一点.若12PF PF ⋅的取值范围是[2,3].(1)求椭圆的方程.(2)设椭圆的左右顶点为A ,B ,l 是椭圆的右准线,P 是椭圆上任意一点,P A 、PB 分别交准线l 于M ,N 两点,求12MF NF ⋅的值.高三数学中档题4答案1.①③,2、5,3、4, 4、[2)12(2-+-e,2)12(2e-]5、0(,2)n n n A A n n n ==⋅+ a ,n θ即为向量0n A A 与x 轴的夹角,所以tan 21nn θ=+,所以211tan (22...2)22nn n k k n n θ+==++++=+-∑;6、[]8,7;7、 8.48 9.353πV h r ==,10、(1)点(n ,S n n )在直线y =12x +112上,∴S n n =12n +112,即S n =12n 2+112n ,a n =n +5.∵b n +2-2b n +1+b n =0(n ∈N *),∴b n +2-b n +1= b n +1-b n =…= b 2-b 1.∴数列{b n }是等差数列,∵b 3=11,它的前9项和为153,设公差为d ,则b 1+2d =11,9b 1+9×82×d =153,解得b 1=5,d =3.∴b n =3n +2.(2)由(1)得,c n = 3(2a n ―11)(2b n ―1)= 1(2n ―1)(2n +1)=12(12n ―1-12n +1),∴T n =b 1+b 2+b 3+…+b n =12(1-13)+12(13-15)+12(15-17)+…+12(12n ―1-12n +1)=12(1-12n +1).∵T n =12(1-12n +1)在n ∈N *上是单调递增的,∴T n 的最小值为T 1=13. ∵不等式T n >k 57对一切n ∈N *都成立,∴k 57<13.∴k <19.∴最大正整数k 的值为18.(3) n ∈N *,f (n )=⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数=⎩⎨⎧n +5,n 为奇数,3n +2,n 为偶数.当m 为奇数时,m +15为偶数;当m 为偶数时,m +15为奇数.若f (m +15)=5f (m )成立,则有3(m +15)+2=5(m +5)(m 为奇数)或m +15+5=5(3m +2)(m 为偶数).解得m =11.所以当m =11时,f (m +15)=5f (m ). 11.解:(1)设1(,0),(,0)F c F c -,00(,)P x y ,则22212000000(,)(,)PF PF c x y c x y x y c ⋅=---⋅--=+- ,而2200x y +为椭圆上点P 到椭圆中心O的距离,则222200b x y a +≤≤.∴2222222200b c x y c a c b +--=-≤≤,即23b =,222b c -=,故21c =,24a =.∴所求的椭圆方程为22143x y +=.(2)12(4,),(4,)M y N y AP AM λ=,即010(2)6x y y +=, 同理,BP BN λ= ,即020(2)2x y y -=. ∴220120(4)12x y y y -=,∵00(,)P x y 在椭圆上,则22003(4)4y x =-,代入上式得129y y =-. ∴121212(5,)(3,)151596MF NF y y y y ⋅=--⋅--=+=-=。
2014届高三数学综合练习(二)
高三理科数学综合练习(二)一、选择题:1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知i z i 32)33(-=⋅+(i 是虚数单位),那么复数z 对应的点位于复平面内的(A )第一象限(B )第二象限(C )第三象限(D )第四象限3.已知偶函数)(x f 的定义域为R ,则下列函数中为奇函数的是( )(A ))](sin[x f (B ))(sin x f x ⋅ (C ))(sin )(x f x f ⋅ (D )2)](sin [x f 4.若ABC ∆为锐角三角形,则下列不等式中一定能成立的是( )(A )0sin cos log cos >B A C(B )0cos cos log cos >B A C (C )0sin sin log sin >B A C (D )0cos sin log sin >BAC 5.)函数f(x)=sinx-cos(x+6π)的值域为 ( )A .[ -2 ,2]B .C .[-1,1 ]D .[-2 , 2] 6.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为(A )191622=-x y (B )191622=-y x (C )116922=-x y (D )116922=-y x 7.函数|1|2)(||log 2xx x f x --=的图像大致是8.设S n 是等差数列{a n }的前n 项和,若3184=S S ,则168S S 等于 (A )103(B )31(C )91 (D )81 9.设0,0),0,(),1,(),2,1(>>-=-=-=b a b OC a OB OA ,O 为坐标原点,若A 、B 、C 三点共线,则ba 21+的最小值是(A )2(B )4(C )6(D )810.某公司新招聘进8名员工,平均分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一个部门;另三名电脑编程人员也不能分给同一个部门.则不同的分配方案有 ( ) (A ) 36种 (B )38种 (C )108种 (D ) 114种 二.填空题:11.设数列{}{},n n a b 都是等差数列,若11337,21a b a b +=+=,则55a b +=__________。
14年高三数学下册试题-word
14年高三数学下册试题14年高三数学下册试题一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知命题p、q,则命题p或q为真是命题q且p为真的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件2.已知函数.若有最小值,则的最大值为( )A. B. C. D.3.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移个单位,得到的图像对应的解析式是( )A .B . C. D.4. 如果向量其中分别是x轴、y轴正方向上的单位向量,且A、B、C三点共线,则m的值等于( )A. B. C. D.5. 若函数f(x)=,则x=0是函数f(x)的( )A.连续点B.不连续的点C.无定义的点D.极限不存在的点6.若双曲线的一条准线与抛物线的准线重合,则双曲线的离心率为( )A. B. C. D. 47.已知:不等式.在上恒成立,则实数的取值范围是( )A. B. C. D.8. 甲、乙两人进行场比赛,每场甲获胜的概率为,乙获胜的概率为,如果有一人胜了三场,比赛即告结束,那么比赛以乙获胜3场负2场而结束的概率是( )A. B. C. D.9. .设函数的图像上的点(x,y)的切线的斜率为k,若k =g(x),则函数k =g(x)的图像大致为 ( ) 10.如图,在正方体ABCD-ABCD中,O是底面正方形ABCD中心,M是DD的中点,N是AB上的动点,则直线ON,AM的位置关系是( )A平行 B相交 C异面垂直 D异面不垂直11. 一盒中有12个乒乓球,其中9个是新的,3个是旧的,从盒中任取3球来用,用完后装回盒中,此时盒中旧球数是一个随机变量,其分布列P(),则p(4)的值是( )A. B. C. D.12.如图,矩形ABCD中,AB=3,BC=4,沿对角线BD将△ABD 折起,使A点在平面BCD内的射影落在BC边上,若二面角C-AB-D的平面有大小为,则sin的值等( )A. B.C. D.第Ⅱ卷(非选择题共90分)二、填空题: (每小题5分,共20分)13.已知函数,在上单调递减,则正数的取值范围为_____14.设函数f(x)的反函数h(x),函数g(x)的反函数为h(x+1),已知,那么中一定能求出具体数值的是__15.满足不等式组的点(x,y)组成的图形面积为______16如图,在直三棱中,AB=BC=, BB=2,,E、F分别为AA, BC 的中点,沿棱柱的表面从E到F两点的最短路径的长度为_______三、解答题:(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17. (本小题满分10分)已知函数的定义域为,值域为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A x B x x X
B. D.
A x 1 A x x X
c
A B x A x B x x X
A B x A x B x x X
2014 年高三数学练习(六)
题 号 一 1~14 得 评 复 分 卷 核 二 15~18 19 20 三 21 22 23 总分
时间:120 分钟
一、填空题(本大题满分 56 分)本大题有 14 题,每个空格填对得 4 分,否则一律得零分. 1、设锐角 使得关于 x 的方程 x 4 x cos cot 0 有重根. 则 的弧度数为__________.
1
9、设函数 f : 满足 f 0 1 ,且对任意 x, y 成立着 f xy 1 f x f y f y x 2 ,则 f x 的解析式为 f x __________. 10、在平面直角坐标系 xOy 中,给定两点 M 1, 2 和 N 1, 4 ,点 P 在 x 轴上移动. 当 MPN 取最大值时,点 P 的横坐标为__________. 11、一项“过关游戏”规则为:在第 n 关抛掷一颗骰子 n 次,如果这 n 次所出现的点数之和大于 2 ,则算过关. 那 么这个人连过前三关的概率是__________. 12、在复数范围内,方程 z 1 i z 1 i z
2
2、已知 M
x, y x
2
2 y 2 3 , N x, y y mx b . 若对于所有 m ,均有 M N ,则 b 的取
值范围是__________. 3、不等式 log 2 x 1
1 log 1 x 3 2 0 的解集为__________. 2 2
2
__________条. A. 1 B. 2 C. 无穷多 D. 不存在
2
16、设定义域为 的函数 f x 要条件是__________. A. b 0 且 c 0
lg x 1 0
x 1 x 1
,则关于 x 的方程 f
x bf x c 0 有 7 个不同实数解的充
n
b1 b2 b120 =__________.
8、 在平面直角坐标系 xOy 中,函数 f x a sin ax cos ax a 0 在一个最小的正周期长的区间上的图像与函数
g x a 2 1 的图像所围成的封闭图形的面积是__________.
6、如右上图所示,在正方体 ABCD A1 B1C1 D1 中,二面角 A BD1 A1 的度数是__________. 7、用 n 个不同的实数 a1 , a 2 , , a n 可得到 n ! 个不同的排列,每个排列为一行写成一个 n ! 行的数阵. 对第 i 行 ai1 ,
ai 2 ,..., ain ,记 bi ai1 2ai 2 3ai 3 1 nain , i 1, 2,3,..., n ! . 那么在用 1、2、3、4、5 形成的数阵中,
n
2 1 . 则数列 an 的通项公式为__________.
二、选择题(本大题满分一律得零分. 15、过抛物线 y 4 x 的焦点作一条直线与抛物线相交于 A 、 B 两点,它们的横坐标之和等于 5,则这样的直线有
18、设实数 a, b, c 0 , A. b ac
bc ac ab 、 、 成等差数列,则下列不等式一定成立的是__________. a b c
B. b ac
2
C. a b c
2 2
2
D. b
ac 2
2
三、解答题(本大题满分 78 分)本大题共 5 题,解答下列各题须写出必要的步骤. 19、 (本题满分 14 分)本题共有 3 个小题,第 1 小题满分 3 分,第 2 小题满分 5 分,第 3 小题满分 6 分.
2 n
5 5i 的解集为__________. 2i
13、有两个相同的直三棱柱,高为
2 ,底面三角形的三边长分别为 3a 、 4a 、 5a . 用它们拼成一个三棱柱或四棱 a
2 2 2
柱,在所有可能的情形中,全面积最小的是一个四棱柱,则 a 的取值范围是__________. 14、设 an 是等差数列,bn 是等比数列,满足 b1 a1 ,b2 a2 ,b3 a3 a1 a2 ,且 lim b1 b2 ... bn
B. b 0 且 c 0
C. b 0 且 c 0
D. b 0 且 c 0
17、定义全集 X 的子集 A 的特征函数为 A x 列命题中不准确的是_________. A. A B C.
0 1
x Ac c ( A 表示 A 在 X 中的补集) ,那么对 A, B X , 下 x A
4、设 O 为 ABC 内部一点,且满足 OA 2OB 3OC 0 ,则 ABC 与 AOC 的面积之比为__________. 5、设三位数 n abc ,若以 a 、 b 、 c 为三角形的边长可以构成一个等腰三角形,则这样的三位数 n 有________个. 5、如左下图所示,顶点为 P 的圆锥的轴截面是等腰三角形, A 是底面圆周上的点, B 是底面圆内的点, O 为底面 圆的圆心, AB OB ,垂足为 B , OH PB ,垂足为 H ,且 PA 4 , C 为 PA 的中点. 当三棱锥 O HPC 的 体积最大时, OB 的长为__________.