上海市各地区初中数学一模几何证明题合集

合集下载

沪教版(五四制)上海市八年级第一学期19.1几何证明练习-文档资料

沪教版(五四制)上海市八年级第一学期19.1几何证明练习-文档资料

第 1 页几何证明(一)1.如图,已知AB ⊥AC ,AD ⊥AE ,AB=AC ,AD=AE , 求证:(1)BE=DC (2)BE ⊥DC 。

2.已知,如图,等腰△ABC 中,AB=AC ,∠A=108求证:BC=AB +DC 。

3.如图,D 为等边△ABC 内一点,且AD=BD ,BP=AB 4.已知:正方形ABCD , 45=∠EAF ,AH ⊥ 5.已知:等腰直角三角形ABC 中,∠ACB=90°;求证:BE=AD 。

6.△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE 求证:BD 平分∠ABC 。

7.△ABC 中,AC=BC ,∠ACB=90°,CD=BD ,∠1=∠2 8.已知:AD 是ABC ∆的中线,AE=EF .求证:AC=BF 9.已知:△ABC ,△BDE 为等边三角形,C 、B 、D 求证:(1)AD=EC ;(2)BP=BQ ;(3)△BPQ 10.已知:如图所示,在ABC ∆中,BA=BC ,∠ABC 一点,ED=CD ,连结EC .求证:EA=EC . 1.如图,AB=CD ,E 为BC 的中点,∠BAC=∠BCA 2.如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE3.如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 求证:∠ADC+∠B=180º4.如图所示,在ABC ∆中,AB=AC ,︒=∠90BAC ,于E 点,求证:BD CE 21=. 5.如图所示,已知ABC ∆中,︒=∠60A ,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O BE+CD=BC .6.已知:如图所示,AB=CD ,CDE ABE S S ∆∆=DOE BOE ∠=∠.12第 2 页 7.已知:如图所示,AD 平分BAC ∠,M 是BC 的中点,MF//AD ,分别交CA 延长线,AB 于F 、E .求证:BE=CF . 8.已知:如图所示,在ABC ∆中,BA=BC ,=∠45ABC 点,ED=CD ,连结EC .求证:EA=EC . 9.已知如图,△ABC 中,AB=AC ,D 、E 分别是AC 、AB M 、N 分别是CE 、BD 上的点,若MA ⊥CE ,AN ⊥BD ,10.如图,在ABC Rt ∆中,︒=∠90C ,M 是AB 中点,(1)在AE 、EF 、FB (2)AE 、EF 、FB 11.如图,在四边形ABCD 中,AB=2,CD=1,︒=∠60A 的面积. 12.已知:如图所示,在正方形ABCD 中,F 为DC 证:EF AF ⊥.B A BEC D。

上海闵行区中考模拟几何证明题

上海闵行区中考模拟几何证明题

1、已知:如图,AB 为⊙O 的弦,OD ⊥AB ,垂足为点D ,DO 的延长线交⊙O 于点C .过点C 作CE ⊥AO ,分别与AB 、AO 的延长线相交于E 、F 两点.CD = 8,3sin 5A ∠=.求:(1)弦AB 的长;(2)△CDE 的面积.2、已知:如图,在梯形ABCD 中,AD // BC ,E 、F 分别为边AB 、DC 的中点,CG // DE ,交EF 的延长线于点G . (1)求证:四边形DECG 是平行四边形;(2)当ED 平分∠ADC 时,求证:四边形DECG 是矩形.3、如图,在梯形ABCD 中,AD // BC ,∠ABC = 90°,AB = 4,AD = 3,BC = 5,点M 是边CD 的中点,联结AM 、BM .求:(1)△ABM 的面积;(2)∠MBC 的正弦值.4、如图,在正方形ABCD 中,点E 、F 是对角线BD 上,且BE = EF = FD ,联结AE 、AF 、CE 、CF .求证:(1)AF = CF ;(2)四边形AECF 菱形.ABO CD(第1题图)EFA B CDEGF(第2题图)AB C (第3题图) MDF(第4题图)DCBAE5、如图,等腰梯形ABCD 中, AD ∥BC,AB = DC, AC ⊥BD,垂足为点O,过D 点作DE ∥AC 交BC 的延长线于点E. (1)求证: △BDE 是等腰直角三角形; (2)已知55sin =∠CDE ,求AD:BE 的值.6、在Rt △ABC 中, AB=BC=4,∠B=°90,将一直角三角板的直角顶点放在斜边AC 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别与边AB 、BC 或其延长线上交于D 、E 两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形.(1)直角三角板绕点P 旋转过程中,当BE=________ 时,△PEC 是等腰三角形; (2)直角三角板绕点P 旋转到图(1)的情形时,求证:PD =PE ;(3)如图(3),若将直角三角板的直角顶点放在斜边AC 的点M 处,设AM : MC=m : n(m 、n 为正数),试判断MD 、ME 的数量关系,并说明理由.7、已知:如图,在△ABC 中,∠C = 60°,AC = BD = 4,AD ⊥BC ,BE ⊥AC ,垂足分别为点D 、E ,点F 是边AB 的中点,联结EF .求:(1)边AB 的长; (2)∠BEF 的余弦值.8、已知:如图,梯形ABCD 中,AB // CD ,AD = BC ,点E 在AB 的延长线上,且BE = DC .过点A 作AF //CE ,且AF = CE ,联结EF .(1)求证:AC = CE ;(2)当AC ⊥BD 时,求证:四边形ACEF 是正方形.A(第7题图)B C D EFABCDEF(第8题图)9、如图,在△ABC 中,AB = AC ,点D 在边AB 上,以点A 为圆心,线段AD 的长为半径的⊙A 与边AC 相交于点E ,AF ⊥DE ,垂足为点F ,AF 的延长线与边BC 相交于点G ,联结GE .已知DE = 10,12cos 13BAG ∠=,12AD DB=.求:(1)⊙A 的半径AD 的长;(2)∠EGC 的余切值.10、已知:如图,在梯形ABCD 中,AD // BC ,AB = CD ,BC = 2AD .DE ⊥BC ,垂足为点F ,且F 是DE 的中点,联结AE ,交边BC 于点G . (1)求证:四边形ABGD 是平行四边形; (2)如果2AD AB =,求证:四边形DGEC 是正方形.(第9题图)A FDE B C GABCDEF G(第10题图)。

上海市16区2018届中学考试一模数学试卷分类总汇编:几何证明含问题详解

上海市16区2018届中学考试一模数学试卷分类总汇编:几何证明含问题详解

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编几何证明专题宝山区23.(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:GAE AC EGC =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.长宁区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2.(1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.F EDA第23题图崇明区23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.奉贤区已知:如图,四边形ABCD ,∠DCB =90°,对角线BD ⊥AD ,点E 是边AB 的中点,CE 与BD 相交于点F ,2BD AB BC =⋅ (1)求证:BD 平分∠ABC ;(2)求证:BE CF BC EF ⋅=⋅.虹口区如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF DF BF CF ⋅=⋅. (1)求证AD AB AE AC ⋅=⋅;(2)当AB =12,AC =9,AE =8时,求BD 的长与△△ADEECFS S 的值.黄浦区23.(本题满分12分)如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(第23题图)ABDECGFC EABDF第23题图(1)求证:∠CDE =12∠ABC ; (2)求证:AD •CD =AB •CE .嘉定区23.如图6,已知梯形ABCD 中,AD ∥BC ,AB =CD ,点E 在对角线AC 上,且满足∠ADE =∠BAC 。

(完整word)(完整word版)上海市2020届初三数学一模提升题汇编第23题(几何证明题),推荐文档

(完整word)(完整word版)上海市2020届初三数学一模提升题汇编第23题(几何证明题),推荐文档

【2020长宁金山一模】23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在ABC ∆中,点D 、E 分别在边AB 、BC 上,AE 与CD 交于点F .若AE 平分BAC ∠,AE AC AF AB ⋅=⋅. (1)求证:AEC AFD ∠=∠;(2)若CD EG //,交边AC 的延长线于点G ,求证:BD FC CG CD ⋅=⋅.(长宁金山)23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵AE AC AF AB ⋅=⋅ ∴AFAEAC AB = (1分) ∵AE 平分BAC ∠ ∴CAF BAE ∠=∠ (1分) ∴ABE ∆∽ACF ∆ (1分) ∴ACF B ∠=∠ (1分) 又∵BAE B AEC CAF ACF AFD ∠+∠=∠∠+∠=∠,∴AEC AFD ∠=∠ (1分) (2)∵AEC AFD ∠=∠,CFE AFD ∠=∠ ∴AEC CFE ∠=∠ (1分)∴CE FC = (1分) ∵CD EG // ∴CEG DCB ∠=∠ G ACF ∠=∠又∵B ACF ∠=∠ ∴G B ∠=∠ (2分) ∴BCD ∆∽GEC ∆ (1分) ∴CGBDCE CD = (1分) ∴CGBDFC CD = 即BD FC CG CD ⋅=⋅. (1分)第23题图 GAC B ED F【2020杨浦一模】23.(本题满分12分,每小题各6分)如图,已知在ABC △中,AD 是ABC △的中线,DAC B ∠=∠,点E 在边AD 上,CE CD =.(1)求证:AC BDAB AD=; (2)求证:22AC AE AD =⋅.(杨浦)23.证明:(1)∵CD =CE ,∴∠CED =∠CDA . ··········································· (1分) ∴∠AEC =∠BDA . ······················································································ (1分) 又∵∠DAC =∠B ,∴△ACE ∽△BAD. ························································· (1分)∴AC CEAB AD=. ···························································································· (1分) ∵AD 是ABC △的中线,∴BD CD =. ····················································· (1分)∵CD =CE ,∴BD CE =.∴AC BDAB AD=. ······················································· (1分) (2)∵∠DAC =∠B ,又∠ACD =∠BCA ,∴△ACD ∽△BCA. ····································· (1分)∴AC CD BC AC=,∴2AC CD CB =?. ································································· (1分) ∵AD 是ABC △的中线,∴2BC CD =,∴222AC CD =. ························ (1分)∵△ACE ∽△BAD ,∴CE AEAD BD=. ·································································· (1分) 又∵CD =CE=BD ,∴2CD AD AE =?. ······························································ (1分) ∴22AC AD AE =?. ····················································································· (1分)第23题图 AB CD E【2020徐汇一模】 23.(本题满分12分)如图,在ACB ∆中,点D 、E 、F 、G 分别在边AB 、AC 、BC 上,AD AB 3=,AE CE 2=,CG FG BF ==,DG 与EF 交于点H .(1)求证: AB HG AC FH ⋅=⋅;(2)联结DF 、EG ,求证:GEF FDG A ∠+∠=∠.(徐汇)23.证明:(1)∵AD AB 3=,AE CE 2=,CG FG BF ==,∴31,31,31,31====BC CG BC BF AC AE AB AD ; ∴BCBFAC AE BC CG AB AD ==,; ∴AC DG //,AB EF //;∴C HGF ∠=∠,B HFG ∠=∠; ∴HFG ∆∽ABC ∆; ∴ABFHAC HG =;即AB HG AC FH ⋅=⋅. (2)∵AB EF //,AC DG //,∴1==FB GF HD GH ,1==GFCGFH HE ; ∴FHHEHD GH =;∴DF EG //; ∴HGE FDG ∠=∠;又HEG HGE FHG ∠+∠=∠,∴HEG FDG FHG ∠+∠=∠; ∵HFG ∆∽ABC ∆,∴A FHG ∠=∠; ∴GEF FDG A ∠+∠=∠.A BC D E F G H (第23题图)【2020松江一模】23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,点D 、F 在△ABC 边AC 上,点E 在边BC 上,且DE ∥AB ,2CD CF CA =⋅. (1)求证:EF ∥BD ;(2)如果AC CF BC CE ⋅=⋅,求证:2BD DE BA =⋅.23.证明: (1)∵DE ∥AB ∴CD CECA CB=………(1分) ∵2CD CF CA =⋅∴CD CFCA CD =………(1分) ∴CE CF CB CD=………(2分) ∴EF ∥BD ………(1分) (2)∵AC CF BC CE ⋅=⋅ ∴CA CECB CF= ∵∠C =∠C∴△CAB ∽△CEF ………(1分) ∴∠CAB =∠CEF ………(1分) ∵EF ∥BD∴∠CBD =∠CEF ………(1分)∴∠CBD =∠CAB ………(1分)F C BADE (第23题图)F CBAD E (第23题图)FCBAD E (第23题图)∵DE ∥AB ,∴∠BDE =∠DBA ………(1分) ∴△BDE ∽△ABD ………(1分) ∴BD ABDE BD=∴2BD DE BA =⋅………(1分)【2020青浦一模】23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在△ABC 中,点D 在边BC 上,AE ∥BC ,BE 与AD 、AC 分别相交于点F 、G , 2AF FG FE =⋅. (1)求证:△CAD ∽△CBG ;(2)联结DG ,求证:DG AE AB AG ⋅=⋅.23.证明:(1)∵2AF FG FE =⋅,∴=AF FEFG AF.··················································· (1分) 又∵∠AFG =∠EFA ,∴△FAG ∽△FEA . ················································· (1分) ∴∠FAG =∠E . ························································································· (1分) ∵AE ∥BC ,∴∠E =∠EBC . ····································································· (1分) ∴∠EBC =∠FAG . ···················································································· (1分) 又∵∠ACD =∠BCG ,∴△CAD ∽△CBG . ············································· (1分) (2)∵△CAD ∽△CBG ,∴=CA CDCB CG. ······················································· (1分) 又∵∠DCG =∠ACB ,∴△CDG ∽△CAB . ············································· (1分)∴=DG CGAB CB. ······················································································· (1分) ∵AE ∥BC ,∴=AE AGCB GC. ··································································· (1分) ∴=AG GC AE CB ,∴=DG AGAB AE, ··························································· (1分) ∴⋅=⋅DG AE AB AG . ········································································ (1分)EFGDCBA【2020普陀一模】 本题满分12分)23、已知:如图11,四边形ABCD 的对角线AC 、BD 相交于点O ,AOD BOC S S =△△. (1)求证:OACOOB DO =; (2)设△OAB 的面积为S ,k ABCD=,求证:2(1)ABCD S k S =+四边形.(普陀)23.证明:(1)过点A 作AH ⊥BD ,垂足为点H . ·················································· (1分)∵S △AOD =AH DO ⋅⋅21, S △AOB =AH OB ⋅⋅21, ∴OB DOAH OB AHDO S S AOBAOD=⋅⋅⋅⋅=∆∆2121. ··························································· (2分) 同理,BOC AOB S COS OA∆∆=. ········································································ (1分) ∵AOD BOC S S =△△, ∵DO COOB OA=. ·············································································· (1分)CDBAO图11(2)∵OACOOB DO =,AOB COD ∠=∠, ∵△OCD ∵△OAB . ····································································· (1分) ∵CD DO COk AB BO AO===. ································································· (1分) 22k AB CD S S OAB OCD =⎪⎭⎫ ⎝⎛=∆∆. ································································· (1分) ∵△OAB 的面积为S ,∴S k S OCD ⋅=∆2. ··········································· (1分) 又∵k OBDOS S OAB AOD ==∆∆,∵S k S AOD ⋅=∆. ··········································· (1分) 同理,S k S BOC ⋅=∆. ···································································· (1分) ∴AOB BOC COD DOA ABCD S S S S S =+++△△△△四边形S k S k S k S ⋅+⋅+⋅+=2 S k k ⋅++=)12(2S k 2)1(+=. ······························································· (1分)【2020浦东一模】23.(本题满分12分,其中每小题各6分)如图,已知△ABC 和△ADE ,点D 在BC 边上,DA =DC ,∠ADE =∠B ,边DE 与AC 相交于点F .(1)求证:AB AD DF BC ⋅=⋅;(2)如果AE ∥BC ,求证:BD DF DC FE =.(浦东)23. 证明:(1)∵DA =DC ,∴∠DCA=∠DAC .……………………………………(1分)∵∠B=∠ADE ,∴△ABC ∽△FDA . ……………………………………(3分)∴AB BC FD DA =. ……………………………………………………………(1分) ∴AB DA FD BC ⋅=⋅.………………………………………………………(1分)(2)∵AE // BC ,∴DF DCEF EA =,∠BDA=∠DAE . ……………………(2分) ∵∠B=∠ADE ,∴△ABD ∽△EDA .………………………………………(1分) ∴ADBD AE AD =. ……………………………………………………………(1分) ∵DA =DC ,∴AEDCDC BD =.…………………………………………………(1分) ∴FEDF DC BD =. ……………………………………………………………(1分)(第23题图)【2020闵行一模】23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,BD 是AC 边上的高,点E 在边AB 上,联结CE 交BD 于点O ,且AD OC AB OD ⋅=⋅,AF 是∠BAC 的平分线,交BC 于点F ,交DE 于点G .求证:(1)CE ⊥AB ;(2)AF DE AG BC ⋅=⋅.(闵行)23.证明:(1)∵AD OC AB OD ⋅=⋅,∴AD ABOD OC=.………………………………(1分) ∵BD 是AC 边上的高,∴∠BDC = 90°,△ADB 和△ODC 是直角三角形.…………………(1分) ∴Rt △ADB ∽Rt △ODC .………………………………………………(1分) ∴∠ABD =∠OCD .……………………………………………………(1分) 又∵∠EOB =∠DOC ,∠DOC +∠OCD +∠ODC =180°,∠EOB +∠ABD+∠OEB =180°.∴∠OEB = 90°.…………………………………………………………(1分) ∴CE ⊥AB .………………………………………………………………(1分) (2)在△ADB 和△AEC 中,∵∠BAD =∠CAE ,∠ABD =∠OCD ,∴△ADB ∽△AEC .………………………………………………………(2分) ∴AD AB AE AC =, 即AD AEAB AC=.…………………………………………(1分) 在△DAE 和△BAC 中 ∵∠DAE =∠BAC ,AD AEAB AC=. ∴△DAE ∽△BAC .………………………………………………………(2分) ∵AF 是∠BAC 的平分线,A BDC(第23题图)EFG O∴AG DEAF BC=, 即AF DE AG BC ⋅=⋅.………………………………(1分)【2020静安一模】23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图7,在梯形ABCD 中,AD //BC ,AC 与BD 相交于点O ,点E 在线段OB 上,AE 的延长线与BC 相交于点F ,OD 2 = OB ·OE .(1)求证:四边形AFCD 是平行四边形; (2)如果BC =BD ,AE ·AF =AD ·BF ,求证:△ABE ∽△ACD .(静安)23.证明:(1)∵OD 2 =OE · OB ,∴OBODOD OE =. ……………………………………………………(1分) ∵AD //BC ,∴OBODOC OA =.……………………………………………………………………(2分) ∴ODOE OC OA =.………………………………………………………(1分) ∴ AF//CD .………………………………………………………………(1分) ∴四边形AFCD 是平行四边形.……………………………………………(1分)(2)∵AF//CD ,∴∠AED =∠BDC ,BCBFBD BE =.…………………(1分) ∵BC =BD ,∴BE =BF ,∠BDC =∠BCD …………………………………………………………(1分)∴∠AED =∠BCD .∵∠AEB =180°-∠AED ,∠ADC =180°-∠BCD ,∴∠AEB =∠ADC .…………………………(1分)∵AE ·AF =AD ·BF ,∴AF ADBF AE =.…………………………………………………………(1分)∵四边形AFCD 是平行四边形,∴AF =CD .…………………………………………………(1分)图7 A B D C E F O∴DCADBE AE =.………………………………………………………………(1分) ∴△ABE ∽△ADC .【2020嘉定一模】 23.(本题满分12分,第(1)小题4分,第2小题8分)已知:如图8,在ABC △中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,C ABE ∠=∠. (1)求证:BC DE BE ⋅=2; (2)当BE 平分ABC ∠时,求证:.(嘉定)23.(本题满分12分,第(1)小题4分,第(2)小题8分) 证明:(1)∵DE ∥BC ,∴CBE BED ∠=∠. ········································································ 1分又∵C ABE ∠=∠,∴△BDE ∽△CBE . ······································································ 1分 ∴BCBEBE DE =.·········································································································· 1分 ∴BC DE BE ⋅=2. ·································································································· 1分 (2)∵DE ∥BC ,∴C AED ∠=∠.又C ABE ∠=∠,∴ABE AED ∠=∠. ······················· 1分 又∵BAE EAD ∠=∠,∴△ADE ∽△ABE . ······························································· 1分∴AEADAB AE =. ······································································································· 1分 ∵DE ∥BC ,∴CEAE BD AD =,即CE BDAE AD =. ························································ 1分 ∴CEBDAB AE =. ······································································································· 1分 ∵BE 平分ABC ∠,∴CBE ABE ∠=∠,又∵C ABE ∠=∠,∴C CBE ∠=∠. ······· 1分∴CE BE =. ··········································································································· 1分∴ABAE BE BD =.··········································································································1分ABAEBE BD =B.图8CAED图11 E DCA【2020黄埔一模】 23.(本题满分12分)已知:如图11,在平行四边形ABCD 中,过点C 分别作AD 、AB 的垂线,交边AD 、AB 延长线于点E 、F .(1)求证:AD DE AB BF ⋅=⋅;(2)联结AC ,如果CF ACDE CD=,求证:22AC AF BC BF =.(黄埔)23.(本题满分12分) (1)∵四边形ABCD 是平行四边形, ∴CD ∥AB ,AD ∥BC ,∴∠CDE =∠DAB ,∠CBF =∠DAB .∴∠CDE =∠CBF .……………………………………………………………………(2分) ∵CE ⊥AE ,CF ⊥AF ,∴∠CED =∠CFB =90°.………………………………………………………………(1分) ∴△CDE ∽△CBF .…………………………………………………………………(1分)∴BC CDBF DE=.…………………………………………………………………………(1分)∵四边形ABCD 是平行四边形,∴BC =AD ,CD =AB .∴AD ABBF DE=. ∴AD DE AB BF ⋅=⋅.…………………………………………………………(1分) (2)∵CF ACDE CD=,∠CED =∠CFB =90°, ∴ △ACF ∽△CDE .………………………………………………………(2分) 又 ∵ △CDE ∽△CBF ,∴ △ACF ∽△CBF .………………………………………………………(1分)∴22ACF CBF S AC S BC =V V .………………………………………………………………………(1分)∵△ACF 与△CBF 等高,∴ACF CBF S AFS BF=V V .………………………………………………………………………(1分)∴22AC AFBC BF=.………………………………………………………………………(1分)【2020虹口一模】 23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图11,在Rt △ABC 中,∠ACB =90°,点D 是边BC 的中点,联结AD ,过点C 作 CE ⊥AD 于点E ,联结BE .(1)求证:2BD DE AD =⋅;(2)如果∠ABC =∠DCE ,求证:BD CE BE DE ⋅=⋅.(虹口)23.证明:(1)∵CE ⊥AD ,∠ACB =90°∴∠ACB =∠CED =90°∵∠EDC =∠CDA∴△EDC ∽△CDA …………………………………………………………………(3分) ∴DE CDCD AD= ∴CD 2=DE ·AD ………………………………………………………………………(2分)∵点D 是边BC 的中点 ∴CD =BD∴BD 2=DE ·AD ………………………………………………………………………(1分) (2)由(1)得DE BDBD AD=且∠EDB =∠BDA ∴△BDE ∽△ADB ……………………………………………………………………(2分) ∴∠ABC =∠BED ……………………………………………………………………(1分) ∵∠ABC =∠DCE , ∴∠BED =∠DCE ∵∠EBD =∠CBE∴△EBD ∽△CBE ……………………………………………………………………(2分) ∴BD ED BE CE= 即BD CE BE DE ⋅=⋅………………………………………………(1分)D图11 AEC B【2020奉贤一模】23.(本题满分12分,每小题满分6分)已知:如图9,在平行四边形ABCD 中,点 E 在边AD 上,点F 在边CB 的延长线上,联结CE 、EF ,CF DE CE ⋅=2.(1)求证:∠D =∠CEF ;(2)联结AC ,交EF 与点G ,如果AC 平分∠ECF , 求证:CG CB AE AC ⋅=⋅.(奉贤)23.证明:(1)∵CF DE CE ⋅=2,∴CE CFDE CE=. ··································· (1分) ∵四边形ABCD 是平行四边形,∴//AD BC , ∴DEC ECF ∠=∠. ········ (1分)∴△EDC ∽△CEF . ····································································································· (2分) ∴∠D =∠CEF . ········································································································· (2分) (2)∵AC 平分∠ECF ,∴ECG ACB ∠=∠. ∵//AD BC , ∴DAC ACB ∠=∠.∴ECG DAC ∠=∠. ······························································································ (1分) 又∵∠D =∠CEF ,∴△EGC ∽△BAC . ····································································· (2分)∴CG CEAC CB=. ········································································································· (1分) 又AE CE =, ········································································································· (1分) ∴CG AE AC CB =,∴CG CB AE AC ⋅=⋅. ··································································· (1分)ABCDEF图9。

上海初三数学一模各区几何证明23题集合

上海初三数学一模各区几何证明23题集合

普陀23.(本题满分12分)已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE·DB . 求证:(1)△BCE ∽△ADE ;(2)AB·BC=BD·BE .静安23. 已知:如图,梯形ABCD 中,AB DC //,BD AD =,DB AD ⊥,点E 是腰AD 上一点,作︒=∠45EBC ,联结CE ,交DB 于点F .(1)求证:ABE ∆∽DBC ∆;(2)如果65=BD BC ,求BDA BCE S S ∆∆的值.奉贤23.已知:如图,四边形ABCD ,∠DCB =90°,对角线BD ⊥AD ,点E 是边AB 的中点,CE 与BD 相交于点F ,2BD AB BC =⋅ (1)求证:BD 平分∠ABC ;(2)求证:BE CF BC EF ⋅=⋅. CD虹口23.(本题满分12分,第(1)题满分6分,第(2)题满分6分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF DF BF CF ⋅=⋅.(1)求证AD AB AE AC ⋅=⋅;(2)当AB =12,AC =9,AE =8时,求BD 的长与△△ADEECFS S 的值.宝山23.(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:GAE AC EGC =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.嘉定23.(本题满分12分,每小题6分)如图,已知梯形ABCD 中,AD ∥BC ,CD AB =,点E 在对角线AC 上,且满足BAC ADE ∠=∠.(1)求证:BC DE AE CD ⋅=⋅;(2)以点A 为圆心,AB 长为半径画弧交边BC 于点F ,联结AF . 求证:CA CE AF ⋅=2.闵行23.(本题共2小题,每小题6分,满分12分)如图,已知在△ABC 中,∠BAC =2∠B ,AD 平分∠DF 2AD AF AB =⋅AD BE DE AB ⋅=⋅(1)求证:△AED (2)当EF第23题图(第23题图)松江23.(本题满分12分,每小题6分)已知四边形ABCD 中,∠BAD =∠BDC =90°,2BD AD BC =⋅. (1)求证:AD ∥BC ;(2)过点A 作AE ∥CD 交BC 于点E .请完善图形并求证:2CD BE BC =⋅.浦东23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△ABC 中,CE ⊥AB 于点E ,点D 在边AC 上, 联结BD 交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅. A (第23题图)DEFBC徐汇23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分) 如图在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B , ∠ADF =∠C ,线段EF 交线段AD 于点G . (1)求证:AE =AF ; (2)若DF CFDE AE=,求证:四边形EBDF 是平行四边形.崇明23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.黄浦23.(本题满分12分)(第23题图)ABDECGF(1)求证:∠CDE=12∠ABC;(2)求证:AD•CD=AB•CE.青浦23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CD CA CE CB⋅=⋅.(1)求证:∠CAE=∠CBD;(2)若BE ABEC AC=,求证:AB AD AF AE⋅=⋅.长宁23.(本题满分12分,第(1)小题6分,第(2)小题6分)EC BA图8如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2.(1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.金山23.(本题满分12分,每小题6分)如图,已知在Rt △ABC 中,∠ACB=90°,AC > BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F . (1)求证:DF 是BF 和CF 的比例中项; (2)在AB 上取一点G ,如果AE ·AC=AG ·AD ,求证:EG ·CF=ED ·DF .第23题图。

2024届上海初三一模数学各区23题几何证明题

2024届上海初三一模数学各区23题几何证明题

图9第23题图上海市2024届初三一模数学分类汇编—23题几何证明题【2024届·宝山区·初三一模·第23题】1.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图9,在正方形ABCD 中,点E 、F 分别在边CD 、BC 上,且CE BF ,DF 分别交AE 、AC 于点P 、Q .(1)求证:AE DF ;(2)求证:AQ BF DF.【2024届·崇明区·初三一模·第23题】2.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,已知在梯形ABCD 中,//AD BC ,E 是边BC 上一点,AE 与对角线BD 相交于点F ,且2BEEF AE .(1)求证:DAB AFB ∽;(2)联结AC ,与BD 相交于点O ,若AB OB BC AF ,求证:2AF OD BF .图123.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图10,在ABC 中,AB AC ,点D 在边BC 上,已知AFD B ,边DF 交AC 于点E .(1)求证:AF CE CD FE ;(2)联结AD ,如果AB BC AF DF,求证:2AD AE AC .【20244.如图12ADC ,2DE DF (1)(2)第23题图图9(本题满分4分)5.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在平行四边形ABCD 中,AC AD ,过点A 作AE BD ,垂足为E ,再过点C 作CF CD 交直线AE 于点F .(1)求证:CA CD CB CF ;(2)联结CE ,求证:ACE F .【2024届·嘉定区·初三一模·第23题】6.(本题满分12分,第(1)小题6分,第(2)小题6分)如图9,在ABC 中,90ACB ,点D 是BC 延长线上一点,点E 是斜边AB 上一点,BC BDBE BA .(1)求证:AB ED ;(2)联结AD ,在AB 上取一点F ,使AF AC ,过点F 作//FG BC 交AD 于点G .求证:FG DE .第23题图第23题图7.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,BAC BDC .(1)求证:AOD BOC ∽;(2)过点A 作//AE CD ,AE 交BD 于点E ,求证:AB AD AE BC .【2024届·静安区·初三一模·第23题】8.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在ABC 中,AB AC ,D 是BC 中点,点E 在BA 延长线上,点F 在AC 边上,EDF B .(1)求证:BDE CFD ∽;(2)求证:2DF EF CF .9.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在ABC 中,点D 、E 在边AB 上,2AC AD AB ,AC AE ,过点D 作//DF CE 交边AC于点F .(1)求证:ACD ABC ∽;(2)求证:AE EB AB FC .【202410..(1)(2)图11第23题图11.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图11,在ABC 中,点D 在边BC 上,ADE B ,EAF FDC ,DE 与AC 交于点F .(1)求证:AB ADAC AE;(2)联结BF ,如果2AB AF AC ,求证:AD BC AE BF .【2024届·青浦区·初三一模·第23题】12.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在ABC 中,点D 、E 分别在边BC 、AB 上,AD 与CE 相交于点F ,CD CF ,2AC AE AB .(1)求证:ABD ACF ∽;(2)如果2CFD ACF ,求证:AB EF AD AE .第23题图第23题图13.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在ABC 中,点D 、E 分别在边AB 、AC 上,//DE BC ,BDC DEC .(1)求证:ADE ACD ∽;(2)求证:22CD AEBC AC.【2024届·徐汇区·初三一模·第23题】14.(本题满分12分)如图,在ABCD 中,点E 在边AB 上,2DEAE CD .(1)求证:AD CD CE DE ;(2)当点E 是边AB 的中点时,分别延长DE 、CB 交于点F ,求证:222AB EF .第23题图第23题图15.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在等腰梯形ABCD 中,//AD BC ,AB CD ,点E 在边AB 上,AC 与DE 交于点F ,ADE DCA .(1)求证:AF AC AE CD ;(2)如果点E 是边AB 的中点,求证:22AB DF DE .【2024届·长宁区·初三一模·第23题】16.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在ABC 中,点D 、E 分别是BC 、AD 的中点,且AD AC ,联结CE 并延长交AB 于点F .(1)求证:ABC DCE ∽;(2)求证:4BF EF .。

2022年上海市15区中考数学一模考点分类汇编专题11 几何综合(解答25题压轴题)-(解析版)

2022年上海市15区中考数学一模考点分类汇编专题11  几何综合(解答25题压轴题)-(解析版)

2022年上海市15区中考数学一模考点分类汇编专题11 几何综合一.解答题(共15小题)1.(普陀区)如图,在△ABC中,边BC上的高AD=2,tan B=2,直线l平行于BC,分别交线段AB,AC,AD于点E、F、G,直线l与直线BC之间的距离为m.(1)当EF=CD=3时,求m的值;(2)将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,延长EP交线段CD于点Q.①当点P恰好为△ABC的重心时,求此时CQ的长;②联结BP,在∠CBP>∠BAD的条件下,如果△BPQ与△AEF相似,试用m的代数式表示线段CD的长.【分析】(1)根据=tan B=2,可得:BD=1,再由EF=CD=3,DG=m,可得:BC=4,AG =2﹣m,利用EF∥BC,可得=,建立方程求解即可;(2)①由翻折可得:BD=CD=1,AP=2PD,即PD=AD=,AP=AD=,进而得出:AG =,推出DP=GP,再由EF∥BC,可得出EG=,利用ASA证明△PQD≌△PEG,即可求得答案;②分两种情况:Ⅰ.当△BPQ∽△FAE时,由△FAE∽△CAB,推出△BPQ∽△CAB,建立方程求解即可;Ⅱ.当△BPQ∽△AFE时,由△AFE∽△ACB,推出△BPQ∽△ACB,建立方程求解即可.【解答】解:(1)如图1,在△ABC中,边BC上的高AD=2,tan B=2,∴=tan B=2,∴BD=1,∵EF=CD=3,DG=m,∴BC=BD+CD=4,AG=AD﹣DG=2﹣m,∵EF∥BC,∴=,即=,解得:m=,∴m的值为;(2)①如图2,∵将△AEF沿着EF翻折,点A落在△ABC的重心点P处,∴BD=CD=1,AP=2PD,即PD=AD=,AP=AD=,∴AG=GP=AP=,∴DP=GP,∵EF∥BC,∴∠PGE=∠PDQ=90°,△AEG∽△ABD,∴=,即=,∴EG=,在△PQD和△PEG中,,∴△PQD≌△PEG(ASA),∴DQ=EG=,∴CQ=CD﹣DQ=1﹣=,∴此时CQ的长为;②在Rt△ABD中,AB==,∵将△AEF沿着EF翻折,点A落在两平行直线l与BC之间的点P处,∴∠PBQ<∠ABD,∵EF∥BC,∴∠AEF=∠ABD,∴∠PBQ<∠AEF,∵∠CBP>∠BAD,∴∠BAD<∠PBQ<∠AEF,∵GP=AG=2﹣m,DG=m,∴DP=DG﹣GP=m﹣(2﹣m)=2m﹣2,∴m>1,∴1<m<2,∵∠AEF=∠ABD,∴=tan∠AEF=tan∠ABD=2,∴=2,∴EG=,∵EF∥BC,∴△PEG∽△PQD,∴=,即=,∴DQ=m﹣1,∴BQ=BD+DQ=m,∵∠AEF=∠PEG=∠BQP,∠PBQ<∠AEF,∴△BPQ与△AEF相似,则△BPQ∽△FAE或△BPQ∽△AFE,Ⅰ.当△BPQ∽△FAE时,∵△FAE∽△CAB,∴△BPQ∽△CAB,∴=,即=,∴BC=,∴CD=BC﹣BD=﹣1=;Ⅱ.当△BPQ∽△AFE时,∵△AFE∽△ACB,∴△BPQ∽△ACB,∴=,即=,∴BC=,∴CD=BC﹣BD=﹣1=,综上,线段CD的长为或.【点评】本题考查了全等三角形判定和性质,相似三角形的判定和性质,勾股定理,三角函数,翻转变换的性质等,熟练掌握全等三角形判定和性质、相似三角形的判定和性质等相关知识,运用分类讨论思想和方程思想思考解决问题是解题关键.2.(嘉定区)在平行四边形ABCD中,对角线AC与边CD垂直,,四边形ABCD的周长是16,点E是在AD延长线上的一点,点F是在射线AB上的一点,∠CED=∠CDF.(1)如图1,如果点F与点B重合,求∠AFD的余切值;(2)如图2,点F在边AB上的一点.设AE=x,BF=y,求y关于x的函数关系式并写出它的定义域;(3)如果BF:FA=1:2,求△CDE的面积.【分析】(1)设AB=3k,则AC=4k,由勾股定理求出BC==5k,由四边形ABCD 的周长求出k=1,求出AM的长,则可得出答案;(2)证明△CDE∽△DAF,由相似三角形的性质得出,得出AD=BC=5,DE=x﹣5,DC =AB=3,AF=3﹣y,由比例线段可得出答案;(3)分两种情况:①当点F在边AB上,②当点F在AB的延长线上,求出AF的长,由相似三角形的性质及三角形面积公式可得出答案.【解答】解:(1)如果点F与点B重合,设DF与AC交于点M,∵AC⊥CD,∴∠DCA=90°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠CAB=∠DCA=90°,在Rt△CAB中,设AB=3k,∵,∴AC=4k,∴BC==5k,∵四边形ABCD的周长是16,∴2(AB+BC)=16,即 2(3k+5k)=16,∴k=1,∴AB=3,BC=5,AC=4,∵四边形ABCD是平行四边形,∴AM=CM=AC=2,∴cot∠AFD=;(2)解:∵CD∥AB,∴∠EDC=∠FAD,∠CDF=∠AFD,∵∠CED=∠CDF,∴∠CED=∠AFD,∴△CDE∽△DAF,∴,由题意,得AD=BC=5,DE=x﹣5,DC=AB=3,AF=3﹣y,∴,∴y=﹣,定义域是:5<x≤.(3)解:点F在射线AB上都能得到:△CDE∽△DAF,∴,①当点F在边AB上,∵BF:FA=1:2,AB=3,∴AF=2,由题意,得S△DAF=AF•AC,∵AC=4,∴S△DAF=×2×4=4,∴,∴S△CDE=,②当点F在AB的延长线上,∵BF:FA=1:2,AB=3,∴AF=6,由题意,得S△DAF=AF•AC,∴S△DAF=AF•AC=12,∴,∴S△CDE=.综上所述,△CDE的面积是或.【点评】本题是四边形综合题,考查了平行四边形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握相似三角形的判定与性质.3.(金山区)已知:如图,AD⊥直线MN,垂足为D,AD=8,点B是射线DM上的一个动点,∠BAC =90°,边AC交射线DN于点C,∠ABC的平分线分别与AD、AC相交于点E、F.(1)求证:△ABE∽△CBF;(2)如果AE=x,FC=y,求y关于x的函数关系式;(3)联结DF,如果以点D、E、F为顶点的三角形与△BCF相似,求AE的长.【分析】(1)根据同角的余角相等得到∠BAD=∠BCF,根据角平分线的定义得到∠ABE=∠CBF,根据相似三角形的判定定理证明△ABE∽△CBF;(2)作FH⊥BC于点H,根据相似三角形的性质、补角的概念得到∠AEF=∠CFE,得到AE=AF =x,根据平行线分线段成比例定理列出比例式,代入计算即可;(3)分∠BAE=∠FDE、∠BAE=∠DFE两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵AD⊥直线MN,∠BAC=90°,∴∠BAD+∠ABD=90°,∠BCF+∠ABD=90°,∴∠BAD=∠BCF,∵BF平分∠ABC,∴∠ABE=∠CBF,∴△ABE∽△CBF;(2)解:作FH⊥BC,垂足为点H.∵△ABE∽△CBF,∴∠AEB=∠CFB,∵∠AEB+∠AEF=180°,∠CFB+∠CFE=180°,∴∠AEF=∠CFE,∴AE=AF=x,∵BF平分∠ABC,FH⊥BC,∠BAC=90°,∴AF=FH=x.∵FH⊥BC,AD⊥直线MN,∴FH∥AD,∴=,即=,解得:y=(4<x<8);(3)解:设AE=x,∵△ABE∽△CBF,∴如果以点D、E、F为顶点的三角形与△BCF相似时,以点D、E、F为顶点的三角形与△ABE相似.∵∠AEB=∠DEF,∴∠BAE=∠FDE或∠BAE=∠DFE,当∠BAE=∠FDE时,DF∥AB,∴∠ABE=∠DFE,∵∠ABE=∠DBE,∴∠DBE=∠DFE,∴BD=DF,∵DF∥AB,∴∠DFC=∠BAC=90°,∴∠DFC=∠ABD=90°,∵∠BAD=∠BCF,∴△ABD≌△CDF(AAS),∴CF=AD=8,即=8,解得:x1=﹣4+4,x2=﹣4﹣4(舍去),∴AE=﹣4+4;当∠BAE=∠DFE,=时,∵∠ABF=∠BED,∴△AEF∽△BED,∴∠AFE=∠BDE,因为∠AFE是锐角,∠BDE是直角,所以这种情况不成立,综上所述,如果以点D、E、F为顶点的三角形与△BCF相似,AE的长为﹣4+4.【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、函数解析式的确定,掌握相似三角形的判定定理和性质定理是解题的关键.4.(静安区)如图1,四边形ABCD中,∠BAD的平分线AE交边BC于点E,已知AB=9,AE=6,AE2=AB•AD,且DC∥AE.(1)求证:DE2=AE•DC;(2)如果BE=9,求四边形ABCD的面积;(3)如图2,延长AD、BC交于点F,设BE=x,EF=y,求y关于x的函数解析式,并写出定义域.【分析】(1)先证明△ABE∽△AED,可得∠AEB=∠ADE,再由平行线性质可推出∠ADE=∠DCE,进而证得△ADE∽△ECD,根据相似三角形性质可证得结论;(2)如图2,过点B作BG⊥AE,运用等腰三角形性质可得G为AE的中点,进而可证得△ADE≌△ECD(SAS),再求得S△ABE=×AE×BG=18,根据△ABE∽△AED且相似比为3:2,可求得S△AED=S△CDE=8,由S四边形ABCD=S△ABE+S△AED+S△CDE可求得答案;(3)由△ABE∽△AED,可求得:DE=x,进而得出DC=x2,再利用△ADE∽△ECD,可得:CE=x,再利用DC∥AE,可得△AEF∽△DCF,进而求得:CF=EF,再结合题意得出答案.【解答】(1)证明:如图1,∵AE平分∠BAD,∴∠BAE=∠DAE,∵AE2=AB•AD,∴=,∴△ABE∽△AED,∴∠AEB=∠ADE,∵DC∥AE,∴∠AEB=∠DCE,∠AED=∠CDE,∴∠ADE=∠DCE,∴△ADE∽△ECD,∴=,∴DE2=AE•DC;(2)解:如图2,过点B作BG⊥AE,∵BE=9=AB,∴△ABE是等腰三角形,∴G为AE的中点,由(1)可得△ADE、△ECD也是等腰三角形,∵AE2=AB•AD,AB=BE=9,AE=6,∴AD=4,DE=6,CE=4,AG=3,∴△ADE≌△ECD(SAS),在Rt△ABG中,BG===6,∴S△ABE=×AE×BG=×6×6=18,∵△ABE∽△AED且相似比为3:2,∴S△ABE:S△AED=9:4,∴S△AED=S△CDE=8,∴S四边形ABCD=S△ABE+S△AED+S△CDE=18+8+8=34;(3)解:如图3,由(1)知:△ABE∽△AED,∴=,∵BE=x,AB=9,AE=6,AE2=AB•AD,AD=4,∴=,∴DE=x,由(1)知:DE2=AE•DC,∴DC=x2,∵△ADE∽△ECD,∴==,∴CE=x,∵DC∥AE,∴△AEF∽△DCF,∴==,∴CF=EF,∴===,∴y=EF=CE=×x=,∵即,∴3<x<9,∴y关于x的函数解析式为y=,定义域为3<x<9.【点评】本题是相似三角形综合题,考查了角平分线定义,平行线的性质,勾股定理,相似三角形的判定和性质,等腰三角形的性质,三角形面积等知识,熟练掌握相似三角形的判定和性质是解题关键.5.(杨浦区)如图,已知在Rt△ABC中,∠ACB=90°,AC=BC=5,点D为射线AB上一动点,且BD<AD,点B关于直线CD的对称点为点E,射线AE与射线CD交于点F.(1)当点D在边AB上时,①求证:∠AFC=45°;②延长AF与边CB的延长线相交于点G,如果△EBG与△BDC相似,求线段BD的长;(2)联结CE、BE,如果S△ACE=12,求S△ABE的值.【分析】(1)①如图1,连接CE,根据轴对称的性质可得:EC=BC,∠ECF=∠BCF,设∠ECF =∠BCF=α,则∠BCE=2α,∠ACE=90°﹣2α,再利用等腰三角形性质即可证得结论;②如图2,连接BE,CE,由△EBG∽△BDC,可得出∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,推出CH=DH=BD,再根据CH+BH=BC=5,建立方程求解即可;(2)分两种情况:Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,利用勾股定理、三角形面积建立方程求解即可.【解答】解:(1)①证明:如图1,连接CE,∵点B关于直线CD的对称点为点E,∴EC=BC,∠ECF=∠BCF,设∠ECF=∠BCF=α,则∠BCE=2α,∴∠ACE=90°﹣2α,∵AC=BC,∴AC=EC,∴∠AEC=∠EAC=[180°﹣(90°﹣2α)]=45°+α,∵∠AEC=∠AFC+∠ECF=∠AFC+α,∴∠AFC=45°;②如图2,连接BE,CE,∵B、E关于直线CF对称,∴CF垂直平分BE,由(1)知:∠AFC=45°,∴∠BEF=45°,∵△EBG与△BDC相似,∠BEG=∠DBC=45°,∵∠EBG与∠BDC均为钝角,∴△EBG∽△BDC,∴∠G=∠BCD=∠BAG,∵∠G+∠BAG=∠ABC=45°,∴∠G=∠BCD=22.5°,过点D作DH⊥AB交BC于点H,则△BDH是等腰直角三角形,∴DH=BD,BH=BD,∠BHD=45°,∵∠CDH=∠BHD﹣∠BCD=45°﹣22.5°=22.5°=∠BCD,∴CH=DH=BD,∵CH+BH=BC=5,∴BD+BD=5,∴BD==5﹣5,∴线段BD的长为5﹣5;(2)Ⅰ.当点D在AB上时,如图3,过点C作CM⊥AE于点M,连接BF,∵AC=EC=BC=5,∴AM=EM=AE,∴①AM2+CM2=AC2=25,∵S△ACE=AE•CM=12,∴②AM•CM=12,①+②×2,得:(AM+CM)2=49③,①﹣②×2,得:(AM﹣CM)2=49③,∵CM>AM>0,∴AM=3,CM=4,∴AE=6,由(1)知:∠AFC=45°,BE⊥CF,∴∠BEF=45°,∵∠AFC=∠ABC=45°,∴A、C、B、F四点共圆,∴∠AFB+∠ACB=180°,∴∠AFB=90°,∴△BEF是等腰直角三角形,∴EF=BF,设EF=BF=x,则AE=x+6,在Rt△ABF中,AF2+BF2=AB2,∴(x+6)2+x2=50,解得:x=1或x=﹣7(舍去),∴BF=1,∴S△ABE=AE•BF=×6×1=3;Ⅱ.当点D在AB的延长线上时,如图4,过点C作CM⊥AE于点M,连接BF,由(1)知:∠AFC=45°,CF垂直平分BE,∴∠BEF=45°,BF=EF,∴∠EBF=∠BEF=45°,∴∠BFE=90°,∵AC=EC=BC=5,∴AM=EM=AE,与Ⅰ同理可得:AM=EM=4,CM=3,AE=8,设BF=EF=y,则AF=8﹣y,在Rt△ABF中,AF2+BF2=AB2,∴(8﹣x)2+x2=50,解得:x=1或x=7(舍去),∴BF=1,∴S△ABE=AE•BF=×8×1=4;综上,S△ABE的值为3或4.【点评】本题考查了三角形面积,等腰直角三角形性质和判定,相似三角形的判定和性质,轴对称变换的性质,勾股定理等,解题关键是添加辅助线构造直角三角形,运用分类讨论思想和方程思想解决问题.6.(浦东新区)在△ABC中,∠ABC=90°,AB=4,BC=3,点O是边AC上的一个动点,过O作OD ⊥AB,D为垂足,在线段AC上取OE=OD,联结ED,作EP⊥ED,交射线AB于点P,交射线CB于点F.(1)如图1所示,求证:△ADE∽△AEP;(2)设OA=x,AP=y,求y关于x的函数解析式,并写出定义域;(3)当BF=1时,求线段AP的长.【分析】(1)利用等腰三角形的性质可证∠ADE=∠AEP,且∠A=∠A,可证结论成立;(2)由OD∥BC,得,可知AD=,DO=EO=,由(1)知△ADE∽△AEP,得AE2=AD•AP,有(x+)2=,变形即可得出答案;(3)当点P在线段AB上时,由△PBF∽△PED,得,由△ADE∽△AEP,得,则,代入解方程即可;当点P在AB的延长线上时,首先通过导角得出∠CEF=∠CFE,得EC=FC=2,过点E作EG⊥CF于点G,由相似得,则EG=,CG=,再利用EG∥BP,得,从而解决问题.【解答】(1)证明:∵OE=OD,∴∠ODE=∠OED,∵OD⊥AB,EP⊥ED,∴∠ADO=∠PED,∴∠ADO+∠ODE=∠PED+∠OED,∴∠ADE=∠AEP,∵∠A=∠A,∴△ADE∽△AEP;(2)解:∵OD⊥AP,BC⊥AB,∴OD∥BC,∴,∴AD=,DO=EO=,由(1)知△ADE∽△AEP,∴∴AE2=AD•AP,∴(x+)2=,∴y=;(3)解:①当点P在线段AB上时,如图1,BP=4﹣y=4﹣,∵△PBF∽△PED,∴,∴△ADE∽△AEP,∴,∴,∴,∴x=,∴AP=2,②当点P在AB的延长线上时,如图2,∵∠CFE=∠PFB=∠PDE,∠CEF+∠DEO=∠PDE+∠EDO,∴∠CEF=∠CFE,∴EC=FC=2,过点E作EG⊥CF于点G,∴,∴EG=,CG=,∴EG∥BP,∴,∴PB=2,∴AP=2+4=6,综上所述,AP=2或6.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,平行线分线段成比例等知识,运用分类讨论思想是正确解题的关键.7.(奉贤区)如图1,已知锐角△ABC的高AD、BE相交于点F,延长AD至G,使DG=FD,联结BG,CG.(1)求证:BD•AC=AD•BG;(2)如果BC=10,设tan∠ABC=m.①如图2,当∠ABG=90°时,用含m的代数式表示△BFG的面积;②当AB=8,且四边形BGCE是梯形时,求m的值.【分析】(1)利用同角的余角相等可证∠BGF=∠ACD,且∠BDG=∠ADC=90°,则△BDG∽△ADC,可证明结论;(2)①通过导角可利用ASA证△ADB≌△ADC,得BD=CD=BC=5,再通过tan∠BGD=m,可得GD=,则GF=2GD=,代入三角形的面积公式即可;②分两种情形,当BG∥AC或BE∥CG,分别通过导角发现数量关系,从而解决问题.【解答】(1)证明:∵△ABC的高AD、BE相交于点F,∴∠AEB=∠ADC=90°,又∵∠EAF=∠DAC,∴∠AFE=∠ACD,∵∠BFD=∠AFE,∴∠BFD=∠ACD,∵BD⊥FG,DF=DG,∴BD垂直平分GF,∴BG=BF,∴∠BGF=∠BFG,∴∠BGF=∠ACD,又∵∠BDG=∠ADC=90°,∴△BDG∽△ADC,∴,∴BD•AC=AD•BG;(2)解:①∵∠ABG=90°,∴∠ABD+∠GBC=90°,∵∠GBD+∠BGD=90°,∴∠ABD=∠BGD,同理∠GBD=∠BAD,由(1)知△BDG∽△ADC,∴∠GBD=∠DAC,∴∠BAD=∠CAD,又∵AD=AD,∠ADB=∠ADC,∴△ADB≌△ADC(ASA),∴BD=CD=BC=5,∵tan∠ABC=m.∴tan∠BGD=m,∴GD=,∴GF=2GD=,∴S△BFG=×FG×BD==;②当BG∥AC时,∴∠ACB=∠GBC,∵∠GBC=∠CAD,∴∠ACB=∠CAD=45°,设CD=AD=x,则BD=10﹣x,由勾股定理得,x2+(10﹣x)2=82,解得x=5±,当x=5+时,BD=10﹣x=5﹣,此时m=,当x=5﹣时,BD=10﹣x=5+,此时m=;当BE∥CG时,∴∠EBC=∠BCG,则∠CBG=∠BCG,∴BG=CG,∴BD=CD=5,由勾股定理得AD=,∴m=,综上,m=或或.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质,平行线的性质,三角函数等知识,综合性较强,熟练掌握角之间的转化发现解题思想是关键.8.(松江区)如图,已知△ABC中,∠ACB=90°,AB=6,BC=4,D是边AB上一点(与点A、B不重合),DE平分∠CDB,交边BC于点E,EF⊥CD,垂足为点F.(1)当DE⊥BC时,求DE的长;(2)当△CEF与△ABC相似时,求∠CDE的正切值;(3)如果△BDE的面积是△DEF面积的2倍,求这时AD的长.【分析】(1)证明△DCE≌△DBE(ASA),可得CE=BE=2,根据=tan∠B=,即可求得答案;(2)分两种情况:①当△CEF∽△ABC时,可证得∠CDB=90°,再根据DE平分∠CDB,可得∠CDE=45°,再由特殊角的三角函数值即可求得答案;②当△CEF∽△BAC时,则∠ECF=∠ABC,得出DC=DB,再由DE平分∠CDB,可得DE⊥BC,推出∠CDE=∠BAC,利用三角函数定义即可求得答案;(3)如图,过点E作EG⊥AB于点G,根据角平分线性质可得出EF=EG,推出DF=DG,再由△BDE的面积是△DEF面积的2倍,可得出BD=2DF,进而推出DE=BE,设BE=x,则DE=x,CE=BC﹣BE=4﹣x,BG=BE•cos B=x,BD=2BG=x,DG=DF=BG=x,AD=AB﹣BD=6﹣x,根据△CDE∽CBD,得出==,建立方程求解即可.【解答】解:(1)在Rt△ABC中,∠ACB=90°,AB=6,BC=4,∴AC===2,∵DE平分∠CDB,∴∠CDE=∠BDE,∵DE⊥BC,∴∠DEC=∠DEB=90°,在△DCE和△DBE中,,∴△DCE≌△DBE(ASA),∴CE=BE,∵CE+BE=BC=4,∴CE=BE=2,∵=tan∠B=,∴=,∴DE=;(2)∵EF⊥CD,∴∠CFE=90°=∠ACB,∵△CEF与△ABC相似,∴△CEF∽△ABC或△CEF∽△BAC,①当△CEF∽△ABC时,则∠ECF=∠BAC,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∴∠ECF+∠ABC=90°,∴∠CDB=90°,∵DE平分∠CDB,∴∠CDE=∠CDB=×90°=45°,∴tan∠CDE=tan45°=1;②当△CEF∽△BAC时,则∠ECF=∠ABC,∴DC=DB,∵DE平分∠CDB,∴DE⊥BC,∴∠CDE+∠ECF=90°,∵∠BAC+∠ABC=90°,∴∠CDE=∠BAC,∴tan∠CDE=tan∠BAC===,综上所述,∠CDE的正切值为1或;(3)如图,过点E作EG⊥AB于点G,∵DE平分∠CDB,EF⊥CD,EG⊥AB,∴EF=EG,∵DE=DE,∴Rt△DEF≌Rt△DEG(HL),∴DF=DG,∵△BDE的面积是△DEF面积的2倍,∴BD=2DF,∴DG=BG,∵EG⊥BD,∴DE=BE,设BE=x,则DE=x,CE=BC﹣BE=4﹣x,BG=BE•cos B=x,∴BD=2BG=x,DG=DF=BG=x,∴AD=AB﹣BD=6﹣x,∵DE平分∠CDB,∴∠CDE=∠BDE,∵DE=BE,∴∠BDE=∠B,∴∠CDE=∠B,∵∠DCE=∠BCD,∴△CDE∽CBD,∴==,即==,解得:CD=3,x=,∴AD=6﹣x=6﹣×=,故这时AD的长为.【点评】本题是几何综合题,考查了直角三角形性质,勾股定理,全等三角形判定和性质,相似三角形的判定和性质,角平分线性质,三角形面积,三角函数等知识,解题关键是熟练掌握相似三角形的判定和性质等相关知识,运用分类讨论思想和方程思想解决问题.9.(青浦区)在四边形ABCD中,AD∥BC,AB=,AD=2,DC=,tan∠ABC=2(如图).点E是射线AD上一点,点F是边BC上一点,联结BE、EF,且∠BEF=∠DCB.(1)求线段BC的长;(2)当FB=FE时,求线段BF的长;(3)当点E在线段AD的延长线上时,设DE=x,BF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】(1)如图1,过点A、D分别作AH⊥BC、DG⊥BC,垂足分别为点H、点G.根据矩形的性质得到AD=HG=2,AH=DG,解直角三角形即可得到结论;(2)如图1,过点E作EM⊥BC,垂足为点M,根据矩形的性质得到EM=AH=2,解直角三角形即可得到结论;(3)如图2,过点E作EN∥DC,交BC的延长线于点N.根据平行四边形的性质得到DE=CN,∠DCB=∠ENB,根据相似三角形的性质得到BE2=BF•BN,过点E作EQ⊥BC,垂足为点Q,根据矩形的性质得到EQ=DG=2,根据勾股定理即可得到结论.【解答】解:(1)如图1,过点A、D分别作AH⊥BC、DG⊥BC,垂足分别为点H、点G.∴AH∥DG,∵AD∥BC,∴四边形AHGD是矩形,∴AD=HG=2,AH=DG,在Rt△ABH中,tan∠ABC=2,AB=,∴=2,∴AH=2BH,∵AH2+BH2=AB2,∴(2BH)2+BH2=()2,∴BH=1,∴AH=2,∴DG=2,在Rt△DGC中,DC=,∴CG===4,∴BC=BH+HG+GC=1+2+4=7;(2)如图1,过点E作EM⊥BC,垂足为点M,∴AH∥EM,∵AD∥BC,∴四边形AHME是矩形,∴EM=AH=2,在Rt△DGC中,DG=2,CG=4,∴tan∠DCB==,∵FB=FE,∴∠FEB=∠FBE.∵∠FEB=∠DCB,∴∠FBE=∠DCB,∴tan∠FBE=.∴=,∴BM=4,在Rt△EFM中,FM2+EM2=FE2,∴(4﹣FB)2+22=FB2,∴BF=;(3)如图2,过点E作EN∥DC,交BC的延长线于点N.∵DE∥CN,∴四边形DCNE是平行四边形,∴DE=CN,∠DCB=∠ENB,∵∠FEB=∠DCB,∴∠FEB=∠ENB,又∵∠EBF=∠NBE,∴△BEF∽△BNE,∴=,∴BE2=BF•BN,过点E作EQ⊥BC,垂足为点Q,则四边形DGQE是矩形,∴EQ=DG=2,∴BQ=x+3.∴BE2=QE2+BQ2=(x+3)2+22=x2+6x+13,∴y(7+x)=x2+6x+13.∴.【点评】本题考查了四边形综合题,梯形的性质,矩形的判定和性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.10.(徐汇区)如图,在△ABC中,∠C=90°,cot A=,点D为边AC上的一个动点,以点D为顶点作∠BDE=∠A,射线DE交边AB于点E,过点B作射线DE的垂线,垂足为点F.(1)当点D是边AC中点时,求tan∠ABD的值;(2)求证:AD•BF=BC•DE;(3)当DE:EF=3:1时,求AE:EB.【分析】(1)过点D作DG⊥AB于G,设AC=a,BC=a,由勾股定理得AB的长,在△ABD中,利用面积法可表示出DG的长,再利用勾股定理得出AG的长,从而解决问题;(2)首先利用两个角相等可证明△ADB∽△DEB,得,再证明△ACB∽△DFB,得,从而证明结论;(3)设DE=x,EF=3x,得DF=4x,由cot,可表示出BF的长,再利用勾股定理得出BE、BD的长,由(2)可知,△ADB∽△DEB,得,可表示出AB的长,从而解决问题.【解答】(1)解:如图,过点D作DG⊥AB于G,在Rt△ABC中,cot A=,设AC=a,BC=a,∵∠ACB=90°,∴AB===a,∵D是AC的中点,∴AD=,∵S,∴DG=,在Rt△ADG中,AG===,∴BG=AB﹣AG=a﹣=,在Rt△GDB中,tan;(2)证明:∵∠BDE=∠A,∠DBE=∠ABD,∴△ADB∽△DEB,∴,∵∠F=∠C=90°,∠A=∠BDE,∴△ACB∽△DFB,∴,∴,∴AD•BF=BC•DE;(3)解:∵,∴设DE=x,EF=3x,∴DF=4x,∵∠A=∠BDE,∴cot A=cot∠BDE=,在 Rt△BDF中,cot,∴BF=x,在Rt△BEF中,BE===x,在Rt△BDF中,DB===2x,由(2)可知,△ADB∽△DEB,∴,∴,∴AB=x,∴AE=AB﹣BE=x﹣x=x,∴,即AE:EB=7:17.【点评】本题是相似形综合题,主要考查了相似三角形的判定与性质,三角函数,勾股定理,三角形的面积等知识,利用代数方法解决几何问题是解题的关键.11.(长宁区)已知,在△ABC中,AB=AC=5,BC=8,点E是射线CA上的动点,点O是边BC上的动点,且OC=OE,射线OE交射线BA于点D.(1)如图,如果OC=2,求的值;(2)联结AO,如果△AEO是以AE为腰的等腰三角形,求线段OC的长;(3)当点E在边AC上时,联结BE、CD,∠DBE=∠CDO,求线段OC的长.【分析】(1)通过证明△ABC∽△OEC,可求EC的长,AE的长,通过证明△ADE∽△ODB,可求解;(2)分两种情况讨论,利用相似三角形的性质可求解;(3)通过证明△CDA∽△BEO,可得,通过证明△ABE∽△ODC,可得,列出等式可求解.【解答】解:(1)∵AB=AC=5,OE=OC=2,∴∠B=∠C,∠C=∠OEC,∴∠B=∠OEC=∠AED,又∵∠C=∠C,∴△ABC∽△OEC,∴,∴=,∴EC=,∴AE=,∵∠ADE=∠ADE,∠AED=∠B,∴△ADE∽△ODB,∴=()2=()2=;(2)如图1,当点E在AC上时,∵∠AEO>90°,△AEO是等腰三角形,∴AE=EO,由(1)可知:△ABC∽△OEC,∴,∴,∴EC=OC,∵AC=AE+EC=OC+OC=5,∴OC=;当点E在线段CA的延长线上时,如图2,∵∠EAO>90°,△AEO是等腰三角形,∴AE=AO,∴∠E=∠AOE,∵∠B=∠C=∠OEC,∴∠B=∠AOE,∴△ABC∽△AOE,∴,∴,∴AE=OC,由(1)可知:△ABC∽△OEC,∴,∴,∴EC=OC,∵AC=EC﹣AE=5,∴OC﹣OC=5,∴OC=,综上所述:线段OC的长为或;(3)如图3,当点E在线段AC上时,∵∠ABE=∠CDO,∠ABC=∠OEC,∴∠ABC﹣∠ABE=∠OEC﹣∠ODC,∴∠EBO=∠DCA,∵∠DAC=∠ABC+∠ACB=2∠ACB,∠BOE=∠ACB+∠OEC=2∠ACB,∴∠DAC=∠BOE,∴△CDA∽△BEO,∴,∵∠ABE=∠ODC,∠BAC=∠DOC,∴△ABE∽△ODC,∴,∴,∴,∴OC=8﹣或OC=8+(不合题意舍去),∴OC=8﹣.【点评】本题是三角形综合题,考查了等腰三角形的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是解题的关键.12.(崇明区)已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将△ADE绕点D逆时针旋转90°,E点落在F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.(1)当AE=时,求tan∠EDB的值;(2)当点E在线段AB上,如果AE=x,FM=y,求y关于x的函数解析式,并写出定义域;(3)联结AM,直线AM与直线BC交于点G,当BG=时,求AE的值.【分析】(1)如图1中,过点E作ER⊥BD于点R.解直角三角形求出ER,DR即可;(2)如图2中,过点M作MP⊥AB于点P,MQ⊥BC于点Q.证明===,构建关系式,可得结论;(3)分两种情形:如图3﹣1中,当点G在线段BC上时,过点M作MT⊥AB于点T.如图3﹣2中,当点G在CB的延长线上时,过点M作MT⊥AB交AB的延长线于点T.分别求解即可.【解答】解:(1)如图1中,过点E作ER⊥BD于点R.∵四边形ABCD是正方形,∴AB=AD=BC=CD=1,∠A=90°,∠BD=90°,∴BD===,∵ER⊥BD,∴∠EBR=∠BER=45°,∵AE=,∵BE=,∴ER=BR=,∴DR=﹣=,∴tan∠EDB===;(2)如图2中,过点M作MP⊥AB于点P,MQ⊥BC于点Q.∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵DA=DC,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF=x,在Rt△ADE中,DE==,∵DE=DF,∠EDF=90°,∴EF=DE=,∵∠EBM=∠FBM=45°,MP⊥BE,MQ⊥BF,∴MP=MQ,∴===,∴=,∴y=﹣x(0≤x≤1);(3)如图3﹣1中,当点G在线段BC上时,过点M作MT⊥AB于点T.∵BG∥AD,∴==,∵BD=,∴BM=,∴BT=TM=,∴ET=EB﹣BT=1﹣x﹣=﹣x,∵MT∥BF,∴=,∴=,解得x=±,经检验,x=是分式方程的解,且符合题意.∴AE=.如图3﹣2中,当点G在CB的延长线上时,过点M作MT⊥AB交AB的延长线于点T.∵BG∥AD,∴==,∵BD=,∴BM=,∴BT=TM=,∴ET=EB﹣BT=﹣(x﹣1)=﹣x,∵MT∥BF,∴=,∴=,解得x=±,经检验,x=是分式方程的解,且符合题意.∴AE=,综上所述,满足条件的AE的值为或.【点评】本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.13.(黄浦区)如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC•BD,AB=3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,联结DF.(1)求证:AE=AC;(2)设BC=x,=y,求y关于x的函数关系式及其定义域;(3)当△ABC与△DEF相似时,求边BC的长.【分析】(1)将AB2=BC•BD转化为,进而根据勾股定理和比例性质推出,进而△ABC∽△DAB,进一步证明△BAE≌△BAC,从而命题得证;(2)作AG∥BE交BC的延长线于G,作GH⊥AB,推出△FBE∽△FGA和cos∠ABC=,再根据比例性质求得结果;(3)两种情形:△ACB∽△DEF和△ACB∽△FED,当△ACB∽△DEF时,由y=1求得结果,当△ACB∽△FED时,推出DF∥AB,从而=,根据△ABE∽△DBA,推出BD=,进而可求得结果.【解答】(1)证明:∵AB2=BC•BD,∴,∴=,∴=,即:=,∴,∵∠C=∠BAD=90°,∴△ABC∽△DAB,∴∠ADB=∠BAC,∵∠BAD=90°,∴∠ADB+∠ABD=90°,∵AE⊥BD,∴∠AEB=90°,∴∠EAB+∠ABD=90°,∴∠BAE=∠ADB,∴∠BAE=∠BAC,∵∠AEB=∠C,AB=AB∴△BAE≌△BAC(AAS),∴AE=AC;(2)如图1,作AG∥BE交BC的延长线于G,作GH⊥AB,∴△FBE∽△FGA,∠ABE=∠BAG,∴,由(1)得,∠EAB=∠BAC,∵∠AEB=∠ACB=90°,∴∠ABE=∠ABC,∴∠ABC=∠BAG,∴AG=BG,∴BH=AH=AB=,∵cos∠ABC=,∴,∴BG=,∴AG=,∴,∴,∴,∴=,∴y=(0<x<);(3)如图2,当△ACB∽△DEF时,∠EDF=∠BAC,∴∠EDF=∠ADE,∵∠DEF=∠DEA,DE=DE,∴△DEF≌△DEA(ASA),∴EF=AE,∴y=1,∴=1,∴x1=,x2=﹣(舍去),∴BC=,如图3,当△ACB∽△FED时,∠BAC=∠DFE,∵∠BAE=∠BAC,∴∠DFE=∠BAE,∴DF∥AB,∴=,∵△ABE∽△DBA,∴,∴,∴BD=,∴DE=BD﹣BE=﹣x,∴=,∴x=,∴BC=,综上所述:BC=或.【点评】本题考查了相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的判定和性质等知识,解决问题的关键是作辅助线和正确分类,计算能力也很关键.14.(宝山区)如图,已知正方形ABCD,将边AD绕点A逆时针方向旋转n°(0<n<90)到AP的位置,分别过点C、D作CE⊥BP,DF⊥BP,垂足分别为点E、F.(1)求证:CE=EF;(2)联结CF,如果=,求∠ABP的正切值;(3)联结AF,如果AF=AB,求n的值.【分析】(1)作DG⊥CE于G,证明△BCE≌△CDG,进一步命题得证;(2)设∠ABP=α,设PD=a,CF=3a,通过角的运算推出∠BPD=45°,进而计算出EG,CG,EF,DG,进一步求得结果;(3)连接AF,CF,证得∠AFC=90°,再证得AF平分∠PAD,进一步求得结果.【解答】(1)证明:如图1,作DG⊥CE于G,∵CE⊥PB,∴∠DGC=∠BEC=90°,∴∠CBE+∠BCE=90°,∵四边形ABCD是正方形,∴∠BCD=90°,BC=CD,∴∠BCE+∠DCG=90°,∴∠CBE=∠DCG,∴△BCE≌△CDG(AAS),∴DG=CE,∵CE⊥PB,DF⊥PB,DG⊥CE,∴∠GEF=∠DFE=∠DGE=90°,∴四边形EFDG是矩形,∴EF=DG,∴CE=CF;(2)解:如图2,设∠ABP=α,设PD=a,CF=3a,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠BCD=∠BAD=90°,∵AP=AD,∴AB=AP,∴∠APB=∠ABP=α,∴∠BAP=180°﹣∠ABP﹣∠APB=180°﹣2α,∴∠PAD=∠PAB﹣∠BAD=90°﹣2α,∵AP=AD,∴∠APB=∠ADP==45°+α,∴∠FPD=∠APD﹣∠APB=45°,∴△PDF是等腰直角三角形,∴EG=DF=PD=,由(1)得:EF=CE,∴△EFC也是等腰直角三角形,∴DG=EF=CE==,∴CG=CE﹣EG=﹣a=,∴tan∠CDG==,同理(1)可证:∠BCE=∠ABP=α,∵∠BCE=∠CDG,∴∠ABP=∠CDG,∴tan∠ABP=;(3)解:如图3,连接AF,CF,∵四边形ABCD是正方形,∴∠BAC=∠CAD=45°,∵△CEF是等腰直角三角形,∴∠CFE=45°,∴∠CFE=∠BAC,∴点A、B、C、F共圆,∴∠AFE+∠ABC=180°,∵∠ABC=90°,∴∠AFE=90°,∵AF=,AB=AC,∴,即:cos∠CAF=,∴∠CAF=60°,∴∠DAF=∠CAF﹣∠DAC=60°﹣45°=15°,由(2)得:△PFD是等腰直角三角形,∴FD=FP,∵AP=AD,∴AF是PD的垂直平分线,∴∠PAD=2∠DAF=30°.【点评】本题考查了正方形性质,矩形的判定和性质,锐角三角形函数,确定圆的条件,等腰三角形的判定和性质等知识,解决问题的关键是通过角的转化,发现特殊角.15.(虹口区)已知:如图,在△ABC中,∠ACB=90°,AB=10,tan B=,点D是边BC延长线上的点,在射线AB上取一点E,使得∠ADE=∠ABC.过点A作AF⊥DE于点F.(1)当点E在线段AB上时,求证:=;(2)在(1)题的条件下,设CD=x,DE=y,求y关于x的函数关系式,并写出x的取值范围;(3)记DE交射线AC于点G,当△AEF∽△AGF时,求CD的长.【分析】(1)证明△ADE∽△ABD及△ADF∽△ABC,进而命题得证(2)根据△ADE∽△ABD得出,进而得出y与x的关系式,当x=0时,求得此时DE长,进而求得x的范围;(3)当G在线段AC上时,延长AF交BC于M,作MN⊥AB于N,可推出CM=CD,根据AM平分∠BAC,推出MN=CM,根据面积法求得CM,从而得出CD,G点在AC的延长线上不存在.【解答】(1)证明:∵∠ADE=∠ABC,∠DAE=∠BAD,∴△ADE∽△ABD,∴,∵AF⊥DE,∴∠AFD=∠ACB=90°,∴△ADF∽△ABC,∴,∴;(2)解:∵∠ACB=90°,tan B=,∴tan B==,设AC=3a,BC=4a,∵AC2+BC2=AB2,∴(3a)2+(4a)2=102,∴a=2,∴AC=6,BC=8,∴AD==,由(1)得,∴,∴y=,当x=0时,此时DE⊥AB,由S△ABC=得,10•DE=6×8,∴DE=,∴x>;(3)解:如图1,当G在线段AC上时,延长AF交BC于M,作MN⊥AB于N,∵△AEF∽△AGF,∴∠AEF=∠AGF,∴AF=AG,∴∠EAF=∠GAF=,∵∠DAF=∠BAC,∴∠DAC=∠GAF,∵AC⊥BD,∴∠AMC=∠ACD,∴AM=AD,∴CM=CD,∵AM平分∠BAC,∴MN=CM,由S△ABC=S△ABM+S△ACM得,,∴16•CM=48,∴CM=3,∴CD=3.如图2,当G点在AC的延长线上时,∵△AEF∽△AGF,∴∠AEF=∠AGF,∵∠AGF是∠AEF的外角,∴∠AGF>∠AEF,∴这种情形不存在,∴CD=3.【点评】本题考查了相似三角形判定和性质,等腰三角形的判定和性质,解直角三角形等知识,解决问题的关键是转化条件,发现特殊性.。

上海市各地区初中数学一模几何证明题合集

上海市各地区初中数学一模几何证明题合集

1、(2016 闸北)如图,在△ ABC 中,AC BC, BCA 90 ,点E 是斜边AB 上的一(2)求证:AD 2 AE AB ; 个动点(不与A 、B 重合),作EF AB 交边BC 于点F ,联结AF 、EC 交于点G ;(1)求证:△ BEC^A BFA ;(2)若BE:EA 1:2,求 ECF 的余弦值;2、(2016杨浦)已知,如图,在4ABC 中,点D 、E 分别在边 点F 在边AB 上, 2BC BF BA , CF 与DE 相交于点G ;(1)求证:DF AB BC DG ;3、(2016 徐汇)如图,在△ ABC 中,AC BC,点 D 在边 AC 上,AB BD , BE ED,且 CBE ABD ,DE 与CB 交于点F ;求证:(1)BD 2AD BE ;⑵ CD BF BC DF ;弋4、(2016松江)已知如图,在△ ABC 中,BD 平分 ABC 交AC 于点D,点E 在AB 上,且 BD 2 BE BC ;(1)求证: BDE C;// BC ,(2)当点E 为AC 中点时,求证: 2EG AFDG DF5、(2016普陀) 已知如图,在四边形ABCD中,ADB ACB ,延长AD、BC相交于点E ,求证:(1) △ ACE^A BDE ; (2) BE DC AB DE ;st J ___________________ m p6、(2016浦东)如图,在△ ABC中,D是BC边的中点,DE BC交AB于点E,AD AC , EC 交AD 于F ;(1)求证:△ ABC s' FCD ;(2)求证:FC 3EF ;7、(2016闵行)如图,已知在△ ABC中,AB AC ,点D为BC边的中点,点F在边AB 上,点E在线段DF的延长线上,且BAE BDF,点M在线段DF上,且EBM C ;(1)求证:EB BD BM AB ;(2)求证:AE BE ;8、(2016静安、青浦)已知,如图,在^ ABC中,点D、2 ________BD AD AC, AD 与CE 相交于点F , AE EF(1)求证:ADC DCE EAF;(2)求证:AF AD AB EF ;9、(2016嘉定)已知,如图,已知△ ABC与△ ADE均为等腰三角形,BA BC , DA DE , 如果点D在边BC上,且EDC BAD,点。

上海初三数学一模第几何证明

上海初三数学一模第几何证明

2017各区一模几何23训练杨浦23.已知:如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,∠ACD=∠B ,AG 与CD 相交于点F . (1)求证:AC 2=AD?AB ; (2)若=,求证:CG 2=DF?BG .静安23(本题满分12分,其中第1问5分,第2问7分)已知:如图,在△ABC 中,点D,E 分别在边AB,BC 上,BE BC BD BA ⋅=⋅ (1)求证:;BE AC AB DE ⋅=⋅(2)如果,2AB AD AC ⋅=求证:AE=AC.徐汇23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分) 如?图6,已知△ABC 中,点D 在边BC 上,∠DAB=∠B,点E 在边AC 上,满足AE?CD=AD?CE?. (1)求证:DE//AB ;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF.求证:DF=AF. 崇明23.(本题满分12分,其中每小题各6分)如图,在Rt ABC ∆中,90ACB ∠=︒°,CD AB ⊥,M 是CD 边上一点,DH BM ⊥于点H , DH 的延长线交AC 的延长线于点E . 求证:(1)AED CBM ∆∆∽; (2)AE CM AC CD ⋅=⋅.松江23.(本题满分12分,每小题各6分)如图,Rt △ABC 中,∠ACB =90°,D 是斜边AB 上的中点,E 是边BC 上的点,AE 与CD 交于点F ,且CB CE AC ⋅=2. B ADCH EM(第23题图)CA DFB E(1)求证:AE ⊥CD ;(2)联结BF ,如果点E 是BC 中点,求证:∠EBF=∠EAB .青浦23.(本题满分12分,每小题各6分)已知:如图7,在四边形ABCD 中,AB //CD ,对角线AC 、BD 交于点E ,点F 在边AB 上,联结CF 交线段BE 于点G ,.(1)求证:∠ACF =∠ABD ;(2)联结EF ,求证:. 浦东23.如图,在△ABC 中,AB AC =,点D 、E 是边BC 上的两个点,且BD DE EC ==,过点C 作CF ∥AB 交AE 延长线于点F ,联结FD 并延长与AB 交于点G ;(1)求证:2AC CF =;(2)联结AD ,如果ADG B ∠=∠, 求证:2CDAC CF =⋅;闵行23.(满分12分。

沪教版(五四制)上海市八年级第一学期19.1几何证明练习

沪教版(五四制)上海市八年级第一学期19.1几何证明练习

沪教版(五四制)上海市八年级第一学期19.1几何证明练习5.如图所示,已知ABC ∆中,︒=∠60A ,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O .求证:BE+CD=BC .6.已知:如图所示,AB=CD ,CDEABE S S ∆∆=.求证:DOE BOE ∠=∠.7.已知:如图所示,AD 平分BAC ∠,M 是BC 的中点,MF//AD ,分别交CA 延长线,AB 于F 、E .求证:BE=CF .8.已知:如图所示,在ABC ∆中,BA=BC ,︒=∠45ABC ,AD 是BC 边上的高,E 是AD 上一点,ED=CD ,连结EC .求证:EA=EC .9.已知如图,△ABC 中,AB=AC ,D 、E 分别是AC 、AB 上的点,M 、N 分别是CE 、BD 上的点,若MA ⊥CE ,AN ⊥BD ,AM=AN 。

求证:EM=DN 。

10.如图,在ABC Rt ∆中,︒=∠90C ,M 是AB 中点,︒=∠90EMF ,(1)在AE 、EF 、FB 中是否总有最大的线段?若AOEBCDAEC D BO A B M D C E FAB D F EA E D BC MB NBC有,是哪一条?(2)AE 、EF 、FB 能否构成直角三角形?若能,请加以证明. 11.如图,在四边形ABCD 中,AB=2,CD=1,︒=∠60A ,︒=∠=∠90D B ,求四边形ABCD 的面积.12.已知:如图所示,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且BC EC 41=.求证:EF AF ⊥.AB CD ABCFD。

沪教版(五四制)2020-2021学年上海市八年级第一学期19.1几何证明练习

沪教版(五四制)2020-2021学年上海市八年级第一学期19.1几何证明练习

沪教版(五四制)2020-2021学年上海市八年级第一学期19.1几何证明练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,已知AB ⊥AC ,AD ⊥AE ,AB=AC ,AD=AE ,求证:(1)BE=DC(2)BE ⊥DC 。

2.如图,ABC △中,,108AB AC A =∠=,BD 平分ABC ∠交AC 于D 点. 求证:BC=AC+CD .3.如图,D 为等边△ABC 内一点,且AD=BD ,BP=AB ,∠DBP=∠DBC 。

求∠BPD 的度数。

4.已知:正方形ABCD ,∠EAF =45∘,AH ⊥EF .求证:AD =AH .5.已知:等腰直角三角形ABC 中,∠ACB=90°;AC=BC ;∠1=∠3;BE ⊥AD 。

求证:BE=12AD 。

6.如图所示,在ABC ∆中,AC BC =,90ACB ∠=︒,D 是AC 上一点,AE BD ⊥,垂足为E ,BE 交AC 于D ,又12AE BD =.求证:BD 是ABC ∠的平分线.7.△ABC 中,AC=BC ,∠ACB=90°,CD=BD ,∠1=∠2,求证:CM ⊥AD 。

8.已知:AD 是ΔABC 的中线,AE=EF .求证:AC=BF .9.已知:△ABC ,△BDE 为等边三角形,C 、B 、D 三点共线。

求证:(1)AD=EC ;(2)BP=BQ ;(3)△BPQ 为等边三角形。

10.已知:如图所示,在ΔABC中,BA=BC,∠ABC=45°,AD是BC边上的高,E是AD上一点,ED=CD,连结EC.求证:EA=EC.11.如图,AB=CD,E为BC的中点,∠BAC=∠BCA,求证:AD=2AE。

12.如图,AB∥CD,AE、DE分别平分∠BAD和∠ADC,求证:AD=AB+CD。

13.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,求证:∠ADC+∠B=180º14.如图所示,在ΔABC中,AB=AC,∠BAC=90°,BE平分∠ABC,交AC于D,CE⊥BE 于E点,BD.求证:CE=1215.如图所示,已知ΔABC中,∠A=60°,BD、CE分别平分∠ABC和∠ACB,BD、CE 交于点O.求证:BE+CD=BC.16.已知:如图所示,AB=CD,SΔABE=SΔCDE.求证:∠BOE=∠DOE.17.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.18.已知:如图所示,在ΔABC中,BA=BC,∠ABC=45°,AD是BC边上的高,E是AD上一点,ED=CD,连结EC.求证:EA=EC.19.已知如图,△ABC中,AB=AC,D、E分别是AC、AB上的点,M、N分别是CE、BD上的点,若MA⊥CE,AN⊥BD,AM=AN。

2022年上海市15区中考数学一模考点分类汇编09 几何证明(解答题23题)含详解

2022年上海市15区中考数学一模考点分类汇编09  几何证明(解答题23题)含详解

2022年上海市15区中考数学一模考点分类汇编专题09 几何证明一.解答题(共15小题)1.(普陀区)已知:如图,在△ABC中,点D、E分别在边AC、BC上,BD=DC,BD•BC=BE•AC.(1)求证:∠ABE=∠DEB;(2)延长BA、ED交于点F,求证:.2.(崇明区)已知:如图,在Rt△ACB中,∠ACB=90°,CD⊥AB,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足BC2=CD•BE.求证:(1)△BCE∽△ACB;(2)过点C作CM⊥BE,交BE于点G,交AB于点M,求证:BE•CM=AB•CF.3.(嘉定区)如图,已知正方形ABCD和正方形BEFG,点E在边BC上,点G在边AB的延长线上,联结AE,并延长AE交CG于点K.(1)求证:△ABE∽△CKE;(2)如果CG与EF交于点H,求证:BE2=FH•AB.4.(宝山区)如图,已知△ABC和△DCE都是等边三角形,点B、C、E在同一直线上,联结BD 交AC边于点F.(1)如果∠ABD=∠CAD,求证:BF2=DF•DB;(2)如果AF=2FC,S四边形ABCD=18,求S△DCE的值.5.(杨浦区)已知,如图,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,AE∥CD,DE∥AB,过点C作CF∥AD,交线段AE于点F,联结BF.(1)求证:△ABF≌△EAD;(2)如果射线BF经过点D,求证:BE2=EC•BC.6.(松江区)已知:如图,梯形ABCD中,DC∥AB,AC=AB,过点D作BC的平行线交AC于点E.(1)如果∠DEC=∠BEC,求证:CE2=ED•CB;(2)如果AD2=AE•AC,求证:AD=BC.7.(浦东新区)如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠B=∠ADE=30°,AC 与DE相交于点F,联结CE,点D在边BC上.(1)求证:△ABD∽△ACE;(2)若=,求的值.8.(徐汇区)如图,已知△ADE的顶点E在△ABC的边BC 上,DE与AB相交于点F,∠FEA=∠B,∠DAF=∠EAC.(1)求证:AE2=AF•AB;(2)求证:=.9.(金山区)已知:如图,梯形ABCD中,AD∥BC,AB=DC=6,E是对角线BD上一点,DE=4,∠BCE=∠ABD.(1)求证:△ABD∽△ECB;(2)如果AD:BC=3:5,求AD的长.10.(静安区)如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR交线段OC于点P,QP⊥BP,QP交BD于点E.(1)求证:△APQ∽△DBR;(2)当∠QED等于60°时,求的值.11.(虹口区)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD,对角线AC与BD交于点E.点F是线段EC上一点,且∠BDF=∠BAC.(1)求证:EB2=EF•EC;(2)如果BC=6,sin∠BAC=,求FC的长.12.(奉贤区)根据相似形的定义可以知道,如果一个四边形的四个角与另一个四边形的四个角对应相等,且它们各有的四边对应成比例,那么这两个四边形叫做相似四边形.对应相等的角的顶点叫做这两个相似四边形的对应顶点,以对应顶点为端点的边是这两个相似四边形的对应边,对应边的比叫做这两个相似多边形的相似比.(我们研究的四边形都是指凸四边形)(1)某学习小组在探究相似四边形的判定时,得到如下两个命题,请判断它们是真命题还是假命题(直接在横线上填写“真”或“假”)①梯形的中位线将原梯形分成的两个小的梯形相似;命题;②有一个内角对应相等的两个菱形相似;命题.(2)已知:如图1,△ABC是以BC为斜边的等腰直角三角形,以BC为直角边作等腰直角三角形BCD,再以BD为直角边作等腰直角三角形BDE求证:四边形ABDC与四边形CBED相似.(3)已知:如图2,在△ABC中,点D、E分别在边AB、AC上,BE、CD相交于点F,点G在AF的延长线上,联结BG、CG.如果四边形ADFE与四边形ABGC相似,且点A、D、F、E分别对应A、B、G、C.求证:AF•BF=AG•EF.13.(青浦区)已知:如图,在四边形ABCD中,AC、BD相交于点E,∠ABD=∠CBD,DC2=DE•DB.(1)求证:△AEB∽△DEC;(2)求证:BC•AD=CE•BD.14.(徐汇区)如图,已知Rt△ABC中,∠ACB=90°,射线CD交AB于点D,点E是CD上一点,且∠AEC=∠ABC,联结BE.(1)求证:△ACD∽△EBD;(2)如果CD平分∠ACB,求证:AB2=2ED•EC.15.(黄浦区)已知:如图,在四边形ABCD中,AB∥CD,过点D作DF ∥CB,分别交AC、AB点E、F,且满足AB•AF=DF•BC.(1)求证:∠AEF=∠DAF;(2)求证:=.2022年上海市15区中考数学一模考点分类汇编专题09 几何证明一.解答题(共15小题)1.(普陀区)已知:如图,在△ABC中,点D、E分别在边AC、BC上,BD=DC,BD•BC=BE•AC.(1)求证:∠ABE=∠DEB;(2)延长BA、ED交于点F,求证:.【分析】(1)由BD•BC=BE•AC得出=,BD=DC得出∠DBC=∠C,从而得出结论;(2)根据(1)的结论和已知证明△FAD∽△FDB即可.【解答】证明:(1)∵BD=DC,∴∠DBC=∠C,∵BD•BC=BE•AC,∴=,∴△ABC∽△DEB,∴∠ABC=∠DEB,即∠ABE=∠DEB;(2)如图所示:∵△ABC∽△DEB,∴∠CAB=∠BDE,∴∠FAD=∠FDB,∵∠F=∠F,∴△FAD∽△FDB,∴=,∵∠ABE=∠DEB,∴FB=FE,又∵BD=DC,∴=.【点评】本题考查相似三角形的判定和性质,关键是找到相似的三角形.2.(崇明区)已知:如图,在Rt△ACB中,∠ACB=90°,CD⊥AB,垂足为点D,E为边AC上一点,联结BE交CD于点F,并满足BC2=CD•BE.求证:(1)△BCE∽△ACB;(2)过点C作CM⊥BE,交BE于点G,交AB于点M,求证:BE•CM=AB•CF.【分析】(1)通过证明△BCD∽△EBC,可得∠CEB=∠CBD,可得结论;(2)通过证明△BCE∽△ACB,△ACB∽△CDB,△CDM∽△BDF,可得,,,可得结论.【解答】证明:(1)∵BC2=CD•BE,∴,设=k,则BC=k•CD,BE=k•BC,∴CE==×BC,BD==×CD,∴=,又∵∠ACB=∠CDB=90°,∴△BCD∽△EBC,∴∠CEB=∠CBD,又∵∠ACB=∠BCE=90°,∴△BCE∽△ACB;(2)如图,∵△BCE∽△ACB,∴,∵∠CEB=∠CBA,∴∠A=∠CBE,∵∠A+∠ABC=90°=∠DCB+∠CBD,∴∠A=∠DCB,∴∠DCB=∠EBC,∴CF=BF,∵∠A=∠DCB,∠CDB=∠ACB=90°,∴△ACB∽△CDB,∴,∵CM⊥BE,∴∠ABE+∠CMD=90°=∠CMD+∠MCD,∴∠MCD=∠ABE,又∵∠CDB=∠CDM=90°,∴△CDM∽△BDF,∴,∴,∴BE•CM=AB•CF.【点评】本题考查了相似三角形的判定和性质,直角三角形的性质,灵活运用相似三角形的性质是解题的关键.3.(嘉定区)如图,已知正方形ABCD和正方形BEFG,点E在边BC上,点G在边AB的延长线上,联结AE,并延长AE交CG于点K.(1)求证:△ABE∽△CKE;(2)如果CG与EF交于点H,求证:BE2=FH•AB.【分析】(1)由“SAS”可证△ABE≌△CBG,可得∠BAE=∠ECK,可得结论;(2)通过证明△ABE∽△GFH,可得,可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵四边形BEFG是正方形,∴FG=BG=BE,∠CBG=90°,∴∠ABE=∠CBG=90°,在△ABE和△CBG中,,∴△ABE≌△CBG(SAS),∴∠BAE=∠ECK,又∵∠AEB=∠CEK,∴△ABE∽△CKE;(2)由题意,得∠CEF=∠F=∠ABE=90°,∴FG∥BC,∴∠ECK=∠FGH,∵∠BAE=∠ECK,∴∠BAE=∠FGH,∴△ABE∽△GFH,∴,∵FG=BE,∴,∴BE2=FH•AB.【点评】本题考查了相似三角形的判定和性质,正方形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是解题的关键.4.(宝山区)如图,已知△ABC和△DCE都是等边三角形,点B、C、E在同一直线上,联结BD交AC边于点F.(1)如果∠ABD=∠CAD,求证:BF2=DF•DB;(2)如果AF=2FC,S四边形ABCD=18,求S△DCE的值.【分析】(1)证明△ABF≌△CAD(ASA),由全等三角形的性质可得出BF=AD,证明△ADF∽△BDA,由相似三角形的性质得出,则可得出结论;(2)证明△DCF∽△BAF,由相似三角形的性质得出=,设S△DCF=x,则S△ADF=S△BCF=2x,S△ABF=4x,由四边形ABCD的面积可得出x+2x+2x+4x=18,求出x=2,求出三角形ABC的面积,证明△ABC∽△DCE,由相似三角形的性质得出=,则可得出结论.【解答】(1)证明:∵△ABC和△DCE都是等边三角形,∴AB=AC,∠BAC=∠DCE=∠ACB=60°,又∵∠ABD=∠CAD,∴△ABF≌△CAD(ASA),∴BF=AD,∵∠ADF=∠BDA,∠ABD=∠CAD,∴△ADF∽△BDA,∴,∴AD2=DF•BD,∴BF2=DF•BD;(2)解:∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴∠ACD=∠BAC,∴AB∥CD,∴△DCF∽△BAF,∴=,∴,,,设S△DCF=x,则S△ADF=S△BCF=2x,S△ABF=4x,∵S四边形ABCD=18,∴x+2x+2x+4x=18,解得x=2,∴S△ABF=8,S△BCF=4,∴S△ABC=S△ABF+S△BCF=8+4=12,∵△ABC和△DCE都是等边三角形,∴△ABC∽△DCE,∴=,∴S△DCE==×12=3.【点评】本题考查了等边三角形的性质,相似三角形的判定与性质,全等三角形的判定与性质,证明△DCF∽△BAF是解题的关键.5.(杨浦区)已知,如图,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,AE∥CD,DE ∥AB,过点C作CF∥AD,交线段AE于点F,联结BF.(1)求证:△ABF≌△EAD;(2)如果射线BF经过点D,求证:BE2=EC•BC.【分析】(1)先证AB=AE,DE=DC,再证四边形ADCF是平行四边形,得出AF=CD,进而得出AF=DE,再由平行线性质得∠AED=∠BAF,进而证得结论;(2)通过证明△BEF∽△BCD,△DEF∽△BAF,可得,即可得结论.【解答】证明:(1)∵AE∥CD,∴∠AEB=∠BCD,∵∠ABC=∠BCD,∴∠ABC=∠AEB,∴AB=AE,∵DE∥AB,∴∠DEC=∠ABC,∠AED=∠BAF,∵∠ABC=∠BCD,∴∠DEC=∠BCD,∴DE=DC,∵CF∥AD,AE∥CD,∴四边形ADCF是平行四边形,∴AF=CD,∴AF=DE,在△ABF和△EAD中,,∴△ABF≌△EAD(SAS);(2)如图,连接FD,∵射线BF经过点D,∴点B,点F,点D三点共线,∵AE∥DC,∴△BEF∽△BCD,∴,,∵DE∥AB,∴△DEF∽△BAF,∴,∴,∵CD=AF,∴,∴BE2=EC•BC.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,平行四边形的判定和性质,利用相似三角形的性质得到线段的关系是解题的关键.6.(松江区)已知:如图,梯形ABCD中,DC∥AB,AC=AB,过点D作BC的平行线交AC于点E.(1)如果∠DEC=∠BEC,求证:CE2=ED•CB;(2)如果AD2=AE•AC,求证:AD=BC.【分析】(1)通过证明△DEC∽△CEB,可得,可得结论;(2)通过证明△BCE∽△ACB,可得,由相似三角形的性质可得,可得,通过证明△ADE∽△ACD,可得=,可得结论.【解答】证明:(1)∵AC=AB,∴∠ACB=∠ABC,∵DC∥AB,∴∠DCE=∠CAB,∵DE∥BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠DEC=∠BCE=∠BEC=∠ABC,∴∠BAC=∠CBE=∠DCE,BE=BC,∴△DEC∽△CEB,∴,∴CE2=DE•BE=DE•CB;(2)∵∠BAC=∠CBE,∠ACB=∠BCE,∴△BCE∽△ACB,∴,∵△DEC∽△CEB,∴,∠CDE=∠BCE=∠CED=∠BEC,∴,CD=CE,∵AD2=AE•AC,∴,又∵∠DAE=∠DAC,∴△ADE∽△ACD,∴=,∴,∴AD=BC.【点评】本题考查了相似三角形的判定和性质,熟练运用相似三角形的判定是解题的关键.7.(浦东新区)如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠B=∠ADE=30°,AC 与DE相交于点F,联结CE,点D在边BC上.(1)求证:△ABD∽△ACE;(2)若=,求的值.【分析】(1)根据相似三角形的判定定理得到△BAC∽△DAE,根据相似三角形的性质得到,求得∠BAD=∠CAE,根据相似三角形的判定定理得到结论;(2)根据相似三角形的性质和直角三角形的性质即可得到结论.【解答】(1)证明:∵∠ADE=∠DAE,∠B=∠ADE,∴△BAC∽△DAE,∴,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE;(2)解:∵△ABD∽△ACE,∴,∵∠DAE=90°,∠ADE=30°,∴=,∴=•==3,∵△ADF∽△ECF,∴==3.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解8.(徐汇区)如图,已知△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,∠FEA=∠B,∠DAF=∠EAC.(1)求证:AE2=AF•AB;(2)求证:=.【分析】(1)利用两个角相等证明△BAE∽△EAF,得,即可证明结论;(2)首先证明△DAE∽△CAB,得,∠D=∠C,再证明△DAF∽△CAE,得,等量代换即可.【解答】证明:(1)∵∠FEA=∠B,∠BAE=∠EAF,∴△BAE∽△EAF,∴,∴AE2=AF•AB,(2)∵∠DAF=∠CAE,∠FAE=∠FAE,∴∠DAE=∠CAF,∵∠FEA=∠B,∴△DAE∽△CAB,∴,∠D=∠C,∵∠DAF=∠EAC,∴△DAF∽△CAE,∴,∴,∴.【点评】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解9.(金山区)已知:如图,梯形ABCD中,AD∥BC,AB=DC=6,E是对角线BD上一点,DE=4,∠BCE=∠ABD.(1)求证:△ABD∽△ECB;(2)如果AD:BC=3:5,求AD的长.【分析】(1)先由AD∥BC得到∠ADB=∠EBC,然后由∠ABD =∠ECB得证△ABD∽△ECB;(2)先由AB=DC得到∠ABC=∠BCD,再由∠∠ABD=∠BCE得到∠DBC=∠DCE,从而得到△DBC∽△DCE,然后利用相似三角形的性质求得BD的长,进而得到BE的长,再由△ABD∽△ECB得到AD的长.【解答】解:(1)∵AD∥BC,∴∠ADB=∠EBC,又∵∠BCE=∠ABD,∴△ABD∽△ECB.(2)∵梯形ABCD中,AD∥BC,AB=DC=6,∴∠ABC=∠BCD,又∵∠BCE=∠ABD,∴∠DBC=∠DCE∵∠BDC=∠CDE,∴△BDC∽△CDE,∴,∵DC=6,DE=4,∴BD=9,∴BE=5,∵△ABD∽△ECB,∴,由AD:BC=3:5,设AD=3x,BC=5x,∴,解得:x=或x=﹣(舍),∴AD=.【点评】本题考查了梯形的性质、相似三角形的判定与性质、平行线的性质,解题的关键是熟练应用等量代换得证∠DBC=∠DCE.10.(静安区)如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR交线段OC于点P,QP⊥BP,QP交BD于点E.(1)求证:△APQ∽△DBR;(2)当∠QED等于60°时,求的值.【分析】(1)利用正方形的性质可得∠QAP=∠BDR=45°,AC⊥BD,根据已知QP⊥BP,利用同角的余角相等可得∠APQ=∠DBR,即可解答;(2)由(1)可得△APQ∽△DBR,从而可得=,根据已知可得∠BEP=60°,设OE 为a,然后在Rt△OEP中,表示出OP=a,EP=2a,从而在Rt△BEP中求出BE=4a,进而求出OB,然后进行计算即可解答.【解答】(1)证明:∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=AC,OB=OD=BD,AC=BD,∠QAP=∠BDR=45°,∴∠BOC=∠DOC=90°,OA=OB,∴∠OBP+∠OPB=90°,∵QP⊥BP,∴∠QPB=90°,∴∠OPB+∠QPA=90°,∴∠APQ=∠DBR,∴△APQ∽△DBR;(2)解:由(1)可得△APQ∽△DBR,∴=,∵∠QED=60°,∴∠BEP=∠QED=60°,∴∠OPE=90°﹣∠BEP=30°,∴PE=2OE,OP=OE,设OE为a,则EP=2a,OP=a,在Rt△BEP中,BE===4a,∴OB=BE﹣OE=4a﹣a=3a,∴BD=2OB=6a,∵OA=3a,OP=a,∴AP=OA+OP=3a+a,∴==,∴=.【点评】本题考查了正方形的性质,相似三角形的判定与性质,全等三角形的判定与性质,根据题目的已知条件并结合图形分析是解题的关键.11.(虹口区)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,BC=2AD,对角线AC与BD交于点E.点F是线段EC上一点,且∠BDF=∠BAC.(1)求证:EB2=EF•EC;(2)如果BC=6,sin∠BAC=,求FC的长.【分析】(1)先由AD∥BC得到△EAD∽△ECB,从而得到,然后由∠BDF=∠BAC、∠AEB=∠DEF得证△EAB∽△EDF,进而得到,最后得到结果;(2)先利用条件得到AC、AB的长,然后利用BC=2AD得到AD、BD的长,再结合相似三角形的性质得到EB、EC的长,进而得到EF的长和FC的长.【解答】(1)证明:∵AD∥BC,∴△EAD∽△ECB,∴,即,∵∠BDF=∠BAC,∠AEB=∠DEF,∴△EAB∽△EDF,∴,∴,∴EB2=EF•EC.(2)解:∵BC=6,sin∠BAC==,BC=2AD∴AC=9,AD=3,∵∠ABC=90°,AD∥BC,∴∠BAD=90°,∴AB===3,∴BD===3,∵△EAD∽△ECB,∴,∴EC=AC=×9=6,EB=BD=×3=2,∵EB2=EF•EC,即(2)2=6EF,∴EF=4,∴FC=EC﹣EF=6﹣4=2.【点评】本题考查了直角梯形的性质、相似三角形的判定与性质、勾股定理,解题的关键是熟知“8”字模型相似三角形的判定与性质.12.(奉贤区)根据相似形的定义可以知道,如果一个四边形的四个角与另一个四边形的四个角对应相等,且它们各有的四边对应成比例,那么这两个四边形叫做相似四边形.对应相等的角的顶点叫做这两个相似四边形的对应顶点,以对应顶点为端点的边是这两个相似四边形的对应边,对应边的比叫做这两个相似多边形的相似比.(我们研究的四边形都是指凸四边形)(1)某学习小组在探究相似四边形的判定时,得到如下两个命题,请判断它们是真命题还是假命题(直接在横线上填写“真”或“假”)①梯形的中位线将原梯形分成的两个小的梯形相似;假命题;②有一个内角对应相等的两个菱形相似;真命题.(2)已知:如图1,△ABC是以BC为斜边的等腰直角三角形,以BC为直角边作等腰直角三角形BCD,再以BD为直角边作等腰直角三角形BDE求证:四边形ABDC与四边形CBED相似.(3)已知:如图2,在△ABC中,点D、E分别在边AB、AC上,BE、CD相交于点F,点G在AF的延长线上,联结BG、CG.如果四边形ADFE与四边形ABGC相似,且点A、D、F、E分别对应A、B、G、C.求证:AF•BF=AG•EF.【分析】(1)根据相似多边形的定义,分别从对应边和对应角两个方面判断即可;(2)由等腰直角三角形的性质可知,两个四边形符合相似四边形的定义;(3)根据相似四边形对应角相等得,∠ADF=∠ABG,∠AEF=∠ACG,则CD∥BG,BE∥CG,从而证明四边形BGCF是平行四边形,有BF=CG,再证明△EAF∽△CAG,则,等量代换即可证明结论.【解答】(1)解:①梯形的中位线将原梯形分成的两个小的梯形满足四个角对应线段,但边不是对应成比例,所以原命题是假命题;②有一个内角对应相等的两个菱形满足四个角线段,对应边成比例,所以是真命题,故答案为:假,真;(2)证明:由题意知,∠A=∠CBE=90°,∠ACD=∠CDE=135°,∠ABD=∠BCD=90°.∠CDB=∠E=45°,∴四边形ABDC与四边形CBED的四个角对应相等,设AB=AC=x,则CD=x,BD=DE=2x,BE=2x,∴,∴四边形ABDC与四边形CBED的四边对应成比例,∴四边形ABDC与四边形CBED相似;(3)证明:∵四边形ADFE与四边形ABGC相似,且点A、D、F、E分别对应A、B、G、C.∴∠ADF=∠ABG,∠AEF=∠ACG,∴CD∥BG,BE∥CG,∴四边形BGCF是平行四边形,∴BF=CG,∵∠AEF=∠ACG,∠EAF=∠CAG,∴△EAF∽△CAG,∴,∴AF•BF=AG•EF.【点评】本题是相似形综合题,主要考查了相似四边形的定义,等腰直角三角形的性质,平行四边形的判定与性质,相似三角形的判定与性质等知识,读懂定义,紧扣定义中从边和角两个方面进行考虑是解题的关键.13.(青浦区)已知:如图,在四边形ABCD中,AC、BD相交于点E,∠ABD=∠CBD,DC2=DE•DB.(1)求证:△AEB∽△DEC;(2)求证:BC•AD=CE•BD.【分析】(1)根据已知条件先证明△DCE∽△DBC,可得∠DCE=∠DBC,进而可以证明结论;(2)结合(1)的结论证明△AED∽△BEC,可得∠ADE=∠BCE,再证明△BDA∽△BCE,进而可得结论.【解答】证明:(1)∵DC2=DE⋅DB,∴,∵∠CDE=∠BDC,∴△DCE∽△DBC,∴∠DCE=∠DBC,∵∠ABD=∠DBC,∴∠DCE=∠ABD,∵∠AEB=∠DEC,∴△AEB∽△DEC;(2)∵△AEB∽△DEC,∴,∵∠AED=∠BEC,∴△AED∽△BEC,∴∠ADE=∠BCE,∵∠ABD=∠DBC,∴△BDA∽△BCE,∴BC•AD=CE•BD.【点评】本题考查了相似三角形的判定与性质,解决本题的关键是得到△BDA∽△BCE.14.(徐汇区)如图,已知Rt△ABC中,∠ACB=90°,射线CD交AB于点D,点E是CD上一点,且∠AEC=∠ABC,联结BE.(1)求证:△ACD∽△EBD;(2)如果CD平分∠ACB,求证:AB2=2ED•EC.【分析】(1)根据已知条件先证明△ADE∽△CDB,可得,因为∠ADC=∠EDB,即可得证;(2)结合(1)证明△EAB是等腰直角三角形,进而可得结论.【解答】证明:(1)∵∠AEC=∠ABC,∠ADE=∠BDC,∴△ADE∽△CDB,∴,又∵∠ADC=∠EDB,∴△ACD∽△EBD;(2)∵△ADE∽△CDB,∴∠DCB=∠EAB,∵△ACD∽△EBD,∴∠ACD=∠EBD,∵∠ACB=90°,∴∠EAB+∠EBD=∠DCB+∠ACD=90°,∴∠AEB=90°,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∴∠EBD=∠EAB=45°,∴EA=EB,∴△EAB是等腰直角三角形,∴∠EAD=∠ACE,∠AED=∠CEA,∵△AED∽△CEA,∴AE2=ED•EC,∵AE2+EB2=AB2,∴2AE2=AB2,∴AE2=AB2,∴AB2=ED•EC,∴AB2=2ED•EC.【点评】本题考查了相似三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理,解决本题的关键是得到△EAB是等腰直角三角形.15.(黄浦区)已知:如图,在四边形ABCD中,AB∥CD,过点D作DF∥CB,分别交AC、AB点E、F,且满足AB•AF=DF•BC.(1)求证:∠AEF=∠DAF;(2)求证:=.【分析】(1)根据DF∥CB,可得∠B=∠AFD,根据AB•AF=DF•BC.证明△ABC∽△DAF,进而可以解决问题;(2)由△DCE∽△FAE,可得=,所以=,再由△AFE∽△DFA,可得AF2=EF•DF,由△AEF∽△ACB,得=,进而可得结论.【解答】(1)证明:∵AB∥CD,DF∥CB,∴四边形FBCD是平行四边形,∴DC=FB,DF=CB,∵AB•AF=DF•BC.∴=,∵DF∥CB,∴∠B=∠AFD,∴△ABC∽△DAF,∴∠ACB=∠DAF,∵DF∥CB,∴∠AEF=∠ACB,∴∠AEF=∠DAF;(2)证明:∵AB∥CD,∴△DCE∽△FAE,∴=,∴=,∴=,∵∠AEF=∠DAF,∠AFE=∠DFA,∴△AFE∽△DFA,∴=,∴AF2=EF•DF,∴====,∵DF∥CB,∴△AEF∽△ACB,∴=,∴=.【点评】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质,得到△AEF∽△ACB.。

2019上海初三数学一模综合题23题

2019上海初三数学一模综合题23题

2019上海初三数学一模几何证明题23题23. (普陀)已知,如图,△ADE 的顶点E 在△ABC 的边BC 上,DE 与AB 相交于点F , 2AE AF AB =⋅,DAF EAC ∠=∠.(1)求证:△ADE ∽△ACB ;(2)求证:DF CE DE CB=.23. (奉贤)已知,如图,在△ABC 中,点D 在边AC 上,BD 的垂直平分线交CA 的延长线于点E ,交BD 于点F ,联结BE ,2ED EA EC =⋅.(1)求证:EBA C ∠=∠;(2)如果BD CD =,求证:2AB AD AC =⋅.23. (金山)如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:2AM MF MH =⋅;(2)若2BC BD DM =⋅,求证:AMB ADC ∠=∠.23.(宝山) 地铁10号线某站点出口横截面平面图如图所示,电梯AB 的两端分别距顶部9.9米和2.4米,在距电梯起点A 端6米的P 处,用1.5米的测角仪测得电梯终端B 处的仰角为14°,求电梯AB 的坡度与长度.【参考数据:sin140.24︒≈,tan140.25︒≈,cos140.97︒≈】23. (闵行)如图,在△ABC 中,点D 是边BC 上一点,且AD AB =,AE BC ⊥,垂足为点E ,过点D 作DF ∥AB ,交边AC 于点F ,联结EF ,212EF BD EC =⋅. (1)求证:△EDF ∽△EFC ;(2)如果14EDF ADC S S =V V ,求证:AB BD =.23. (青浦)已知,如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD AF =,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB AC =.23. (浦东)已知,如图,在平行四边形ABCD 中,M 是边BC 的中点,E 是边BA 延长线上的一点,联结EM ,分别交线段AD 于点F 、AC 于点G .(1)求证:GF EF GM EM=; (2)当22BC BA BE =⋅时,求证:EMB ACD ∠=∠.23.(静安) 已知,如图,在△ABC 中,点D 、E 分别在边BC 和AB 上,且AD AC =,EB ED =,分别延长ED 、AC 交于点F .(1)求证:△ABD ∽△FDC ;(2)求证:2AE BE EF =⋅.23.(杨浦) 已知,如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且ACD B BAE ∠=∠=∠.(1)求证:AD DE BC AC=; (2)当点E 为CD 中点时,求证:22AE AB CE AD=.23. (徐汇)如图,已知菱形ABCD ,点E 是AB 的中点,AF BC ⊥于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且2AE EG ED =⋅.(1)求证:DE EF ⊥;(2)求证:22BC DF BF =⋅.23. (虹口)如图,在△ABC 中,AB AC =,D 是边BC 的中点,DE AC ⊥,垂足为点E .(1)求证:DE CD AD CE ⋅=⋅;(2)设F 为DE 的中点,联结AF 、BE ,求证:AF BC AD BE ⋅=⋅.23. (松江)已知如图,在梯形ABCD 中,AD ∥BC ,AB DC =,E 是对角线AC 上一点, 且AC CE AD BC ⋅=⋅.(1)求证:DCA EBC ∠=∠;(2)延长BE 交AD 于F ,求证:2AB AF AD =⋅.23. (黄浦)如图,在三角形ABC 中,点D 在边BC 上,CAD B ∠=∠,点E 在边AB 上,联结CE 交AD 于点H ,点F 在CE 上,且满足CF CE CD BC ⋅=⋅.(1)求证:△ACF ∽△ECA ;(2)当CE 平分ACB ∠时,求证:CDH CAE S CD S BC=V V .23. (崇明)如图,在△ABC 中,D 是BC 上一点,E 是AC 上一点,点G 在BE 上,联结DG 并延长交AE 于点F ,BGD BAD C ∠=∠=∠.(1)求证:BD BC BG BE ⋅=⋅;(2)如果90BAC ∠=︒,求证:AG BE ⊥.23. (嘉定)如图,已知点D 在△ABC 的外部,AD ∥BC ,点E 在边AB 上,AB AD BC AE ⋅=⋅.(1)求证:BAC AED ∠=∠;(2)在边AC 取一点F ,如果AFE D ∠=∠,求证:AD AF BC AC=.23. (长宁)如图,点D、E分别在的边AC、AB上,延长DE、CB交于点F,且AE AB AD AC⋅=⋅.(1)求证:FEB C∠=∠;(2)联结AF,若FB CDAB FD=,求证:EF AB AC FB⋅=⋅.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(2016闸北)如图,在△ABC 中,AC BC =,90BCA ∠=︒,点E 是斜边AB 上的一
个动点(不与A 、B 重合),
作EF AB ⊥交边BC 于点F ,联结AF 、EC 交于点G ; (1)求证:△BEC ∽△BFA ;
(2)若:1:2BE EA =,求ECF ∠的余弦值;
2、(2016杨浦)已知,如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,
点F 在边AB 上,
2BC BF BA =⋅,CF 与DE 相交于点G ;
(1)求证:DF AB BC DG ⋅=⋅; (2)当点E 为AC 中点时,求证:2EG AF
DG DF
=

3、(2016徐汇)如图,在△ABC 中,AC BC =,点D 在边AC 上,AB BD =,BE ED =,
且CBE ABD ∠=∠,
DE 与CB 交于点F ;
求证:(1)2BD AD BE =⋅;(2)CD BF BC DF ⋅=⋅;
4、(2016松江)已知如图,在△ABC 中,BD 平分ABC ∠交AC 于点D ,点E 在AB 上,
且2BD =BE BC ⋅; (1)求证:BDE C ∠=∠; (2)求证:2AD AE AB =⋅;
5、(2016普陀) 已知如图,在四边形ABCD 中,ADB ACB ∠=∠,延长AD 、BC 相交
于点E ,
求证:(1)△ACE ∽△BDE ; (2)BE DC AB DE ⋅=⋅;
6、(2016浦东)如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E ,
AD AC =,EC 交AD 于F ;
(1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =;
7、(2016闵行)如图,已知在△ABC 中,AB AC =,点D 为BC 边的中点,点F 在边AB
上,点E 在线段DF 的
延长线上,且BAE BDF ∠=∠,点M 在线段DF 上,且EBM C ∠=∠; (1)求证:EB BD BM AB ⋅=⋅; (2)求证:AE BE ⊥;
8、(2016静安、青浦)已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,
BD AD AC ==,AD 与CE 相交于点F ,2AE EF EC =⋅;
(1)求证:ADC DCE EAF ∠=∠+∠; (2)求证:AF AD AB EF ⋅=⋅;
9、(2016嘉定)已知,如图,已知△ABC 与△ADE 均为等腰三角形,BA BC =,DA DE =,
如果点D 在边BC 上,且EDC BAD ∠=∠,点O 为AC 与DE 的交点; (1)求证:△ABC ∽△ADE ; (2)求证:DA OC OD CE ⋅=⋅;
10、(2016虹口) 如图,点E 是四边形ABCD 的对角线BD 上的一点,
BAE CBD DAC ∠=∠=∠;
(1)求证:DE AB BC AE ⋅=⋅; (2)求证:180AED ADC ∠+∠=︒;
11、(2016奉贤)已知在梯形ABCD 中,AD ∥BC ,AB BC ⊥,AEB ADC ∠=∠; (1)求证:△ADE ∽△DBC ;
(2)联结EC ,若2
CD AD BC =⋅,求证:DCE ADB ∠=∠;
12、(2016崇明)如图1,△ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D ; (1)求证:△ACD ∽△CBD ;
(2)如图2,延长DC 至点G ,联结BG ,过点A 作AF BG ⊥,垂足为F ,AF 交CD
于点E ,
求证:2CD DE DG =⋅;
13、(2016宝山)如图,D 为△ABC 边AB 上一点,且CD 分△ABC 为两个相似比为的一对相似三角形;(不妨如图假设左小右大), 求:(1)△BCD 与△ACD 的面积比; (2)△ABC 的各内角度数;
14、(2016长宁、金山)靠校园一侧围墙的体育场看台侧面,如图阴影部分所示,看台的二
级台阶高度相等,宽度相同,现要用钢管做护栏扶手ACG 及三根与水平底面PQ 垂直的护栏支架CD 、EF 、GH (底端D 、F 、H 分别在每级台阶的中点处),已知看台高为1.2米,护栏支架CD =0.8GH =米,66.5DCG ︒
∠=; (参考数据:sin 66.50.92︒
≈,cos66.50.40︒
≈,tan 66.5 2.30︒
≈) (1)点D 与点H 的高度差是 米;
(2)试求制作护栏扶手和支架的钢管总长度l ,即AC CG CD EF GH ++++的长度; (结果精确到0.1米)
15、(2016黄埔)如图,一条细绳系着一个小球在平面内摆动,已知细绳从悬挂点O 到球心
的长度为50厘米,小球在A 、B 两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C 点位置时达到最低点,达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板
DE 所成的角度为30°;(sin370.6︒≈,cos370.8︒≈,tan370.75︒≈)
(1)求小球达到最高点位置与最低点位置时的高度差; (2)求OD 这段细绳的长度;
G
E F
D
C
B
A 16、(2015长宁)如图,A 、
B 两地之间有一座山,汽车原来从A 地到B 地须经
C 地沿折线A -C -B 行驶,现开通隧道后,汽车直接沿直线AB 行驶. 已知AC =120千米,∠A =30°,∠B =135°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)
17、(2015闸北)如图,已知等腰梯形ABCD 中,AD ∠BC ,AD =1,BC =3,AB =CD =2,点E 在BC 边上,AE 与BD 交于点F ,∠BAE =∠DBC , (1)求证:∠ABE ∠∠BCD ; (2)求tan∠DBC 的值; (3)求线段BF 的长.
18、(2015徐汇)已知菱形ABCD 中,AB =8,点G 是对角线BD 上一点,CG 交BA 的延长线于点F .
(1)求证:2
;AG GE GF =?
(2)如果1
2
DG GB =
,且AG ∠BF ,求co s F .
C
B
A
A B
C
D
F
19、(2015松江、闵行、浦东、杨浦)已知:如图,D 是ABC ∆的边AB 上一点,DE ∠BC ,交边AC 于点E ,延长DE 到点F ,使得EF DE =,联结BF ,交边AC 于点G ,联结CF . (1)求证:
AE EG
AC CG
=; (2)如果2CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅.
20、(2015普陀)如图10,已知在ABC ∆中,︒=∠90ACB ,点D 在边BC 上,AB CE ⊥,
AD CF ⊥,F E ,分别是垂足。

(1)求证:AD AF AC 2
•=
(2)联结EF ,求证:EF AD DB AE •=• 21、(2015静安、青浦)已知如图,D 是∠ABC 的边AB 上一点,DE ∠BC ,交边AC 于点E ,延长DE 至点F ,
使EF DE =,联结BF ,交边AC 于点G ,联结CF (1)求证:
AE EG
AC CG
=
; (2)如果2
CF FG FB =⋅,求证:CG CE BC DE ⋅=⋅
第23题图
O A
C
P
D
O 1
B
第23题图
22、(2015金山)如图,已知⊙O 与⊙1O 外离,OC 与D O 1分别是⊙O 与⊙1O 的半径,OC ∥D O 1.直线CD 交1OO 于点P ,交⊙O 于点A ,交⊙1O 于点B . 求证:(1)OA ∥B O 1;(2)BD
AC
BP AP =
23、(2015嘉定)如图,已知在ABC ∆中,点D 再边BC 上,且BAC=DAG CDG=BAD ∠∠∠∠,。

(1)求证:
AD AG
AB AC
=
(2)当GC BC ⊥时,求证:90BAC ∠=o。

24、(2015黄埔)已知:如图10,在ABC ∆中,点D E 、分别在边AB AC 、上,且ABE ACD ∠=∠,BE CD 、交于点G ,
(1)求证:AED ABC ∆∆:;
(2)如果BE 平分ABC ∠,求证:DE CE =.
25、(2015虹口) 如图,在Rt CAB ∆与Rt CEF ∆中,90ACB FCE ∠=∠=︒,CAB CFE ∠=∠, AC 与EF 相交于点G ,15BC =,20AC =. (1)求证:CEF CAF ∠=∠; (2)若7AE =,求AF 的长.
26、(2015奉贤)如图,在四边形ABCD 中,∠B =∠ACD ,过D 作AC ∠DE 交BC 的延长线
于点E ,且2
CD AC DE =⋅
(1)求证:∠DAC =∠DCE ;
(2)若DE AC AD AB AD ⋅+⋅=2,求证:∠ACD =90o .
27、(2015崇明)如图,在梯形ABCD 中,AD BC ∥,AD AB =,2ABC C ∠=∠, E 与F 分别为边AD 与DC 上的两点,且有EBF C ∠=∠. (1)求证:::BE BF BD BC =;
(2)当F 为DC 中点时,求:AE ED 的比值.
28、(2015宝山)如图,P 为O e 的直径MN 上一点,过P 作弦AC ﹑BD 使∠APM =∠BPM ;求证P A =PB .
第23题图
A
D E
C
B
D
A
B
C
E
F。

相关文档
最新文档