高中数学双曲线题型归类(全)
双曲线的题型
- 122 -第三十四讲 双曲线题型一 求双曲线的标准方程例1、求下双曲线的标准方程;(1)实轴长为16,离心率45=e ; (2)过点)3,3(-P ,离心率25=e ; (3)经过两点)7,26()72,3(---Q P 和;(4)经过点)1,29(-P ,两渐近线方程为x y 32±=。
例2、(1)已知双曲线与椭圆125922=+y x 共焦点,它们的离心率之和为514,求双曲线的方程。
(2)与已知双曲线116922=-y x 有共同的渐近线,且过点)32,3(-P 的双曲线方程。
例3、已知双曲线中心在原点,准线平行y 轴,两渐近线互相垂直,设F 为右焦点,P 为右支上一动点,)2,23(A 为右支内部一定点,若|PA|+|PF|的最小值为463-,求这双曲线的方程。
例4、已知双曲线的实半轴长与虚半轴长的乘积为3,F 1、F 2为两焦点,直线l 过F 2且与直线F 1F 2的夹角为ϕ,tan ϕ=,221l 与线段F 1F 2的垂直平分线的交点为P ,线段PF 2与双曲线的交点为Q ,且|PQ|:|QF 2|=2:1,建立适当的坐标系,求这双曲线方程。
(全国高考题)题型二 以双曲线为背景的求值问题例5、设F 1、F 2为双曲线15422=-y x 的左、右焦点,l 为左准线,),(00y x P 为左支上一点,P 点到l 的距离为d ,已知d ,|PF 1|,|PF 2|成等差数列,求0x 的值。
例6、已知双曲线)0,(12222>=-b a by a x 上一点P 与两焦点F 1,F 2的连线互相垂直,且21PF F Rt ∆有一- 123 - 内角为12π,求双曲线的离心率。
例7、已知梯形ABCD 中,|AB|=2|CD|,点E 分有向线段AC 所成的比为118,双曲线过C 、D 、E 三点,且以A 、B 为焦点,求双曲线的离心率。
(全国高考题)例8、设双曲线)0,(12222>=-b a by a x 的左、右焦点分别为F 1、F 2,P 为双曲线右支上一点,若点P 到双曲线左准线l 的距离等于|PF 2|,求||||||12121PF F F PF PF -的值。
双曲线题型归纳含(答案)
三、典型例题选讲(一)考查双曲线的概念例1 设P 是双曲线19222yax 上一点,双曲线的一条渐近线方程为023yx ,1F 、2F 分别是双曲线的左、右焦点.若3||1PF ,则||2PF ()A .1或5 B.6 C.7D .9分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出2||PF 的值.解:双曲线19222yax 渐近线方程为y =x a3,由已知渐近线为023y x ,122,||||||4aPF PF ,||4||12PF PF .12||3,||0PF PF ,7||2PF .故选C .归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法.(二)基本量求解例2(2009山东理)设双曲线12222by ax 的一条渐近线与抛物线21y x只有一个公共点,则双曲线的离心率为()A .45 B .5 C.25 D .5解析:双曲线12222by ax 的一条渐近线为x ab y,由方程组21by xa y x ,消去y ,得210b xx a有唯一解,所以△=2()40ba ,所以2b a,2221()5c ab beaaa,故选D .归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能.例3(2009全国Ⅰ理)设双曲线22221x y ab(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A.3 B.2 C.5 D.6解析:设切点00(,)P x y ,则切线的斜率为'0|2xx y x .由题意有0002y x x .又有2001y x ,联立两式解得:221,2,1()5b bx eaa.因此选C .例4(2009江西)设1F 和2F 为双曲线22221x y ab(0,0a b )的两个焦点,若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为()A .32B .2 C.52D.3解析:由3tan623c b有2222344()cbca ,则2c ea,故选B .归纳小结:注意等边三角形及双曲线的几何特征,从而得出3tan623c b,体现数形结合思想的应用.(三)求曲线的方程例5(2009,北京)已知双曲线2222:1(0,0)x y C a b ab的离心率为3,右准线方程为33x.(1)求双曲线C 的方程;(2)已知直线0x y m 与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆225xy上,求m 的值.分析:(1)由已知条件列出,,a b c 的关系,求出双曲线C 的方程;(2)将直线与双曲线方程联立,再由中点坐标公式及点在圆上求出m 的值.解:(1)由题意,得2333ac c a,解得1,3a c .∴2222bca,∴所求双曲线C 的方程为2212yx.(2)设A 、B 两点的坐标分别为1122,,,x y x y ,线段AB 的中点为00,M x y ,由22120y x xym得22220xmx m(判别式0),∴12000,22x x x m y x m m ,∵点00,M x y 在圆225xy上,∴2225m m,∴1m .另解:设A 、B 两点的坐标分别为1122,,,x y x y ,线段AB 的中点为00,M x y ,由221122221212yxy x ,两式相减得121212121()()()()02x x x x y y y y .由直线的斜率为1,1212,22x x y y x y 代入上式,得002y x .又00(,)M y x 在圆上,得225y x ,又00(,)M y x 在直线上,可求得m 的值.归纳小结:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.例 6 过(1,1)M 的直线交双曲线22142xy于,A B 两点,若M 为弦AB 的中点,求直线AB 的方程.分析:求过定点M 的直线方程,只需要求出它的斜率.为此可设其斜率是k ,利用M 为弦AB 的中点,即可求得k 的值,由此写出直线AB 的方程.也可设出弦的两端点坐标用“点差法”求解.解法一:显然直线AB 不垂直于x 轴,设其斜率是k ,则方程为1(1)y k x .由221421(1)x yy k x 消去y 得222(12)4(1)2460①k x k k x kk 设),(),(221,1y x B y x A ,由于M 为弦AB 的中点,所以1222(1)1212x x k k k ,所以12k.显然,当12k 时方程①的判别式大于零.所以直线AB 的方程为11(1)2y x ,即210x y .解法二:设),(),(221,1y x B y x A ,则221122221②421③42xyx y ①-②得12121212()()2()()0x x x x y y y y .又因为12122,2x x y y ,所以12122()x x y y .若12,x x 则12y y ,由12122,2x x y y 得121x x ,121y y .则点A B 、都不在双曲线上,与题设矛盾,所以12x x .所以121212y y kx x .所以直线AB 的方程为11(1)2y x ,即210x y .经检验直线210x y 符合题意,故所求直线为210xy .解法三:设A (x y ,),由于A B 、关于点M (1,1)对称,所以B 的坐标为(22x y ,),则2221,42(2) 1.2xyy 2(2-x)4消去平方项,得210x y .④即点A 的坐标满足方程④,同理点B 的坐标也满足方程④.故直线AB 的方程为210x y .归纳总结:由于双曲线(抛物线)不是“封闭”的曲线,以定点为中点的弦不一定存在,所以在求双曲线(抛物线)中点弦方程时,必须判断满足条件的直线是否存在.(四)轨迹问题例7 已知点100(,)P x y 为双曲线222218xy bb(b 为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于2P .求线段1P 2P 的中点P 的轨迹E 的方程.分析:求轨迹问题有多种方法,如相关点法等,本题注意到点P 是线段1P 2P 的中点,可利用相关点法.解:由已知得208(3,0),(,)3F b A b y ,则直线2F A 的方程为:03(3)y yx b b.令0x 得09yy ,即20(0,9)P y .设P x y (,),则0002952x xy y yy ,即25x x y y 代入2202218x y bb得:222241825x ybb,即P 的轨迹E 的方程为22221225xyb b.()x R 归纳小结:将几何特征转化为代数关系是解析几何常用方法.(五)突出几何性质的考查例8(2006江西)P 是双曲线221916xy的右支上一点,M ,N 分别是圆22(5)4xy和22(5)1x y上的点,则||||PM PN 的最大值为()A.6B.7C.8D.9 解析:双曲线的两个焦点1(5,0)F 与2(5,0)F 恰好是两圆的圆心,欲使||||PM PN 的值最大,当且仅当||PM 最大且||PN 最小,由平面几何性质知,点M 在线段1PF 的延长线上,点N 是线段2PF 与圆的交点时所求的值最大.此时12||||(2)(1)PM PN PF PF 9321PF PF .因此选D .例9(2009重庆)已知以原点O 为中心的双曲线的一条准线方程为55x ,离心率5e .(1)求该双曲线的方程;(2)如图,点A 的坐标为(5,0),B 是圆22(5)1xy 上的点,点M 在双曲线右支上,求MA MB 的最小值,并求此时M 点的坐标.分析:(1)比较基础,利用所给条件可求得双曲线的方程;(2)利用双曲线的定义将MA MB、转化为其它线段,再利用不等式的性质求解.解:(1)由题意可知,双曲线的焦点在x 轴上,故可设双曲线的方程为22221(0,0)x y a bab,设22c ab ,由准线方程为55x得255ac,由5e得5c a.解得1,5a c.从而2b,该双曲线的方程为2214yx.(2)设点D 的坐标为(5,0),则点A 、D 为双曲线的焦点,则||||22MA MD a.所以||||2||||2||MA MB MB MD BD ≥.因为B 是圆22(5)1xy 上的点,其圆心为(0,5)C ,半径为1,故||||1101BD CD ≥,从而||||2||101MA MB BD ≥≥.当,M B 在线段CD 上时取等号,此时||||MA MB 的最小值为101.直线CD 的方程为5yx ,因点M 在双曲线右支上,故0x.由方程组22445x y yx解得5424542,33xy.所以M 点的坐标为5424542(,)33.归纳小结:本题综合考查双曲线的知识及不等式性质,考查推理能力及数形结合思想.。
双曲线题型归纳含(答案)
三、典型例题选讲(一)考查双曲线的概念例1 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点.若3||1=PF ,则=||2PF ( )A .1或5B .6C .7D .9分析:根据标准方程写出渐近线方程,两个方程对比求出a 的值,利用双曲线的定义求出2||PF 的值.解:Θ双曲线19222=-y a x 渐近线方程为y =x a 3±,由已知渐近线为023=-y x , 122,||||||4a PF PF ∴=±∴-=,||4||12PF PF +±=∴. 12||3,||0PF PF =>Q ,7||2=∴PF .故选C .归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法.(二)基本量求解例2(2009山东理)设双曲线12222=-by a x 的一条渐近线与抛物线21y x =+只有一个公共点,则双曲线的离心率为( )A .45B .5C .25D .5解析:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y ,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D .归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能.例3(2009全国Ⅰ理)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A.3 B.2 C.5 D.6 解析:设切点00(,)P x y ,则切线的斜率为0'0|2x x y x ==.由题意有002y x x =.又有2001y x =+,联立两式解得:2201,2,1()5b bx e a a=∴==+=. 因此选C .例4(2009江西)设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点,若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为( )A .32 B .2 C .52D .3解析:由3tan62c b π==2222344()c b c a ==-,则2c e a==,故选B . 归纳小结:注意等边三角形及双曲线的几何特征,从而得出3tan 62c b π==体现数形结合思想的应用.(三)求曲线的方程例5(2009,北京)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为3,右准线方程为33x =. (1)求双曲线C 的方程;(2)已知直线0x y m -+=与双曲线C 交于不同的两点A ,B ,且线段AB 的中点在圆225x y +=上,求m 的值.分析:(1)由已知条件列出,,a b c 的关系,求出双曲线C 的方程;(2)将直线与双曲线方程联立,再由中点坐标公式及点在圆上求出m 的值.解:(1)由题意,得2333a cc a⎧=⎪⎪⎨⎪=⎪⎩,解得1,3a c ==. ∴2222b c a =-=,∴所求双曲线C 的方程为2212y x -=. (2)设A 、B 两点的坐标分别为()()1122,,,x y x y ,线段AB 的中点为()00,M x y ,由22120y x x y m ⎧-=⎪⎨⎪++=⎩得22220x mx m ---=(判别式0∆>), ∴12000,22x x x m y x m m +===+=, ∵点()00,M x y 在圆225x y +=上, ∴()2225m m +=,∴1m =±.另解:设A 、B 两点的坐标分别为()()1122,,,x y x y ,线段AB 的中点为()00,M x y ,由221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得121212121()()()()02x x x x y y y y +--+-=.由直线的斜率为1,121200,22x x y yx y ++==代入上式,得002y x =. 又00(,)M y x 在圆上,得22005y x +=,又00(,)M y x 在直线上,可求得m 的值.归纳小结:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.例6 过(1,1)M 的直线交双曲线22142x y -=于,A B 两点,若M 为弦AB 的中点,求直线AB 的方程.分析:求过定点M 的直线方程,只需要求出它的斜率.为此可设其斜率是k ,利用M 为弦AB 的中点,即可求得k 的值,由此写出直线AB 的方程.也可设出弦的两端点坐标用“点差法”求解.解法一:显然直线AB 不垂直于x 轴,设其斜率是k ,则方程为1(1)y k x -=-.由221421(1)x y y k x ⎧-=⎪⎨⎪-=-⎩消去y 得222(12)4(1)2460①k x k k x k k ----+-=设),(),(221,1y x B y x A ,由于M 为弦AB 的中点,所以1222(1)1212x x k k k+-==-,所以12k =. 显然,当12k =时方程①的判别式大于零.所以直线AB 的方程为11(1)2y x -=-,即210x y -+=.解法二:设),(),(221,1y x B y x A ,则221122221②421③42x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①-②得12121212()()2()()0x x x x y y y y -+--+=. 又因为12122,2x x y y +=+=,所以12122()x x y y -=-.若12,x x =则12y y =,由12122,2x x y y +=+=得121x x ==,121y y ==. 则点A B 、都不在双曲线上,与题设矛盾,所以12x x ≠. 所以121212y y k x x -==-.所以直线AB 的方程为11(1)2y x -=-,即210x y -+=. 经检验直线210x y -+=符合题意,故所求直线为210x y -+=.解法三:设A (x y ,),由于A B 、关于点M (1,1)对称,所以B 的坐标为(22x y --,),则2221,42(2) 1.2x y y ⎧-=⎪⎪⎨-⎪-=⎪⎩2(2-x)4消去平方项,得210x y -+=. ④ 即点A 的坐标满足方程④,同理点B 的坐标也满足方程④. 故直线AB 的方程为210x y -+=.归纳总结:由于双曲线(抛物线)不是“封闭”的曲线,以定点为中点的弦不一定存在,所以在求双曲线(抛物线)中点弦方程时,必须判断满足条件的直线是否存在.(四)轨迹问题例7 已知点100(,)P x y 为双曲线222218x y b b-=(b 为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于2P .求线段1P 2P 的中点P 的轨迹E 的方程.分析:求轨迹问题有多种方法,如相关点法等,本题注意到点P 是线段1P 2P 的中点,可利用相关点法.解:由已知得208(3,0),(,)3F b A b y ,则直线2F A 的方程为:03(3)y y x b b=--. 令0x =得09y y =,即20(0,9)P y .设P x y (,),则00002952x x y y y y⎧=⎪⎪⎨+⎪==⎪⎩, 即0025x xy y =⎧⎪⎨=⎪⎩代入22002218x y b b -=得:222241825x y b b -=, 即P 的轨迹E 的方程为22221225x y b b-=.()x ∈R 归纳小结:将几何特征转化为代数关系是解析几何常用方法. (五)突出几何性质的考查例8(2006江西)P 是双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则||||PM PN -的最大值为( )A.6B.7C.8D.9解析:双曲线的两个焦点1(5,0)F -与2(5,0)F 恰好是两圆的圆心,欲使||||PM PN -的值最大,当且仅当||PM 最大且||PN 最小,由平面几何性质知,点M 在线段1PF 的延长线上,点N 是线段2PF 与圆的交点时所求的值最大.此时12||||(2)(1)PM PN PF PF -=+--9321=+-=PF PF .因此选D . 例9(2009重庆)已知以原点O 为中心的双曲线的一条准线方程为5x =,离心率5e =. (1)求该双曲线的方程;(2)如图,点A 的坐标为(5,0)-,B 是圆22(5)1x y +-=上的点,点M 在双曲线右支上,求MA MB +的最小值,并求此时M 点的坐标.分析:(1)比较基础,利用所给条件可求得双曲线的方程;(2)利用双曲线的定义将MA MB 、转化为其它线段,再利用不等式的性质求解.解:(1)由题意可知,双曲线的焦点在x 轴上,故可设双曲线的方程为22221(0,0)x y a b a b -=>>,设22c a b=+5x =25a c = 由5e =5ca= 解得1,5a c ==从而2b =,∴该双曲线的方程为2214y x -=.(2)设点D 的坐标为(5,0),则点A 、D 为双曲线的焦点,则||||22MA MD a -==.所以||||2||||2||MA MB MB MD BD +=+++≥.因为B 是圆22(5)1x y +-=上的点,其圆心为(0,5)C ,半径为1, 故||||1101BD CD -=+≥,从而||||2||101MA MB BD +++≥≥.当,M B 在线段CD 上时取等号,此时||||MA MB +的最小值为101+.Q 直线CD 的方程为5y x =-+,因点M 在双曲线右支上,故0x >.由方程组22445x y y x ⎧-=⎪⎨=-+⎪⎩解得5424542,33x y -+-==.所以M 点的坐标为5424542(,)33-+-. 归纳小结:本题综合考查双曲线的知识及不等式性质,考查推理能力及数形结合思想.。
(完整版)双曲线题型大全-
双曲线题型一双曲线的定义和几何性质1.设双曲线的左、右焦点分别为. 若点P在双曲线上,且为锐角三角形,则|PF1|+|PF2|的取值范围是A.B.C.D.2.已知双曲线的一条渐近线截椭圆所得弦长为,则此双曲线的离心率为()A.B.C.D.3.已知直线与双曲线交于,两点,且线段的中点的横坐标为1,则该双曲线的离心率为()A.B.C.D.变式:4.已知点为双曲线的左右焦点,点P在双曲线C的右支上,且满足,则双曲线的离心率为()A.B.C.D.5.已知双曲线的虚轴长是实轴长的2倍,则双曲线的标准方程为()A.B.C.D.,则双曲线方程为()A.B.C.D.7.在下列双曲线方程中,表示焦点在y轴上且渐近线方程为的是A.B.C.D.题型二双曲线的离心率问题8.已知点为双曲线右支上一点,点分别为双曲线的左右焦点,点是的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率取值范围是()A.B.C.D.9.设、是双曲线的左、右两个焦点,若双曲线右支上存在一点P,使(为坐标原点)且则的值为()A.B.2C.D.310.已知双曲线的离心率为,焦点到渐近线的距离为,则此双曲线的焦距等于()A.B.C.D.11.设F1,F2是双曲线(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使()·=0(O为坐标原点),且|PF1|=|PF2|,则双曲线的离心率为()A.B.+1C.D.+1变式:12.已知、分别为双曲线的左、右焦点,以原点为圆心,半焦距为半径的圆交双曲线右支于、两点,且为等边三角形,则双曲线的离心率为()A.B.C.D.13.若双曲线的离心率大于,则的取值范围为()A.B.C.D.今日作业14.若双曲线的渐近线与圆相切,则的渐近线方程为__________.15.设、分别是双曲线的左、右焦点,点在双曲线上,若,的面积为,且,则该双曲线的离心率为_____________.10.椭圆的离心率为,其右焦点到椭圆外一点的距离为,不过原点....的直线与椭圆相交于,两点,且线段的长度为.(1)求椭圆C的方程;(2)求面积的最大值.参考答案1.A【解析】【分析】由题意画出图形,不妨设P在第一象限,P点在P1与P2之间运动,求出∠PF2F1和∠F1PF2为直角时|PF1|+|PF2|的值,可得△F1PF2为锐角三角形时|PF1|+|PF2|的取值范围.【详解】△F1PF2为锐角三角形,不妨设P在第一象限,P点在P1与P2之间运动,如图,当P在P1处,∠F1P1F2为=90°,∴S=|F1F2|•|y|=|P1F1|•|P1F2|,由|P1F1|2+|P1F2|2=|F1F2|2,|P1F1|﹣|P1F2|=2,可得|P1F1|•|P1F2|=6,此时|P1F1|+|P1F2|=2,当P在P2处,∠P2F1F2为=90°,x=2,易知y=3,此时|P2F1|+|P2F2|=2|P2F2|+2=8,∴△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是(2,8),【点睛】本题考查双曲线的简单性质,考查双曲线定义的应用,考查等价转化思想方法,属于中档题.2.B【解析】【分析】求出双曲线的渐近线方程.与椭圆的方程联立,利用弦长转化求解即可.【详解】双曲线的一条渐近线不妨设为:,则:,可得:一条渐近线截椭圆所得弦长为,可得:,可得,解得.故选:B.【点睛】本题考查椭圆以及双曲线的简单性质的应用,考查转化思想以及计算能力.属中档题.3.B【解析】【分析】设,则有,利用点差法可得,从而可得结果.因为直线与双曲线交于,两点,且线段的中点的横坐标为,所以,,设,则有,,两式相减可化为,可得,,双曲线的离心率为,故选B.【点睛】本题主要考查待定系数法求双曲线的方程与离心率及“点差法”的应用,属于难题.对于有弦关中点问题常用“点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.4.A【解析】【分析】由特殊角等腰三角形的三边关系以及双曲线的定义可表示出a、c的关系,对关系式化简,通过离心率公式,对关系式变型,解方程求出离心率.【详解】由题意知:,因为等腰三角形的顶角为,所以根据三角形的性质可求出,由双曲线定义可得:,由离心率公式可得:.故选A.【点睛】本题考查双曲线的离心率,求离心率有两种方式,一种是由题目中条件求出参数值,根据离心率公式得离心率,另一种是根据条件求得a、c的齐次式,等号两侧同时除以a或等,构造离心率.5.D【解析】【分析】利用双曲线方程求出实轴与虚轴长,列出方程求解即可.【详解】双曲线﹣=1(m>0)的虚轴长是实轴长的2倍,可得=,解得m=2,则双曲线的标准方程是:﹣=1.故选:D.【点睛】本题考查双曲线的简单性质的应用,考查计算能力,属于基础题.6.C【解析】【分析】直接利用双曲线的渐近线方程以及焦点坐标,得到关系式,求出、,即可得到双曲线方程.【详解】双曲线的一条渐近线方程是,可得,它的一个焦点坐标为,可得,即,解得,所求双曲线方程为:.故选:C.【点睛】本题考查双曲线的方程的求法,双曲线的简单性质的应用,考查计算能力.7.C【解析】由题意,该双曲线的焦点在轴上,排除A、B项;又方程的渐近线方程为,而方程的渐近线方程为,故选C.8.D【解析】分析:设的内切圆半径为,由,用的边长和表示出等式中的三角形面积,结合双曲线的定义得到与的不等式,可求出离心率取值范围.详解:设的内切圆半径为,由双曲线的定义得,,,由题意得,故,故,又,所以,双曲线的离心率取值范围是,故选D.点睛:本题主要考查利用双曲线的定义、简单性质求双曲线的离心率范围,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.9.B【解析】【分析】由已知中,可得,根据直角三角形斜边上的中线等于斜边的一半,可得是以直角的直角三角形,进而根据是双曲线右支上的点,及双曲线的性质结合勾股定理构造方程可得的值,进而求出的值.【详解】由双曲线方程,可得,,又,,,,故是以直角的直角三角形,又是双曲线右支上的点,,由勾股定理可得,解得,故,故选B.【点睛】本题主要平面向量的几何运算,考查双曲线的标准方程,双曲线的定义与简单性质,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.10.D【解析】分析:运用离心率公式和渐近线方程,结合点到直线的距离公式可得的值,再由的关系即可求得的值,然后求得焦距详解:双曲线的离心率为双曲线的渐近线方程为不妨设,即,则焦点到渐近线的距离为,,解得则焦距为故选点睛:本题考查了双曲线的几何性质,根据题意运用点到线的距离公式进行求解,本题较为基础。
双曲线知识点及经典题型
双曲线知识点及经典题型1. 双曲线的定义与基本性质1.1 定义双曲线是平面上一类特殊的曲线,它的定义可以通过焦点和准线来描述。
给定两个不重合的点F和F’,以及一个与两个焦点的连线垂直且交于O点的直线l,双曲线是满足离心率e大于1的所有点P,使得PF’ - PF = 2a(其中a为常数)。
1.2 基本性质•双曲线有两条渐近线,分别与x轴和y轴平行。
•双曲线有两个顶点V和V’,位于x轴上方和下方。
•双曲线关于x轴和y轴对称。
•双曲线在顶点处与x轴和y轴相切。
2. 双曲线的标准方程双曲线有两种标准方程形式:横轴双曲线和纵轴双曲线。
2.1 横轴双曲线横轴双曲线的标准方程为:x2 a2−y2b2=1其中,a为实数且大于0,b为实数且大于0。
2.2 纵轴双曲线纵轴双曲线的标准方程为:y2 a2−x2b2=1其中,a为实数且大于0,b为实数且大于0。
3. 双曲线的图像及性质3.1 横轴双曲线的图像及性质横轴双曲线的图像呈现出两个分离的弧段,并以原点O为对称中心。
离心率e越大,两个弧段越接近直线;离心率e越小,两个弧段越弯曲。
横轴双曲线的渐近线方程分别为y = ±(b/a)x。
3.2 纵轴双曲线的图像及性质纵轴双曲线的图像呈现出两个分离的弧段,并以原点O为对称中心。
离心率e越大,两个弧段越接近直线;离心率e越小,两个弧段越弯曲。
纵轴双曲线的渐近线方程分别为x = ±(b/a)y。
4. 双曲线的经典题型4.1 确定双曲线方程已知焦点F和F’,准线l以及顶点V的坐标,求双曲线的方程。
例题:已知焦点F(3, 0)和F’(-3, 0),准线l过原点O(0, 0),顶点V位于x轴上方。
求双曲线的方程。
解答:首先,我们可以确定横轴双曲线的方程形式为x 2a2−y2b2=1。
根据焦点和准线的定义,焦距为PF′−PF=2a,其中P为横轴双曲线上的任意一点。
由于焦点F和F’的横坐标相等,所以a = 3。
由于准线l过原点O(0, 0),所以准线l的方程为y = kx(k为常数)。
双曲线题型归纳
双曲线题型归纳双曲线是高等数学中一大重要类型数学题型,学习和掌握它也是高数学习者必备的基本能力。
双曲线也是高考数学重点考查的题型,对于求解各类双曲线及问题要有很好的深入研究和实践能力,可以说掌握双曲线是一门数学学习的必要条件。
双曲线的形状可以用多变量函数的方程表示。
考虑给定的标准双曲线$$x^2/a^2-y^2/b^2=1$$,它包含两个参数$a$和$b$,定义整个双曲线的形状和大小。
它满足下列特性:(1)双曲线的中心是法线方向的不变量,此处的中心是原点(0, 0)。
(2)双曲线具有对称性,相当于它以其法线方向上的中点作为中心,进行了左右镜像即垂直、水平、对角线镜像。
(3)双曲线分为椭圆型双曲线和叉形双曲线,双曲线的性质在参数$a$和$b$的比值$b/a$上有非常明显的变化。
(4)双曲线两个焦点距离是$2 sqrt{a^2-b^2}$,此距离即为两个焦点之间的距离,其平行于$x$轴的长度为$2a$,其平行于$y$轴的长度为$2b$。
(5)双曲线的渐近线方程为$y=pm a x/b$。
由渐近线方程可知,双曲线的角度和对应渐近线的斜率是成反比的,因此可以根据过双曲线某点处的渐近线斜率定出双曲线的角度。
双曲线的具体数学描述及其特性以及如何求解双曲线的问题不仅是数学题与课堂,而且是多种研究的基础。
著名的双曲几何法则应用于双曲线,将其用于计算特定点距离对称轴的距离,求双曲线的焦点,求点的切线方向等,是一种比较便捷和可靠的方法;而双曲线在维数学中也广泛应用,如二阶双曲线是一维实数域上的可约曲线,用来模拟二阶哈克尔函数,可以求解具有一定条件的有理运动问题;而二曲线方程在定义张量空间时也被广泛利用。
由上述可知,双曲线具有极高的实用价值和研究价值,而且不仅仅是数学课堂中的应用,它的实际应用以及求解问题更是影响着实践中的结果。
因此,掌握双曲线的学习和研究也就显得非常重要。
首先,要学习完全双曲线的概念,以及它的特性。
高中数学双曲线题型归纳
高中数学双曲线题型归纳类型一 双曲线的定义【例1】已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________.1-1设P 是双曲线1201622=-y x 上一点,F 1,F 2分别是双曲线左、右焦点,若|PF 1|=9,则|PF 2|=( ) A .1 B .17 C .1或17 D .以上答案均不对1-2已知F 是双曲线112422=-y x 的左焦点,A (1,4),P 是双曲线右支上的动点, 则|PF |+|P A |的最小值为( ) A .5 B .5+43 C .7 D .91-3已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.类型二 几何性质【例2】设F 1,F 2分别为双曲线12222=-by a x (a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( ) A .3x ±4y =0B .3x ±5y =0C .4x ±3y =0D .5x +4y =02-1若双曲线()013222>=-b b y x 的一个焦点到一条渐近线的距离等于焦距的41,则该双曲线的虚轴长是( ) A .2B .1C .55 D .5522-2设直线x -3y +m =0(m ≠0)与双曲线12222=-by a x (a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.2-3中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2, 且F 1F 2=213,椭圆的半长轴长与双曲线半实轴长之差为4,离心率之比为3∶7. (1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.类型三双曲线的标准方程【例3】已知双曲线中心在原点且一个焦点为F1(-5,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则双曲线的方程是( )3-1双曲线mx2+ y2=1的虚轴长是实轴长的2倍,则m等于()A.- 14B.-4 C.4 D.143-2设双曲线与椭圆1362722=-yx有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是.3-3根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为5 4;(2)焦距为26,且经过点M(0,12);(3)经过两点P(-3,27)和Q(-62,-7).类型四直线与双曲线的位置关系【例4】(1)已知中心在原点的双曲线C的右焦点为(2,0),实轴长为23.(1)求双曲线C的方程;(2)若直线l:y=kx+2与双曲线C左支交于A,B两点,求k的取值范围.【例4】(2)双曲线12=2x的一弦中点为(2,1),则此弦所在的直线方程为()-yA. 1y D. 3=x2+=x2-y2-=xy B. 22-=xy C. 34-1已知双曲线,问过点A (1,1)能否作直线,使与双曲线交于P 、Q 两点,并且A 为线段PQ 的中点?若存在,求出直线的方程,若不存在,说明理由。
高三数学双曲线知识点总结归纳
高三数学双曲线知识点总结归纳双曲线是高中数学中重要的一章,它不仅在数学理论体系中具有重要作用,还在实际生活中有广泛的应用。
下面是对高三数学双曲线知识点的总结与归纳。
一、双曲线的定义和基本形态双曲线是平面上各点到两个定点的距离之差等于常数的轨迹。
双曲线由两个分离的支线组成,其基本形态可以分为两种类型:横轴双曲线和纵轴双曲线。
横轴双曲线的中心在横轴上,纵轴双曲线的中心在纵轴上。
二、双曲线的方程1. 横轴双曲线的方程(1)标准方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(2)近似方程:$y=\pm \frac{b}{a} \sqrt{x^2-a^2}$2. 纵轴双曲线的方程(1)标准方程:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(2)近似方程:$x=\pm \frac{a}{b} \sqrt{y^2-a^2}$三、双曲线的性质1. 焦点和准线:横轴双曲线有两个焦点和两条准线,纵轴双曲线也有两个焦点和两条准线。
2. 对称性:双曲线关于横轴、纵轴和原点对称。
3. 渐近线:横轴双曲线有两条渐近线,纵轴双曲线也有两条渐近线。
4. 离心率:双曲线的离心率定义为焦距与准线之间的比值,离心率大于1。
5. 直径:双曲线的直径是通过焦点的直线段,并且双曲线上的每一点都在某条直径上。
四、双曲线的图像与应用1. 横轴双曲线的图像横轴双曲线的图像呈现出两个分离的支线,它在物理学、电子学和光学中有广泛的应用,例如抛物面反射器、双折式天线等。
2. 纵轴双曲线的图像纵轴双曲线的图像同样由两个分离的支线构成,它在物理学、力学、天文学等领域有广泛的应用,例如行星运动的轨道、卫星发射轨道等。
五、双曲线的解析几何应用1. 双曲线的切线双曲线的切线过双曲线上的一点$P(x_0, y_0)$,切线方程为$\frac{xx_0}{a^2}-\frac{yy_0}{b^2}=1$。
2. 双曲线的渐近线横轴双曲线的渐近线方程为$y=\pm \frac{b}{a} x$,纵轴双曲线的渐近线方程为$x=\pm \frac{a}{b} y$。
双曲线常见题型与典型方法归纳(修改版 附详解答案)
双曲线常见题型与典型方法归纳考点一 双曲线标准方程及性质1.双曲线的定义第一定义:平面内与两个定点21,F F 距离的差的绝对值等于|)|2(221F F a a <的点的轨迹。
(1)距离之差的绝对值.(2)当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支;当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是同一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在. 【典例】到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹( )A .椭圆B .线段C .双曲线D .两条射线 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数)1(>e 的动点的轨迹。
2双曲线的标准方程及几何性质标准方程)0,0(12222>>=-b a by a x )0,0(12222>>=-b a bx a y 图形性 质焦点 F 1(-)0,c ,F 2()0,c F 1(),0c -,F 2(),c o焦距 | F 1F 2|=2c 222c b a =+范围 R y a x ∈≥,|| R x a y ∈≥,||对称 关于x 轴,y 轴和原点对称顶点 (-a ,0)。
(a ,0) (0,-a )(0,a )轴 实轴长2a ,虚轴长2b离心率)1(>=e ace (离心率越大,开口越大) 准线ca x 2±=ca y 2±=通径22b d a=22b d a=渐近线x ab y ±= x bay ±=注意:等轴双曲线(1)定义:实轴长与虚轴长相等的双曲线 (2)方程:222x y a -=或222y x a -= (3)离心率e =渐近线y x =±(4)方法:若已知等轴双曲线经过一定点,则方程可设为22(0)x y λλ-=≠ 【典例】 已知等轴双曲线经过点1)-,求此双曲线方程 3双曲线中常用结论(1)两准线间的距离: 22a c (2)焦点到渐近线的距离为b (3)通径的长是ab 22考点二 双曲线标准方程一 求双曲线标准方程的方法(1)定义法,根据题目的条件,若满足定义,求出相应a b c 、、即可求得方程; (2)待定系数法,其步骤是①定位:确定双曲线的焦点在哪个坐标轴上;②设方程:根据焦点的位置设出相应的双曲线方程; ③定值:根据题目条件确定相关的系数。
双曲线高考6大常考基础题型总结(解析版)--2024高考数学常考题型精华版
第20讲双曲线高考6大常考基础题型总结【考点分析】考点二:双曲线的通径过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为22b a.考点三:双曲线常考性质结论①双曲线的焦点到两条渐近线的距离为常数b ;顶点到两条渐近线的距离为常数ab c;②双曲线上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数222a b c;考点四:双曲线焦点三角形面积为2tan2b θ(可以这样理解,顶点越高,张角越小,分母越小,面积越大)【题型目录】题型一:利用双曲线定义解题题型二:求双曲线的标准方程题型三:双曲线焦点三角形面积题型四:双曲线的渐近线有关题型题型五:双曲线的离心率问题题型六:双曲线的最值问题【典型例题】题型一:利用双曲线定义解题【例1】已知双曲线()222:1012x y C a a -=>的左右焦点分别为1F 、2F ,0y +=,若点M在双曲线C 上,且15MF =,则2MF =()A .9B .1C .1或9D .1或7【例2】已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=【例3】已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为.【答案】121,22,a c PF PF a ==∴-==22112224PF PF PF PF ∴-+=22212121221212,(2)8,24,()8412,PF PF PF PF c PF PF PF PF PF PF ⊥∴+==∴=∴+=+=∴+= 【例4】已知曲线C 的方程为221mx ny +=,下列说法正确的是()A .若0mn >,则曲线C 为椭圆B .若0mn <,则曲线C 为双曲线C .若曲线C 为焦点在x 轴的椭圆,则0m n >>1n【题型专练】1.设双曲线221169x y -=的左焦点为F ,点P 为双曲线右支上的一点,且PF 与圆2216x y +=相切于点N ,M 为线段PF 的中点,O 为坐标原点,则MN MO -=()A .12B .1C .32D .22.已知F 1、F 2分别为双曲线C :29x -227y =1的左、右焦点,点A 为C 上一点,点M 的坐标为(2,0),AM为∠F 1AF 2的角平分线.则|AF 2|=.3.方程132m m +=-+表示双曲线的一个充分不必要条件是()A .23m -<<B .20m -<<C .2m <-或3m >D .32m -<<题型二:求双曲线的标准方程【例1】与椭圆22:11612y x C +=共焦点且过点(的双曲线的标准方程为()A .2213y x -=B .2221yx -=C .22122y x -=D .2213y x -=【答案】C 【解析】【分析】求出椭圆的焦点坐标,利用双曲线的定义可求得a 的值,再由b =b 的值,结合双曲线的焦点位置可求得双曲线的标准方程.【详解】椭圆C 的焦点坐标为()0,2±,设双曲线的标准方程为()222210,0y x a b a b-=>>,由双曲线的定义可得2a =-=,a ∴2c = ,b ∴=因此,双曲线的方程为22122y x -=.故选:C.【例2】已知圆22:(4)16M x y ++=,M 为圆心,P 为圆上任意一点,定点(4,0)A ,线段PA 的垂直平分线l 与直线PM 相交于点Q ,则当点P 在圆上运动时,点Q 的轨迹方程为()A .221(2)412x y x -=≤-B .221412x y -=C .221(1)3y x x -=≤-D .2213y x -=【例3】已知双曲线H :219x y a -=(0a >),以原点为圆心,双曲线的虚半轴长为半径的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形ABCD 的面积为4a ,则双曲线的方程为()A .22199x y -=B .221189x y -=C .221279x y -=D .221369x y -=【例4】已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在双曲线C 的右支上,12MF MF ⊥,若1MF 与C 的一条渐近线l 垂直,垂足为N ,且12NF ON -=,其中O 为坐标原点,则双曲线C 的标准方程为()A .2212016x y -=B .221204x y -=C .221416x y -=D .221420x y -=,【题型专练】1.已知双曲线的对称轴为坐标轴,两个顶点间的距离为2,焦点在y ,则双曲线的标准方程是()A .2212y x -=B .2212x y -=C .2212xy -=D .2212y x -=2.已知双曲线C 的焦点为1F ,)2F ,点P 在双曲线C 上,满足112PF F F ⊥,14PF =,则双曲线C 的标准方程为()A .2214x y -=B .2214y x -=C .22132x y -=D .22123x y -=3.已知圆M :()2224x y ++=,M 为圆心,P 为圆上任意一点,定点()2,0A ,线段PA 的垂直平分线l 与直线PM 相交于点Q ,则当点P 在圆上运动时,点Q 的轨迹方程为()A .221(2)412x y x -=≤-B .221412x y -=C .221(1)3y x x -=≤-D .2213y x -=4.已知双曲线方程为222x y k -=,焦距为6,则k 的值为________.故答案为:±6.5.(2022·重庆·三模)已知双曲线C :()222210,0x y a b a b-=>>的左右焦点为1F ,2F ,左右顶点为1A ,2A ,过2F 的直线l 交双曲线C 的右支于P ,Q 两点,设12PA A α∠=,21PA A β∠=,当直线l 绕着2F 转动时,下列量保持不变的是()A .1PQA △的周长B .1PF Q 的周长与2PQ之差C .tan tan αβD .tan tan αβ⋅【答案】BD 【解析】【分析】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,可判断A ,根据双曲线定义求解可判断B ,设(),P x y ,则tan ,tan y y a xx aαα==-+-根据商与积的值可判断CD .【详解】如图所示:当直线l 的倾斜角越小时,点1PQA △的周长越大,故A 不正确;1PF Q 的周长为1122442PF QF PQ a PF QF PQ a PQ++=+++=+所以1PF Q 的周长与2PQ之差为4a ,故B 正确;设(),P x y ,则tan ,tan y ya x x aαα==-+-,由tan tan a xa xαβ-=+不是常量,故C 不正确;由22222222221tan tan x b y y a y b a x a x a x a x aαβ⎛⎫- ⎪⎝⎭⋅=⋅==-+---为常量,故D 正确;故选:BD题型三:双曲线焦点三角形面积【例1】设双曲线2222:1(00)x y C a b a b,-=>>的左、右焦点分别为1F ,2F.P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a =()A .1B .2C .4D .8【答案】A【思路导引】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【解析】解法一:ca=c ∴=,根据双曲线的定义可得122PF PF a -=,12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥ ,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选A .解法二:由题意知,双曲线的焦点三角形面积为2tan 221θb S F PF =.∴︒45tan 2b =4,则2=b ,又∵5==ace ,∴1=a .解法三:设n PF m PF ==21,,则421==mn S F PF ,a n m 2=-,5,4222===+ace c n m ,求的1=a .【例2】已知1F ,2F 是双曲线C :()2210,0436x y a b -=>>的左、右焦点,M ,N 是C 上关于原点对称的两点,且12MN F F =,则四边形12MF NF 的面积是______.,即可求得四边形【题型专练】1.已知1F ,2F 分别是双曲线C :22144x y -=的左、右焦点,P 是C 上一点,且位于第一象限,120PF PF ⋅= ,则()A .PB .12PF =C .12PF F △的周长为4D .12PF F △的面积为42.设1F ,2F 是双曲线2:13C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则△12PF F 的面积为()A .72B .3C .52D .2【答案】B【解析】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,∵121||1||2OP F F ==,∴点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形,故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,∴2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,∴12F F P S =△121||||32PF PF =,故选B .题型四:双曲线的渐近线有关题型焦点在x 轴上的渐近线为⎪⎪⎭⎫ ⎝⎛=-±=02222b y a x x a b y 焦点在y 轴上的渐近线为⎪⎪⎭⎫ ⎝⎛=-±=02222b x a y x b a y 若双曲线的方程为122=+ny mx ,要求渐近线只需令022=+ny mx ,解出即可即已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。
双曲线解答题12大题型解题套路归纳
双曲线解答题12大题型解题套路归纳
一、求定点集合
双曲线方程为 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,求定点集合时,可以将 $y^2$ 写成 $x^2$ 的函数形式,并根据方程的性质找到定点集合。
二、离心率和焦半径
根据双曲线的离心率和焦半径的定义,可以通过给定的参数求出离心率和焦半径的值。
三、图形的特征
通过双曲线方程的参数,可以推断出双曲线的图形特征,如开口方向、渐近线方程等。
四、焦点坐标和直线方程
根据双曲线的焦点和准线的定义,可以通过给定的参数求出焦点坐标和准线的直线方程。
五、参数方程
双曲线可以用参数方程表示,根据参数方程可以求出曲线上的
点坐标和对应切线方程。
六、求切线方程
可以通过给定的点在双曲线上求出切线的方程。
七、对称性
双曲线具有对称性,可以根据对称轴和对称中心的定义,求出
对称轴和对称中心的方程。
八、渐近线方程
根据双曲线的渐近线定义,可以求出渐近线的方程。
九、面积和弧长
可以通过积分求解,求出双曲线所围成的面积和双曲线的弧长。
十、双曲线与直线的位置关系
可以通过将直线方程代入双曲线方程,求解方程组,从而判断
双曲线与直线的位置关系。
十一、双曲线与坐标轴的交点
可以通过将双曲线方程的一个变量设为零,求解方程,从而求出与坐标轴的交点。
十二、双曲线与其他曲线的位置关系
可以通过将其他曲线的方程代入双曲线方程,求解方程组,从而判断双曲线与其他曲线的位置关系。
高二数学双曲线复习专题及考试题型
双曲线---专项复习 【1、基本知识点】 双曲线的第一定义: 双曲线的第二定义:注意点:(1)双曲线定义中,“距离的差”一定要加绝对值,否则只表示双曲线的一支。
(2)定义中的小于||21F F 这一限制条件 标准方程:【2、几何性质】【 3、弦长公式】1、若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则221212()()AB x x y y =-+-,()22221212121141||AB k x x k x x x x k a ∆=+-=++-=+, 若12,y y 分别为A 、B 的纵坐标,则()21212122211114AB y y y y y y k k =+-=++-。
2、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B 两点,则弦长ab AB 22||=。
3、若弦AB 所在直线方程设为x ky b =+,则AB =2121ky y +-。
4、特别地,焦点弦的弦长的计算是将焦点弦转化为两条焦半径之和后,利用第二定义求解 【4、常见双曲线题型】题型一 双曲线定义的应用1、如图所示,在△ABC 中,已知|AB|=42,且三内角A 、B 、C 满足2sinA+sinC=2sinB ,建立适当的坐标系,求顶点C 的轨迹方程.解 :如图所示,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立直角坐标系,则A(-22,0)、B(22 , 0 ).由正弦定理得sinA =2a R ,sinB =2b R ,sinC =2c R . ∵2sinA+sinC=2sinB ,∴2a+c=2b ,即b -a=2c .从而有|CA| - |CB|=21|AB|=22<|AB|.由双曲线的定义知,点C 的轨迹为双曲线的右支. ∵a=2,c=22,∴b 2= c 2 - a 2= 6.所以顶点C 的轨迹方程为221,26x y -= (x>2). 【反思感悟】 使用双曲线的定义时易漏掉“差的绝对值”,即||PF 1|-|PF 2||=2a ,而|PF1|-|PF2|=2a 表示一支.2、P 是双曲线x216-y220=1上一点,F1、F2是双曲线的两个焦点,且|PF1|=9,求|PF2|的值.解 在双曲线x216-y220=1中,a =4,b =2 5.故c =6.由P 是双曲线上一点, 得||PF1|-|PF2||=8. ∴|PF2|=1或|PF2|=17.又|PF2|≥c -a =2,得|PF2|=17.3、已知双曲线116922=-y x 的左右焦点分别是1F 、2F ,若双曲线上一点P 使得02190=∠PF F ,求21PF F ∆的面积。
双曲线专题复习(附答案)
双曲线专题考点1 双曲线的定义及标准方程 题型1:运用双曲线的定义1.设P 为双曲线11222=-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( )A .36B .12C .312D .24解析:2:3||:||,13,12,121====PF PF c b a 由 ①又,22||||21==-a PF PF ② 由①、②解得.4||,6||21==PF PF,52||,52||||2212221==+F F PF PF为21F PF ∴直角三角形,.124621||||212121=⨯⨯=⋅=∴∆PF PF S F PF 故选B 。
2. P 是双曲线)0,0(12222>>=-b a by a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则21F PF ∆的内切圆的圆心的横坐标为( ) (A )a -(B )b -(C )c -(D )c b a -+[解析]设21F PF ∆的内切圆的圆心的横坐标为0x ,由圆的切线性质知,a x a c x x c PF PF -=⇒=----=-000122|)(|||题型2 求双曲线的标准方程3.已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.[解析] 解法一:设双曲线方程为22a x -22by =1.由题意易求c =25.又双曲线过点(32,2),∴22)23(a -24b=1. 又∵a 2+b 2=(25)2,∴a 2=12,b 2=8.故所求双曲线的方程为122x -82y =1.解法二:设双曲线方程为k x -162-ky +42=1,将点(32,2)代入得k =4,所以双曲线方程为122x -82y =1.4.已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ;[解析]设双曲线方程为λ=-224y x , 当0>λ时,化为1422=-λλy x ,2010452=∴=∴λλ, 当0<λ时,化为1422=---λλy y ,2010452-=∴=-∴λλ, 综上,双曲线方程为221205x y -=或120522=-x y 5.以抛物线x y 382=的焦点F 为右焦点,且两条渐近线是03=±y x 的双曲线方程为___________________. [解析] 抛物线x y 382=的焦点F 为)0,32(,设双曲线方程为λ=-223y x ,9)32(342=∴=∴λλ,双曲线方程为13922=-y x 6.已知点(3,0)M -,(3,0)N ,(1,0)B ,动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .221(1)8y x x -=>C .1822=+y x (x > 0)D .221(1)10y x x -=> [解析]2=-=-BN BM PN PM ,P 点的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支,选B 考点2 双曲线的几何性质 题型1 求离心率或离心率的范围7.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 .[解析](方法1)由定义知12||||2PF PF a -=,又已知12||4||PF PF =,解得183PF a =,223PF a =,在12PF F ∆中,由余弦定理,得2222218981732382494964cos e a a c a a PF F -=⋅⋅-+=∠,要求e 的最大值,即求21cos PF F ∠的最小值,当1cos 21-=∠PF F 时,解得53e =.即e 的最大值为53.(方法2) ac a PF a PF PF a PF PF -+≤+=+=21||21||||2||||22221 , 双曲线上存在一点P 使12||4||PF PF =,等价于35,421≤∴≥-+e a c a (方法3)设),(y x P ,由焦半径公式得a ex PF a ex PF -=+=21,,∵214PF PF =,∴)(4)(a ex a ex -=+,∴x a e 35=,∵a x ≥,∴35≤e ,∴e 的最大值为53.8. 已知双曲线)0,0(12222>>=-b a by a x 的右顶点为E ,双曲线的左准线与该双曲线的两渐近线的交点分别为A 、B 两点,若∠AEB=60°,则该双曲线的离心率e 是( )A .215+B .2C .215+或2 D .不存在[解析]设双曲线的左准线与x 轴交于点D,则c ab AD =,ca a ED 2+=,=+∴c a a 2c ab ⋅3,2=∴e题型2 与渐近线有关的问题9.若双曲线)0,0(12222>>=-b a by a x 的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A.2B.3C.5D.2[解析] 焦点到渐近线的距离等于实轴长,故a b 2=,5122222=+==ab ac e ,所以5=e10.焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x基础巩固训练1..已知双曲线的两个焦点为1(10,0)F -、2(10,0)F ,M 是此双曲线上的一点,且满足120MF MF ⋅=,12||||2MF MF ⋅=,则该双曲线的方程是 ( )A .2219x y -=B .2219y x -= C .22137x y -= D .22173x y -= [解析]由 12||||2MF MF ⋅=和402221=+PF PF 得6||21=-PF PF ,选A2..已知F 1,F 2分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( ) (A).),21(+∞+ (B).)21,1(+ (C).)3,1( (D).)22,3([解析] 210122122222+<⇒<--⇒<-⇒<e e e ac a c ca b ,选B3.曲线)6(161022<=-+-m m y m x 与曲线)95(19522<<=-+-n ny n x 的 ( )A .焦距相等B .焦点相同C .离心率相等D .以上都不对[解析] 方程)6(161022<=-+-m m y m x 的曲线为焦点在x 轴的椭圆,方程)95(19522<<=-+-n ny n x 的曲线为焦点在y 轴的双曲线,)5()9()6()10(-+-=---n n m m ,故选A 综合提高训练4. 已知椭圆1532222=+ny m x 和双曲线1322222=-n y m x 有公共的焦点,(1)求双曲线的渐近线方程(2)直线l 过焦点且垂直于x 轴,若直线l 与双曲线的渐近线围成的三角形的面积为43,求双曲线的方程[解析](1)依题意,有22223523m n m n -=+,即228m n =,即双曲线方程为22221163x y n n-=,故双曲线的渐近线方程是22220163x y n n -=,即x y 43±=,. (2)设渐近线x y 43±=与直线c x l =:交于A 、B ,则23||c AB =,=⋅=∆2321c c S OAB 43,解得1=c 即122=+b a ,又43=a b ,193,191622==∴b a 双曲线的方程为1319161922=-y x 5..已知中心在原点的双曲线C 的右焦点为()2,0,右顶点为()3,0.(Ⅰ)求双曲线C 的方程(Ⅱ)若直线:2=+l y kx 与双曲线恒有两个不同的交点A 和B 且2∙>OA OB (其中O 为原点),求k 的取值范围解(1)设双曲线方程为22221-=x y a b由已知得3,2==a c ,再由2222+=a b ,得21=b故双曲线C 的方程为2213-=x y . (2)将2=+y kx 代入2213-=x y 得22(13)6290---=k x kx 由直线l 与双曲线交与不同的两点得()22221306236(13)36(1)0⎧-≠⎪⎨∆=+-=->⎪⎩k k k即213≠k 且21<k . ① 设(),,(,),A A A B A x y B x y ,则 22629,1313-+==--A B A B x y x y k k,由2∙>OA OB 得2+>A B A B x x y y , 而2(2)(2)(1)2()2+=+++=++++A B A B A B A b A B A B x x y y x x kx kx k x x k x x2222296237(1)222131331-+=+++=---k k k k k k k . 于是2237231+>-k k ,即2239031-+>-k k 解此不等式得21 3.3<<k ② 由①+②得2113<<k 故的取值范围为33(1,),133⎛⎫-- ⎪ ⎪⎝⎭。
高中数学双曲线知识点及题型总结(学生版)
双曲线知识点及题型总结1 双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. 要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同. 当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.5.曲线的简单几何性质22a x -22by =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x ⇒渐近线方程⇒=-02222b y a x x aby ±=②若渐近线方程为x aby ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx (什么是共轭双曲线?)⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=⋅⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右支上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥);当焦点在y 轴上时,标准方程及相应性质(略)⑺与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222by a x 0(≠λ⑻与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 6曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 7曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). 8双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=.(2)过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.9线与椭圆相交的弦长公式 AB =若斜率为k 的直线被圆锥曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+= ]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的解题思想;高考题型解析题型一:双曲线定义问题1.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )A.充分不必要条件B.必要不充分条件 C .充分必要条件 D.既不充分又不必要条件2.若R ∈k ,则“3>k ”是“方程13322=+--k yk x 表示双曲线”的( )A .充分不必要条件. B.必要不充分条件. C.充要条件. D.既不充分也不必要条件.3.给出问题:F 1、F 2是双曲线162x -202y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的距离等于9,求点P 到焦点F 2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF 1|-|PF 2||=8,即|9-|PF 2||=8,得|PF 2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面横线上;若不正确,将正确结果填在下面横线上. _________.4.过双曲线x 2-y 2=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .题型二:双曲线的渐近线问题1.双曲线42x -92y =1的渐近线方程是( )A . y =±23x B.y =±32x C.y =±49x D.y =±94x2.过点(2,-2)且与双曲线22x-y 2=1有公共渐近线的双曲线方程是( )A .22y -42x =1 B.42x -22y =1 C.42y -22x =1 D.22x -42y =1题型三:双曲线的离心率问题1已知双曲线 x 2a 2 - y 2b2 = 1 (a >0,b >0)的左右焦点分别为F 1、F 2,点P 在双曲线的右支上,且∣PF 1∣=4∣PF 2∣,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .732.已知21,F F 是双曲线)0(,12222>>=-b a b y a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线的左支交于A 、B 两点,若2ABF ∆是正三角形,那么双曲线的离心率为 ( )A.2 B.3 C. 2 D. 33.过双曲线M:2221y x b -=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 (4.在给定双曲线中,过焦点垂直于实轴的弦长为2,焦点到相应准线的距离为21,则该双曲线的离心率为( ) A.22 B. 2 C .2 D. 225..已知双曲线12222=-by a x (a>0,b<0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2) C .[2,+∞) D.(2,+∞) 题型四:双曲线的距离问题1.设P 是双曲线22ax -92y =1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于( ) A.1或5 B.6 C .7 D.92.已知双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是 A.(33-,33) B. (-3,3) C .[ 33-,33] D. [-3,3] 3.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________.题型五:轨迹问题1.已知椭圆x 2+2y 2 =8的两焦点分别为F 1、F 2,A 为椭圆上任一点。
(完整)双曲线题型归纳,推荐文档
x2 y2 9 已知 F1、F2 分别为双曲线 C: - =1 的左、右焦点,点 A∈C,点 M 的坐标为(2,0),
9 27
AM 为∠F1AF2∠的平分线.则|AF2| = .
10 已知 F1 、 F2 为双曲线 C : x2 y2 2 的左、右焦点,点 P 在 C 上,| PF1 | 2 | PF2 | ,
A.3 B.2 C. 3 D. 2
6 设圆锥曲线 I’的两个焦点分别为 F1,F2,若曲线 I’上存在点 P 满足 PF1 :
F1F2 : PF2 = 4:3:2,则曲线 I’的离心率等于
建议A. 收12或 32藏下载本文,B. 23或以2 便随时学习!
C. 1 或2 2
D. 2 或 3 32
7. 设双曲线的一个焦点为 F,虚轴的一个端点为 B,如果直线 FB 与该双曲线的一条渐
y2 b2
1
(a>0,b>0)的两个焦点.若在 C 上存在一点 P.使
PF1⊥PF2,且∠PF1F2=30°,则 C 的离心率为___________. 5 如图,中心均为原点 O 的双曲线与椭圆有公共焦点,M,N 是双曲线的两顶点。若 M,O,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是
( )
4
过双曲线
C:x a
2 2
y2 a2
1(a) 0,b 0
的右焦点作一条与其渐近线平行的直线,交 C 于
点 P .若点 P 的横坐标为 2a ,则 C 的离心率为
.
66 已知双曲线
x2 a2
y2 b2
1(a
0,b
0) 的一条渐近线平行于直线 l :
y
2x 10, 双曲线的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学双曲线题型归类目录曲线与方程题型1:曲线的方程的判断题型2:直接法求曲线的方程题型3:定义法求曲线的方程题型4:相关点法求曲线的方程题型5:参数法求曲线的方程题型6:交轨法求曲线的方程双曲线题型1:求轨迹(双曲线)方程题型2:求双曲线的标准方程题型2.1:已知双曲线上一点及焦点,定义法求双曲线标准方程题型2.2:已知双曲线上两点,待定系数法求双曲线标准方程题型2.3:已知a,b,c关系,求双曲线标准方程题型3:双曲线的定义题型4:双曲线的渐近线题型4.1:求双曲线的渐近线题型4.2:已知双曲线的渐近线题型5:双曲线的离心率题型5.1:双曲线的离心率值题型5.2:双曲线的离心率取值范围题型6:双曲线的弦中点题型7:双曲线的焦点三角形题型8:焦点到渐近线的距离题型9:双曲线的弦长、三角形面积题型10:直线与双曲线的位置关系题型10.1:直线与双曲线的位置关系题型10.2:双曲线的切线问题题型11:双曲线中求值问题题型12:双曲线中求取值范围题型13:双曲线中求最值问题题型14:双曲线的定值问题方法是先猜后证。
猜法:取特殊情况或极端情况。
题型14.1:和差相消为定值题型14.2:乘除相约为定值题型15:双曲线的定点问题方法是先猜后证。
猜法:取两种特殊情况或极端情况的交点,或利用对称性判断定点在某直线上。
题型1:曲线的方程的判断1.已知曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则“f 1(x 0,y 0)=f 2(x 0,y 0)”是“点M(x 0,y 0)是曲线C 1与C 2的交点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.方程|y|-1=表示的曲线是()A.两个半圆B.两个圆C.抛物线D.一个圆3.方程x 2-xy+2y+1=0表示的曲线经过点A(1,-2),B(2,-3),C(3,10),D 中的()A.1个B.2个C.3个D.4个4.方程(x+y-1)=0所表示的曲线是()A. B. C. D.题型2:直接法求曲线的方程1.到(0,2)和(4,-2)距离相等的点的轨迹方程___________2.设动点P 到点F(-1,0)的距离是到直线y=1的距离相等,求点P 的轨迹方程,并判定此轨迹是什么图形.3.动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?题型3:定义法求曲线的方程1.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为.2.过点(-2,0)的直线与圆221x y +=相交于A,B,求弦AB 中点M 的轨迹方程。
3.分别过12(1,0),(1,0)A A -作两条互相垂直的直线,则它们的交点M 的轨迹方程_.4.过点P(2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.题型4:相关点法求曲线的方程1将圆224x y +=上的点的横坐标保持不变,纵坐标变为原来的一半,求所得曲线的方程,并说明它是什么曲线。
2.已知动点P 在曲线2y 2-x=0上移动,则点A(-2,0)与点P 连线的中点的轨迹方程是A.y=2x2B.y=8x2C.x=4y 2-1D.y=4x 2-3.已知动点P 在曲线2y 2-x=0上移动,点P 关于直线x y -=对称的轨迹方程是______题型5:参数法求曲线的方程1.★过点(-2,0)的直线与圆221x y +=相交于A,B,求弦AB 中点M 的轨迹方程。
2.已知椭圆22143x y +=的一组斜率为2的平行弦的中点的轨迹方程是.3.★已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B.设点M 是线段AB 的中点,求点M 的轨迹方程.题型6:交轨法求曲线的方程1.已知点P 在直线x=2上移动,直线L 通过原点且与OP 垂直,通过点A(1,0)及点P 的直线m 和直线L 交于点Q,求Q 点的轨迹方程,并指出轨迹的名称和它的焦点坐标。
2★已知椭圆22a x +22by =1(a>b>0)的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y=x+2相切.(1)求a 与b 的值;(2)设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点P.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型.2.3双曲线题型1:求轨迹(双曲线)方程1.方程()()6442222=++--+y x y x 指出它所表示的曲线______2.动圆过定点()4,0M -,且与已知圆()2249x y -+=相切,求动圆圆心的轨迹方程________。
3与圆A (x +5)2+y 2=81和圆B :(x -5)2+y 2=1都外切的圆圆心P 的轨迹方程为________.4★.已知圆(x +3)2+y 2=16的圆心为M ,设A 为圆上任一点,N (3,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程_______。
5.若△ABC 顶点B ,C 的坐标分别为(-4,0),(4,0),A C B sin 21sin sin =-则A 的轨迹方程为_______6.在△ABC 中,B(-6,0),C(6,0),直线AB,AC 的斜率乘积为94,求顶点A 的轨迹.7设(),M x y 与定点()5,0F 的距离和它到直线l :165x =的距离的比是常数54,求点M 的轨迹方程8★.已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.若动点M 满足1111F M F A F B F O =++(其中O 为坐标原点),求点M 的轨迹方程.题型2:求双曲线的标准方程题型2.1:已知双曲线上一点及焦点,定义法求双曲线标准方程1.求适合下列条件的双曲线的标准方程:(1)与双曲线162x -42y =1有公共焦点,且过点(32,2).(2)过点(3,2)-,且与22194x y +=有相同焦点;题型2.2:已知双曲线上两点,待定系数法求双曲线标准方程1.求适合下列条件的双曲线的标准方程:(1)经过两点P )7,26()72,3(---Q (2)经过两点A(2,-1)B(-4,7)题型2.3:已知a,b,c 关系,求双曲线标准方程1.求适合下列条件的双曲线的标准方程:(1)与双曲线92x -162y =1有共同渐近线且过点(-3,23)T FM P XY O(2)实轴长为16,离心率为45=e (3)a =25,经过点A(2,-5),(4)双曲线与椭圆1244922=+y x 共焦点,且以x y 34±=为渐近线,.(5)经过点M(-1,3)的等轴双曲线的标准方程.(6)与双曲线x 25-y 24=1有共同的渐近线且焦距为12的双曲线的方程题型3:双曲线的定义1.设P 是双曲线22ax -92y =1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于A.1或5B.6C.7D.92.已知双曲线的方程是221168xy -=,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,则ON 的大小(O 为坐标原点).3★.已知点A 的坐标为(6,1),F 1是椭圆459522=-y x 的左焦点,点P 是椭圆上的动点,(1)则1PF PA +的范围(2)则1PF PA -的范围。
4.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22M F NF M N +-的值为___5★.如图,从双曲线)0,0(12222>>=-b a b y a x 的左焦点F 引圆222a y x =+的切线,切点为T,延长FT 交双曲线右支与P 点,若M 为线段FP 的中点,O 为坐标原点,则MT MO -与a b -的大小关系为()A.MT MO ->ab -B.MTMO-=a b -C.MT MO -<ab -D.不确定6★.已知双曲线C :13922=-y x ,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段M N 的中点在C 上,则=-BN AN 7★.已知点M(-3,0)N(3,0)B(1,0)动圆C 与直线MN 切于点B,过M、N 与圆C相切的两个直线相交于P,则点P 的轨迹方程为题型4:双曲线的渐近线题型4.1:求双曲线的渐近线1.双曲线22143x y -=的实轴长、虚轴长,焦点坐标、顶点坐标、离心率及渐近线方程.2.离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为3.离心率为2的双曲线的的渐近线方程为题型4.2:已知双曲线的渐近线1.已知双曲线C 过点)115(-A ,且与1322=-y x 有相同的渐近线。
求双曲线C 的标准方程;2.已知双曲线()2224=10y b bx ->,以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为_______3.顶点在x 轴上,两顶点间的距离为4,离心率5e 2=的双曲线与直线y =kx (k∈R)无交点,则实数k 的取值范围为()A、11[-,]22B、11(,][,)22-∞-+∞ C、11(-,)22D、-∞-+∞ 11(,)(,)22题型5:双曲线的离心率题型5.1:双曲线的离心率值1.双曲线(1)15422=-y x (2)116922=-y x ,哪个双曲线开口较阔2.双曲线的两个焦点和虚轴两个顶点,是一个含60°角的菱形的四个顶点,则双曲虚的离心率为.3.已知双曲线的中心在原点,焦点在坐标轴上,其渐近线方程为34y x =±,则其离心率为___________4.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的两焦点,以线段12F F 为边作正三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是__________5.设ABC ∆是等腰三角形,0120ABC ∠=,则以,A B 为焦点且过点C 的双曲线的离心率为___________6.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为()5101557.在平面直角坐标系中,若双曲线22221(0,0)x y a b a b-=>>的右焦点到一条渐近线的距离为,则其离心率的值是_______.8.设双曲线22221(0)x y a b a b-=<<的半焦距为c,直线l 过(,0),(0,)a b 两点,已知原点到直线l,求双曲线的离心率9.设是双曲线C:22221(0,0)x y a b a b-=>>的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为CA.B.2C.D.10.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠= 且123AF AF =,则双曲线的离心率为A.2C.211.设12,F F 是双2222:1(0,0)x y C a b a b-=>>的两个焦点.若在C 上存在一点P ,使12PF PF ⊥,且1230PF F ∠=︒,则C 的离心率为_______.12★设21,e e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足021=⋅PF PF ,则2212221)(e e e e +的值为()A.1B.21C.2D.不确定13.★已知双曲线:E 22221x y a b-=()0,0a b >>,若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率是_______.14★设12F F ,是双曲线22221xy C a b -=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为______15.设12,F F 是双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点,P 是C 上一点,若126,PF PF a +=且12PF F △的最小内角为30,则C 的离心率为___.16.设F 是双曲线2222:1x y C ab-=的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为.17.已知,A B 为双曲线E 的左、右顶点,点M 在E 上,ABC △为等腰三角形,且顶角为120︒,则的离心率为18.21,F F 是椭圆14:221=+y x C 双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二.四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是题型5.1:双曲线的离心率值题型5.2:双曲线的离心率取值范围1设双曲线C:)0(1222>=-a y ax 与直线1:=+y x 相交于两个不同的点A、B。