高三圆(一) 教师版本

合集下载

【教案】2.5.2圆与圆的位置关系 教学设计-高中数学人教版(2019)选择性必修一

【教案】2.5.2圆与圆的位置关系 教学设计-高中数学人教版(2019)选择性必修一

2.5.2圆与圆的位置关系一、内容和内容解析1.内容圆与圆的位置关系.2.内容解析图形之间的位置关系,既可以直观定性描述,也可以严格定量刻画.定量刻画的方法既可以完全运用代数方法,通过运算求解,得到图形的性质;也可以综合使用几何方法、代数方法,得到图形的性质.本课时教学中,应引导学生根据初中学习图形与几何的经验,类比直线和圆的位置关系,研究圆与圆的位置关系.结合以上分析,确定本节课的教学重点:运用圆的方程,判断圆与圆的位置关系.二、目标和目标解析1.目标(1)会用圆的方程判定两圆的位置关系;(2)能利用坐标法解决简单的平面几何问题.2.目标解析达成上述目标的标志是:(1)会将两个圆的方程联立方程组,并通过降次和消元得到一个一元二次方程,通过判断方程判别式大于0,等于0,小于0分别得出两圆相交,相切,相离.能通过圆的方程得到圆心坐标和半径长,比较圆心距和两半径和差大小来判断两圆相交、外切、内切、外离、内含的关系.(2)知道两圆相交时,两个圆的方程消去二次项后得到的二元一次方程的几何意义,能表示出经过两圆的交点的所有圆的方程.三、教学问题诊断分析在上一节课,我们研究了如何利用直线和圆的方程,判断它们的位置关系.学生容易类比地得到判断圆与圆位置关系的方法.因此教学重点应让学生注意两个圆的方程消元后得到的一元二次方程的判别式小于0或等于0,只能判断出两圆相离或相切,无法具体判断两圆是外离(外切)还是内含(内切).这就很自然地引出用圆心距和半径和差来具体判断.同时,应理解教材例5选取对两圆相交的判断,用意在于让学生知道解二元二次方程组的一般流程,还有当两圆相交时,公共弦所在直线方程的求法,求两圆的交点坐标也是方法二所不能做到的.本节课的例6是探求满足某种几何条件的动点的轨迹问题,是对前面介绍的坐标法解决平面几何问题的“三步曲”的再应用,教师要引导学生建立坐标系,把几何条件代数化,最后再将代数方程翻译为几何轨迹.这个问题的解决是为下一章圆锥曲线方程的推导做准备.本节课的教学难点是应用代数方法解决几何问题.四、教学过程设计(一)复习引入1.已知点A (x 1,y 1),B (x 2,y 2),如何求线段AB 的长?设计意图:在计算两圆圆心距时要用到两点间的距离公式.2.已知圆的方程为()2222040x y Dx Ey F D E F ++++=+->,如何确定圆心和半径?设计意图:回顾圆的一般方程和标准方程的互化,以及利用圆的方程求出圆心坐标和半径长,对本节课的学习是有帮助的.3.已知直线和圆的方程,如何判断直线和圆的位置关系?师生活动:设计意图:为后面学生类比直线和圆的位置关系的判定得出判断圆与圆的位置关系的方法作准备.(二)探究新知问题1:按照两个圆的公共点个数来划分,两个圆之间有哪些位置关系?师生活动:两圆有两个公共点,它们相交;两圆只有一个公共点,它们相切,包括外切和内切;两圆没有公共点,它们相离,包括外离和内含.设计意图:让学生初步体会用公共点个数只能判断两圆相交、相切或相离,对于只有一个公共点(没有公共点)的情况无法具体判定外切还是内切(外离还是内含).照应方法一利用方程组解的个数判断位置关系时的局限性.问题2:类比运用直线和圆的方程,研究直线与圆的位置关系的方法,如何利用圆的方程,判断它们之间的位置关系?师生活动:方法1通过两个圆的方程组成的方程组的解的个数来判断;方法2通过比较两个圆的连心线的长与两半径的和或两半径的差的绝对值的大小来判断.例5 已知圆C 1:222880x y x y +++-=,圆C 2:224420x y x y +---=,试判断圆C 1与圆C 2的位置关系.解法1:将圆C 1与圆C 2的方程联立,得到方程组222228804420x y x y x y x y ⎧+++-=⎪⎨+---=⎪⎩ ①-②,得 210x y +-= ③ 由③,得12x y -=. 把上式代入①,并整理,得2230x x --=.④方程④的根的判别式()()224130∆=--⨯⨯->,所以方程有两个不相等的实数根x 1,x 2.把x 1,x 2分别代入方程③,得到y 1,y 2. 因此圆C 1与圆C 2有两个公共点A (x 1,y 1),B (x 2,y 2),这两个圆相交.问题3:画出圆C 1与圆C 2以及方程③表示的直线,你发现了什么?你能说明为什么吗? 师生活动:方程③表示的直线经过圆C 1与圆C 2的交点,因为圆C 1与圆C 2的交点A 、B 的坐标既满足圆C 1的方程,又满足圆C 2的方程,方程③是两圆方程作差得到的,A 、B的坐标满足方程③.今后求相交两圆的公共弦所在直线方程时,可以用两圆的一般方程作差得到.问题4:你能求出圆C 1与圆C 2的交点坐标吗?设计意图:体会使用解法一的必要性,判断方程解的个数不需要解方程,但要求出交点坐标需要解方程.问题5:如果两圆方程联立消元后得到的方程的0∆=,它说明什么?你能据此确定两圆是内切还是外切吗?如何判断两圆是内切还是外切呢?如果0∆=,则两圆相切,此时无法判定是内切还是外切,还要根据两圆的半径与连心线的长作进一步判断.下面总结一下用连心线的长d 与两半径r 1,r 2的关系判断圆与圆的位置关系.设计意图:引出例5的解法2.解法2:把圆C 1的方程化为标准方程,得()()221425x y +++=,圆心为(-1,-4),半径15r =.把圆C 1的方程化为标准方程,得()()222210x y -+-=,圆心为(2,2),半径2r =圆C 1与圆C 2的连心线的长d =因为55<<1212r r d r r -<<+,所以圆C 1与圆C 2相交.(三)巩固提升例6 已知圆O 的直径AB=4,动点M 与点A 的距离是它与点B .试探究点M 的轨迹,并判断该轨迹与圆O 的位置关系.师生活动:本题是探究满足某种几何条件的动点的轨迹问题,我们通常采用“坐标法”,前面我们介绍了坐标法解决平面几何问题的“三步曲”,先来回顾一下:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何要素,如点、直线、圆,把平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题第三步:把代数运算的结果“翻译”成几何结论.问题6:回到本例,如何建立适当的平面直角坐标系,用坐标和方程表示题中的几何要素?如何把几何问题转化为代数问题?解:如图,以线段AB 的中点O 为原点,AB 所在直线为x 轴,线段AB 的垂直平分线 为y 轴,建立平面直角坐标系.由AB =4,得A (-2,0),B (2,0).设点M 的坐标为(x ,y ),由MA MB =,=221240x y x +-+=.所以点M 的轨迹是以点P (6,0)为圆心,半径为.因为两圆的圆心距为|PO |=6,两圆的半径为12r =,2r =又2112r r PO r r -<<+,所以点M 的轨迹与圆O 相交.设计意图:熟练用坐标法解决动点轨迹问题,为后续推导椭圆标准方程时建立坐标系作准备,同时复习本节课圆与圆位置关系的判断方法.问题7:如果把例6中的改为“k (k >0)倍”,你能分析并解决这个问题吗? 师生活动:设点M 的坐标为(x ,y ),由MA k MB =,得= ()()()()2222221411410k x k x k y k -+++-+-=.当k =1时,方程为x =0,可知点M 的轨迹是线段AB 的垂直平分线;当k >0且k ≠1时,方程可化为()()2222222211611k k x y k k ⎡⎤+⎢⎥-+=-⎢⎥-⎣⎦,点M 的轨迹是以2222,01k k ⎛⎫+ ⎪-⎝⎭为圆心,半径为241k k -的圆. 设计意图:进一步拓展学生思维,体会从特殊到一般的研究方法.(三)归纳总结、布置作业与判断直线与圆的位置关系一样,判断圆与圆的位置关系也有两种思路:一种是根据两个圆的公共点个数判断两圆相交、相切、相离,即利用两个圆的方程组成的方程组解的情况来判断的方法;另一种是利用圆的方程求出圆心和半径,比较连心线的长和两圆半径和差的大小关系来判断的方法.本节课还探究了满足某种几何条件的动点的轨迹问题,用的是坐标法.这种方法建立了几何与代数之间的联系,体现了数形结合思想.设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书98页 练习 第1题,第2题.习题2.5 第7题,第9题.五、目标检测设计1.求圆心在直线40x y --=上,并且经过圆22640x y x ++-=与圆226280x y y ++-=的交点的圆的方程.设计意图:会求圆与圆的交点坐标,公共弦的垂直平分线的直线方程,能类比直线系方程利用圆系方程解题.2.已知点P (-2,-3)和以点Q 为圆心的圆()()22429x y -+-=.(1)画出以PQ为直径的圆,设这个圆的圆心为C,求圆C的方程;(2)圆C与圆Q相交于A、B两点,直线P A、PB是圆Q的切线吗?为什么?(3)求直线AB的方程.设计意图:巩固圆的方程的知识,能利用初中平面几何知识解决问题,会求相交两圆公共弦所在直线方程.。

20高三一轮复习-圆的方程、直线与圆-教师版

20高三一轮复习-圆的方程、直线与圆-教师版

圆的方程、直线与圆⎧⎪⎧⎪⎨⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩定义:代数方程与几何曲线建立一一对应关系曲线从代数方程角度分析几何特性曲线与方程分析(数形结合)与从几何图形角度分析代数方程解的情况轨直接列式迹间接代入求方程方法方参数方程圆程待定系数的圆的标准方程 :三个了解(延伸了一个直径式方程)方一般方程:二元二次方程分析方程程位置关系问题距离、角问题数形面积问题应定值、定点问题用直线与二次曲线问题对称问题⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、知识点分布:1.曲线与方程:一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系: ①曲线C 上的点的坐标都是方程0),(=y x F 的解; ②以方程0),(=y x F 的解为坐标的点都是曲线C 上的点.此时,把方程0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线. 2..利用集合与对应的观点可以更清楚、更深刻地理解曲线方程的概念.设)}(|{M P M P =表示曲线C 上适合某种条件的点M 的集合;}0),(|),{(==y x F y x Q 表示二元方程的解对应的点的坐标的集合.于是,方程0),(=y x F 叫做曲线C 的方程等价于⎭⎬⎫⊆⊆P Q Q P ,即 Q P =.3.曲线方程的应用:交点、弦(弦长公式)、位置关系、图形性质分析 (1)图形的点的坐标与方程的解; (2)图形的交点与方程组的解;(3)用方程思想解决曲线上的交点弦问题,弦长公式;12|||AB x x =-=;12|||AB y y =-== (4)用方程思想解决曲线的位置关系;(5)用方程的代数性质分析图形的对称性、最值性等4.求曲线方程的方法:直接列式、间接转化(间接动点法,换元法、点差法)、参数方程 (1) 直接法:直接根据动点满足的几何条件或等量关系列出等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法.①运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程. ②借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法. (2)定义法(也叫待定系数法):其动点的轨迹符合某一基本轨迹的定义,则根据定义直接求出动点的轨迹方程.熟悉一些基本曲线的定义是用定义法求曲线方程的关键. (3)代入法(也叫间接转化):在变化过程中有两个动点,已知其中一个动点在定曲线上运动,求另一动点的轨迹方程,这里通过建立两个动点坐标之间的关系,代入到已知曲线之中,得出所要求的轨迹方程.(4)参数法:有时求动点应满足的几何条件不易得出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标),(y x 中的y x ,分别随另一变量的变化而变化,称这个变量为参数,建立轨迹的参数方程,这种方法叫参数法,如果需要得到轨迹的普通方程,只要消去参数即可;在选择参数时,选用的参变量要以具有某种物理或几何的性质,如时间、速度、距离、角度,有向线段的数量、直线的斜率,点的横、纵坐标等,也可以没有具体的意义,选定参变量还要特别注意它的取值范围的对动点坐标取值范围的影响.5.圆的一般式方程与标准方程及直径式方程(1)圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 特别地,当0==b a 时,圆心在原点的圆的方程为:222r y x =+ (2)圆的一般方程:022=++++F Ey Dx y x圆心为)2,2(ED --,半径为2422FE D r -+=,其中0422>-+F E D .(3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax ,表示圆的方程的充要条件是:①2x 项2y 项的系数相同且不为0,即0≠=C A ;②没有xy 项,即B=0;③0422>-+AF E D .(4)一个特殊:直径两个端点()11,y A x 及()22,y B x ,则0))(())((2121=--+--y y y y x x x x6.位置关系:点圆、线圆、圆圆 (1) 点与圆的位置关系圆的标准方程为(x -a )2+(y -b )2=r 2,圆心A (a ,b ),半径为r .设所给点为M (x 0,y 0),则①几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. ②代数法:根据直线与圆的方程组成的方程组解的个数来判断.③直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系. (3)过圆上一点的切线方程:圆222)()(r b y a x =-+-,圆上一点为(0x ,0y ),则过此点的切线方程为200=)-)(-(+)-)(-(r b y b y a x a x ;圆的方程为x 2+y 2=r 2(r >0),点M (x 0,y 0),若点M 在⊙O 上,则过M 的切线方程为x 0x +y 0y =r 2. 7.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r 1、r 2,两圆连心线的长为d ,则两圆的位置关系的判断方法如下: 位置关系 外离外切相交内切内含图示d 与r 1、r 2的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0), C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0), 联立方程得⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个数 2个 1个 0个 两圆的位置关系相交内切或外切外离或内含(3)一个特殊:两圆的相交弦的直线方程 8.距离问题及垂径定理(1)圆心到直线的距离与半径比对判断直线与圆的位置关系; (2)垂径定理的三个量:圆心到直线距离、半径、弦;(3)利用圆心到直线距离判断圆上点到直线的距离最值及满足特定值的点的个数; (4)一个特殊的弦的用法:弦AB 与定点C 满足:0CA CB ⋅=,若点C 是圆心则多采用垂径定理求解,但点C 不是圆心时,只能采用联立、消元、韦达的思路(学生易粗心认定为圆心的点)。

新教材2022版人教A版数学选择性必修第一册学案:2.5.2 圆与圆的位置关系(含解析)

新教材2022版人教A版数学选择性必修第一册学案:2.5.2 圆与圆的位置关系(含解析)

2.5.2圆与圆的位置关系素养目标·定方向课程标准学法解读1.了解圆与圆的位置关系.2.掌握圆与圆的位置关系的判断方法.3.能用圆与圆的位置关系解决一些简单问题.1.掌握圆与圆的位置关系及判定方法.(数学抽象)2.能根据圆的方程判断圆与圆的位置关系.(数学运算)3.能综合应用圆与圆的位置关系解决问题.(逻辑推理)必备知识·探新知知识点两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r1,r2,两圆连心线的长为d,则两圆的位置关系如下:位置关系外离外切相交内切内含图示d与r1,r2的关系d>__r1+r2__d=__r1+r2____|r1-r2|__<d<__r1+r2__d=__|r1-r2|__d<__|r1-r2|__C1:x2+y2+D1x+E1y+F1=0(D21+E21-4F1>0),C2:x2+y2+D2x+E2y+F2=0(D22+E22-4F2>0),联立方程得⎩⎪⎨⎪⎧x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数2组1组0组两圆的公共点个数2个1个0个两圆的位置关系__相交____外切或内切____外离或内含__两圆的位置关系?提示:不能.已知两圆只有一个交点只能得出两圆内切或外切.关键能力·攻重难题型探究题型一判断两圆的位置关系典例1已知圆C1:x2+y2-2ax-2y+a2-15=0(a>0),圆C2:x2+y2-4ax -2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含?[分析]先求出圆心距,与两半径的和或差比较求出a的值.[解析]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C1(a,1),C2(2a,1),半径r1=4,r2=1.∴|C1C2|=(a-2a)2+(1-1)2=a.(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切;当|C1C2|=r1-r2=3,即a=3时,两圆内切.(2)当3<|C1C2|<5,即3<a<5时,两圆相交.(3)当|C1C2|>5,即a>5时,两圆外离.(4)当|C1C2|<3,即0<a<3时,两圆内含.[规律方法]判断两圆的位置关系的两种方法(1)几何法:利用两圆半径的和或差与圆心距作比较,得到两圆的位置关系.(2)代数法:把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.【对点训练】❶(1)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(B)A.内切B.相交C.外切D.相离(2)到点A(-1,2),B(3,-1)的距离分别为3和1的直线有__4__条.[解析](1)两圆的圆心分别为(-2,0),(2,1),半径分别为r=2,R=3,两圆的圆心距为(-2-2)2+(0-1)2=17,则R-r<17<R+r,所以两圆相交,选B.(2)到点A(-1,2)的距离为3的直线是以A为圆心,3为半径的圆的切线;同理,到B的距离为1的直线是以B为圆心,半径为1的圆的切线,所以满足题设条件的直线是这两圆的公切线,而这两圆的圆心距|AB|=(3+1)2+(-1-2)2=5.半径之和为3+1=4,因为5>4,所以圆A和圆B外离,因此它们的公切线有4条.题型二两圆相切问题典例2求与圆x2+y2-2x=0外切且与直线x+3y=0相切于点M(3,-3)的圆的方程.[分析]设圆的方程,利用两圆外切和直线与圆相切建立方程组求得.[解析]设所求圆的方程为(x-a)2+(y-b)2=r2(r>0),由题知所求圆与圆x2+y2-2x=0外切,则(a-1)2+b2=r+1.①又所求圆过点M的切线为直线x+3y=0,故b+3a-3=3.②|a+3b|2=r.③解由①②②组成的方程组得a=4,b=0,r=2或a=0,b=-43,r=6.故所求圆的方程为(x-4)2+y2=4或x2+(y+43)2=36.[规律方法]处理两圆相切问题的两个步骤(1)定性,即必须准确把握是内切还是外切,若只是告诉相切,则必须考虑分两圆内切还是外切两种情况讨论.(2)转化思想,即将两圆相切的问题转化为两圆的圆心距等于两圆半径之差的绝对值(内切时)或两圆半径之和(外切时).【对点训练】❷已知圆O1:x2+y2-82x-82y+48=0,圆O2过点A(0,-4),若圆O2与圆O1相切于点B(22,22),求圆O2的方程.[解析]圆O1的方程变为(x-42)2+(y-42)2=16,所以圆心O1(42,42),因为圆O 2与圆O 1相切于点B (22,22),所以圆O 2的圆心在直线y =x 上,不妨设为(a ,a ),因为圆O 2过点A (0,-4),所以圆O 2与圆O 1外切,因为圆O 2过B (22,22),所以a 2+(a +4)2=2(a -22)2,所以a =0,所以圆O 2的方程为x 2+y 2=16.题型三 两圆相交问题 角度1 与弦长相关的问题典例3 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0.(1)试判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.[解析] (1)将两圆方程配方化为标准方程,C 1:(x -1)2+(y +5)2=50,C 2:(x +1)2+(y +1)2=10. 则圆C 1的圆心为(1,-5),半径r 1=52; 圆C 2的圆心为(-1,-1),半径r 2=10.又|C 1C 2|=25,r 1+r 2=52+10,r 1-r 2=52-10. ∴r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x -2y +4=0. (3)解法一:两方程联立,得方程组⎩⎪⎨⎪⎧x 2+y 2-2x +10y -24=0 ①x 2+y 2+2x +2y -8=0 ② 两式相减得x =2y -4 ③,把③代入②得y 2-2y =0, ∴y 1=0,y 2=2.∴⎩⎪⎨⎪⎧ x 1=-4,y 1=0,或⎩⎪⎨⎪⎧x 2=0,y 2=2. ∴交点坐标为(-4,0)和(0,2). ∴两圆的公共弦长为(-4-0)2+(0-2)2=25.解法二:两方程联立,得方程组⎩⎪⎨⎪⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0, 两式相减得x -2y +4=0,即两圆相交弦所在直线的方程; 由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50, 其圆心为C 1(1,-5),半径r 1=52. 圆心C 1到直线x -2y +4=0的距离 d =|1-2×(-5)+4|1+(-2)2=35,∴两圆的公共弦长为2r 2-d 2=250-45=25.角度2 圆与圆位置关系的应用典例4 已知圆C 满足:圆心在直线x +y =0上,且过圆C 1:x 2+y 2-2x +10y-24=0与圆C 2:x 2+y 2+2x +2y -8=0的交点A ,B .(1)求弦AB 所在的直线方程和圆C 的方程;(2)过点M (-4,1)的直线l 被圆C 截得的弦长为6,求直线l 的方程.[解析] (1)由题意:圆C 1:x 2+y 2-2x +10y -24=0与圆C 2:x 2+y 2+2x +2y -8=0的交点A (-4,0),B (0,2).两式相减得:4x -8y +16=0,即x -2y +4=0,所以弦AB 所在的直线方程为x -2y +4=0.圆心在直线x +y =0上,设圆心为(a ,-a ),那么它到两交点A ,B 的距离相等,故有(a +4)2+a 2=a 2+(2+a )2,可得:a =-3,即圆心(-3,3),r 2=10,圆C 的方程为(x +3)2+(y -3)2=10.(2)当k 存在时,设直线l 的方程为y -1=k (x +4),即kx -y +1+4k =0,直线l 被圆C 截得的弦长为6,即9=r 2-d 2,所以d 2=1.即|-3k -3+1+4k |k 2+1=1,可得:k =34,所以直线l的方程为3x -4y +16=0;当k 不存在时,直线l 的方程为x +4=0.直线l 被圆C 截得的弦长为6,符合题意.故所求直线l 的方程为x +4=0或3x -4y +16=0.[规律方法] 求两圆公共弦长的方法1.代数法:求交点的坐标,利用两点间的距离公式求出公共弦长.2.几何法:利用圆的半径、公共弦的一半、圆心到弦的垂线段构成的直角三角形,根据勾股定理求出公共弦长.【对点训练】❸ 已知圆C 1:x 2+y 2=1与圆C 2:(x -4)2+(y -4)2=R 2(R >0). (1)R 为何值时,圆C 1与圆C 2外切;(2)在(1)的条件下,设切点为P ,过P 作直线l 与圆C 1相交于E 点,若|PE |=2,求直线l 的方程.[解析] (1)由已知圆的方程可得:C 1(0,0),C 2(4,4),则|C 1C 2|=42=R +1, 所以R =42-1.(2)因为C 1(0,0),C 2(4,4),所以P 为直线C 1C 2与圆C 1的交点,在第一象限.联立⎩⎪⎨⎪⎧y =x ,x 2+y 2=1,得P ⎝⎛⎭⎫22,22 .当直线斜率存在时,设直线l 的斜率为k ,所以l :kx -y +22(1-k )=0,则圆心C 1到直线l 的距离d =12-⎝⎛⎭⎫222=⎪⎪⎪⎪-22k +221+k 2,解得:k =0,此时直线方程为y =22.当直线斜率不存在时直线方程为x =22也满足条件,故所求直线l 的方程为y =22或x =22.易错警示两圆的位置有关系考虑不全面致错典例5 求半径为4,与圆(x -2)2+(y -1)2=9相切,且和直线y =0相切的圆的方程.[错解] 由题意知,所求圆的圆心为C (a,4),半径为4, 故可设所求圆的方程为(x -a )2+(y -4)2=16.已知圆(x -2)2+(y -1)2=9的圆心为A (2,1),半径为3. 由两圆相切,则|CA |=4+3=7, ∴(a -2)2+(4-1)2=72, 解得a =2±210,故所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16.[辨析]两圆相切可为内切和外切,不要遗漏.[正解]设所求圆C的方程为(x-a)2+(y-b)2=r2.由圆C与直线y=0相切且半径为4,则圆心C的坐标为C1(a,4)或C2(a,-4).已知圆(x-2)2+(y-1)2=9的圆心A的坐标为(2,1),半径为3.由两圆相切,则|CA|=4+3=7或|CA|=4-3=1.①当圆心为C1(a,4)时,(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),故可得a=2±210,故所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y -4)2=16.②当圆心为C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),解得a=2±26.故所求圆的方程为(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.综上所述,所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16或(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.[误区警示]两圆相切包括外切与内切,外切时,圆心距等于两圆半径之和,内切时,圆心距等于两圆半径差的绝对值.在题目没有说明是内切还是外切时,要分两种情况进行讨论.解决两圆相切问题,常用几何法.。

高三关于圆的试题及答案

高三关于圆的试题及答案

高三关于圆的试题及答案试题:1. 已知圆的方程为 \((x-2)^2 + (y-3)^2 = 9\),求圆心坐标和半径。

2. 圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 与直线 \(y = 2x + 3\)相交,求交点坐标。

3. 已知圆 \(x^2 + y^2 = 25\) 和圆 \(x^2 + y^2 - 8x - 6y + 24= 0\),求两圆的公共弦所在的直线方程。

4. 已知圆 \(x^2 + y^2 = 25\) 上一点 \(P(3,4)\),求过点 \(P\)且与圆相切的切线方程。

5. 已知圆 \(x^2 + y^2 = 4\),求圆内接矩形的最大面积。

答案:1. 圆心坐标为 \((2,3)\),半径为 \(3\)。

2. 将直线 \(y = 2x + 3\) 代入圆的方程 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 得到 \(x^2 + (2x + 3)^2 - 4x - 6(2x + 3) + 9 = 0\),化简后解得交点坐标。

3. 两圆方程相减得到公共弦所在的直线方程 \(8x + 6y - 24 = 0\)。

4. 切线斜率为 \(-\frac{1}{k_{OP}}\),其中 \(k_{OP} = \frac{4-0}{3-0} = \frac{4}{3}\),所以切线斜率为 \(-\frac{3}{4}\),切线方程为 \(y - 4 = -\frac{3}{4}(x - 3)\)。

5. 圆内接矩形的对角线即为圆的直径,所以最大面积为\(\frac{1}{2} \times 2 \times 2 \times \sin(90^\circ) = 2\)。

高三数学圆试题答案及解析

高三数学圆试题答案及解析

高三数学圆试题答案及解析1.已知圆和点,若定点和常数满足:对圆上那个任意一点,都有,则:(1);(2) .【答案】(1);(2)【解析】设,因为,所以,整理得,配方得,因为对圆上那个任意一点,都有成立,所以,解得或(舍去).故.【考点】圆的性质,两点间的距离公式,二元二次方程组的解法,难度中等.2.已知圆:,圆:,过圆上任意一点作圆的两条切线、,切点分别为、,则的最小值是()A.5B.6C.10D.12【答案】B【解析】(x-2)2+y2=4的圆心C(2,0),半径等于2,圆M (x-2-5cosθ)2+(y-5sinθ)2=1,圆心M(2+5cosθ,5sinθ),半径等于1.∵|CM|=5>2+1,故两圆相离.∵=,要使最小,需和最小,且∠EPF 最大,如图所示,设直线CM 和圆M交于H、G两点,则最小值是.|H C|=|CM|-1=5-1=4,|H E|=,sin∠CHE=,∴cos∠EHF=cos2∠CHE=1-2sin2∠CHE=,∴==6,故选B.【考点】1.圆的参数方程;2.平面向量数量积的运算;3.圆与圆的位置关系及其判定.3.如图放置的边长为的正△沿边长为的正方形的各边内侧逆时针方向滚动.当△沿正方形各边滚动一周后,回到初始位置时,点的轨迹长度是( )A.B.C.D.【答案】B【解析】由题意得:当△沿正方形一边滚动时,点的轨迹为两个圆弧,其对应圆半径皆为1,圆心角为,因此点的轨迹长度是【考点】动点轨迹4.如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD 互相垂直,且AC和BD分别在x轴和y轴上.(1)求证:F<0.(2)若四边形ABCD的面积为8,对角线AC的长为2,且·=0,求D2+E2-4F的值.(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O,G,H是否共线,并说明理由.【答案】(1)见解析 (2)64 (3) O,G,H三点必定共线,理由见解析【解析】(1)方法一:由题意,原点O必定在圆M内,即点(0,0)代入方程x2+y2+Dx+Ey+F=0的左边所得的值小于0,于是有F<0,即证.方法二:由题意,不难发现A,C两点分别在x轴正、负半轴上.设两点坐标分别为A(a,0),C(c,0),则有ac<0.对于圆的方程x2+y2+Dx+Ey+F=0,当y=0时,可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,于是有xA xC=ac=F.因为ac<0,故F<0.(2)不难发现,对角线互相垂直的四边形ABCD的面积S=,因为S=8,|AC|=2,可得|BD|=8. 又因为·=0,所以∠BAD为直角,又因为四边形是圆M的内接四边形,故|BD|=2r=8⇒r=4.对于方程x2+y2+Dx+Ey+F=0所表示的圆,可知+-F=r2,所以D2+E2-4F=4r2=64.(3)设四边形四个顶点的坐标分别为A(a,0),B(0,b),C(c,0),D(0,d).则可得点G的坐标为(,),即=(,).又=(-a,b),且AB⊥OH,故要使G,O,H三点共线,只需证·=0即可.而·=,且对于圆M的一般方程x2+y2+Dx+Ey+F=0,当y=0时可得x2+Dx+F=0,其中方程的两根分别为点A和点C的横坐标,于是有xA xC=ac=F.同理,当x=0时,可得y2+Ey+F=0,其中方程的两根分别为点B和点D的纵坐标,于是有yB yD=bd=F.所以·==0,即AB⊥OG. 故O,G,H三点必定共线.5.若当方程所表示的圆取得最大面积时,则直线的倾斜角().A.B.C.D.【答案】A【解析】,当有最大半径时有最大面积,此时,,∴直线方程为,设倾斜角为,则由且得.故选.【考点】1.圆的方程;2.斜率和倾斜角的关系.6.已知直线与圆相交于两点,且则的值是A.B.C.D.0【答案】A【解析】根据题意,由于直线与圆相交于两点,圆的半径为1,圆心为原点,且弦长为,那么可知弦心距为,那么结合向量的的夹角为120度可知其数量积为,选A.【考点】直线与圆的位置关系点评:解决的关键是根据直线与圆相交,那么结合半径和半弦长以及弦心距来得到求解,属于基础题。

高考数学试卷选修圆

高考数学试卷选修圆

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知圆O的半径为2,圆心为点(1,3),则点(4,5)在圆O上的切线斜率为:A. 1B. -1C. 2D. -22. 圆(x-3)²+(y+2)²=1的圆心坐标为:A. (3,-2)B. (-3,2)C. (-3,-2)D. (3,2)3. 下列关于圆的方程中,表示圆的标准方程是:A. x²+y²=5B. (x-1)²+(y+2)²=4C. x²+y²+2x-4y=0D. x²+y²-2x+4y=04. 在平面直角坐标系中,若点P(2,3)在圆x²+y²=25上,则点P到圆心的距离为:A. 5B. 10C. 15D. 205. 已知圆C:x²+y²=4,圆D:x²+y²=1,则两圆的公切线共有:A. 2条B. 4条C. 6条D. 8条6. 在平面直角坐标系中,若点A(2,3)在圆x²+y²=9上,则点A到圆心的距离为:A. 3B. 6C. 9D. 127. 已知圆O的方程为x²+y²=r²,若圆O过点P(2,0),则r的值为:A. 2B. 4C. 6D. 88. 在平面直角坐标系中,若圆x²+y²=4的圆心在直线y=x上,则圆心的坐标为:A. (2,2)B. (-2,-2)C. (2,-2)D. (-2,2)9. 已知圆O的方程为x²+y²=16,若圆O的切线斜率为k,则k的取值范围是:A. k≤4B. k≤2C. k≥4D. k≥210. 在平面直角坐标系中,若圆x²+y²=1的圆心在直线y=3上,则圆心的坐标为:A. (0,3)B. (1,3)C. (-1,3)D. (0,-3)二、填空题(本大题共5小题,每小题10分,共50分。

【步步高】高三数学大一轮复习 9.3圆的方程教案 理 新人教A版

【步步高】高三数学大一轮复习 9.3圆的方程教案 理 新人教A版

§9.3 圆的方程2014高考会这样考 1.考查圆的方程的形式及应用;2.利用待定系数法求圆的方程. 复习备考要这样做 1.熟练掌握圆的方程的两种形式及其特点;2.会利用代数法、几何法求圆的方程,注意圆的方程形式的选择.1. 圆的定义在平面内,到定点的距离等于定长的点的集合叫圆. 2. 确定一个圆最基本的要素是圆心和半径. 3. 圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 4. 圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径r =D 2+E 2-4F2.5. 确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 6. 点与圆的位置关系点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. [难点正本 疑点清源]1. 确定圆的方程时,常用到的圆的三个性质(1)圆心在过切点且垂直切线的直线上;(2)圆心在任一弦的中垂线上;(3)两圆内切或外切时,切点与两圆圆心三点共线. 2. 圆的一般方程的特征圆的一般方程:x 2+y 2+Dx +Ey +F =0,若化为标准式,即为⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4.由于r 2相当于D 2+E 2-4F4.所以①当D 2+E 2-4F >0时,圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.②当D 2+E 2-4F =0时,表示一个点⎝ ⎛⎭⎪⎫-D 2,-E 2. ③当D 2+E 2-4F <0时,这样的圆不存在.1. 若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是______________.答案 ⎝⎛⎭⎪⎫-2,23解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0 转化为⎝ ⎛⎭⎪⎫x +a 22+(y +a )2=-34a 2-a +1,所以若方程表示圆,则有-34a 2-a +1>0,∴3a 2+4a -4<0,∴-2<a <23.2. (2011·辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为(a,0),易知a -2+-2=a -2+-2,解得a =2,∴圆心为(2,0),半径为10,∴圆C 的方程为(x -2)2+y 2=10.3. (2011·四川)圆x 2+y 2-4x +6y =0的圆心坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)答案 D解析 圆x 2+y 2-4x +6y =0的圆心坐标为⎝ ⎛⎭⎪⎫--42,-62,即(2,-3).4. (2012·辽宁)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0答案 C解析 因为圆心是(1,2),所以将圆心坐标代入各选项验证知选C.5. (2012·湖北)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0答案 A解析 当圆心与P 的连线和过点P 的直线垂直时,符合条件. 圆心O 与P 点连线的斜率k =1,∴过点P 垂直于OP 的直线方程为x +y -2=0.题型一 求圆的方程例1 根据下列条件,求圆的方程:(1)经过P (-2,4)、Q (3,-1)两点,并且在x 轴上截得的弦长等于6; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2). 思维启迪:(1)求圆心和半径,确定圆的标准方程. (2)设圆的一般方程,利用待定系数法求解. 解 (1)设圆的方程为x 2+y 2+Dx +Ey +F =0, 将P 、Q 点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6有D 2-4F =36,④由①、②、④解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0,或x 2+y 2-6x -8y =0.(2)方法一如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.方法二 设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.探究提高 求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:①几何法,通过研究圆的性质进而求出圆的基本量.②代数法,即设出圆的方程,用待定系数法求解.(1)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B .(x -1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2(2)经过点A (5,2),B (3,2),圆心在直线2x -y -3=0上的圆的方程为 ____________________.答案 (1)B (2)(x -4)2+(y -5)2=10 解析 (1)设圆心坐标为(a ,-a ), 则|a --a2=|a --a -4|2,即|a |=|a -2|,解得a =1, 故圆心坐标为(1,-1),半径r =22=2,故圆的方程为(x -1)2+(y +1)2=2. (2)设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧-a 2+-b 2=r 2-a 2+-b2=r22a -b -3=0,可得a =4,b =5,r 2=10. 题型二 与圆有关的最值问题例2 已知实数x 、y 满足方程x 2+y 2-4x +1=0.(1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值.思维启迪:根据代数式的几何意义,借助图形来求最值.解 (1)原方程化为(x -2)2+y 2=3,表示以点(2,0)为圆心,以3为半径的圆.设y x=k ,即y =kx ,当直线y =kx 与圆相切时,斜率k 取最大值和最小值,此时|2k -0|k 2+1=3,解得k =± 3.故y x的最大值为3,最小值为- 3.(2)设y -x =b ,即y =x +b ,当y =x +b 与圆相切时,纵截距b 取得最大值和最小值,此时|2-0+b |2=3,即b =-2± 6.故y -x 的最大值为-2+6,最小值为-2- 6.探究提高 与圆有关的最值问题,常见的有以下几种类型: (1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值; (2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由C :x 2+y 2-4x -14y +45=0可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=+2+-2=4 2.∴|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2), 即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k 2≤2 2. 可得2-3≤k ≤2+3, 所以n -3m +2的最大值为2+3,最小值为2- 3. 题型三 与圆有关的轨迹问题例3 设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹.思维启迪:结合图形寻求点P 和点M 坐标的关系,用相关点法(代入法)解决.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3y 0=y -4.N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上时的情况).探究提高 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( )A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+42y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4y 0=2y +2,代入x 20+y 20=4中得(x -2)2+(y +1)2=1.利用方程思想求解圆的问题典例:(12分)已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P ,Q 两点,且OP ⊥OQ (O为坐标原点),求该圆的圆心坐标及半径. 审题视角 (1)求圆心及半径,关键是求m . (2)利用OP ⊥OQ ,建立关于m 的方程求解.(3)利用x 1x 2+y 1y 2=0和根与系数的关系或利用圆的几何性质. 规范解答解 方法一 将x =3-2y , 代入方程x 2+y 2+x -6y +m =0, 得5y 2-20y +12+m =0.[2分]设P (x 1,y 1),Q (x 2,y 2),则y 1、y 2满足条件:y 1+y 2=4,y 1y 2=12+m5.[4分] ∵OP ⊥OQ ,∴x 1x 2+y 1y 2=0. 而x 1=3-2y 1,x 2=3-2y 2.∴x 1x 2=9-6(y 1+y 2)+4y 1y 2=-27+4m5.[6分]故-27+4m 5+12+m5=0,解得m =3,[9分] 此时Δ>0,圆心坐标为⎝ ⎛⎭⎪⎫-12,3,半径r =52.[12分]方法二 如图所示,设弦PQ 中点为M , ∵O 1M ⊥PQ ,∴kO 1M =2.[2分]∴O 1M 的方程为y -3=2⎝ ⎛⎭⎪⎫x +12,即y =2x +4.[4分]由方程组⎩⎪⎨⎪⎧y =2x +4x +2y -3=0.解得M 的坐标为(-1,2).[6分]则以PQ 为直径的圆可设为(x +1)2+(y -2)2=r 2. ∵OP ⊥OQ ,∴点O 在以PQ 为直径的圆上. ∴(0+1)2+(0-2)2=r 2,即r 2=5,|MQ |2=r 2. 在Rt△O 1MQ 中,|O 1Q |2=|O 1M |2+|MQ |2. ∴1+-2-4m 4=⎝ ⎛⎭⎪⎫-12+12+(3-2)2+5. ∴m =3.[9分]∴半径为52,圆心为⎝ ⎛⎭⎪⎫-12,3.[12分] 方法三 设过P 、Q 的圆系方程为x 2+y 2+x -6y +m +λ(x +2y -3)=0.[2分]由OP ⊥OQ 知,点O (0,0)在圆上. ∴m -3λ=0,即m =3λ.[4分] ∴圆系方程可化为x 2+y 2+x -6y +3λ+λx +2λy -3λ=0.即x 2+(1+λ)x +y 2+2(λ-3)y =0.[6分]∴圆心M ⎝⎛⎭⎪⎫-1+λ2,-λ2,又圆心在PQ 上. ∴-1+λ2+2(3-λ)-3=0,∴λ=1,∴m =3.[9分]∴圆心为⎝ ⎛⎭⎪⎫-12,3,半径为52.[12分] 温馨提醒 (1)在解决与圆有关的问题中,借助于圆的几何性质,往往会使得思路简捷明了,简化思路,简便运算.(2)本题中三种解法都是用方程思想求m 值,即三种解法围绕“列出m 的方程”求m 值. (3)本题的易错点:不能正确构建关于m 的方程,找不到解决问题的突破口,或计算错误.方法与技巧1. 确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数. 2. 解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.失误与防范1. 求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.2. 过圆外一定点,求圆的切线,应该有两个结果,若只求出一个结果,应该考虑切线斜率不存在的情况.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,则a <0,b >0.直线y =-1a x -b a ,k =-1a >0,-ba>0,直线不经过第四象限.2.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是 ( )A .-1<a <1B .0<a <1C .a >1或a <-1D .a =±1答案 A解析 因为点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4,∴-1<a <1.3. (2011·安徽)若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( ) A .-1 B .1 C .3 D .-3答案 B解析 化圆为标准形式(x +1)2+(y -2)2=5,圆心为(-1,2). ∵直线过圆心,∴3×(-1)+2+a =0,∴a =1.4. 圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1答案 A解析 设圆心坐标为(0,b ),则由题意知-2+b -2=1,解得b =2,故圆的方程为x 2+(y -2)2=1. 二、填空题(每小题5分,共15分)5. 若圆x 2+y 2-4x +2my +m +6=0与y 轴的两交点A ,B 位于原点的同侧,则实数m 的取值范围是______________. 答案 -6<m <-2或m >3解析 令x =0,可得y 2+2my +m +6=0,由题意知,此方程有两个不相等且同号的实数根,即⎩⎪⎨⎪⎧m +6>0,4m 2-m +,解得-6<m <-2或m >3.6. 以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为________________.答案 (x +2)2+⎝ ⎛⎭⎪⎫y -322=254解析 直线3x -4y +12=0与两坐标轴的交点分别为A (-4,0)、B (0,3),所以线段AB 的中点为C ⎝⎛⎭⎪⎫-2,32,|AB |=5. 故所求圆的方程为(x +2)2+⎝ ⎛⎭⎪⎫y -322=⎝ ⎛⎭⎪⎫522.7. 已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是__________. 答案 x +y -1=0解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1,∴最短弦所在直线的方程为y -0=-1(x -1),即x +y -1=0. 三、解答题(共22分)8. (10分)根据下列条件求圆的方程:(1)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上; (2)过三点A (1,12),B (7,10),C (-9,2). 解 (1)设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意列出方程组⎩⎪⎨⎪⎧a 2+b 2=r 2a -2+b -2=r22a +3b +1=0,解之得⎩⎪⎨⎪⎧a =4,b =-3,r 2=25.∴圆的标准方程是(x -4)2+(y +3)2=25. (2)方法一 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.∴所求圆的方程为x 2+y 2-2x -4y -95=0. 方法二 由A (1,12),B (7,10), 得AB 的中点坐标为(4,11),k AB =-13,则AB 的中垂线方程为3x -y -1=0. 同理得AC 的中垂线方程为x +y -3=0.联立⎩⎪⎨⎪⎧3x -y -1=0x +y -3=0,得⎩⎪⎨⎪⎧x =1y =2, 即圆心坐标为(1,2),半径r =-2+-2=10.∴所求圆的方程为(x -1)2+(y -2)2=100.9. (12分)一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距的和为2,求此圆的方程.解 设圆心为(a ,b ),圆与x 轴分别交于(x 1,0),(x 2,0),与y 轴分别交于(0,y 1),(0,y 2),根据题意知x 1+x 2+y 1+y 2=2,∵a =x 1+x 22,b =y 1+y 22,∴a +b =1.又∵点(a ,b )在线段AB 的中垂线上,∴5a -b -5=0.联立⎩⎪⎨⎪⎧a +b =1,5a -b -5=0,解得⎩⎪⎨⎪⎧a =1,b =0. ∴圆心为(1,0),半径为-2+-2=13.∴所求圆的方程为(x -1)2+y 2=13.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 若直线ax +by =1与圆x 2+y 2=1相交,则P (a ,b )( ) A .在圆上 B .在圆外 C .在圆内D .以上都有可能答案 B 解析 由已知条件1a 2+b2<1,即a 2+b 2>1. 因此点P (a ,b )在圆外.2. 已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( )A .8B .-4C .6D .无法确定答案 C解析 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝ ⎛⎭⎪⎫-m2,0,即-m2+3=0,∴m =6. 3. 已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是( )A .x 2+y 2-4x =0 B .x 2+y 2+4x =0 C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0答案 A解析 设圆心为C (m,0) (m >0),因为所求圆与直线3x +4y +4=0相切,所以|3m +4×0+4|32+42=2,整理得:|3m +4|=10,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=22,即x 2+y 2-4x =0,故选A. 二、填空题(每小题5分,共15分)4. 已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________. 答案 (-∞,1)解析 圆的方程化为(x +1)2+(y -2)2=5-a , ∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称, ∴2=-2+b ,∴b =4.∴a -b =a -4<1.5. 若PQ 是圆O :x 2+y 2=9的弦,PQ 的中点是M (1,2),则直线PQ 的方程是____________.答案 x +2y -5=0解析 由圆的几何性质知k PQ k OM =-1.∵k OM =2,∴k PQ =-12,故直线PQ 的方程为y -2=-12(x -1),即x +2y -5=0. 6. 已知AC 、BD 为圆O :x 2+y 2=4的两条相互垂直的弦,垂足为M (1,2),则四边形ABCD 的面积的最大值为________.答案 5解析 如图,取AC 的中点F ,BD 的中点E , 则OE ⊥BD ,OF ⊥AC . 又AC ⊥BD ,∴四边形OEMF 为矩形, 设|OF |=d 1,|OE |=d 2, ∴d 21+d 22=|OM |2=3.又|AC |=24-d 21,|BD |=24-d 22, ∴S 四边形ABCD =12|AC |·|BD |=24-d 21·4-d 22=2+d 22-d 22=2-⎝⎛⎭⎪⎫d 22-322+254.∵0≤d 22≤3.∴当d 22=32时,S 四边形ABCD 有最大值是5.三、解答题7. (13分)圆C 通过不同的三点P (k,0),Q (2,0),R (0,1),已知圆C 在点P 处的切线斜率为1,试求圆C 的方程.解 设圆C 的方程为x 2+y 2+Dx +Ey +F =0, 则k 、2为x 2+Dx +F =0的两根,∴k +2=-D,2k =F ,即D =-(k +2),F =2k , 又圆过R (0,1),故1+E +F =0.∴E =-2k -1.故所求圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0, 圆心坐标为⎝⎛⎭⎪⎫k +22,2k +12.∵圆C 在点P 处的切线斜率为1, ∴k CP =-1=2k +12-k ,∴k =-3.∴D =1,E =5,F =-6.∴所求圆C 的方程为x 2+y 2+x +5y -6=0.。

高三数学圆试题答案及解析

高三数学圆试题答案及解析

高三数学圆试题答案及解析1.如图,椭圆C0:(a>b>0,a,b为常数),动圆C1:x2+y2=t12,b<t1<a.点A1,A2分别为C的左,右顶点,C1与C相交于A,B,C,D四点.(1)求直线AA1与直线A2B交点M的轨迹方程;(2)设动圆C2:x2+y2=t22与C相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t12+t22为定值.【答案】(1)(x<-a,y<0) (2)见解析【解析】(1)解设A(x1,y1),B(x1,-y1),又知A1(-a,0),A2(a,0),则直线A1A的方程为y=(x+a),①直线A2B的方程为y=(x-a).②由①②得y2=(x2-a2).③由点A(x1,y1)在椭圆C上,故.从而y12=b2,代入③得(x<-a,y<0).(2)证明设A′(x2,y2),由矩形ABCD与矩形A′B′C′D′的面积相等,得4|x1||y1|=4|x2||y2|,故x12y12=x22y22.因为点A,A′均在椭圆上,所以b2x12=b2x22.由t1≠t2,知x1≠x2,所以x12+x22=a2.从而y12+y22=b2,因此t12+t22=a2+b2为定值.2.如图放置的边长为的正△沿边长为的正方形的各边内侧逆时针方向滚动.当△沿正方形各边滚动一周后,回到初始位置时,点的轨迹长度是( )A.B.C.D.【答案】B【解析】由题意得:当△沿正方形一边滚动时,点的轨迹为两个圆弧,其对应圆半径皆为1,圆心角为,因此点的轨迹长度是【考点】动点轨迹3.已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△AOB的面积为定值;(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.【答案】(1)见解析(2)(x-2)2+(y-1)2=5(3)【解析】(1)由题设知,圆C的方程为(x-t)2+=t2+,化简得x2-2tx+y2-y=0,当y=0时,x=0或2t,则A(2t,0);当x=0时,y=0或,则B,∴SΔAOB=|OA|·|OB|=|2t|·=4为定值.(2)∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k=,∴t=2或t=-2,∴圆心C(2,1)或C(-2,-1)∴圆C的方程为(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y-4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去.∴圆C的方程为(x-2)2+(y-1)2=5(3)点B(0,2)关于直线x+y+2=0的对称点为B′(-4,-2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q的最短距离为|B′C|-r=-=3-=2.所以|PB|+|PQ|的最小值2,直线B′C的方程为y=x,则直线B′C与直线x+y+2=0的交点P的坐标为.4.夹在两条平行线l1:3x-4y=0与l2:3x-4y-20=0之间的圆的最大面积为.【答案】4π【解析】由题意,得l1:3x-4y=0与l2:3x-4y-20=0之间的距离为:d==4.当两条平行线间的圆与两直线都相切时,圆面积最大,∴圆的最大直径为2R=4⇒最大半径R=2,可得最大圆的面积为S=πR2=4π.5.圆-2x+my-2=0关于抛物线=4y的准线对称,则m=____________.【答案】2【解析】易知,圆心坐标为,抛物线的准线方程为,依题意有,所以.【考点】1.圆的性质;2.抛物线的性质.6.圆-2x+my-2=0关于抛物线=4y的准线对称,则m=_____________.【答案】2【解析】易知,圆心坐标为,抛物线的准线方程为,依题意有,所以.【考点】1.圆的性质;2.抛物线的性质.7.在直角坐标系内,点实施变换后,对应点为,给出以下命题:①圆上任意一点实施变换后,对应点的轨迹仍是圆;②若直线上每一点实施变换后,对应点的轨迹方程仍是则;③椭圆上每一点实施变换后,对应点的轨迹仍是离心率不变的椭圆;④曲线:上每一点实施变换后,对应点的轨迹是曲线,是曲线上的任意一点,是曲线上的任意一点,则的最小值为。

高三数学《师说》系列一轮复习 圆的方程课件 理 新人教B

高三数学《师说》系列一轮复习 圆的方程课件 理 新人教B

相交 R-r<d<R+ M 有两组实数解 r
内切 内含
d=R-r d<R-r
M 有一组实数解 M 无实数解
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/162022/1/16January 16, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/162022/1/162022/1/161/16/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/162022/1/16
点评 确定圆的方程需要三个独立条件,“选标准,定参数” 是解题的基本方法.其中,选标准是指根据已知条件选恰当的圆的 方程的形式,进而确定其中三个参数 .
变式迁移 1 求满足下列条件的圆的方程: (1)圆心在 x 轴上,半径为 5,且过点 A(2,-3); (2)过点 A(1,2)和 B(1,10),且与直线 x-2y-1=0 相切.
示圆的必要条件,而不是充分条件,还需要加上(DA)2+(EA)2-4AF>0, 即 D2+E2-4AF>0.
(4)常见圆的方程 ①圆心在原点的圆,标准方程:x2+y2=r2;一般方程:x2+y2 -r2=0. ②过原点的圆,标准方程:(x-a)2+(y-b)2=a2+b2;一般方 程:x2+y2+Dx+Ey=0. ③圆心在 x 轴上的圆,标准方程:(x-a)2+y2=r2;一般方程: x2+y2+Dx+F=0. ④圆心在 y 轴上的圆,标准方程:x2+(y-b)2=r2;一般方程: x2+y2+Ey+F=0. ⑤与 x 轴相切的圆,标准方程:(x-a)2+(y-b)2=b2;一般方

沪教版高三一轮学案——11.2圆

沪教版高三一轮学案——11.2圆

11.2圆(校本)学习目标:1.掌握圆的标准方程和一般方程及圆的有关性质.2.会解决圆的切线问题、弦长问题及与圆有关的最值问题、轨迹问题.2.会判定直线与圆、圆与圆的位置关系,体会用代数方法研究几何问题的思想方法.【例题解析】一、圆的标准方程和一般方程例1.已知圆的圆心为点(2,3)-A ,一条直径的端点分别在x 轴和y 轴上,求圆的标准方程.二、圆的有关性质应用例2.已知圆058422=-+-+y x y x ,求过点()1,2--M 的该圆的切线方程。

练习:若过点)6,1(M 做圆03222=-++x y x 的切线,求切线方程例3.一个圆的半径为2,圆心在在直线1+-=x y 上,且此圆截直线2-=x y 所得的弦长为14,求圆的方程。

例4.(1)点(1,2)P 和圆222:220++++=C x y kx y k 上的点的距离的最小值是(2)已知,x y 满足221+=x y ,则21--y x 的最小值为三、直线与圆的位置关系例5.设点(2,2)P ,圆2280+-=x y x ,过点P 的动直线l 与圆C 交于,A B 两点,线段AB 的中点为M ,O 为坐标原点..(1)求M 的轨迹方程;(2)当||||=OP OM 时,求直线l 的方程及POM 的面积.练习:若直线1+=ax by 与圆221+=x y 相交,则(,)P a b 与圆的位置关系是 练习:曲线2262150+---=x y x y 被直线20+=x y 截得的弦长是例6.在直角坐标系xOy 中,已知圆2212320+-+=x y x 的圆心为Q ,过点(0,2)P 的且斜率为k 的直线与圆Q 相交于不同的两点,A B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量+OA OB 与PQ 共线?如果存在,求出k 的值;如果不存在,请说明理由.练习:已知直线230x y +-=和圆2220x y x ay a ++-+=相交于A 、B 两点,且OA OB ⊥ (O 为原点),求圆的方程。

2019高三数学理北师大版一轮教师用书:第8章 第3节 圆

2019高三数学理北师大版一轮教师用书:第8章 第3节 圆

第三节圆的方程[考纲传真](教师用书独具)1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.(对应学生用书第134页)[基础知识填充]1.圆的定义及方程2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”).(1)确定圆的几何要素是圆心与半径.()(2)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的一个圆.()(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()[解析]由圆的定义及点与圆的位置关系,知(1)(3)(4)正确.(2)中,当t≠0时,表示圆心为(-a,-b),半径为|t|的圆,不正确.[答案] (1)√ (2)× (3)√ (4)√ 2.圆心为(1,1)且过原点的圆的方程是( )A .(x -1)2+(y -1)2=1B .(x +1)2+(y +1)2=1C .(x +1)2+(y +1)2=2D .(x -1)2+(y -1)2=2D [由题意得圆的半径为2,故该圆的方程为(x -1)2+(y -1)2=2,故选D.]3.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34 C .3 D .2A [圆x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.] 4.点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( )A .-1<a <1B .0<a <1C .-1<a <15D .-15<a <1D [由(2a )2+(a -2)2<5得-15<a <1.]5.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为________.(x -2)2+y 2=10 [设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上,∴|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2,所以圆心为C (2,0), 半径|CA |=(2+1)2+1=10, ∴圆C 的方程为(x -2)2+y 2=10.](对应学生用书第135页)(1)(2017·豫北名校4月联考)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4B .(x -2)2+(y -2)2=4C .x 2+(y -2)2=4D .(x -1)2+(y -3)2=4(2)(2015·全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( ) A .26 B .8 C .4 6D .10(1)D (2)C [(1)设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D. (2)设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎨⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎨⎧D =-2,E =4,F =-20.∴圆的方程为x 2+y 2-2x +4y -20=0.令x =0,得y =-2+26或y =-2-26,∴M (0,-2+26),N (0,-2-26)或M (0,-2-26),N (0,-2+26),∴|MN |=46,故选C .]相切,圆心在直线y =-x -4上,则圆M 的标准方程为( )【导学号:79140274】A .(x +3)2+(y -1)2=1B .(x -3)2+(y +1)2=1C .(x +3)2+(y +1)2=1D .(x -3)2+(y -1)2=1(2)(2016·天津高考)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________. (1)C (2)(x -2)2+y 2=9 [(1)到两直线3x -4y =0和3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎨⎧3x -4x +5=0,y =-x -4,解得⎩⎨⎧x =-3,y =-1,所以圆M 的圆心坐标为(-3,-1),又两平行线之间的距离为1032+42=2,所以圆M 的半径为1,所以圆M 的方程为(x +3)2+(y +1)2=1,故选C .(2)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a 5=455, 解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.]已知M (x ,y )为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)求y -3x +2的最大值和最小值. [解] (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,∴圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=42, ∴|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知y -3x +2表示直线MQ 的斜率k .设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0. 由直线MQ 与圆C 有交点,所以|2k -7+2k +3|1+k2≤22, 可得2-3≤k ≤2+3, ∴y -3x +2的最大值为2+3,最小值为2- 3.1.(变化结论)在本例的条件下,求y -x 的最大值和最小值.[解] 设y -x =b ,则x -y +b =0.当直线y =x +b 与圆C 相切时,截距b 取到最值, ∴|2-7+b |12+(-1)2=22,∴b =9或b =1. 因此y -x 的最大值为9,最小值为1.2.(变换条件)若本例中条件“点Q (-2,3)”改为“点Q 是直线3x +4y +1=0上的动点”,其它条件不变,试求|MQ |的最小值.[解] ∵圆心C (2,7)到直线3x +4y +1=0上动点Q 的最小值为点C 到直线3x +4y +1=0的距离, ∴|QC |min =d =|2×3+7×4+1|32+42=7.又圆C的半径r=22,∴|MQ|的最小值为7-2 2.-y=2的距离的最大值是()A.1+ 2 B.2C.1+22D.2+2 2(2)(2017·广东七校联考)圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则1a+3b的最小值是()A.2 3 B.20 3C.4 D.16 3(1)A(2)D[(1)由已知得圆的标准方程为(x-1)2+(y-1)2=1,则圆心坐标为(1,1),半径为1,所以圆心到直线的距离为|1-1-2|2=2,所以圆上的点到直线的距离的最大值是1+2,故选A.(2)由圆x2+y2+2x-6y+1=0知其标准方程为(x+1)2+(y-3)2=9,∵圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,∴该直线经过圆心(-1,3),即-a-3b+3=0,∴a+3b=3(a>0,b>0),∴1a+3b=13(a+3b)⎝⎛⎭⎪⎫1a+3b=13⎝⎛⎭⎪⎫1+3ab+3ba+9≥13⎝⎛⎭⎪⎫10+23ab·3ba=163,当且仅当3b a=3ab,即a=b时取等号,故选D.]已知A(2,0) 为圆x2+y2=4上一定点,B(1,1)为圆内一点,P,Q为圆上的动点.【导学号:79140275】(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.[解](1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.P(1,4)所连线段的中点M的轨迹方程.[解]由题意可知:动点C的轨迹是以(-1,0)为圆心,3为半径长的圆,方程为(x+1)2+y2=9.设M(x0,y0),则由中点坐标公式可求得C(2x0-1,2y0-4),代入点C的轨迹方程得4x20+4(y0-2)2=9,化简得x20+(y0-2)2=9 4,故点M的轨迹方程为x2+(y-2)2=9 4.。

高三数学高效课堂资料8.2圆复习教案

高三数学高效课堂资料8.2圆复习教案

高三数学高效课堂资料8.2圆复习教案编写人:丁建萍教学目标:1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.教学重点:直线与圆、圆与圆的位置关系;教学难点:弦长问题、切线方程。

教学方法:自主探究,合作交流。

教学过程:一、知识梳理:1.圆的定义及方程:(1)定义:平面内与定点的距离等于定长的点的集合(轨迹)(2)方程:标准方程:0222rrb x a x一般方程:0402222F EDF Ey Dxyx 2.直线与圆的位置关系直线与圆的位置关系有三种:相交、相切、相离.判断直线与圆的位置关系常见的有两种方法:(1)代数法:――→判别式Δ=b 2-4acΔ>0?相交;Δ=0?相切;Δ<0?相离W.(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ?相交,d =r ?相切,d >r ?相离.3.圆与圆的位置关系设⊙C 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),⊙C 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0),则有:|C 1C 2|>r 1+r 2?⊙C 1与⊙C 2外离;|C 1C 2|=r 1+r 2?⊙C 1与⊙C 2外切;|r 1-r 2|<|C 1C 2|<r 1+r 2?⊙C 1与⊙C 2相交;|C 1C 2|=|r 1-r 2|(r1≠r 2)?⊙C 1与⊙C 2内切;|C1C2|<|r1-r2|?⊙C1与⊙C2内含.二、典例剖析探究点一:直线与圆位置关系判定及应用例1.(1)(2012·高考重庆卷)对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心(2)若经过点A(4,0)的直线l与圆(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为________.【审题视点】(1)利用d与r的大小关系或者分析直线所过的定点与圆的关系.(2)斜率是存在的直线,利用d≤r,待定斜率k.【典例精讲】(1)x2+y2=2的圆心(0,0)到直线y=kx+1的距离d=|0-0+1|1+k2=11+k2≤1,又∵r=2,∴0<d<r.∴直线与圆相交但直线不过圆心.另法:直线y=kx+1过定点(0,1),在圆内圆心为(0,0)不在直线上,故选C.(2)由题可设直线方程为y=k(x-4),即:kx-y-4k=0,因为直线与圆有公共点,所以,圆心到直线的距离小于或等于半径,即:d=|2k-0-4k|k2+1≤1,解得:-33≤k≤33.【答案】(1)C(2)[-33,33]【类题通法】(1)判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.(2)解决直线与圆的位置关系的应用问题,常常借助几何性质结合数形结合思想解题.拓展变式:1.(2014·成都模拟)直线l:mx+(m-1)y-1=0(m为常数),圆C:(x-1)2+y2=4,则下列说法正确的是( )A.当m变化时,直线l恒过定点(-1,1)B.直线l与圆C有可能无公共点C.对任意实数m,圆C上都不存在关于直线l对称的两点D.若直线l与圆C有两个不同交点M、N,则线段MN的长的最小值为2 3解析:选D.直线l可化为m(x+y)-(y+1)=0,令x+y=0,y+1=0,得x=1,y=-1,∴l过定点(1,-1),故A错;又(1-1)2+(-1)2=1<4,∴点(1,-1)在⊙C内部,∴l与⊙C恒相交,故B错;当l 过圆心C(1,0),即m=1时,圆心上存在关于直线l对称的两点,故C错.故选D.探究点二:圆的切线、弦长问题例2.已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.(1)求过M点的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a的值;(3)若直线ax-y+4=0与圆相交于A,B两点,且弦AB的长为23,求a的值.【审题视点】点M在圆外,其切线有两条,待定斜率或数形结合,用圆心到直线的距离,及直角三角形等求解.【典例精讲】(1)圆心C(1,2),半径为r=2,当直线的斜率不存在时,直线方程为x=3.由圆心C(1,2)到直线x=3的距离d=3-1=2=r知,此时,直线与圆相切.当直线的斜率存在时,设方程为y-1=k(x-3),即kx-y+1-3k=0.由题意知|k-2+1-3k|k2+1=2,解得k=34.∴直线方程为y-1=34(x-3),即3x-4y-5=0.综上所述,过M点的圆的切线方程为x=3或3x-4y-5=0.(2)由题意有|a-2+4|a2+1=2,解得a=0或a=4 3 .(3)∵圆心到直线ax-y+4=0的距离为|a+2|a2+1,∴|a+2|a2+12+2322=4,解得a=-34.【类题通法】(1)求过其点的圆的切线方程,一般设为点斜式方程.首先判断点是否在圆上,如果过圆上一点,则有且只有一条切线,如果过圆外一点,则有且只有两条切线.若利用点斜式方程求得过圆外一点的切线只有一条,则需结合图形把斜率不存在的那条切线补上.(2)求解与圆的弦长有关的计算问题,常利用圆的半径R,弦长l,弦心距d之间的关系:R2=d2+l24,一般不用代数法求解.拓展变式:2.(2013·高考安徽卷)直线x+2y-5+5=0被圆x2+y2-2x-4y=0截得的弦长为( )A.1 B.2 C.4 D.4 6解析:选C.先把圆的一般方程化为标准方程,求出圆心和半径,再在圆中构造直角三角形,利用勾股定理求弦长.圆的方程可化为C:(x-1)2+(y-2)2=5,其圆心为C(1,2),半径R= 5.如图所示,取弦AB的中点P,连接CP,则CP⊥AB,圆心C到直线AB的距离d=|CP|=|1+4-5+5|12+22=1.在Rt△ACP中,|AP|=R2-d2=2,故直线被圆截得的弦长|AB|=4.探究点三:圆与圆的位置关系例3.已知圆C1:x2+y2-2mx+4y+m2-5=0与圆C2:x2+y2+2x-2my+m2-3=0,若圆C1与圆C2相切,则实数m=________.【审题视点】判断两圆的位置关系,要通过配方分别求出两圆的圆心和半径,再利用两点间距离公式求出圆心距,与两圆对应的半径加以比较分析,从而判断其位置关系,这里要注意两圆相切分为内切与外切两种情况.【典例精讲】对圆C1和圆C2的方程配方,得圆C1:(x-m)2+(y+2)2=9,圆C2:(x+1)2+(y-m)2=4,则C1(m,-2),r1=3,C2(-1,m),r2=2,圆C1与圆C2相切包括两种情况:两圆外切与两圆内切.(1)当圆C1与圆C2相外切时,有|C1C2|=r1+r2,即(m+1)2+(m+2)2=5,整理,得m2+3m-10=0,解得m=-5或m=2;(2)当圆C1与圆C2相内切时,有|C1C2|=|r1-r2|,即(m+1)2+(m+2)2=1,整理,得m2+3m+2=0,解得m=-1或m=-2.综上所述,当m=-5或m=-1或m=±2时,圆C1与圆C2相切.故填±2或-5或-1.【答案】±2或-5或-1【类题通法】(1)判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.(2)当两圆相交时求其公共弦所在的直线方程或是公共弦长,只要把两圆方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长.拓展变式:3.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为23,则a=________.解析:两圆的方程相减,得公共弦所在的直线方程为(x2+y2+2ay-6)-(x2+y2)=0-4?y=1a,又a>0,结合图象,再利用半径、弦长的一半及弦心距所构成的直角三角形,可知1a=22-(3)2=1?a=1.答案:1三、随堂练习:1.(教材改编)已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是( ) A.相切B.相交但直线不过圆心 C.相交过圆心 D.相离2.(教材精选题)圆x2+y2=4在点P(1,3)处的切线方程为( )A.x+3y-2=0 B.3x+y-2=0 C.x+3y-4=0 D.3x+y-4=03.直线x-y+2=0被圆x2+y2+4x-4y-8=0截得的弦长等于________.答案:1.B 2.C 3.2144.圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+1=0的公切线有且仅有( ) A.1条 B.2条 C.3条 D.4条5.若圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=m2相外切,则m=________.答案:1.B 2.±(5-2)四、课堂小结1.一个直角三角形:直线与圆相交,弦心距d,圆的半径r,及半弦长l2之间构成直角三角形,r2=d2+(l2)2.2.二种方法:直线和圆的位置关系体现了圆的几何性质和代数方法的结合.(1)从思路来看,代数法侧重于“数”,更多倾向于“坐标”与“方程”;而“几何法”则侧重于“形”,利用了图形的性质.(2)从适用类型来看,代数法可以求出具体的交点坐标,而几何法更适合定性比较和较为简单的运算.3.五种切线条数:外离?4条、外切?三条、相交?二条、内切?一条、内含?0条五、作业1.已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且与直线ax-y+1=0垂直,则a=( C )A .-12B .1C .2D .122.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为(A )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=03.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( A )A .52-4B .17-1C .6-2 2D .174.(2013·高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.答案:4 5复习学案课题:8.2 圆学习目标:1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想使用说明:通过利用圆定义探索圆方程的过程,指导学生进一步理解数形结合思想,产生主动运用的意识;通过具体问题的解决,进行化归思想运用的指导。

高三数学人教版a版数学(理)高考一轮复习教案:8.3 圆的方程 word版含答案

高三数学人教版a版数学(理)高考一轮复习教案:8.3 圆的方程 word版含答案

第三节 圆的方程圆的方程(1)掌握确定圆的几何要素. (2)掌握圆的标准方程与一般方程.知识点一 圆的方程定义 平面内到定点的距离等于定长的点的轨迹叫作圆 方程标准(x -a )2+(y -b )2=r 2(r >0)圆心C (a ,b ) 半径为r一般,x 2+y 2+Dx +Ey +F =充要条件:D 2+E 2-4F >0 圆心坐标:⎝⎛⎭⎫-D 2,-E 2 半径r =12D 2+E 2-4F易误提醒 (1)标准方程(x -a )2+(y -b )2=r 2(r >0)中易忽视右端为半径r 的平方,而不是半径.(2)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件. 必备方法 求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.[自测练习]1.圆x 2+y 2-4x +8y -5=0的圆心与半径分别为( ) A .(-2,4),5 B .(2,-4),5 C .(-2,4),15D .(2,-4),15解析:圆心坐标为(2,-4), 半径r =12(-4)2+82-4×(-5)=5.答案:B2.圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________. 解析:法一:设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a ).又该圆经过A ,B 两点,所以|CA |=|CB |,即(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2,解得a =-2, 所以圆心C 的坐标为(-1,-2),半径r =10. 故所求圆的方程为(x +1)2+(y +2)2=10.法二:设所求圆的标准方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得⎩⎪⎨⎪⎧a =-1,b =-2,r 2=10,故所求圆的方程为(x +1)2+(y +2)2=10. 答案:(x +1)2+(y +2)2=10 知识点二 点与圆的位置关系1.确定方法:比较点与圆心的距离与半径的大小关系. 2.三种关系:圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0). (1)(x 0-a )2+(y 0-b )2=r 2⇔点在圆上. (2)(x 0-a )2+(y 0-b )2>r 2⇔点在圆外. (3)(x 0-a )2+(y 0-b )2<r 2⇔点在圆内.易误提醒 若圆的方程为x 2+y 2+Dx +Ey +F =0,点M (x 0,y 0).注意点M 与圆的位置关系满足条件.[自测练习]3.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .a >1或a <-1D .a =±1解析:因为点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4,∴-1<a <1. 答案:A考点一 圆的方程|1.(2015·高考北京卷)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1B .(x +1)2+(y +1)2=1C .(x +1)2+(y +1)2=2D .(x -1)2+(y -1)2=2解析:因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2.答案:D2.(2015·高考全国卷Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |=( )A .26B .8C .4 6D .10解析:设过A ,B ,C 三点的圆的方程为x 2+y 2+Dx +Ey +F =0, 则⎩⎪⎨⎪⎧D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0,,解得D =-2,E =4,F =-20,所求圆的方程为x 2+y 2-2x +4y -20=0,令x =0,得y 2+4y -20=0,设M (0,y 1),N (0,y 2),则y 1+y 2=-4,y 1y 2=-20,所以|MN |=|y 1-y 2|=(y 1+y 2)2-4y 1y 2=4 6.故选C.答案:C3.(2015·广州测试)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( ) A .(x -2)2+(y -1)2=1 B .(x +1)2+(y -2)2=1 C .(x +2)2+(y -1)2=1 D .(x -1)2+(y +2)2=1解析:∵圆心(1,2)关于直线y =x 对称的点为(2,1),∴圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1.答案:A待定系数法求圆的方程的三个步骤(1)根据题意,设所求的圆的标准方程为(x -a )2+(y -b )2=r 2. (2)根据已知条件,建立关于a ,b ,r 的方程组.(3)解方程组,并把它们代入所设的方程中,整理后,就得到所求结果.考点二 与圆有关的最值范围问题|与圆有关的最值问题也是命题的热点内容,它着重考查数形结合与转化思想.归纳起来常见的命题角度有:1.斜率型最值问题. 2.截距型最值问题. 3.距离型最值问题. 4.距离和(差)的最值问题. 5.利用目标函数求最值. 探究一 斜率型最值问题1.已知实数x ,y 满足方程x 2+y 2-4x +1=0.求yx 的最大值和最小值.解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆. yx的几何意义是圆上一点与原点连线的斜率, 所以设yx=k ,即y =kx .如图所示,当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3. 所以yx 的最大值为3,最小值为- 3.探究二 截距型最值问题2.在[探究一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2- 6. 探究三 距离型最值问题3.在[探究一]条件下求x 2+y 2的最大值和最小值.解析:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为 (2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.探究四 距离和(差)最值问题4.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2D.17解析:圆心C 1(2,3),C 2(3,4),作C 1关于x 轴的对称点C ′1(2,-3),连接C ′2C 2与x 轴交于点P ,此时|PM |+|PN |取得最小值,为|C ′2C 2|-1-3=52-4.答案:A探究五 利用目标函数求最值5.已知直线ax +by +c -1=0(bc >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2解析:将x 2+y 2-2y -5=0化为x 2+(y -1)2=6,圆心(0,1),代入ax +by +c -1=0得b +c =1.∴4b +1c =(b +c )⎝⎛⎭⎫4b +1c =5+4c b +bc≥5+24c b ·bc=9. 答案:A求解与圆有关的最值问题的两大规律(1)借助几何性质求最值处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.(2)建立函数关系式求最值根据题目条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.考点三 与圆有关的轨迹问题|已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.[解] (1)设AP 的中点为M (x 0,y 0),由中点坐标公式可知,P 点坐标为(2x 0-2,2y 0). 因为P 点在圆x 2+y 2=4上,所以(2x 0-2)2+(2y 0)2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ′,y ′). 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x ′2+y ′2+(x ′-1)2+(y ′-1)2=4. 故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.求与圆有关的轨迹方程时,常用以下方法(1)直接法:根据题设条件直接列出方程. (2)定义法:根据圆的定义写出方程. (3)几何法:利用圆的性质列方程.(4)代入法:找出要求点与已知点的关系,代入已知点满足的关系式.(2016·唐山一中调研)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎨⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4.化简得(x -2)2+(y +1)2=1.答案:A25.方程思想在圆中的应用【典例】 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.[思维点拨] 曲线y =x 2-6x +1与坐标轴有3个交点,可设圆的一般式方程或标准式方程,通过列方程或方程组可求.[解] 法一:曲线y =x 2-6x +1与y 轴的交点为(0,1)与x 轴的交点为(3+22,0),(3-22,0).设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D ×(3+22)+F =0,(3-22)2+D ×(3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.法二:曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),故可设圆C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1,则圆C 的半径为32+(t -1)2=3,所以圆C 的方程为(x -3)2+(y -1)2=9.[方法点评] (1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算.显然几何法比代数法的计算量小,因此平时训练多采用几何法解题.[跟踪练习] 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1∶2,则圆C 的方程为________.解析:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝⎛⎭⎫y ±332=43.答案:x 2+⎝⎛⎭⎫y ±332=43A 组 考点能力演练1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析:直径的两端点分别为(0,2),(2,0),∴圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2. 答案:B2.(2016·北京西城期末)若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( )A .(-1,1)B .(-3,3)C .(-2,2)D.⎝⎛⎭⎫-22,22 解析:∵(0,0)在(x -m )2+(y +m )2=4的内部,则有(0-m )2+(0+m )2<4,解得-2<m <2,选C.答案:C3.(2016·开封模拟)已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上的点到直线l 的距离的最小值为( )A. 2B. 3 C .1D .3解析:由题意知,圆C 上的点到直线l 的距离的最小值等于圆心(1,1)到直线l 的距离减去圆的半径,即|1-1+4|12+(-1)2-2= 2.答案:A4.(2016·洛阳期末)在平面直角坐标系内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,由题意知⎩⎪⎨⎪⎧a <0,|-a |>2|2a |>2⇒a <-2,故选A.答案:A5.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( )A .30B .18C .6 2D .5 2解析:由圆x 2+y 2-4x -4y -10=0知圆心坐标为(2,2),半径为32,则圆上的点到直线x +y -14=0的最大距离为|2+2-14|2+32=82,最小距离为|2+2-14|2-32=22,故最大距离与最小距离的差为6 2.答案:C6.(2016·绍兴模拟)点P (1,2)和圆C :x 2+y 2+2kx +2y +k 2=0上的点的距离的最小值是________.解析:圆的方程化为标准式为(x +k )2+(y +1)2=1. ∴圆心C (-k ,-1),半径r =1. 易知点P (1,2)在圆外. ∴点P 到圆心C 的距离为: |PC |=(k +1)2+32=(k +1)2+9≥3. ∴|PC |min =3.∴点P 和圆C 上点的最小距离d min =|PC |min -r =3-1=2. 答案:27.若圆C :x 2-2mx +y 2-2my +2=0与x 轴有公共点,则m 的取值范围是________. 解析:圆C 的标准方程为(x -m )2+(y -m )2=m 2+m -2,依题意有⎩⎨⎧m 2+m -2>0,m ≤m 2+m -2,得m ≥ 2.m ≥0.答案:[2,+∞)8.圆C 通过不同的三点P (k,0),Q (2,0),R (0,1),已知圆C 在点P 处的切线斜率为1,则圆C 的方程为________.解析:设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则k,2为x 2+Dx +F =0的两根, ∴k +2=-D,2k =F ,即D =-(k +2),F =2k , 又圆过R (0,1),故1+E +F =0. ∴E =-2k -1.故所求圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0, 圆心坐标为⎝⎛⎭⎫k +22,2k +12.∵圆C 在点P 处的切线斜率为1, ∴k CP =-1=2k +12-k ,∴k =-3.∴D =1,E =5,F =-6.∴所求圆C 的方程为x 2+y 2+x +5y -6=0. 答案:x 2+y 2+x +5y -6=0.9.(2016·洛阳统考)已知圆S 经过点A (7,8)和点B (8,7),圆心S 在直线2x -y -4=0上. (1)求圆S 的方程;(2)若直线x +y -m =0与圆S 相交于C ,D 两点,若∠COD 为钝角(O 为坐标原点),求实数m 的取值范围.解:(1)线段AB 的中垂线方程为y =x ,由⎩⎪⎨⎪⎧ 2x -y -4=0,y =x ,得⎩⎪⎨⎪⎧x =4,y =4,所以圆S 的圆心为S (4,4), 圆S 的半径为|SA |=5,故圆S 的方程为(x -4)2+(y -4)2=25.(2)由x +y -m =0变形得y =-x +m ,代入圆S 的方程,消去y 并整理得2x 2-2mx +m 2-8m +7=0.令Δ=(-2m )2-8(m 2-8m +7)>0,得8-52<m <8+5 2.设C ,D 的横坐标分别为x 1,x 2,则x 1+x 2=m ,x 1x 2=m 2-8m +72.依题意,得OC →·OD →<O ,则x 1x 2+(-x 1+m )(-x 2+m )<0,即m 2-8m +7<0,解得1<m <7.故实数m 的取值范围是{m |8-52<m <8+52}∩{m |1<m <7}={m |1<m <7}. 10.(2016·唐山一模)已知圆O :x 2+y 2=4,点A (3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ.(1)求曲线Γ的方程;(2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程.解:(1)设AB 的中点为M ,切点为N ,连接OM ,MN (图略),则|OM |+|MN |=|ON |=2,取A 关于y 轴的对称点A ′,连接A ′B ,故|A ′B |+|AB |=2(|OM |+|MN |)=4.所以点B 的轨迹是以A ′,A 为焦点,长轴长为4的椭圆. 其中,a =2,c =3,b =1,则 曲线Γ的方程为x 24+y 2=1.(2)因为B 为CD 的中点,所以OB ⊥CD , 则OB →⊥AB →.设B (x 0,y 0),则x 0(x 0-3)+y 20=0. 又x 204+y 20=1,解得x 0=23,y 0=±23.则k OB=±2 2,kAB=∓2,则直线AB的方程为y=±2(x-3),即2x-y-6=0或2x+y-6=0.B组高考题型专练1.(2014·高考北京卷)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6C.5 D.4解析:根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r=1,且|AB|=2m.因为∠APB=90°,连接OP,易知|OP|=12|AB|=m.要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|=32+42=5,所以|OP|max=|OC|+r=6,即m的最大值为6.答案:B2.(2015·高考全国卷Ⅱ)已知三点A(1,0),B(0,3),C(2,3),则△ABC外接圆的圆心到原点的距离为()A.53 B.213C.253 D.43解析:设圆的一般方程为x2+y2+Dx+Ey+F=0,∴⎩⎨⎧1+D+F=0,3+3E+F=0,7+2D+3E+F=0,∴⎩⎪⎨⎪⎧D=-2,E=-433,F=1,∴△ABC外接圆的圆心为⎝⎛⎭⎫1,233,故△ABC外接圆的圆心到原点的距离为1+⎝⎛⎭⎫2332=213.答案:B3.(2014·高考陕西卷)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得点(1,0)关于直线y =x 对称的点(0,1)为圆心,又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=14.(2015·高考全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知,圆过椭圆的三个顶点(4,0),(0,2),(0,-2),设圆心为(a,0),其中a >0,由4-a =a 2+4,解得a =32,所以该圆的标准方程为⎝⎛⎭⎫x -322+y 2=254. 答案:⎝⎛⎭⎫x -322+y 2=254。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三专题训练-圆(一)
直线与圆的方程小题训练
一、选择题:
1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 ( )
A .一条直线
B .一个圆
C .一个椭圆
D .双曲线的一支
2.参数方程2tan cot x y θθ=⎧⎨
=+⎩(θ为参数)所表示的曲线是 ( ) A .圆 B .直线 C .两条射线 D .线段
3.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短路径是( )
A .4
B .5
C .1
D .4.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则
12a b + 的最小值为
( )
A .1
B .5
C .
D .3+
5.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m ( )
A . 2-
B .1-
C .1
D .4
6. 设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线1l ,则直线1l 的倾斜角为( ).
A .︒+α45
B .︒-α135
C .α-︒135
D .当︒<α≤︒1350时为︒+α45,当︒<α≤︒180135时为︒-α135
7. 直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) (A)113y x =-+ (B)1133y x =-+ (C)33y x =- (D)113
y x =+ 8.将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-= 相切,则实数λ
的值为 ( )
(A )-3或7 (B )-2或8 (C )0或10 (D )1或11
二、填空题:
9. 已知两点A B ()()-2002,,,,点C 是圆x y x 2220+-=上的任意一点,则∆ABC 的面积最小值是 .
10. 已知直线l :x y +-=20与圆C :x y ax ay a 2224240++-+=,设d 是圆C 上的点到直线的距离,且圆C 上有两点使d 取得最大值,则此时a
= ,d = 11. 直线()()a x b y +++=110与圆x y 222+=的位置关系是_________.
12. 在直角坐标系中,射线OA ,OB 的方程是x y x -
=≥00(),x y x +=≥00()。

动点P 在∠AOB 内部,且点P 到∠AOB 两边的距离的平方差的绝对值等于1,则动点P 的轨迹方程是________ _ .
13.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。

14.已知圆()4322=+-y x 和过原点O 的直线kx y =的交点为,P Q 则OQ OP ⋅的值为 _ 。

直线与圆的方程小题训练参考答案
1.A .过点A 且垂直于直线AB 的平面与平面α的交线就是点C 的轨迹,故是一条直线.
2.C .原方程2||2
x y =⎧⇔⎨≥⎩ 3.A .先作出已知圆C 关于x 轴对称的圆'C ,问题转化为求点A 到圆'C 上的点的最短路径,即
|'|14AC -=.
4.D .已知直线过已知圆的圆心(2,1),即1a b +=.
所以12122()()33b a a b a b a b a b
+=++=++≥+ 5.C .由()3,1A 、()2,5B 、()1,3C 的坐标位置知,ABC ∆所在的区域在第一象限,故0,0x y >>.由my x z +=得1z y x m m =-+,它表示斜率为1m
-. (1)若0m >,则要使my x z +=取得最小值,必须使
z m 最小,此时需11331
AC k m --==-,即=m 1; (2)若0m <,则要使my x z +=取得最小值,必须使z m 最小,此时需11235
BC k m --==-,即=m 2,与0m <矛盾.综上可知,=m 1. 6. D 分析:倾斜角的范围是[)︒︒180,0,因此,只有当[)︒︒∈︒+α180,045,即︒<α≤︒1350时,1l 的倾斜角才是︒+α45.而︒<α≤︒1800,所以必须讨论︒<α≤︒180135的情况,结合图形和倾斜角的概念,即可得到︒<α≤︒180135时1l 的倾斜角为︒-α135.故应选D .
说明:在求直线的倾斜角时,应该重视的是:(1)注意角的取值范围;(2)数形结合是一种常用而有效的方法.
7.B 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13
y x =-
,从而淘汰(C),(D ) 又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选B ; 【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;
【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;
8.A 【思路点拨】本题考查了平移公式、直线与圆的位置关系,只要正确理解平移公式和直线与圆相切的充要条件就可解决.
【正确解答】由题意可知:直线20x y λ-+=沿x 轴向左平移1个单位后的直线l 为:
2(1)0x y λ+-+=.已知圆的圆心为(1,2)O -解法1:直线与圆相切,则圆心到直线的距离等于圆的半径,因而有
=3λ=-或7.
解法2:设切点为(,)C x y ,则切点满足2(1)0x y λ+-+=,即2(1)y x λ=++,代入圆方程整理得:225(24)(4)0x x λλ+++-=, (*)
由直线与圆相切可知,(*)方程只有一个解,因而有0∆=,得3λ=-或7.
解法3:由直线与圆相切,可知CO l ⊥,因而斜率相乘得-1,即2211
y x -⨯=-+,又因为(,)C x y 在圆上,满足方程22240x y x y ++-=,解得切点为(1,1)或(2,3),又(,)C x y 在直线2(1)0x y λ+-+=上,解得3λ=-或7.
9. 分析:容易先想到假设点C 的坐标,求点C 到直线AB 的距离,然后将三角形面积化成函数来求最小值。

想法当然不错,但繁而不巧,仔细想一想,便可知AB 的长为定值。

只需点C 到直线AB 的距离最小,即圆心到直线AB 的距离与半径的差,这样可以轻松求出答案为:32-.
10. 分析:只有直线过圆心时,圆上才能有两个点同时到此直线的距离最大,其距离即半径。

这样将圆心坐标()-2a a ,代入直线l 的方程即可求得a
=-2,所以圆半径即所求的d =2.
11.分析:直线过定点()--11,,此点在圆上,过圆上一点的直线与圆有一个或两个交点,故应该填:相交或相切。

12.分析:由两条射线关于x 轴对称知,所求轨迹一定也是关于x 轴对称的,且在两射线之间,又与射线无公共点,即有限制条件,且不能带等号,所以动点P 的轨迹方程是xy x =>⎛⎝ ⎫⎭
⎪1222. 13.345
点(0,2)与点(4,0)关于12(2)y x -=-对称,则点(7,3)与点(,)m n 也关于12(2)y x -=-对称,则3712(2)223172n m n m ++⎧-=-⎪⎪⎨-⎪=-⎪-⎩,得3531
5m n ⎧=⎪⎪⎨⎪=⎪⎩
14.5 设切线为OT ,则25OP OQ OT
⋅==。

相关文档
最新文档