八年级数学第一学期第二次月考试卷

合集下载

八年级(上)第二次月考数学试卷(含答案)

八年级(上)第二次月考数学试卷(含答案)

八年级(上)第二次月考数学试卷(含答案) 一、选择题 1.对函数31y x =-,下列说法正确的是( )A .它的图象过点(3,1)-B .y 值随着x 值增大而减小C .它的图象经过第二象限D .它的图象与y 轴交于负半轴 2.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .5 3.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)4.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<325.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)6.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8 7.点(2,-3)关于原点对称的点的坐标是( ) A .(-2,3) B .(2,3) C .(-3,-2) D .(2,-3)8.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 9.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为( )A .1B .2C .4D .无数 10.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等二、填空题11.17.85精确到十分位是_____.12.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB ∠的度数.13.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.14.4的平方根是 .15.若等腰三角形的一个角为70゜,则其顶角的度数为_____ .16.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________.17.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.18.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.19.如图,在平面直角坐标系中,点A 、B 的坐标分别为()1,4、()3,4,若直线y kx =与线段AB 有公共点,则k 的取值范围为__________.20.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题21.甲、乙两车同时从A 地出发前往B 地,其中甲车选择有高架的路线,全程共50km ,乙车选择没有高架的路线,全程共44km .甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B 地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?22.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.23.如图,反比例函数k y x=与一次函数y=x+b 的图象,都经过点A (1,2)(1)试确定反比例函数和一次函数的解析式;(2)求一次函数图象与两坐标轴的交点坐标.24.已知一次函数y=kx+b的图象经过点A(—1,—5),且与正比例函数的图象相交于点B(2,a).(1)求a的值;(2)求一次函数y=kx+b的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y轴围成的三角形的面积.25.在平面直角坐标系中,直线l1:y=﹣2x+6与坐标轴交于A,B两点,直线l2:y=kx+2(k>0)与坐标轴交于点C,D,直线l1,l2与相交于点E.(1)当k=2时,求两条直线与x轴围成的△BDE的面积;(2)点P(a,b)在直线l2:y=kx+2(k>0)上,且点P在第二象限.当四边形OBEC的面积为233时.①求k的值;②若m=a+b,求m的取值范围.四、压轴题26.如图,在平面直角坐标系中,一次函数y x的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.28.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A =x °,∠EPC =y °,求变量 y 与 x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.30.如图,在平面直角坐标系中,直线AB 经过点A 332)和B 3,0),且与y 轴交于点D ,直线OC 与AB 交于点C ,且点C 3.(1)求直线AB 的解析式;(2)连接OA ,试判断△AOD 的形状;(3)动点P 从点C 出发沿线段CO 以每秒1个单位长度的速度向终点O 运动,运动时间为t秒,同时动点Q 从点O 出发沿y 轴的正半轴以相同的速度运动,当点Q 到达点D 时,P ,Q 同时停止运动.设PQ 与OA 交于点M ,当t 为何值时,△OPM 为等腰三角形?求出所有满足条件的t 值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据一次函数的性质,对每一项进行判断筛选即可.【详解】A 将x=3代入31y x =-得:3×3-1=8,A 选项错;B .一次函数k >0,y 值随着x 值增大而增大,B 选项错;C .一次函数k >0,y 值随着x 值增大而增大,当x=0时,y=-1,故此函数的图像经过一、三、四象限,C 选项错;D .当x=0时,y=-1,一次函数的图象与y 轴交于负半轴,D 项正确.故选D. 【点睛】本题考查了一次函数的性质,解决本题的关键是正确理解题意,熟练掌握一次函数的性质. 2.C解析:C【解析】 试题分析:A 31,故错误;B 2<﹣1,故错误;C .﹣12<2,故正确;52,故错误;故选C .【考点】估算无理数的大小.3.D解析:D【解析】【分析】先求出A点绕点C顺时针旋转90°后所得到的的坐标A',再求出A'向右平移3个单位长度后得到的坐标A'',A''即为变换后点A的对应点坐标.【详解】将Rt ABC∆先绕点C顺时针旋转90°,得到点坐标为A'(-1,2),再向右平移3个单位长度,则A'点的纵坐标不变,横坐标加上3个单位长度,故变换后点A的对应点坐标是A''(2,2).【点睛】本题考察点的坐标的变换及平移.4.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.6.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.7.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.8.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A中,例如42=,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.9.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.10.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.二、填空题11.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.12.【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形中,,,在解析:30AEB ∠=【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE ,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】解:∵在正方形ABCD 中,AD DC =,90ADC ∠=,在等边三角形CDE 中,CD DE =,60CDE DEC ∠=∠=,∴150ADE ADC CDE ∠=∠+∠= ,AD DE =,在等腰三角形ADE 中1801801501522ADE DEA ︒-∠︒-︒∠===︒, 同理得:15BEC ∠=,则60151530AEB DEC DEA BEC ∠=∠-∠-∠=--=.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.13.3-【解析】【分析】作AH⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt△ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3-3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°, ∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.14.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.15.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 16.【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,k->,∴10k>;∴1k>.故答案为:1【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.17.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 18.【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,解析:【解析】【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=12.故其周长为12.故答案为:12.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.19.【解析】【分析】由直线与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 解析:443k ≤≤ 【解析】【分析】由直线y kx =与线段AB 有公共点,可得出点B 在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:∵点A 、B 的坐标分别为()1,4、()3,4,∴令y=4时, 解得:4x k= , ∵直线y=kx 与线段AB 有公共点,∴1≤4k≤3, 解得:443k ≤≤. 故答案为:443k ≤≤. 【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于k 的一元一次不等式是解题的关键.20.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD 平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD 平分∠BAC ,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD=12∠BAC , ∵∠BAC=120°, ∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】 本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题21.甲车行驶的平均速度为75/km h ,乙车行驶的平均速度为55/km h .【解析】【分析】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据“乙车到达B 地花费的时间是甲车的1.2倍”列方程求解即可.【详解】设乙车行驶的平均速度为x km/h ,则甲车行驶的平均速度为(x +20)km/h .根据题意,得:50441.220x x⨯=+ 解得:x =55.经检验,x =55是所列方程的解.当x =55时,x +20=75.答:甲车行驶的平均速度为75km/h ,乙车行驶的平均速度为55km/h .【点睛】本题考查了分式方程的应用.找出相等关系是解答本题的关键.22.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.23.(1)反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)(-1,0)与(1,0).【解析】【分析】(1)将点A(1,2)分别代入kyx=与y=x+b中,运用待定系数法即可确定出反比例解析式和一次函数解析式.(2)对于一次函数解析式,令x=0,求出对应y的值,得到一次函数与y轴交点的纵坐标,确定出一次函数与y轴的交点坐标;令y=0,求出对应x的值,得到一次函数与x轴交点的横坐标,确定出一次函数与x轴的交点坐标.【详解】解:(1)∵反比例函数kyx=与一次函数y=x+b的图象,都经过点A(1,2),∴将x=1,y=2代入反比例解析式得:k=1×2=2,将x=1,y=2代入一次函数解析式得:b=2-1=1,∴反比例函数的解析式为2yx=,一次函数的解析式为y=x+1.(2)对于一次函数y=x+1,令y=0,可得x=-1;令x=0,可得y=1.∴一次函数图象与两坐标轴的交点坐标为(-1,0)与(1,0).24.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a)代入正比例函数解析式求出a的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k和b的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵正比例函数y=12x的图象过点(2,a)∴ a=1(2)∵一次函数y=kx+b的图象经过两点(-1,-5)(2,1)∴5 21k bk b-+=-⎧⎨+=⎩解得23 kb=⎧⎨=-⎩∴y=2x-3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象25.(1)△BDE 的面积=8;(2)①k =4;②﹣12<m <2. 【解析】【分析】(1)由直线l 1的解析式可得点A 、点B 的坐标,当k =2时,由直线l 2的解析式可得点C 、点D 坐标,联立直线l 1与直线l 2的解析式可得点E 坐标,根据三角形面积公式求解即可;(2)①连接OE .设E (n ,﹣2n +6),由S 四边形OBEC =S △EOC +S △EOB 可求得n 的值,求出点E 坐标,把点E 代入y =kx +2中求出k 值即可;②由直线y =4x +2的表达式可确定点D 坐标,根据点P (a ,b )在直线y =4x +2上,且点P 在第二象限可得42b a =+及a 的取值范围,由m =a +b 可确定m 的取值范围.【详解】解:(1)∵直线l 1:y =﹣2x +6与坐标轴交于A ,B 两点,∴当y =0时,得x =3,当x =0时,y =6;∴A (0,6)B (3,0);当k =2时,直线l 2:y =2x +2(k ≠0),∴C (0,2),D (﹣1,0) 解2622y x y x =-+⎧⎨=+⎩得14x y =⎧⎨=⎩, ∴E (1,4),4BD ∴=,点E 到x 轴的距离为4,∴△BDE 的面积=12×4×4=8. (2)①连接OE .设E (n ,﹣2n +6),∵S 四边形OBEC =S △EOC +S △EOB ,∴12×2×n +12×3×(﹣2n +6)=233, 解得n =23, ∴E (23,143), 把点E 代入y =kx +2中,143=23k +2, 解得k =4.②∵直线y =4x +2交x 轴于D , ∴D (﹣12,0), ∵P (a ,b )在第二象限,即在线段CD 上, ∴﹣12<a <0, ∵点P (a ,b )在直线y =kx +2上 ∴b =4a +2, ∴m =a +b =5a +2,15222a -<+< ∴﹣12<m <2.【点睛】本题考查了一次函数与几何图形的综合,涉及了一次函数与坐标轴的交点、解析式,两条直线的交点及围成的三角形的面积,灵活的将函数图像与解析式相结合是解题的关键.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为10【解析】 【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答. 【详解】(1)如图,C '的坐标为(3,-2), 故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H , 对于直线y =﹣3x+3,由x =0得y =3 ∴P (0,3), ∴OP =3 由y =0得x =1, ∴Q (1,0),OQ =1, ∵∠QPR =45° ∴∠PSQ =45°=∠QPS ∴PQ =SQ∴由(1)得SH =OQ ,QH =OP∴OH =OQ+QH =OQ+OP =3+1=4,SH =OQ =1 ∴S (4,1),设直线PR 为y =kx+b ,则341b k b =⎧⎨+=⎩ ,解得1k 2b 3⎧=-⎪⎨⎪=⎩∴直线PR 为y =﹣12x+3 由y =0得,x =6 ∴R (6,0). 【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键. 28.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】 【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果; (3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x+解出x 即可. 【详解】解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°, ∵CD ⊥AB , ∴∠BDC=90°, ∵BE 平分∠ABC , ∴∠ABE=∠CBE=34°, ∴∠BPD =90-34=56°; (2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x-)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°,∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x+)°, 即y 与 x 的关系式为y=454x +; (3)①若EP=EC , 则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x-,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x+,∴902x -+902x --(454x+)=90°, 解得:x=36°; ②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y-,由①得:∠ABC+∠BCD=90°,∴902x -+[902x --(902y-)]=90,又y=454x +,解得:x=1807°; ③若CP=CE ,则∠EPC=∠PEC=y ,∠PCE=180-2y , 由①得:∠ABC+∠BCD=90°,∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合,综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系. 29.(1)①);②B ;(2)3s =;(3)59k ≤≤.【解析】 【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可. 【详解】 解:(1)①∵2a =,∴11b b ==-=',∴坐标为:),故答案为:);②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2, ∵()2,2满足2y =, ∴这个点是B , 故答案为:B ;(2)∵点C 的坐标为(2,2)--, ∴OC 的关系式为:()0y x x =≤, ∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩,∴点P 的限变点Q 的纵坐标满足的关系式为:。

人教版八年级数学上第二次月考试卷

人教版八年级数学上第二次月考试卷

丽景学校2014—2015学年度第一学期第二次月考八年级数学试卷命题人:温德荣 总分120分 考试时间120分钟 成绩 书写一、选择题。

(本题共10小题,每题3分,共30分)1.如图所示,图中不是轴对称图形的是 ( )2.下列长度的三条线段能组成三角形的是 ( )A 、 3,4,8B 、 5,6,11C 、 1,2,3D 、 5,6,103.正多边形的一个内角等于144°,则该多边形是正几边形. ( ) A .8 B .9 C .10 D .11 4.下列说法错误的是 ( ) A .锐角三角形的三条高线,三条中线,三条角平分线分别交于一点 B .钝角三角形有两条高线在三角形外部 C .直角三角形只有一条高线D .任意三角形都有三条高线,三条中线,三条角平分线 5.若△MNP ≌△MNQ ,且MN =8,NP =7,PM =6,则MQ 的长为 ( ) A .8 B .7 C .6 D .5 6.如图所示,已知∠1=∠2,若添加一个条件使△ABC ≌△ADC ,则添加错误的是 ( ) A .AB=AD B .∠B=∠D C .∠BCA=∠DCA D .BC=DC7.如图,△ABC 中,AB=AC ,AD 是∠BAC 的角平分线,下列结论不一定成立的是 ( ) A . ∠BAD= ∠DAC B .BD=DC C .∠ADC=90° D .∠B= ∠BAD8.如图,OP 平分∠AOB ,PA ⊥OA 于A ,PB ⊥OB 于B ,下列结论中不一定成立的是 ( )A .PA=PBB .AB 垂直平分OPC .OA=OBD .PO 平分∠APB9.如图,△ABC 中,AB=AC ,∠A =36o,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则 ∠BDC 的度数为 ( ) A .72oB .36oC .60oD .82o10.在平面直角坐标系内,点A (-2,3)关于x 轴的对称点A ′的坐标是 ( )A .(-2,-3)B .(2,3)C .(-3,-2)D .(2,-3) 二、填空题。

北师大版八年级(上)数学第二次月考(12月)试卷(4)

北师大版八年级(上)数学第二次月考(12月)试卷(4)

北师大版八年级(上)数学第二次月考(12月)试卷(4)一.选择题(共6小题,满分12分,每小题2分)1.(2分)实数3的平方根是()A.B.C.D.92.(2分)用四舍五入法,865600精确到千位的近似值是()A.8.65×105B.8.66×105C.8.656×105D.8650003.(2分)如图,在△ABC中,PB=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③AB+AQ=2AR中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确4.(2分)已知一次函数y=2x+b,当x=3时,y=10,则该一次函数的表达式为()A.y=﹣x+13B.y=x+7C.y=2x+4D.y=2x﹣4 5.(2分)如图,平面直角坐标系内有一个Rt△ABC已知B(﹣2,0),C(2,0),直角顶点A在第一象限,且∠ABC=30°,D为BC边上一点,将△ACD沿AD翻折使点C落在AB边上的点E处,再将△BDE沿DE翻折使点B落在点F处,则点F的坐标为()A.(1﹣,3﹣3)B.(﹣1,3﹣3)C.(﹣1,﹣1)D.(1﹣,﹣1)6.(2分)一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二.填空题(共10小题,满分20分,每小题2分)7.(2分)在,3.14,0,0.101 001 000 1,中,无理数有个.8.(2分)比较大小:﹣﹣2;3.9.(2分)点与(﹣3,7)关于x轴对称,点与(﹣3,7)关于y轴对称,点(﹣3,7)与(﹣3,﹣2)之间的距离是.10.(2分)在平面直角坐标系中,将点P(﹣3,2)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为.11.(2分)如图:点(﹣2,3)在直线y=kx+b(k≠0)上,则不等式kx+b≥3关于x的解集是.12.(2分)如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CDEF.设若A(0,3),C(4,0),则BD2+BF2﹣BC2的最小值为.13.(2分)已知一次函数y=2x+b图象与正比例函数y=kx图象交于点(2,3)(k,b是常数),则关于x的方程2x=kx﹣b的解是.14.(2分)点(x1,y1),(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1y2.15.(2分)如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,则AD的长为.16.(2分)在直角坐标系中,已知两点A、B的坐标分别是(0,−4)、(0,2),那么A与B两点之间的距离是(结果保留根号).三.解答题(共10小题,满分68分)17.(6分)(1)求等式中x的值:(x+1)3+27=0;(2)计算:.18.(4分)若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.19.(6分)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【可借鉴第(1)问的解题经验】20.(6分)如图,在△ABC中,DE垂直平分BC,BD平分∠ABC.(1)若∠ADB=48°,求∠A的度数;(2)若AB=5cm,△ABC与△ABD的周长只差为8cm,且△ADB的面积为10cm2,求△ABC的面积.21.(6分)在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣5,4),(﹣3,0),(0,2).(1)画出三角形ABC,直接写出三角形ABC的面积;(2)若将三角形ABC平移得到三角形A'B'C',三角形ABC中的任意一点P(a,b)经过平移后的对应点P'的坐标是(a+4,b﹣3),直接写出平移的方法;(3)若点D在直线AC下方且在x轴上,三角形ACD的面积为7,直接写出D点的坐标;(4)仅用无刻度直尺在AC边上画点E,使三角形ABE的面积为6(保留画图痕迹).22.(6分)已知直线y=kx+b经过点A(0,﹣3),且平行于直线y=﹣2x﹣1.(1)求这条直线y=kx+b的表达式;(2)如果这条直线y=kx+b经过点B(m,3)求点A与点B之间的距离.23.(8分)四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?24.(8分)如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得P A+PC =BC(保留作图痕迹,不写作法)25.(8分)如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了t秒.(1)AD的长为;(2)写出用含有t的代数式表示AP,并写出自变量的取值范围;(3)直接写出多少秒时,△PBC为等腰三角形.26.(10分)在平面直角坐标系xOy中,函数y=2x的图象与函数y=﹣kx+3的图象交于点A(1,m).(1)求k的值;(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y=﹣kx+3的图象交于点C,与x轴交于点D.当点BD=2BC时,求b的值.。

八年数学第二次月考试卷1

八年数学第二次月考试卷1

八年数学试卷 第1 页 (共 4 页 ) 八年数学试卷 第 2 页 (共 4 页 )平和正兴学校2012~2013学年第一学期第二次月考八年级数学科试卷一、选择题(10小题,每小题2分,共20分)1、下列条件中不能确定四边形ABCD 是平行四边形的是( )A 、AB =CD ,AD ∥BCB 、AB =CD ,AB ∥CDC 、AB ∥CD ,AD ∥BCD 、AB =CD ,AD =BC2、菱形的边长为5,一条对角线长为8,另一条对角线长为( )A 、4B 、6C .、8D 、103、关于四边形ABCD :①两组对边分别平行;②两组对边分别相等;③对角线AC 和BD 相等; 以上三个条件中,可以判定四边形ABCD 是平行四边形的有( ) A 、1个 B 、2个 C 、3个 D 、4个4、若正方形的对角线长为2cm ,则这个正方形的面积为( )A 、42cm B 、22cm C 、22cm D 、222cm5、下列命题中,正确命题是( )A 、两条对角线相等的四边形是平行四边形;B 、两条对角线相等且互相垂直的四边形是矩形;C 、两条对角线互相垂直平分的四边形是菱形;D 、两条对角线平分且相等的四边形是正方形。

6、如图1,□ABCD 中,CE AB ⊥,E 为垂足.如果∠A =125°,则∠BCE=( ) A.55°B. 35°C.25°D.30°7、在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,则下面条件能判定平行四边形ABCD 是矩形的是( ) A .AC⊥BD B .AC=BDC .AD=BCD .AB=AD8、如图2,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A 、当AB=BC 时,它是菱形 B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=900时,它是矩形 D 、当AC=BD 时,它是正方形9、如图3,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .32B .33C .34D .310、将矩形纸片ABCD 按如图4所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( )A .1B .2C .2D .3二、填空题(每空3分,总共30分)11、如图5,在矩形ABCD 中,对角线AC,BD 相交于点O ,若∠AOB=60° AB=4cm ,则AC 的长为 __ cm .12、如图6所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补充一 个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13、若菱形的对角线长分别是6、8,则其周长是 ,面积是 。

2014.12月考八年级上册数学试题

2014.12月考八年级上册数学试题

八年级第一学期第二次月考数学测试题一、选择题:将下列各题正确答案的代号的选项填在下表中。

1.下列计算正确的是( )A. 326a a =a ⋅ B.441b b ÷= C. 5510x +x =x D. 78y y=y ⋅ 2.化简()42a a ⋅-的结果是 ( )A. -6aB. 6aC. 8aD. -8a 3.若⋅=m35a a a ,则m 的值为( )A. 1B. 2C. 3D. 4 4.计算()3062a a a⋅⋅等于 ( )A. 11a B. 12a C. 14a D. 36a 5.化简()2423a a a⋅+ 的结果正确的是( )A.86a a + B. 96a a + C. 26a D. 12a 6.下列计算错误的是( )A. 3a ·2b =5abB. -a 2·a =-a 3C. ()()936-x -x =x ÷ D. ()2362a4a -=7.下列计算正确的是( )A. ()()3242ab 4ab 2a b ⋅-= B. 534215a b c 15a b=3b c -÷C. ()()3233xy x y x y ⋅-=- D. ()()2323ab 3a b 9a b -⋅-=8.一个长方体的长、宽、高分别为3x -4,2x 和x ,则它的体积等于( )A.()313x 42x=3x 4x 2-⋅- B. 21x 2x=x 2⋅ C. ()323x-42x x=6x 8x ⋅⋅- D. ()23x-42x=6x 8x ⋅- 9.下列多项式相乘和结果为x 3-2x 2y +xy 2的是( )A. ()()x x y x -y +B. ()22x x 2xy y ++ C. ()2x x y + D. ()2x x -y 10.()()()2x 2x 2x 4+-+的计算结果是( )A. 4x 16+B. 416x --C. 4x 16-D. 416x -11.一次课堂练习,一位同学做了4道因式分解题,你认2这位同学做得不够完整的题是( )A. ()222x 2xy+y x y -=- B. ()22x y-xy xy x y =- C. ()()22x y x y x y -=+- D. ()32x x=x x 1--12.若a +b =6,a b =3,则3a 2b +3ab 2的值是( )A. 9B. 27C. 19D. 54 二、填空题:13.若x x a 2,b 3==,则()3xab = . 14.已知:()35m 11a a a ⋅=,则m 的值为 .15.计算()2242a a 9a 39⎛⎫--⋅- ⎪⎝⎭的结果是 . 16.若a -b =1,a b =-2,则()()a 1b-1+= .17.已知:()()2222x y 1,x y 17,y =+=-=+则x ,x y = .18.在实数范围内分解因式:x 4-4= . 19.若9x 2+m x y +16y 2是一个完全平方式,则m 的值是 . 解答题:(本大题共52分) 20.计算题:(每小题5分,共计20分) ⑴.()()433a a -⋅- ⑵.2332341x yz xz xy z 233⎛⎫⎛⎫⎛⎫-⋅-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⑶()()22232x x y xy y x -x y 3x y ⎡⎤--÷⎣⎦⑷))(()(2y x y x y x -+-+(5).()()5x 7y-35x+3-7y + (6)(a+b-c )222.化简求值:⑴.()()()2a b a b a b +-++,其中a =3,b =-13.⑵.已知2x -y =10,求()()()222x yx y 2y x y 4y ⎡⎤+--+-÷⎣⎦的值.23.将下列各式因式分解:⑴.a 4-16 ⑵.()()2216a b 9a b --+(3)6xy 2-9x 2y-y 3(4)(2a-b)2+8ab24.解不等式组:()()()()()2x 2x-52x 3x -4x 1x 38x x 5x 52⎧>-⎪⎨+++>+--⎪⎩25.利用简便方法计算(1)1198992++ (2) 20052-2006×200426.已知,8=+n m ,15=mn 求22n mn m +-的值27.已知a+b=10,ab=24., 求:(1)+;(2)的值.28.探究题:观察下列式子:(x 2-1)÷(x -1)=x +1; (x 3-1)÷(x -1)=x 2+x +1; (x 4-1)÷(x -1)=x 3+x 2+x +1 (x 5-1)÷(x -1)=x 4+x 3+x 2+x +1 ① 你能得到一般情况下(x n -1)÷(x -1)的结果吗?(n 为正整数) ② 根据⑴的结果计算:1+2+22+23+24+…+262+263.。

2023-2024年度八年级第一学期三校第二次月考数学 试卷(定稿)

2023-2024年度八年级第一学期三校第二次月考数学 试卷(定稿)

2023—2024学年(上)校际联盟第二次月考八年级数学试题卷(考试时间:120分钟满分100分)一、选择题(本大题有10小题,每小题3分,共30分,每小题只有一个正确的选项,请在答題卡的相应位置填涂)1.下列各数中,是无理数的是()A.13B.3C.0.1D.2.下列各图是以直角三角形各边为边在三角形外部画正方形得到的.每个正方形中的数及字母S 表示所在正方形的面积,其中S 的值恰好等于5的是() A. B. C. D.3.下列计算结果正确的是() 233 366 325 D.32353 4.在平面直角坐标系中,点P (﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.下列根式是最简二次根式的是()A.B.C.D.6.已知点A (﹣1,m ),B (3,n )都在一次函数y =3x +2的图象上,则()A.m =nB.m >n C.m <n D.不能确定7.若,则x +y 的值为()A.4B.5C.6D.78.某中学八年级六班有50人.一次月考后,数学老师对数学成绩进行了统计.由于有一人因事没有参加本次月考,因此计算其他49人的平均分为80分,方差s 2=40.后来进行了补考,数学成绩为80分.加入他成绩后,下列说法正确的是()A.平均分和方差都改变B.平均分不变,方差变大C.平均分不变,方差变小D.平均分和方差都不变9.如图,一圆柱高8cm ,底面半径为cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是()A.12cm B.10cm C.8cm D.6cm10.如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD,动点E从点B出发,沿折线B﹣A﹣D﹣C方向以m单位/秒的速度匀速运动,在整个运动过程中,△BCE的面积S与运动时间t(秒)的函数图象如图2所示,则四边形ABCD的面积是()A.144B.134C.124D.114二、填空题(本大题有6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.平面直角坐标系内,点P(3,﹣4)到y轴的距离是.12.若与(y+3)2互为相反数,则xy=.13.某同学参加校艺术节独唱比赛,其中唱功、表情、动作三个方面得分分别为95分、90分、80分,综合成绩中唱功占60%,表情占30%,动作占10%,则该名同学综合成绩为___________分.14.如图所示,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.15.如图所示,面积为5的正方形ABCD的顶点A在数轴上,且点A表示的数为1,若点E在数轴上(点E在点A左侧),且AD=AE,则点E所表示的数是.16.如图,正方形ABCD的顶点A,D分别在x轴,y轴上,点(52)B,在直线4l y kx:上.直线l分别交x 轴,y轴于点E,F.将正方形ABCD沿y轴向下平移m个单位长度后,点C恰好落在直线l上.则m的值为.三、解答题(本大题有8小题,共58分.请在答题卡的相应位置作答)17.(8分)计算:(1)﹣+(2)18.(5分)解方程组:352526x yx y第16题图第14题图第15题图19.(5分)ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)ABC 和111A B C △关于y 轴对称,请在坐标系中画出111A B C △;(2)ABC 的面积为;20.(7分)如图,在△ABC 中,CD ⊥AB 于点D ,BC =15,CD =12,AD =16.(1)求BD 的长;(2)判断△ABC 的形状.21(7分)“逐梦寰宇问苍穹——中国载人航天工程三十年成就展”的成功举办,标志着我国载人航天工程正式进入空间站应用与发展阶段.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取m 名学生进行测试,对成绩(百分制)进行整理、描述和分析,成绩划分为A (90≤x ≤100),B (80≤x <90),C (70≤x <80),D (60≤x <70),四个等级,并制作出不完整的统计图如图.已知:B 等级数据(单位:分):80、80、81、82、85、86、86、87、88、89;根据以上信息,回答下列问题:(1)补全条形统计图,并填空:m =,n =;(2)抽取的m 名学生中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为;(3)这所学校共有2100名学生,若全部参加这次测试,请你估计成绩能达到A 等级的学生人数.22.(7分)某中学八年级(1)班去体育用品商店买一些篮球和排球,供班上同学进行体育锻炼时使用,共买了2个篮球和6个排球,花570元,并且每个排球比篮球便宜25元.(1)求篮球和排球的单价各是多少;(2)商店里搞活动,有两种套餐,①套餐打折:五个篮球和五个排球为一套餐,套餐打八折;②满减活动:满999减100,满1999减200;两种活动不重复参与,学校打算购买14个篮球,12个排球,请问如何安排更划算?23.(9分)阅读材料并回答下列问题:当m,n都是实数,且满足m﹣n=6,就称点P(m﹣1,3n+1)为“友好点”.例如:点P(4,﹣2),令,得,m﹣n=6,所以F(4,﹣2)是“友好点”.(1)请判断点A(7,1)是否为“友好点”,并说明理由.(2)以关于x,y的方程组的解为坐标的点C(x,y)是“友好点”,求t的值.24.(10分)如图,在平面直角坐标系中,直线y=kx+b与x轴交于点B(﹣5,0),与y轴交于点A,直线y=﹣x+4过点A,与x轴交于点C,点P是x轴上方一个动点.(1)求直线AB的函数表达式;(2)若点P在线段AB上,且SAPC=S△AOB,求点P的坐标;△(3)当SPBC=S△AOB时,动点M从点B出发,先运动到点P,再从点P运动到点C后停止运动.点△M的运动速度始终为每秒1个单位长度,运动的总时间为t(秒),请直接写出t的最小值.备用图。

八年级上期第二次段考数学试卷

八年级上期第二次段考数学试卷

第1页 (共4页) 第2页 (共4页)密学校 班级 姓名 考号密 封 线 内 不 得 答 题哈密市第九中学2013-2014学年度第一学期八年级数学第二次月考试卷(考试时间: 60分钟 满分 100分)一、填空题(每空1分, 共计30分)1、同底数幂相乘, 底数_____, 指数______, 用公式表示: _______。

2、幂的乘方, 底数_______, 指数_______, 用公式表示: _______。

3、积的乘方等于把______________分别乘方, 再把所得的幂_______。

用公式表示:_______。

4、同底数幂相除, 底数_______, 指数_______, 用公式表示:_______。

a 0 = _______ (a≠0)5.两数和与这两数差的积, 等于它们的平方差, 叫做___________。

用公式表示: _______。

6、已知am=3,an=2, 则am+n=___________.7、24×(-2)4×(-0.25)4=______ -(-0.1)0= ;8、一种电子计算机每秒可作 次运算, 那么它工作 秒可作 次运算。

9、若 , 则 = 、 。

10、22420____(2___)x x x -+=-11. = , = ;10010025.04⨯-= ;22+-⋅n n x x = ;12.(x-y)2·(y-x)3·(x-y)= ;13、 已知:a+b=9, a2+b2=21, 求ab= ; 14. (-x-y)(x-y)= ;二、选择题 (每题2分, 共计20分)1.下列各题的计算,正确的是( )A...........B.C.........D..2.下列各式中, 运算结果是 的是 ( ). A....... B. . C. ... .D.3.如果 ,则 的值为( )A...... .. .... C.... D..64.下列式子中,计算正确的是...) A. ;B、 ;C、 ;D、 ;5.以下运算不正确的是( )A.x · x4-x2 · x3=0; B 、x · x3+x · x · x2=2x4C.-x(-x)3 ·(-x)5=-x9; D 、-58×(-5)4=5126、23()(3)4a bc ab -÷-等于( )A...B...C...D.7、 (8x 6y 2+12x 4y -4x 2)÷(-4x 2)的结果是( )A.-2x3y2-3x2yB.-2x3y2-3x2y+1C.-2x4y2-3x2y+1D.2x3y3+3x2y-18、计算(-5a2b3x)3结果是( )(A)-15a6b9x3;(B)-125a6b9x3;(C)-15a8b27x3;(D)-125a8b27x3。

河北省唐山市友谊中学2023-2024学年八年级上学期月考数学试题(含解析)

河北省唐山市友谊中学2023-2024学年八年级上学期月考数学试题(含解析)
3 的属性,方程的增根两个角度去求解即可.本题考查了分式方程的解,增根,探求字母的取
值范围,熟练根据解的属性,增根的意义建立不等式是解题的关键.
【详解】∵
x
x
2
4
m 2
x

去分母,得 x 4 x 2 m ,
解得 x 8 m . 3
∵分式方程
x
x
2
4
m 2
x
的解为正数,且方程的增根为
x
2
时间=工作总量÷工作效率,结合结果比原计划提前一周完成任务,即可得出关于 x 的分式方
程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程
是解题的关键.
【详解】解:∵一周后以原来速度的1.4 倍修建,原计划一周修建隧道 x 米,
∴第一周修建了
x
1280 米隧道,一周后每周修建隧道1.4x 米.依题意得:
0

∴ 8 m >0 ,且 m 2 , 3
解得 m> 8 ,且 m 2 ,
故选 C. ab
11. 2a
【分析】直接约去分子与分母的公因式即可得到答案.
【详解】解: 3a a+b = a+b .
6a2
2a
a+b 故答案为: .
2a
【点睛】本题考查了分式的基本性质的应用,分式的约分找到分子分母的公因式是关键,是
答案与解析 1.B 【分析】因式分解是把一个多项式转化成几个整式积的形式,据此逐一判定即可得答案. 【详解】解:A、2x (x+3)=2x2+6x,是整式乘法,不是因式分解,故本选项不合题意; B、x2-y2=(x+y) (x-y),是因式分解,故本选项符合题意; C、x2+2xy+y2+1=(x+y)2+1,等式的右边不是积的形式,不是因式分解,故本选项不合题 意; D、24xy2=3x•8y2,等式左边不是多项式,不是因式分解,故本选项不合题意; 故选:B. 【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 2.D 【分析】本题考查了分式的定义,分母整式中含有字母是分式的重要特征.

江苏省灌云县西片第二次月考八年级数学试题

江苏省灌云县西片第二次月考八年级数学试题

2022-2023学年度第一学期第二次教学质量检测八年级数学试卷一.选择题(共8小题)1.4的算术平方根是()A.2B.±2C.D.162.下列各式中运算正确的是()A.﹣=﹣3B.=±7C.=﹣2D.=83.在,,,3.14,0.3131131113…(相邻两个3之间的1的个数依次加1)中,无理数共有()A.2个B.3个C.4个D.5个4.在平面直角坐标系中,点(5,2022)关于x轴的对称点是()A.(2022,5)B.(﹣5,2022)C.(5,﹣2022)D.(﹣5,﹣2022)5.函数y=中,自变量x的取值范围是()A.x>﹣3B.x≥﹣3C.x>﹣3且x≠1D.x≥﹣3且x≠16.如图,若在象棋盘上规定“马”位于点(2,2),“炮”位于点(﹣1,2),则“兵”位于点()A.(﹣3,2)B.(2,﹣3)C.(﹣2,3)D.(3,﹣2)7.在数轴上,点A表示的数为﹣1,点B表示的数为,点B关于点A的对称点为C,则C所表示的数为()A.B.C.D.8.一辆汽车由A地匀速驶往相300千米的B地,汽车的速度是100千米/时,那么汽车距离B地的路程S (千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.二.填空题(共8小题)9.用四舍五入法取近似值:5.146≈(精确到百分位).10.已知,则x y的值为.11.如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(2,90°),目标B的位置为(4,30°),现有一个目标C的位置为(3,m°),且与目标B的距离为5,则目标C的位置为.12.已知点A(a﹣2,2a+7),点B(1,5),直线AB∥y轴,则点A的坐标是.13.如图,小正方形的边长为1,则数轴上点A所表示的实数是.14.在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的重量x的一组对应值:在弹簧允许范围内,写出弹簧长ycm与所挂重物xkg的关系式.所挂物重量x(kg)012345弹簧长度y(cm)20222426283015.已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是.(填写所有正确结论的序号)①体育场离王强家 2.5km ②王强在体育场锻炼了30min ③王强吃早餐用了20min ④王强骑自行车的平均速度是0.2km/min16.如图,在平面直角坐标系中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O逆时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O逆时针旋转90°得到等腰直角三角形A2OB2,且A20=2A1O…依此规律,得到等腰直角三角形A2022OB2022,则点B2022的坐标是.三.解答题(共10小题)17.(1)计算:;(2)求x的值:(x+2)2=9.18.图是我校的平面示意图.(1)以大门所在位置为原点,画出平面直角坐标系;(2)在(1)的基础上,表示下列各点坐标:教学楼:,图书馆:,实验楼:,操场:;(3)若行政楼的位置坐标为(5,﹣1),在图中标出它的位置.19.“十一”期间,小华一家人开车到距家100千米的景点旅游,出发前,汽车油箱内储油45升,当行驶60千米时,发现油箱余油量为31.5升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量;(2)写出余油量Q(升)与行驶路程x(千米)之间的关系式;(3)当油箱中余油量低于3升时,汽车将自动报警,若往返途中不加油,他们能否在汽车报警前回到家?说明理由.20.已知±是2a﹣1的平方根,3是3a+2b﹣3的算术平方根,求a+2b的平方根.21.已知点P(2m+4,m﹣1),试分别根据下列条件,求点P的坐标.(1)点P在y轴上;(2)点P在过点A(2,﹣4)且与x轴平行的直线上;(3)点P到两坐标轴的距离相等.22.平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(3,4),C(3,﹣1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标.23.某中学数学兴趣小组准备围建一个长方形ABCD苗圃园,其中一边靠墙,另外三边是由长度为40m的篱笆围成的.如图,已知墙长EF为25m,设这个苗圃园垂直于墙的一边长AB为x(7.5m<x<20m),BC的长度为L.苗圃园的面积为S.(1)BC的长度L与AB的长度x的关系式为.(2)当x=8m时,BC的长度L=m,苗圃园的面积S=m2.24.如图,已知点A(6,0)、点B(0,4).(1)求直线AB的函数表达式;(2)若C为直线AB上一动点,当△OBC的面积为3时,求点C的坐标.25.已知第一象限点P(x,y)在直线y=﹣x+5上,点A的坐标为(4,0),设△AOP的面积为S.(1)当点P的横坐标为2时,求△AOP的面积;(2)当S=4时,求点P的坐标;(3)求S关于x的函数解析式,写出x的取值范围,并在图中画出函数S的图象.26.我们知道,是一个无理数,将这个数减去整数部分,差就是小数部分.即的整数部分是1,小数部分是﹣1,请回答以下问题:(1)的小数部分是,5﹣的小数部分是.(2)若a是的整数部分,b是的小数部分.求a+b﹣+1的平方根.(3)若7+=x+y,其中x是整数,且0<y<1,求x﹣y+的值.2022-2023学年度第一学期第二次教学质量检测八年级数学答题纸一.选择题(每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案二.填空题(每题3分,共24分)9._____ _.10._____ _.11.______ .12.______ .13.______ .14.______ .15.______ .16.______ .三.解答题(共10小题)17.(1)(2)18.(1)(2):教学楼:,图书馆:,实验楼:,操场:;(3)19.(1)(2)(3)20.21.(1)(2)(3)22.(1)(2)(3)23.(1).(2),.24.(1)(2)25.(1)(2)(3)26.(1),.(2)(3)参考答案一.选择题(共8小题)1.A.2.A.3.A.4.C.5.D.6.C.7.C.8.D.二.填空题(共8小题)9.5.12.10.9.11.(3,300°)或(3,120°).12.(1,13).13.﹣1+.14.y=2x+20.15.①③④.16.(﹣22022,﹣22022).三.解答题(共10小题)17.(1);(2)x=﹣5或x=1.18.解:(1)(2)(﹣3,2);(﹣4,5);(4,4);(3,7).(3)19.(1)0.225升;(2)Q=45﹣0.225x;(3)当x=200时,Q=45﹣0.225×200=0,∵0<3,∴所以他们不能在汽车报警前回到家.20.解:∵±是2a﹣1的平方根,∴2a﹣1=()2,∴2a﹣1=5,解得:a=3,∵3是3a+2b﹣3的算术平方根,∴3a+2b﹣3=9,解得:b=,当a=3,b=时,∴a+2b=6,∴a+2b的平方根为±.21.(1)根据题意,得2m+4=0,解之,得m=﹣2,∴点P的坐标为(0,﹣3);(2)根据题意,得m﹣1=﹣4,解之,得m=﹣3,∴2m+4=﹣2,m﹣1=﹣4,∴点P的坐标为(﹣2,﹣4);(3)根据题意,得2m+4=m﹣1或2m+4+m﹣1=0,解之,得m=﹣5或m=﹣1,∴2m+4=﹣6,m﹣1=﹣6或2m+4=2,m﹣1=﹣2,(﹣6,﹣6)或(2,﹣2).22(1)(2)5;(3)A1(1,﹣4)、B1(3,﹣4)、C1(3,1).23.解:(1)∵2x+L=40,∴L=40﹣2x.故答案为:L=40﹣2x.(2)24,192.24.y=﹣x+4.(2).5;3.∴点C的坐标为(﹣,5)或(,3).25.(1)6;(2)(3,2);(3)由题意得,S=OA•|y|=2y(y>0),当y>0时,即0<x<5时,S=2(﹣x+5)=﹣2x+10,∴S关于x的函数解析式为S=﹣2x+10(0<x<5),画出的图象如图所示.26.(1)﹣3,4﹣;(2)∵<<,即9<<10,∴的整数部分a=9,又∵1<<2,∴的整数部分为1,的小数部分b=﹣1,∴a+b﹣+1=9+﹣1﹣+1=9,∴a+b﹣+1的平方根为±=±3;(3)∵2<<3,∴9<7+<10,又∵7+=x+y,其中x是整数,且0<y<1,∴x=9,y=7+﹣9=﹣2,∴x﹣y+=9﹣+2+=11,答:x﹣y+的值为11.。

江苏省徐州市八年级(上)第二次月考数学试卷(含答案)

江苏省徐州市八年级(上)第二次月考数学试卷(含答案)

江苏省徐州市八年级(上)第二次月考数学试卷(含答案)一、选择题1.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .2.若分式12xx -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 3.在平面直角坐标系中,点P (﹣3,2)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1 B .x=-1 C .x=3 D .x=-3 5.已知等腰三角形的两边长分别为3和4,则它的周长为( ) A .10B .11C .10或11D .76.以下关于多边形内角和与外角和的表述,错误的是( ) A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120︒,那么它是十边形.7.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处 C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处8.如果m 是任意实数,则点()P m 4m 1-+,一定不在 A .第一象限B .第二象限C .第三象限D .第四象限9.2x -x 的取值范围( )A .x≥2B .x≤2C .x >2D .x <210.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm二、填空题11.下表给出的是关于某个一次函数的自变量x 及其对应的函数值y 的部分对应值, x … ﹣2 ﹣1 0 … y…m2n…则m +n 的值为_____.12.已知3a b +=,2ab =,代数式32232a b a b ab ++=__________.13.如图,已知一次函数()0y ax b a =+≠和()0y kx k =≠的图象交于点P ,则二元一次方程组220y ax by kx --=⎧⎨--=⎩的解是 _______.14.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。

最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)

最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)

最新苏科版八年级数学上册第二次月考质量检测试卷1(含答案)时间:100分钟满分:120分学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列图形中,不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.2. 在下列实数中,无理数是( )A. 0B. 14C. 5D. 6【答案】C【解析】试题分析:有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.因此,选项A、B、D的0、14、6都是有理数,选项C5C.3.在平面直角坐标系中,点M(﹣2,1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B∵点P的横坐标为负,纵坐标为正,∴该点在第二象限.故选B.4.下列四组线段中,可以构成直角三角形的是()A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,6【答案】C【解析】【分析】根据勾股定理的逆定理逐项判断即可.【详解】A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.【点睛】本题考查勾股定理的逆定理,如果三角形的三边长为a,b,c,有下面关系:a2+b2=c2,那么这个三角形是直角三角形.5.当x=2时,函数112y x=+的值是()A. 3B. 2C. 1D. 0 【答案】B【解析】【分析】把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=12×2+1=1+1=2.故选B.【点睛】本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.6.到△ABC的三条边距离相等的点是△ABC的().A. 三条中线的交点B. 三条边的垂直平分线的交点C. 三条高的交点D. 三条角平分线的交点【解析】【分析】根据角平分线的性质求解即可.【详解】到△ABC 的三条边距离相等的点是△ABC 的三条角平分线的交点故答案为:D .【点睛】本题考查了到三角形三条边距离相等的点,掌握角平分线的性质是解题的关键. 7.等腰三角形的周长为80,腰长为 x ,底边长为y ,y 是x 的函数,则 x 的取值范围是( )A. x>0B. 020x <<C. 040x <<D. 2040x <<【答案】D【解析】【分析】根据已知列方程,化为函数关系式,再根据三角形三边的关系确定x 的取值范围即可.【详解】∵2x+y=80,∴y=80-2x ,∵y >0,∴80-2x >0,即x <40,∵两边之和大于第三边,∴2x >y ,即2x >80-2x,解得x >20,综上可得20<x <40,故选D.【点睛】本题考查了等腰三角形的性质及三角形三边关系,运用方程的思想列出关系式、根据三角形三边关系求得x 的取值范围是解答本题的关键.8.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( )A. 3B. 4C. 5D. 6【答案】A【解析】正确理解函数图象横纵坐标表示的意义.解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y 在AB段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.故选A.理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.二、填空题9.18的立方根是__.【答案】1 2【解析】试题分析:根据立方根的定义,求数a的立方根,也就是求一个数x,使得x3=a,则x就是a 的一个立方根:∵31128⎛⎫=⎪⎝⎭,∴18的立方根是12.10.用四舍五入法把9.456精确到百分位,得到的近似值是.【答案】9.46【解析】试题分析:把千分位上的数字6进行四舍五入即可.解:9.456≈9.46(精确到百分位).故答案为9.46.考点:近似数与有效数字.11. 等腰三角形一个底角是30°,则它的顶角是__________.【答案】120°【解析】本题主要考查“等腰三角形的两底角相等”与“三角形的内角和定理”等腰三角形一个底角是30°,则它的另一个底角也是30°,则它的顶角是180°-30°-30°=120°12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.【答案】20【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.13.已知一次函数y=kx+b的图象如图,则关于x的不等式kx+b>0的解集是______.x【答案】2【解析】【分析】直接利用一次函数图象,结合式kx+b>0时,则y的值>0时对应x的取值范围,进而得出答案.【详解】如图所示:关于x的不等式kx+b>0的解集是:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用数形结合是解题关键. 14.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).【答案】>【解析】【分析】分别把点A (-1,y 1),点B (-2,y 2)的坐标代入函数y =3x ,求出点y 1,y 2的值,并比较出其大小即可.【详解】∵点A (-1,y 1),点B (-2,y 2)是函数y =3x 的图象上的点,∴y 1=-3,y 2=-6,∵-3>-6,∴y 1>y 2.15.一次函数1y x =+与3y ax =+的图象交于点P ,且点P 的横坐标为1,则关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是______. 【答案】12x y =⎧⎨=⎩【解析】【分析】把1x =代入1y x =+,得2y =,得出两直线的交点坐标为(1,2),从而得到方程组的解.【详解】解:把1x =代入1y x =+,得2y =,则函数1y x =+和3y ax =+的图象交于点(1,2)P ,即x=1,y=2同时满足两个一次函数的解析式. 所以关于x ,y 的方程组1,3y x y ax =+⎧⎨=+⎩的解是1,2.x y =⎧⎨=⎩故答案为12x y =⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.如图,在△ABC 中,∠BAC =90°,AB =5,AC =12,点D 是BC 的中点,将△ABD 沿AD翻折得到△AED,连接BE,CE.则CE=___________。

八年级(上)第二次月考数学试卷(含答案)

八年级(上)第二次月考数学试卷(含答案)

八年级(上)第二次月考数学试卷(含答案)一、选择题1.如图,点 P 在长方形 OABC 的边 OA 上,连接 BP ,过点 P 作 BP 的垂线,交射线 OC 于 点 Q ,在点 P 从点 A 出发沿 AO 方向运动到点 O 的过程中,设 AP=x ,OQ=y ,则下列说法正 确的是( )A .y 随 x 的增大而增大B .y 随 x 的增大而减小C .随 x 的增大,y 先增大后减小D .随 x 的增大,y 先减小后增大2.以下关于多边形内角和与外角和的表述,错误的是( ) A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是 2 倍D .如果一个多边形的每个内角是120,那么它是十边形.3.下列四组数,可作为直角三角形三边长的是4cm 、5cm 、6cm 2cm 、3cm 、4cm B .1cm 、2cm 、3cm A . C . D .1cm 、2cm 、3cm4.下列说法正确的是( ) =±4A .(﹣3) 的平方根是 3B . 16 2C .1 的平方根是 1D .4 的算术平方根是 25.在下列黑体大写英文字母中,不是轴对称图形的是(A .B .C .)D .6.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点 O , 按顺时针方向旋转到△A OB 处,此时线段 OB 与 AB 的交点 D 恰好为 AB 的中点,则线段 1 1 1 B D 的长度为( )11 A . cm23 D . cm2B .1cmC .2cm7.下列电视台的台标中,是轴对称图形的是( ) A .B .C .D .8.为了解我区八年级学生的身高情况,教育局抽查了1000 名学生的身高进行了统计分析 所抽查的 1000 名学生的身高是这个问题的( ) A .总体B .个体C .样本D .样本容量C 90 ,AC 4 3 cm ,点 D 、E 分别在 AC 、BC 9.如图,在 AB C 中, cm , BC ' A C ,则 AC长度的最小值 上,现将 D C E 沿 DE 翻折,使点 C 落在点C 处,连接( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm2x 510.若 在实数范围内有意义,则 x 的取值范围是()352552 5A .x >﹣B .x >﹣ 且 x ≠0C .x ≥﹣D .x ≥﹣ 且 x ≠02 2二、填空题11.如图,在正方形 AB C D 的外侧,作等边三角形C D E ,连接 AE , BE,试确定AEB的度数.12.公元前 3 世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全 等的直角三角形(两直角边长分别为 a 、b 且 a <b )拼成的边长为 c 的大正方形,如果每个 直角三角形的面积都是 3,大正方形的边长是 13 ,那么 b -a =____.13.如图,在Rt△AB C中,B90A30,,DE垂直平分斜边A C,交AB于1,则AC的长是__________.,E是垂足,连接C D,若B D D14.已知一次函数y k x1的图像经过点P(1,0),则________.ky x m与直线y 2x4的交点在轴上,则my15.若直线_______.16.函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范2211围是______.17.已知一次函数y=mx-3的图像与x轴的交点坐标为(x,0),且2≤x≤3,则m的取00值范围是________.18.如图,在平面直角坐标系xOy中,点A的坐标为(1,3),点B的坐标为(2,-1),点C在同一坐标平面中,且△ABC是以AB为底的等腰三角形,若点C的坐标是(x,y),则x、y之间的关系为y=______(用含有x的代数式表示).19.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是_____.20.一次函数 y =2x -4 的图像与 x 轴的交点坐标为_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在 m 校内对“你最认可的四大新生事物”进行了调查,随机调查了 人(每名学生必选一种且只 能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.m n (1)根据图中信息求出 =___________, =_____________; (2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校 2000 名学生种,大约有多少人最认可“微信”这一 新生事物?22.如图,在四边形 AB C D 中,ABC 90,过点 作 B BE C D ,垂足为点 ,过点EA 作 AF ⊥BE,垂足为点 ,且 BE AF .F ABF BCE (1)求证: ; (2)连接 B D ,且 B D 平分ABE交 AF 于点G .求证:BCD 是等腰三角形. 23.如图,四边形 ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D 是否是直角,并说明理由. (2)求四边形 ABCD 的面积. yx b 1y 的图像与 轴 轴分别交于点 、点 ,函数 yx b,24.如图,一次函数 x A B 14 x 3与 y的图像交于第二象限的点C ,且点C 横坐标为3. 2(1)求b 的值;0 y y (2)当 时,直接写出 x 的取值范围; 1 24x yx b1(3)在直线 y上有一动点 ,过点 作 x 轴的平行线交直线 于点Q ,P P 3 214OC 当 P Q 时,求点 的坐标.P5 25.如图,有一个长方形花园,对角线 AC 是一条小路,现要在 AD 边上找一个位置建报亭 H ,使报亭 H 到小路两端点 A 、C 的距离相等.(1)用尺规作图的方法,在图中找出报亭 H 的位置(不写作法,但需保留作图痕迹,交 代作图结果)(2)如果 AD =80m ,CD =40m ,求报亭 H 到小路端点 A 的距离.四、压轴题26.在平面直角坐标系 xOy 中,若 P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均 与某条坐标轴垂直,则称该矩形为点 P ,Q 的“相关矩形”.图 1 为点 P ,Q 的“相关矩 形”的示意图.已知点 A 的坐标为(1,2). (1)如图 2,点 B 的坐标为(b ,0).①若 b =﹣2,则点 A ,B 的“相关矩形”的面积是 ②若点 A ,B 的“相关矩形”的面积是 8,则 b 的值为; .(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.27.已知三角形ABC中,∠ACB=90°,点D(0,-4),M(4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.28.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D 是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE 的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).29.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由30.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰BAC 90,且每两l l l直角三角形的三个顶点分别落在三条等距的平行线,,上,123条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:l(1)小明说:我只需要过B、C向作垂线,就能利用全等三角形的知识求出AB的长.1AC BAC 120,,且每(2)小林说:“我们可以改变AB C的形状.如图2,AB两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变AB C的形状,还能改变平行线之间的距离.如图3,等边l l l1l l1l l2三角形ABC三个顶点分别落在三条平行线,,上,且与之间的距离为1,与2323之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】连接B Q,由矩形的性质,设B C=A O=a,A B=O C=b,利用勾股定理得到PBP Q22BQ2,然后得到y与x的关系式,判断关系式,即可得到答案.解,如图,连接 B Q ,由题意可知,△OP Q ,△QP B ,△A BP 是直角三角形, 在矩形 A B C O 中,设 B C=A O =a ,A B=O C=b ,则 a x C Q , b y,O P= 由勾股定理,得:P Q y (a x ) , PB x b( ), B Qa b y ,2 2 2 2 2 2 22 2 PB BQ2,∵ P Q 22(a x) x b a (b y) ∴ y 2 2 2 2 2 2 , x ax 整理得:by , 21 a a2 (x ) ∴ y , 2 b2 4b 10 ∵ ,b a a 2y 时, 有最大值 ∴当 x ;2 4b∴随 x 的增大,y 先增大后减小; 故选择:C. 【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与 x 的关系式,从 而得到答案.2.D解析:D 【解析】 【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解. 【详解】A.四边形的内角和为 360°,外角和也为 360°,A 选项正确;B.根据四边形的内角和为 360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为(62)180 720,外角和为 360°,C 选项正确;(n 2)180120 6 10,D 选项错误.D.假设是 n 边形,解得n n【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键.3.D解析:D 【解析】 【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可. 【详解】A 、∵5 +4 ≠6 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2B 、1+2 ≠3 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2 C 、∵2 +3≠4 ,∴此组数据不能构成直角三角形,故本选项错误; 2 2 2 3 ) ,∴此组数据能构成直角三角形,故本选项正确. 2 D 、∵1 +( ) =( 2 2 2 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足 a +b =c ,那么这2 2 2 个三角形就是直角三角形.4.D解析:D 【解析】 【分析】根据平方根和算术平方根的定义解答即可. 【详解】16=4,故该项错误;C 、1 的平方根是 A 、(﹣3) 的平方根是±3,故该项错误;B 、 2 ±1,故该项错误;D 、4 的算术平方根是 2,故该项正确.故选 D. 【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定 义.5.C解析:C 【解析】 【分析】根据轴对称图形的概念对各个大写字母判断即可得解. 【详解】A .“E ”是轴对称图形,故本选项不合题意;B .“M ”是轴对称图形,故本选项不合题意;C .“N ”不是轴对称图形,故本选项符合题意;D .“H ”是轴对称图形,故本选项不合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重 合.6.D解析:D【解析】【分析】先在直角△AOB 中利用勾股定理求出 AB =5cm ,再利用直角三角形斜边上的中线等于斜边1的一半得出 OD = AB =2.5cm .然后根据旋转的性质得到 OB =OB =4cm ,那么 B D =OB 21 1 1 ﹣OD =1.5cm .【详解】∵在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,∴AB = =5cm ,O A 2 O B 2 ∵点 D 为 AB 的中点,1 ∴OD = AB =2.5cm . 2∵将△AOB 绕顶点 O ,按顺时针方向旋转到△A OB 处, 1 1∴OB =OB =4cm , 1∴B D =OB ﹣OD =1.5cm . 1 1故选:D .【点睛】本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边 上的中线等于斜边的一半”是解题的关键.7.A解析:A【解析】【详解】B,C,D 不是轴对称图形,A 是轴对称图形.故选 A.8.C解析:C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的 一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.9.C解析:C【解析】【分析】当C′落在A B上,点B与E重合时,A C'长度的值最小,根据勾股定理得到A B=5cm,由折叠的性质知,BC′=B C=3c m,于是得到结论.【详解】解:当C′落在A B上,点B与E重合时,A C'长度的值最小,∵∠C=90°,A C=4c m,B C=3c m,∴A B=5c m,由折叠的性质知,BC′=B C=3c m,∴A C′=A B-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.10.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】5解:由题意得,2x+5≥0,解得x≥﹣,2故选:C.【点睛】a本题考查了二次根式有意义的条件,对于二次根式,当被开方数a时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题11.【解析】【分析】由正方形和等边三角形的性质得出∠A D E =150°,A D=D E,得出∠DE A=15°,同理可求出∠CE B=15°,即可得出∠AE B 的度数.【详解】解:∵在正方形中,,,在解析:AEB30【解析】【分析】由正方形和等边三角形的性质得出∠ADE =150°,AD=DE,得出∠DEA=15°,同理可求出∠CEB=15°,即可得出∠AEB 的度数.【详解】DC解:∵在正方形A B C D中,A D,AD C90,在等边三角形C D E中,C D D E ,C D E DE C60,∴ADE AD C CDE150A D D E,,A D E在等腰三角形中180ADE180150DEA152 2,同理得:BEC15,则AEB DEC DEA BE C60151530.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形内角和定理;熟练掌握正方形和等边三角形的性质是解决问题的关键.12.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】观察图形可知,小正方形的面积=大正方形的面积- 4 个直角三角形的面积,利用已知 c 13 ,则大正方形的面积为 13,每个直角三角形的面积都是 3,可以得出小正方形的 面积,进而求出答案.【详解】解:根据题意,可知,1 3 ∵c 13 , ab , 21 (b a ) 4 ab c ∴ ∴2 2 ,c 2 13 , 2(b a )2 13 43 1, ∴b∵ a ∴b a 1; b ,即b a 0 ,a 1;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的 思想是解题的关键.13.【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答 案为.解析: 2 3【解析】B 90 30 , A ACB 60.又∵ 解: ,∴ 垂直平分 D E C D A D 2 A C ,∴ C D AD ,AC D A 30 DCB .∵ 1,∴,∴ B D 1 2 3 .故答案为2 3 A 30 . A B 3 , , B C A C .由勾股定理可得 A C 2 14.1【解析】【分析】直接把点P (-1,0)代入一次函数y=kx+1,求出k 的值即可.【详解】∵ 一次函数y=kx+1的图象经过点P (-1,0),∴ 0=-k+1,解得k=1.故答案为1.【解析:1【分析】直接把点 P (-1,0)代入一次函数 y=kx+1,求出 k 的值即可.【详解】∵一次函数 y=kx+1 的图象经过点 P (-1,0),∴0=-k+1,解得 k=1.故答案为 1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此 函数的解析式是解答此题的关键.15.4【解析】【分析】先求出直线与 y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把 (0,4)代入即可求出 m 的值.【详解】解:当 x=0 时,=4,则直线与 y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】 2x 4 先求出直线 与 y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把 y (0,4)代入 y【详解】x m 即可求出 m 的值.解:当 x=0 时, =4,则直线 x m 得 m=4,y 2x 4 y 2x 4与 y 轴的交点坐标为(0,4), 把(0,4)代入 y 故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应 的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的 自变量系数相同,即 k 值相同. 16.−1<x<2.【解析】【分析】根据 x 轴上方的图象的 y 值大于 0 进行解答.【详解】如图所示,x>−1 时,y>0,当 x<2 时,y>0,∴使 y 、y 的值都大于 0 的 x 的取值范围是:−1<x<2.解析: 1<x<2.【解析】【分析】根据 x 轴上方的图象的 y 值大于 0 进行解答.【详解】如图所示,x>−1 时,y >0,1 当 x<2 时,y >0,2 ∴使 y 、y 的值都大于 0 的 x 的取值范围是:−1<x<2.2 1 故答案为:−1<x<2.【点睛】此题考查两条直线相交或平行问题,解题关键在于x 轴上方的图象的 y 值大于 0 17.1≤m≤【解析】【分析】根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.【详解】当时,,∴ ,当时,,,当时,,,m 的取值范围为:1≤m≤故答案为:1≤m≤【点睛】3 解析:1≤m≤ 2【解析】【分析】根据题意求得 x ,结合已知 2≤x ≤3,即可求得 m 的取值范围. 00 【详解】3x 当 ∴ 当 0时, ,y m 3 , x 0m 3 3时, 3 m , 1, mx 033 2 x 2 2 m ,当 时, , 0 m 3 m 的取值范围为:1≤m≤ 23 故答案为:1≤m≤ 2【点睛】本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围 求得 m 的取值范围是解题的关键. 18.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根 据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式 即可.【详解】解:设的中点为,过作的1 4 5 8解析: x 【解析】【分析】设 AB 的中点为 D ,过 D 作 AB 的垂直平分线 EF ,通过待定系数法求出直线 AB 的函数 AB EF 表达式,根据 EF 可以得到直线 的 值,再求出 AB 中点坐标,用待定系数法求 k 出直线 EF 的函数表达式即可.【详解】解:设 AB 的中点为 D ,过 D 作 AB 的垂直平分线 EF∵A(1,3),B(2,-1)设直线 的解析式为 AB y k x b ,把点 A 和 B 代入得: 1 1b 32k b 1解得: k 4 k 1 b 7 14x 7∴ y 31 1 2 ∵D 为 AB 中点,即 D( , ) 2 23 ∴D( ,1) 2y k x b 设直线 EF 的解析式为 2 2AB∵ EF k k 11 2∴ 1 ∴ k 2 4y k x b ∴把点 D 和 k 代入 可得: 2 2 21 3 1 b 42 25 ∴b 82 1 5 8x ∴ y 4 1 5 x 上 ∴点 C(x ,y)在直线 y 4 81 故答案为 x 4 5 8【点睛】本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根 据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.19.8【解析】【分析】作 BC 边上的高 AF ,利用等腰三角形的三线合一的性质求 BF =3,利用勾股定理 求得 AF 的长,利用面积相等即可求得 AB 边上的高 CP 的长.【详解】解:如图,作 AF⊥BC 于点 F ,作解析:8【解析】【分析】作 BC 边上的高 AF ,利用等腰三角形的三线合一的性质求 BF =3,利用勾股定理求得 AF 的 长,利用面积相等即可求得 AB 边上的高 CP 的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,1111∴S△ABC=AB•PC=BC•AF=×5CP=×6×42222得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 20.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,35支付宝的人数所占百分比n%=100100%=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,40微信对应的百分比为:100100%40%,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°, ∴∠ABE+∠BAF=90°. ∵∠ABC=90°, ∴∠ABE+∠EBC=90°, ∴∠BAF=∠EBC . 在 ΔABF 和 ΔBCE 中,∵∠AFB=∠BEC ,AF=BE ,∠BAF=∠EBC , ∴ΔABF ≌ΔBCE . (2)∵∠ABC=90°, ∴∠ABD+∠DBC=90°. ∵∠BED=90°, ∴∠DBE+∠BDE=90°. ∵BD 分∠ABE , ∴∠ABD=∠DBE , ∴∠DBC=∠BDE , ∴BC=CD ,即 ΔBCD 是等腰三角形. 【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明 ΔABF ≌ΔBCE .23.(1)∠D 是直角.理由见解析;(2)234. 【解析】 【分析】(1)连接 AC ,先根据勾股定理求得 AC 的长,再根据勾股定理的逆定理,求得∠D=90°即 可;(2)根据△ACD 和△ACB 的面积之和等于四边形 ABCD 的面积,进行计算即可. 【详解】(1)∠D 是直角.理由如下: 连接 AC .∵AB=20,BC=15,∠B=90°,∴由勾股定理得 AC =20 +15 =625.2 又∵CD=7,AD=24, ∴CD +AD =625, 2 2 2 2 ∴AC =CD +AD , 2 2 2 ∴∠D=90°.1 1 1 1(2)四边形 ABCD 的面积= AD•DC+ AB•BC= ×24×7+ ×20×15=234.2 2 2 2【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆 定理.通过作辅助线,将四边形问题转化为三角形问题是关键.7 7 x 3 (3,4) (9,12) (3)点 坐标为 或24.(1)b 【解析】(2) P【分析】4xy x b1(1)将点 横坐标代入 y 求得点 C 的纵坐标为 4,再把(-3,4)代入C 32求出 b 即可;0 y y (2)求出点 A 坐标,结合点 C 坐标即可判断出当 时, x 的取值范围; 1 2 4 3 4 47 3 a 7a , 7 a a (3)设 P (a,- ),可求出 Q ( ),即可得 PQ= ,再求出 3 314OC OC=5,根据 P Q 求出 a 的值即可得出结论.5【详解】43(1)把 x 代入 y x , 324 得 y .∴C (-3,4) 把点C(3,4)代入 yx b 1,7 得b . (2)∵b=7 ∴y=x+7,当 y=0 时,x=-7,x=-3 时,y=4, 0 yy 7 3.∴当 时,x 124x (3) 点 为直线 y 上一动点,P 3 4( , ) 设点 坐标为 a a. P 3∵P Q / /x 轴,44把 y y x7 4 ,得 a .7a 代入x 3 3 4a 7,a 点Q 坐标为 , 334 7P Q a a 7 a 73 3 (3,4 ) 又 点 坐标为 C, OC 3 4 52 2 14PQ OC 1457a 7 14 33 a 9或 .解之,得a (3,4) (9,12) 或 .点 坐标为 P 【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长. 25.(1)详见解析;(2)报亭到小路端点 A 的距离 50m . 【解析】 【分析】(1)作 AC 的垂直平分线交 AD 与点 H ,进而得出答案; (2)利用勾股定理以及线段垂直平分线的性质得出即可. 【详解】(1)如图所示:H 点即为所求;(2)根据作图可知: H H ,A = C设 AH =xm ,则 DH =(80﹣x )m ,HC =xm , 在 Rt △DHC 中,D H 2 C D 2 HC 2 ,(80﹣x)40 x2 ,∴ 2 2 解得:x =50,答:报亭到小路端点 A 的距离 50m . 【点睛】本题主要考查了应用设计与作图以及勾股定理和线段垂直平分线的性质和作法等知识,得 出 H H ,进而利用勾股定理得出是解题关键.A = C四、压轴题26.(1)①6;②5 或﹣3;(2)直线 AC 的表达式为:y =﹣x+3 或 y =x+1;(3)m 的 取值范围为﹣3≤m ≤﹣2+ 3 或 2﹣ 3 ≤m ≤3. 【解析】 【分析】(1)①由矩形的性质即可得出结果; ②由矩形的性质即可得出结果;(2)过点 A (1,2)作直线 y =﹣1 的垂线,垂足为点 G ,则 AG =3 求出正方形 AGCH 的 边长为 3,分两种情况求出直线 AC 的表达式即可;1(3)由题意得出点 M 在直线 y =2 上,由等边三角形的性质和题意得出OD =OE = DE =23 OD= 3 ,分两种情况:1,EF =DF =DE =2,得出 OF = ①当点 N 在边 EF 上时,若点 N 与 E 重合,点 M ,N 的“相关矩形”为正方形,则点 M 的 坐标为(﹣3,2)或(1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形,则 3 3或 2﹣点 M 的坐标为(﹣2+ ,2);得出 m 的取值范围为﹣3≤m ≤﹣2+ 3 ≤m ≤1;②当点 N 在边 DF 上时,若点 N 与 D 重合,点 M ,N 的“相关矩形”为正方形,则点 M 的坐标为(3,2)或(﹣1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 3≤m ≤3 或 2﹣则点 M 的坐标为(2﹣ ,2);得出 m 的取值范围为 2﹣ 3 ≤m ≤1;即可得出结论. 【详解】解:(1)①∵b =﹣2,∴点 B 的坐标为(﹣2,0),如图 2﹣1 所示: ∵点 A 的坐标为(1,2),∴由矩形的性质可得:点 A ,B 的“相关矩形”的面积=(1+2)×2=6, 故答案为:6; ②如图 2﹣2 所示:由矩形的性质可得:点 A ,B 的“相关矩形”的面积=|b ﹣1|×2=8, ∴|b ﹣1|=4, ∴b =5 或 b =﹣3, 故答案为:5 或﹣3;(2)过点 A (1,2)作直线 y =﹣1 的垂线,垂足为点 G ,则 AG =3, ∵点 C 在直线 y =﹣1 上,点 A ,C 的“相关矩形”AGCH 是正方形, ∴正方形 AGCH 的边长为 3,当点 C 在直线 x =1 右侧时,如图 3﹣1 所示: CG =3,则 C (4,﹣1),设直线 AC 的表达式为:y =kx+a ,2 k a则,, 1 4k ak 1解得;a 3∴直线 AC 的表达式为:y =﹣x+3;当点 C 在直线 x =1 左侧时,如图 3﹣2 所示: CG =3,则 C (﹣2,﹣1),设直线 AC 的表达式为:y =k ′x+b ,2 kb则,1 2k bk 1 解得:, b 1∴直线 AC 的表达式为:y =x+1,综上所述,直线 AC 的表达式为:y =﹣x+3 或 y =x+1; (3)∵点 M 的坐标为(m ,2), ∴点 M 在直线 y =2 上,∵△DEF 是等边三角形,顶点 F 在 y 轴的正半轴上,点 D 的坐标为(1,0), 1∴OD =OE = DE =1,EF =DF =DE =2,2 3 OD= 3 ,∴OF =分两种情况:如图 4 所示:①当点 N 在边 EF 上时,若点 N 与 E 重合,点 M ,N 的“相关矩形”为正方形, 则点 M 的坐标为(﹣3,2)或(1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 3 则点 M 的坐标为(﹣2+ ,2)或(2﹣ ,2);3 3 m 1≤ ≤ ;∴m 的取值范围为﹣3≤m ≤﹣2+ 或 2﹣ ②当点 N 在边 DF 上时,若点 N 与 D 重合,点 M ,N 的“相关矩形”为正方形, 则点 M 的坐标为(3,2)或(﹣1,2);若点 N 与 F 重合,点 M ,N 的“相关矩形”为正方形, 3 22+ 3 2 , );则点 M 的坐标为(2﹣ , )或(﹣ 3 m 3 2+ 3 1 m ∴m 的取值范围为 2﹣ ≤ ≤ 或﹣ ≤ ≤﹣ ; 3 或 2﹣≤ ≤ .3 m 3综上所述,m 的取值范围为﹣3≤m ≤﹣2+【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.27.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD x 轴于D,BE⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD x 轴于D,BE x 轴于E,如图1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,111∴S△ABC=S 梯形ABED﹣S△AOD﹣S△AOE=×(2+4)×6﹣×2×2﹣×4×4=8;222(2)作CH // x 轴,如图2,∵D(0,﹣4),M(4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)证明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和 定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.28.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角 形, 【解析】 【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF ≌ED C (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD ≌DCE(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】即可得解; 即可得解;(1)如下图,数量关系:AD =DE.证明:∵ABC是等边三角形∴AB =BC ,B =BAC =BCA =60∵DF ∥AC BF D =BAC ∴ ∴ ,∠BDF =∠BCAB =BF D =B D F =60是等边三角形,AFD =120∴BDF ∴DF =BD∵点 D 是 BC 的中点 ∴BD =CD ∴DF =CD∵CE 是等边ABC 的外角平分线DCE =120=AF D∴ ∵ABC是等边三角形,点 D 是 BC 的中点∴AD ⊥BC AD C =90 ∴ ∵ ∴ 在 BDF =ADE =60ADF =ED C =30 EDC ADF 与 中A F D =EC D=C DDFADF =ED CADF ≌ED C(ASA)∴∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F ∵ABC是等边三角形∴AB=BC ,B =BAC =BCA=60∵DF∥ACBF D =BAC ,BDF =BC AB =BF D =B D F=60∴∴是等边三角形,AFD=120∴BDF∴BF=BD∴AF=DC∵CE 是等边ABC的外角平分线DCE=120=AF D∴ABD∵∠ADC是的外角AD C =B +FA D=60+FA D∴∵AD C =ADE +C DE=60+C D E ∴∠FAD=∠CDEDCE在AFD与中A F D =DCE=C DAFFAD =ED CAFD ≌DCE(ASA)∴∴AD=DE;(3)如下图,A D E是等边三角形.。

人教版八年级第二次月考数学试题

人教版八年级第二次月考数学试题

人教版八年级第二次月考数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 已知,,则经过A,B两点的直线对应的函数表达式为()A.B.C.D.2 . 在平面直角坐标系中,点P关于y轴的对称点为P1(-2,6),则点P的坐标为()A.(-2、-6)B.(2、6)C.(2、-6)D.(6、-2)3 . 如图是沈阳市地图简图的一部分,6古楼大北门7故宫8大南门东华门图中“故宫”、“古楼”所在的区域分别是()A.,B.,C.,D.,4 . 如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个5 . 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元6 . 食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是()A.B.C.D.7 . 正比例函数的图象在第二、四象限,则一次函数的图象大致是()A.B.C.D.8 . 下列关系式中,y是x的一次函数的是()B.C.D.A.9 . 在平面直角坐标系中,已知点,,将线段绕点旋转后,得到线段,则线段所在直线的函数解析式是()A.y=3x+15B.y=3x-15C.y=15x-3D.y=-15x+310 . 若是方程3x+my=1的一个解,则m的值是()A.1B.﹣1C.2D.﹣2二、填空题11 . 无论m为何值,点A(m,5-2m)不可能在第________象限.12 . 已知直线y=(4-3m)x+m-4与直线y=x+6平行,求此直线的解析式__________.13 . 若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,﹣3),则直线的函数表达式是_________.14 . 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为___________;15 . 已知点P(x,y)在第一象限,它的坐标满足方程组,则m的取值范围为__________.16 . 直线l1:y=kx+b与直线l2:y=-3x在同一平面直角坐标系内的图象如图所示,则关于x,y的方程组的解为____.17 . 一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.三、解答题18 . 星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图像回答下列问题:(1)小明家离图书馆的距离是________千米;(2)小明在图书馆看书的时间为________小时;(3)小明去图书馆时的速度是________千米/小时.19 . 古代算题:“今有牛五、羊二,值金十两;牛二、羊五,值金八两.牛羊各值金几何”请你读懂题意,给予解答.20 . 先化简,再求值:(),其中x、y分别是一次函数y x+1的图象与x轴交点的横坐标和与y轴交点的纵坐标.21 . 已知△ABC与△DEF关于y轴对称,点A, B, C的对称点分别是D, E,A.(1)在图中画出△DEF;(2)写出点D, E, F的坐标;(3)在y轴上有一点P,且PB+PC的值最小,画出点P,并保留作图痕迹.22 . (1)(2)解方程组:(3)解不等式组,并将解集表示到数轴上23 . (1)计算:;(2)化简:.24 . 某市遭遇严重水灾.有关部门紧急部署,组织了一批救灾帐篷和食品准备送往灾区.已知帐篷和食品共680件,且帐篷比食品多200件.(1)求帐篷和食品各多少件?(2)现计划用A、B两种货车共16辆,一次性将物资送往灾区,已知A种货车可装帐篷40件和食品10件,B 种货车可装帐篷20件和食品20件,请设计一下共几种运输方案?(3)在(2)的条件下,A种货车每辆运费800元,B种货车每辆运费720元,怎样安排调运方案才能使总运费最少?最少运费是多少?25 . 对于平面直角坐标系中的点和图形,给出如下定义:若在图形上存在两个点,使得以为顶点的三角形为等边三角形,则称为图形的“等边依附点”.(1)已知,.①在点,,中,是线段的“等边依附点”的是_______;②点在轴上运动,若为线段的“等边依附点”,求点的横坐标的取值范围;(2)已知的半径为1,若上所有点都是某条线段的“等边依附点”,直接写出这条线段长的取值范围.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、7、三、解答题1、2、3、4、5、6、7、8、。

2021-2022学年河南省南阳十三中八年级(上)第二次月考数学试卷(解析版)

2021-2022学年河南省南阳十三中八年级(上)第二次月考数学试卷(解析版)

2021-2022学年河南省南阳十三中八年级第一学期第二次月考数学试卷一、填空:(每小题3分,共30分)1.下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.同旁内角互补2.满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.a:b:c=3:4:5C.b2=a2﹣c2D.∠A=∠B﹣∠C3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去4.三角形的三边长分别为a,b,c,且满足a4﹣b4+b2c2﹣a2c2=0,则该三角形的形状是()A.任意等腰三角形B.等腰直角三角形C.等腰三角形或直角三角形D.任意直角三角形5.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交6.如图所示,ABCD是长方形地面,长AB=20,宽AD=10,中间整有一堵砖墙高MN=2,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A.20B.24C.25D.267.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距()A.12海里B.13海里C.14海里D.15海里8.如图,在△ABC中,分别以点A和B为圆心,大于和长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ABC的周长为17,AB=7,则△ADC的周长是()A.7B.10C.15D.179.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°10.如图,在△ABC中,AB=AC,∠B=∠C=45°,D、E是斜边BC上两点,且∠DAE =45°,过点A作AF⊥AD,垂足是A,过点C作CF⊥BC,垂足是C.交AF于点F,连接EF,下列结论:①△ABD≌△ACF;②DE=EF;③若S△ADE=10,S△CEF=4.则S△ABC=24;④BD+CE=DE.其中正确的是()A.①②B.②③C.①②③D.①③④二、填空(每小题3分,共15分)11.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=°.12.在Rt△ABC中,AB=5,BC=4,则AC的长是.13.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为m2.14.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP与△DCE全等.15.如图所示,在△ABC中,AB=AC,直线EF是AB的垂直平分线,D是BC的中点,M 是EF上一个动点,△ABC的面积为12,BC=4,则△BDM周长的最小值是.三、解答题:(共75分)16.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,根据下列各边的长度,判断各三角形是否为直角三角形,并指出哪一个角是直角.(1)a=2,b=,c=3;(2)a=2n,b=n2﹣1,c=n2+1;(n>1)17.已知∠MAN.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作∠MAN的平分线AE;②在AE上任取一点F,作AF的垂直平分线分别与AM、AN交于P、Q;(2)在(1)的条件下,线段AP与AQ有什么数量关系,请直接写出结论.18.八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米:(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?19.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.20.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,将△ABC沿AD折叠,使点C 落在AB上的点E处,求DB的长.21.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE 交AD的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.22.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图①),后人称之为“赵爽弦图”,流传至今.如图①是用四个能够完全重合的直角三角形拼成的图形,其中直角边长分别为a,b,斜边长为c,用含a,b,c的代数式表示:(1)大正方形的面积为;小正方形的面积为;(2)四个直角三角形的面积和为,根据图中面积关系,可列出a,b,c之间的关系式为;(3)如图②,以直角三角形的三边为直径,分别向外部作半圆,则S1,S2,S3满足的关系是;(4)如图③直角三角形的两条直角边长分别为3、5,分别以直角三角形的三边为直径作半圆,则图中两个月形图案(阴影部分)的面积和为.23.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)观察猜想如图①,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是;线段DE与DF的位置关系是.(2)类比探究如图②,若点E、F分别是AB、AC上的点,且BE=AF,上述结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(3)解决问题如图③,若点E、F分别为AB、CA延长线的点,且BE=AF=AB=2,请直接写出△DEF的面积.参考答案一、填空:(每小题3分,共30分)1.下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.同旁内角互补【分析】利用对顶角的性质、线段的性质及平行线的性质分别判断后即可确定正确的选项.解:A、对顶角相等,正确,是真命题,符合题意;B、两点之间,线段最短,故原命题错误,是假命题,不符合题意;C、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;D、两直线平行,同旁内角互补,故原命题错误,是假命题,不符合题意.故选:A.2.满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.a:b:c=3:4:5C.b2=a2﹣c2D.∠A=∠B﹣∠C【分析】利用三角形内角和定理和勾股定理逆定理进行计算可得答案.解:A、∵∠A:∠B:∠C=3:4:5,∴设∠A=3x,∠B=4x,∠C=5x,∴3x+4x+5x=180°,∴x=15°,∴∠A=3x=45°,∠B=4x=60°,∠C=5x=75°,∴△ABC不是直角三角形,符合题意.B、∵a:b:c=3:4:5,∴32+42=52,∴△ABC为直角三角形.不符合题意;C、∵b2=a2﹣c2,∴b2+c2=a2,∴△ABC为直角三角形.不符合题意;D、∵∠A=∠B﹣∠C,∴∠B﹣∠C+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC为直角三角形.不符合题意.故选:A.3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故选:C.4.三角形的三边长分别为a,b,c,且满足a4﹣b4+b2c2﹣a2c2=0,则该三角形的形状是()A.任意等腰三角形B.等腰直角三角形C.等腰三角形或直角三角形D.任意直角三角形【分析】先将已知等式左边因式分解后判定三角形形状.解:∵a4﹣b4+b2c2﹣a2c2=0.∴(a2﹣b2)(a2+b2)﹣c2(a2﹣b2)=0.∴(a2﹣b2)(a2+b2﹣c2)=0.∴(a﹣b)(a+b)(a2+b2﹣c2)=0.∵三角形的三边长分别为a,b,c.∴a+b>0.∴a﹣b=0或a2+b2=c2.∴该三角形是等腰三角形或直角三角形.故选:C.5.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a⊥b D.a与b相交【分析】用反证法解题时,要假设结论不成立,即假设a与b不平行,即a与b相交.解:∵原命题“在同一平面内,若a⊥c,b⊥c,则a∥b”,用反证法时应假设结论不成立,即假设“a与b相交”.故选:D.6.如图所示,ABCD是长方形地面,长AB=20,宽AD=10,中间整有一堵砖墙高MN=2,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A.20B.24C.25D.26【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的矩形长度增加而宽度不变,求出新矩形的对角线长即可.解:如图所示,将图展开,图形长度增加2MN,原图长度增加4米,则AB=20+4=24,连接AC,∵四边形ABCD是长方形,AB=24,宽AD=10,∴AC====26,∴蚂蚁从A点爬到C点,它至少要走26的路程.故选:D.7.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距()A.12海里B.13海里C.14海里D.15海里【分析】根据题意得出∠AOB=90°,根据勾股定理即可得到结论.解:由题意可得:BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,∴AB==15(海里),答:甲、乙两渔船相距15海里,故选:D.8.如图,在△ABC中,分别以点A和B为圆心,大于和长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ABC的周长为17,AB=7,则△ADC的周长是()A.7B.10C.15D.17【分析】先根据题意得出MN是线段AB的垂直平分线,故可得出AD=BD,据此可得出结论.解:∵根据题意得出MN是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BC.∵△ABC的周长为17,AB=7,∴△ADC的周长=AC+BC=△ABC的周长﹣AB=17﹣7=10.故选:B.9.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC,进一步根据三角形的外角性质可知∠BDE=3∠ODC=75°,即可求出∠ODC的度数,进而求出∠CDE的度数.解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.10.如图,在△ABC中,AB=AC,∠B=∠C=45°,D、E是斜边BC上两点,且∠DAE =45°,过点A作AF⊥AD,垂足是A,过点C作CF⊥BC,垂足是C.交AF于点F,连接EF,下列结论:①△ABD≌△ACF;②DE=EF;③若S△ADE=10,S△CEF=4.则S△ABC=24;④BD+CE=DE.其中正确的是()A.①②B.②③C.①②③D.①③④【分析】只要证明△ABD≌△ACF,△AED≌△AEF即可解决问题;解:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵AF⊥AD,BC⊥CF,∴∠DAF=∠BAC=∠ECF=90°,∴∠BAD=∠CAF,∠B=∠ACF=45°,∴△ABD≌△ACF,故①正确∴AD=AF,BD=CF,∵AE=AE,∠EAD=∠EAF=45°,AD=AF,∴△AED≌△AEF,∴DE=DF,故②正确,∵若S△ADE=10,S△CEF=4.∴S△ABD+S△AEC=14,∴S△ABC=14+10=24,故③正确,∵EC+CF>EF,∴BD+CE>DE,故④错误,故选:C.二、填空(每小题3分,共15分)11.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=50°.【分析】易证△ABC和△ADC均为直角三角形,即可证明RT△ABC≌RT△ADC,可得∠1=∠CAD,即可解题.解:∵∠B=∠D=90°,∴△ABC和△ADC均为直角三角形,在RT△ABC和RT△ADC中,,∴RT△ABC≌RT△ADC(HL),∴∠1=∠CAD,∴∠2=90°﹣∠CAD=50°.故答案为50°.12.在Rt△ABC中,AB=5,BC=4,则AC的长是3或.【分析】分两种情况,①AB=5为直角边,②AB=5为斜边,然后根据勾股定理即可得到结论.解:①当AB=5为直角边时,根据勾股定理得,AC===;②当AB=5为斜边时,AC===3,综上所述,AC的长是3或,故答案为:3或.13.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为96m2.【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,那么△ABC的面积减去△ACD的面积就是所求的面积.解:如图,连接AC.在△ACD中,∵AD=12m,CD=9m,∠ADC=90°,∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×15×20﹣×9×12=96(平方米).故答案为:96.14.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为1或7秒时,△ABP与△DCE全等.【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当时.△ABP和△DCE全等.故答案为:1或7.15.如图所示,在△ABC中,AB=AC,直线EF是AB的垂直平分线,D是BC的中点,M 是EF上一个动点,△ABC的面积为12,BC=4,则△BDM周长的最小值是8.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8.故答案为:8.三、解答题:(共75分)16.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,根据下列各边的长度,判断各三角形是否为直角三角形,并指出哪一个角是直角.(1)a=2,b=,c=3;(2)a=2n,b=n2﹣1,c=n2+1;(n>1)【分析】(1)根据a、b、c的值,可以计算出a2+c2和b2的值,然后即可判断该三角形是否为直角三角形;(2)根据a、b、c的值,可以计算出a2+b2和c2的值,然后即可判断该三角形是否为直角三角形.解:(1)∵a=2,b=,c=3,∴a2+c2=13,b2=13,∴a2+c2=b2,∴△ABC是直角三角形,∠B是直角;(2)∵a=2n,b=n2﹣1,c=n2+1,∴a2+b2=(2n)2+(n2﹣1)2=n4+2n2+1,c2=(n2+1)2=n4+2n2+1,∴a2+b2=c2,∴△ABC是直角三角形,∠C是直角.17.已知∠MAN.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作∠MAN的平分线AE;②在AE上任取一点F,作AF的垂直平分线分别与AM、AN交于P、Q;(2)在(1)的条件下,线段AP与AQ有什么数量关系,请直接写出结论.【分析】(1)①利用角平分线的作法得出即可;②利用垂直平分线的作法得出即可;(2)利用垂直平分线的性质得出∠PGA=∠QGA,进而得出△PAG≌△QAG(ASA),则AP=AQ,即可得出答案.解:(1)如图所示:①AE为所求作的角平分线;②PQ为所求作的垂直平分线;(2)AP=AQ.证明:∵PQ是AF的垂直平分线,∴∠PGA=∠QGA=90°,∵AE是∠MAN的平分线,∴∠PAG=∠QAG,在△PAG和△QAG中,,∴△PAG≌△QAG(ASA),∴AP=AQ.18.八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米:(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?【分析】(1)利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度;(2)根据勾股定理即可得到结论.解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.6=16.6米,答:风筝的高度CE为16.6米;(2)由题意得,CM=9,∴DM=6,∴BM===10,∴BC﹣BM=7,∴他应该往回收线7米.19.如图,在△AEC和△DFB中,∠E=∠F,点A、B、C、D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗、⊗,那么⊗”)(2)选择(1)中你写出的一个命题,说明它正确的理由.【分析】(1)如果①②作为条件,③作为结论,得到的命题为真命题;如果①③作为条件,②作为结论,得到的命题为真命题,写成题中要求的形式即可;(2)若选择(1)中的如果①②,那么③,由AE与DF平行,利用两直线平行内错角相等得到一对角相等,再由AB=DC,等式左右两边都加上BC,得到AC=DB,又∠E=∠F,利用AAS即可得到三角形ACE与三角形DBF全等,根据全等三角形的对应边相等得到CE=BF,得证;若选择如果①③,那么②,由AE与FD平行,利用两直线平行内错角相等得到一对角相等,再由∠E=∠F,CE=BF,利用AAS可得出三角形ACE与三角形DBF全等,根据全等三角形的对应边相等可得出AC=BD,等式左右两边都减去BC,得到AB=CD,得证.解:(1)如果①②,那么③;如果①③,那么②;(2)若选择如果①②,那么③,证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=BC+CD,即AC=DB,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴CE=BF;若选择如果①③,那么②,证明:∵AE∥DF,∴∠A=∠D,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD.20.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,将△ABC沿AD折叠,使点C 落在AB上的点E处,求DB的长.【分析】根据折叠的性质得到AE=AC=5,DC=DE,∠AED=∠BED=∠C=90°,根据勾股定理即可得到结论.解:根据题意,得AE=AC=5,DC=DE,∠AED=∠BED=∠C=90°.设DC=x,则DE=x,BD=12﹣x.在Rt△BDE中,由勾股定理,得x2+(13﹣5)2=(12﹣x)2,解得,∴CD=,∴BD=12﹣x=,故DB的长为.21.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE 交AD的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.【分析】(1)根据角平分线的定义可得∠BAE=∠EAF,∠ABF=∠EBC,再根据两直线平行,内错角相等可得∠EBC=∠F,然后求出∠ABF=∠F,再利用“角角边”证明△ABE和△AFE全等即可;(2)根据全等三角形对应边相等可得BE=FE,然后利用“角边角”证明△BCE和△FDE 全等,根据全等三角形对应边相等可得BC=DF,然后根据AD+BC整理即可得证.【解答】证明:(1)∵AE、BE分别平分∠DAB、∠CBA,∴∠BAE=∠EAF,∠ABF=∠EBC,∵AD∥BC,∴∠EBC=∠F,∠ABF=∠F,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴BE=EF,在△BCE和△FDE中,,∴△BCE≌△FDE(ASA),∴BC=DF,∴AD+BC=AD+DF=AF=AB,即AD+BC=AB.∵AD=2,BC=6,∴AB=8.22.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图①),后人称之为“赵爽弦图”,流传至今.如图①是用四个能够完全重合的直角三角形拼成的图形,其中直角边长分别为a,b,斜边长为c,用含a,b,c的代数式表示:(1)大正方形的面积为(a+b)2;小正方形的面积为c2;(2)四个直角三角形的面积和为2ab,根据图中面积关系,可列出a,b,c之间的关系式为a2+b2=c2;(3)如图②,以直角三角形的三边为直径,分别向外部作半圆,则S1,S2,S3满足的关系是S1+S2=S3;(4)如图③直角三角形的两条直角边长分别为3、5,分别以直角三角形的三边为直径作半圆,则图中两个月形图案(阴影部分)的面积和为7.5.【分析】(1)根据正方形的面积公式即可得到结论;(2)根据三角形的面积公式和勾股定理即可得到结论;(3)根据勾股定理和圆的面积公式解答即可.(4)根据勾股定理和圆的面积公式解答即可.解:(1)大正方形的面积为(a+b)2;小正方形的面积为c2;故答案为:(a+b)2,c2;(2)四个直角三角形的面积和=4×ab=2ab,∵4×ab+c2=(a+b)2,∴a2+b2=c2,故a,b,c之间的关系式为a2+b2=c2,故答案为:2ab,a2+b2=c2;(3)S1,S2,S3满足的关系是S1+S2=S3,∵S1+S2=π()2+π()2,S3=π()2,∵a2+b2=c2.∴S1+S2=S3.故答案为:S1+S2=S3;(4)图中两个月形图案(阴影部分)的面积和:S1+S2=π()2+π()2+S3﹣π()2=S△ABC=×3×5=7.5,故答案为:7.5.23.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)观察猜想如图①,若点E、F分别是AB、AC的中点,则线段DE与DF的数量关系是DE=DF;线段DE与DF的位置关系是DE⊥DF.(2)类比探究如图②,若点E、F分别是AB、AC上的点,且BE=AF,上述结论是否仍然成立,若成立,请证明;若不成立,请说明理由;(3)解决问题如图③,若点E、F分别为AB、CA延长线的点,且BE=AF=AB=2,请直接写出△DEF的面积.【分析】(1)由三角形中位线定理可得∴,,DF∥AB,DE∥AC,由等腰直角三角形的性质可得结论;(2)由“SAS”可证△BDE≌△ADF,可得DE=DF,∠BDE=∠ADF,由余角的性质可得∠EDF=90°,可得结论;(3)由“SAS”可证△BDE≌△ADF,可得DE=DF,∠BDE=∠ADF,由余角的性质可得∠EDF=90°,由勾股定理可求EF的长,即可求解.解:(1)∵点E、F、D分别是AB、AC、BC的中点,∴,,DF∥AB,DE∥AC,∴∠ABC=∠FDC,∠ACB=∠EDB,∵AB=AC,∠A=90°,∴DE=DF,∠BDE=∠FDC=∠C=45°,∴∠EDF=90°,即DE⊥DF,故答案为:DE=DF;DE⊥DF;(2)结论仍然成立,理由如下:如图②,连接AD,∵AB=AC,∠BAC=90°,D为BC的中点,∴,∠BAC=∠CAD=45°=∠B=∠C,又∵BE=AF,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,即DE⊥DF;(3)如图③,连接AD,∵AB=AC,∠BAC=90°,D为BC的中点,∴,∠BAC=∠CAD=45°=∠B=∠C,∴∠DAF=∠DBE=135°,又∵BE=AF,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,∴∠EDF=90°,∴△DEF是等腰直角三角形,∵BE=AF=AB=2,∴AB=6,AE=8,∴EF===2,∴DE=DF==,∴S△DEF=×DE=DF=17.。

河南省平顶山市第42中2020-2021学年第一学期八年级数学第二次月考考试题

河南省平顶山市第42中2020-2021学年第一学期八年级数学第二次月考考试题

平顶山市第四十二中学2020-2021学年第一学期第二次月考试卷 八年级数学试卷一、选择题(每小题3分,共30分) 1. —27的立方根是 A. 3B.-3C. 9D. -92. 下列实数是无理数的是 A.227 B.√16 C.π D. 03.点关于x 轴对称的点为,则的坐标为A.(-3,5)B.(3,-5)C.9-3,-5)D. (3,5) 4.在中,,若,,则AB 等于A. 2B. 3C. 4D. √34 5.以方程组{y =-x +2,y =x -1的解为坐标的点(x,y)在平面直角坐标系中的位置是( ) A.第一象限B.第二象限C.第三象限D.第四象限6.如图1,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于A. 20°B. 30°C. 50°D. 80°7.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是,,,,则射箭成绩最稳定的是A. 甲B. 乙C. 丙D. 丁8.如图2,函数和的图象交于点P ,则根据图象可得,关于x ,y的二元一次方程组{−ax +y =bx +3y =0中的解是A. {x =3y =−1B. {x =−3y =−1C. {x =−3y =1D. {x =−1y =39.九章算术是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是 A. {8y +3=x 7y −4=x B. {8x +3=y7x −4=yC. {8x −3=y 7x +4=y D. {8y −3=x7y +4=x10.如图3,直线y=x+1分别与x 轴、y 轴相交于点A 、B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A 1,再过点A 1作x 轴的垂线交直线于点B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2,,按此做法进行下去,则点A 8的坐标是 A. (15,0) B. (16,0) C. (8√2,0) D. (8√2−1,0)座号班级 姓名 考号图1图2图3-3二、填空题(每空3分,共21分)11.-√5的绝对值是___________.12.点(-2,1)在第___________象限.13.若{x=2y=−1是方程2x-ay=5的一个解,则a=_____.14.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1___y2(填“”或“”)15.一组数据3,4,x,6,7的平均数为5,则这组数据的方差______.16.直线y=-x+3与坐标轴围成的三角形的面积等于 .17.若点M(a,-1)与点N(2,b)所在直线与x轴平行,且MN=3,则a+b的值是______.三、解答题(共69分)18.计算:(每小题5分,共20分)(1)计算:①(√2−√3)2+2√12+3√2②√50×√32√8−4(2)解方程组:①{3m+5n=212m−5n=−11②{2x−y=−4 4x−5y=−2319(11分)请在平面直角坐标系中描出以下三点:A(−2,1)、B(3,1)、C(2,3).并回答以下问题:(1)在平面直角坐标系中画出△ABC;(2)在平面直角坐标系中画出△A’B’C’;使它与△ABC关于x轴对称,并写出点C’的坐标______;(3)判断△ABC的形状,并说明理由.20.( 11分)为创建全国卫生城市,我市某单位全体职工利用周末休息时间参加社会公益活动,并对全体职工参加公益活动的时间(单位:天)进行了调查统计,根据调查结果绘制了如图所示的两幅不完整的统计图,根据信息回答下列问题:(1)该单位职工共______人;(2)补全条形统计图;(3)该单位职工参加公益活动时间的众数是______天,中位数是______天;(4)求该单位职工平均每人参加公益活动时间是多少天?21.(9分)如图一次函数y=kx+b与x轴交点坐标A(-1,0),与y轴交点坐标B(0,2).(1)求这个一次函数的表达式;(2)在x轴上是否存在点P,使SΔBOP=2SΔAOB,若存在,请直接写出点P的坐标. 022.(8分)如图,在长方形纸片ABCD 中,AB=6,BC=8,沿BD 折叠△BCD ,使点C 落在C ’处,BC ’交AD 于点E . (1)BE 与DE 相等吗?请说明理由. (2)求阴影部分的面积.23.(10分)某中学七(1)班共有45人,该班计划为每名学生购买一套学具,超市现有A 、B 两种品牌学具可供选择.已知1套A 学具和1套B 学具的售价为45元;2套A 学具和5套B 学具的售价为150元.(1)A 、B 两种学具每套的售价分别是多少元?(2)现在商店规定,若一次性购买A 型学具超过20套,则超出部分按原价的6折出售.设购买A 型学具x 套(x>20)且不超过30套,购买A 、B 两种型号的学具共花费y 元.①请写出y 与x 的关系式;②请帮忙设计最省钱的购买方案,并求出所需费用.答案一、选择题(每小题3分,共30分) 1. —27的立方根是 A. 3B.-3C. 9D. -92. 下列实数是无理数的是A.227 B.√16 C.π D. 03.点关于x 轴对称的点为,则的坐标为A.(-3,5)B.(3,-5)C.(-3,-5)D. (3,5) 4.在中,,若,,则AB 等于A. 2B. 3C. 4D. √34 5.以方程组{y =-x +2,y =x -1的解为坐标的点(x,y)在平面直角坐标系中的位置是( ) A.第一象限B.第二象限C.第三象限D.第四象限6.如图1,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于A. 20°B. 30°C. 50°D. 80°y BA xO7.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是,,,,则射箭成绩最稳定的是A. 甲B. 乙C. 丙D. 丁8.如图2,函数和的图象交于点P,则根据图象可得,关于x,y的二元一次方程组{−ax+y=bx+3y=0中的解是A. {x=3y=−1 B. {x=−3y=−1 C. {x=−3y=1 D. {x=−1y=39.九章算术是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y元,则所列方程组正确的是A. {8y+3=x7y−4=x B. {8x+3=y7x−4=y C. {8x−3=y7x+4=y D. {8y−3=x7y+4=x10.如图3,直线y=x+1分别与x轴、y轴相交于点A、B,以点A为圆心,AB长为半径画弧交x轴于点A1,再过点A1作x轴的垂线交直线于点B1,以点A为圆心,AB1长为半径画弧交x轴于点A2,,按此做法进行下去,则点A8的坐标是A. (15,0)B. (16,0)C. (8√2,0)D. (8√2−1,0)二、填空题(每空3分,共21分)11.-√5的绝对值是__√5_________.12.点(-2,1)在第___二_____象限.13.若{x=2y=−1是方程2x-ay=5的一个解,则a=___1__.14.点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,则y1_<__y2(填“>”或“<”)15.一组数据3,4,x,6,7的平均数为5,则这组数据的方差___2___.16.直线y=-x+3与坐标轴围成的三角形的面积等于 4.5 .17.若点M(a,-1)与点N(2,b)所在直线与x轴平行,且MN=3,则a+b的值是_4或-2____.三、解答题(共69分)18.计算:(每小题5分,共20分)(1)计算:①(√2−√3)2+2√12+3√2=5-2√6+4√2②√50×√32√8−4=10√2-4(2)解方程组:①{3m+5n=212m−5n=−11{m=2n=3②{2x−y=−44x−5y=−23{x=−12y=3图1图2图3-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永安二中2014-2015学年度第一学期第二次月考试卷
八年级数学试题
本卷说明:考试时间90分钟,满分100分
一、选择题(10小题,每题只有一个正确答案,每题3分,共30分)
1.在RtΔABC中,∠C=90°,b =5,c =13,则a 的值为()
A、12
B、5
C、13 D 、234
2.下列各数中是无理数的是().
A. 3
B. 38
C.
3 D. 7
22
3.下列式子正确的是( )
A、
9
)9
(2-
=
-
B、
2
)2
(2-
=
-C、5
25±
=D、1
)1
(33-
=
-
4.已知b<0,且k>0,则函数y=kx+b的图象大致是().
5.小红记录了连续5天的最低气温,并整理如表:
由于不小心一个数据被墨迹污染了,请你算一算这个数据是()
A.21 B.18.2 C.19 D.20
6.下列方程组中是二元一次方程组的是()。

A、



=
-
=
+
.2
,3
2y
x
y
x
B、



=
+
=
.3
,1
y
x
xy
C、



=
+
=
-
.
x
y
,
y
x
5
3
D、



=
-
=
+
.6
3
,8
3
2
z
x
y
x
7.排列做操队形时,甲、乙、丙位置如图所示,甲对乙说,如
果我的位置用(0,0)来表示,你的位置用(2,1)表示,那么
丙的位置是()
A、(4、3)
B、(4,5)
C、(3,4)
D、(5,4)
8. 若一次函数y=kx+b平行直线y=x+4,且过点(1,-2),那么这个一次函数的表达式为
().
A、y=x—3
B、y=—6x+4
C、y=x+3
D、y=6x+4
9.甲、乙两人赛跑,所跑路程与时间的关系如图2所示
(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象
得到如下四个信息,其中错误的是答:()
A、这是一次1500m赛跑
B、甲、乙同时起跑
C、甲、乙两人中先到达终点的是乙
D、甲在这次赛跑中的速度为5m/
10.在直角坐标系中,已知A(1,1),在x轴上
确定点P,使△AOP为等腰三角形,则符合条件的点P共有()
(A)1个(B)2个(C)3个(D)4个
二、填空题:(每小题3分,共18分)
11.3的相反数为。

12.点(-8,5)到x轴的距离为。

13.数据1, 2, 8, 5, 3, 9, 5, 4, 2 的中位数为。

14.若正方形的面积为12cm2,则正方形边长为__________cm。

15.写出一个解为
1
2
x
y
=


=

的二元一次方程。

16.已知直角坐标系上A(1,-1),B(-1,-3)两点,若点P在X轴上,且AP+BP最短。

则P点的坐标为____________。

三、解答题(本大题共7个小题,共52分.解答应写出文字说明、证明过程或演算步骤.)
17.化简:(每小题4分,共8分)
(1)2
(23)12
-+
(2)
日期一二三四五平均气温
最低气温16 18 19 18 ▲18.2



2
1
50
5
80⨯
-







八年级数学试题第1页共4页八年级数学试题第2页共4页背面还有试题
八年级数学试题 第3页 共4页 八年级数学试题 第4页 共4页
18.解方程组:(每小题4分,共8分) (1) 425x y x y -=⎧⎨
+=⎩ (2) 431453
31x
y x y -=⎧⎨+=⎩
19.(本小题满分5分)
在图上建立直角坐标系,用线段顺次连结点 (0,0),(1,3),(3,3),(4,0),(0,0)。

(1)这是一个什么图形?(2)求出它的面积;
20.(本小题满分5分)
某学校规定学生本学期总评成绩由三部分构成(如图):期末成绩、期中成绩、平时表现成绩,若小林三项得分分别是92、80、84,则他的本学期数学总评成绩是多少?
21.(本小题满分6分)
生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的3
1,
则梯子比较稳定,现有一长度为9米的梯子,当梯子稳定摆放时,它的顶端能 达到8米高的墙头吗?
22.(本小题满分6分)
已知:一次函数b kx y +=经过(1,-2)和(3,2)两点。

(1)求出这个一次函数的解析式。

(2)在直角坐标系内画出这个一次函数的图象。

(3)这个一次函数的图象与X 轴和Y 轴交点坐标分别是多少?
23.(本小题满分5分)
今年三月十一日,日本发生强烈大地震并引发海啸,我们国家的一些沿海地区的人民也造成巨大的经济损失.某学校积极组织捐款支援灾区,八年(1)班55名同学共捐款274元,捐款情况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,你能用二元一次方程组的知识帮助确定表中数据吗
24.(本小题满分9分)
中国移动公司,最近推出两类电话卡,甲类卡的资费标准是:“月租费20元/月,接打
电话0.1元/分钟” ;乙类卡的资费标准是:“无月租费,接打电话0.2元/分钟。

(1)分别写出两类电话卡每月的话费y (元)与通话时间x (分钟)的函数关系式。

(2)若司机小李用的是甲类卡,他12月份的通话时间为300分钟,请你帮助他计算一下,他应交电话费多少元?
(3)现在一工人师傅小赵想买一张电话卡,他每月的通话时间为150分钟,请你帮他选择一
下,应使用哪类电话卡更省钱,说明理由。

① ② O 1 2 3 4 5 6
6 5 4 3 2 1
-1
-2 -3 -4 -5 -6 -1 -2 -3 -4 -5 -6
x
y
A
B

C

②。

相关文档
最新文档