2018-2019学年高二3月月考数学(文)试题
2018-2019学年吉林省白城市通榆县第一中学高二下学期第二次月考数学(文)试题Word版含答案
2018—2019学年度通榆一中高二下学期第二次质量检测数 学 试 卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z 满足1+z1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .22.点M 的极坐标为⎝⎛⎭⎪⎫2,π3,则它的直角坐标为( )A .(3,1)B .(-1,3)C .(1,3)D .(-3,-1) 3.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除 4.下面几种推理中是演绎推理的是( )A .因为y =2x 是指数函数,所以函数y =2x 经过定点(0,1)B .猜想数列11×2,12×3,13×4,…的通项公式为a n =1n (n +1)(n ∈N *)C .由圆x 2+y 2=r 2的面积为πr 2猜想出椭圆x 2a 2+y2b2=1的面积为πabD .由平面直角坐标系中圆的方程为(x -a )2+(y -b )2=r 2,推测空间直角坐标系中球的方程为(x -a )2+(y -b )2+(z -c )2=r 2 5.曲线的极坐标方程为ρ=4sin θ,化成直角坐标方程为( ) A .x 2+(y +2)2=4 B .x 2+(y -2)2=4 C .(x -2)2+y 2=4D .(x +2)2+y 2=46.已知(1-i )2z=1+i(i 为虚数单位),则复数z = ( )A .1+iB .1-iC .-1+iD .-1-i7.根据如下样本数据得到的回归方程为y =bx +a ,则( )x 3 4 5 6 7 8 y 4.0 2.5-0.50.5-2.0-3.0A.a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <08.点M ⎝⎛⎭⎪⎫1,7π6关于直线θ=π4(ρ∈R)的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫1,4π3B.⎝ ⎛⎭⎪⎫1,2π3C.⎝ ⎛⎭⎪⎫1,π3D.⎝⎛⎭⎪⎫1,-7π6 9.根据下面的列联表得到如下四个判断:①至少有99.9%的把握认为“患肝病与嗜酒有关”;②至少有99%的把握认为“患肝病与嗜酒有关”;③在犯错误的概率不超过0.01的前提下认为“患肝病与嗜酒有关”;④在犯错误的概率不超过0.01的前提下认为“患肝病与嗜酒无关”.项目 嗜酒 不嗜酒 总计 患肝病 700 60 760 未患肝病 200 32 232 总计90092992其中正确命题的个数为( )A .0B .1C . 2D .3 10.下面几种推理是合情推理的是( ) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°. A .①② B .①③ C .①②④ D .②④11.圆ρ=r 与圆ρ=-2r sin ⎝⎛⎭⎪⎫θ+π4(r >0)的公共弦所在直线的方程为( )A .2ρ(sin θ+cos θ)=rB .2ρ(sin θ+cos θ)=-r C.2ρ(sin θ+cos θ)=r D.2ρ(sin θ+cos θ)=-r 12.设函数)0(ln 31)(>-=x x x x f ,则)(x f y =( )A.在区间)1,1(e ,(1,e)内均有零点B.在区间)1,1(e内有零点,在区间(1,e)内无零点C.在区间)1,1(e 内无零点,在区间(1,e)内有零点D.在区间)1,1(e,(1,e)内均无零点二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2017·天津卷)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.14.直线x cos α+y sin α=0的极坐标方程为__________. 15.已知线性回归直线方程是y ^=a ^+b ^x ,如果当x =3时,y 的估计值是17,x =8时,y 的估计值是22,那么回归直线方程为______. 16.在极坐标系中,若过点A (4,0)的直线l 与曲线ρ2=4ρcos θ-3有公共点,则直线l 的斜率的取值范围为__________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)复数z =1+i ,求实数a ,b ,使az +2b z -=(a +2z )2.18.(本小题满分12分) )极坐标方程ρ=-cos θ与ρcos ⎝⎛⎭⎪⎫θ+π3=1表示的两个图形的位置关系是什么?19.(本小题满分12分) 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:xyOA BM分类 积极参加班级工作 不太主动参加班级工作 总计 学习积极性高 18 7 25 学习积极性一般6 19 25 总计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.P (K 2≥k ) 0.050 0.0100.001k3.841 6.635 10.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)直线l 与抛物线x y =2交于1122(,),(,)A x y B x y 两点,与x 轴相交于点M , 且121-=y y .(I) 求证:M 点的坐标为)0,1(; (II) 求AOB ∆的面积的最小值.21.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.(本小题满分12分) 已知函数21()()2x f x e x ax a =-+∈R . (I)当1a >-时,试判断函数()f x 的单调性;(II)若1a e <-,求证:函数()f x 在[1,)+∞上的最小值小于12.1A 2C 3B 4A 5B 6D 7B 8A 9C 10C 11 D 12C二 、填空题 (每题5分,共20分)13. -2 14.θ=π2+α 15.y ^=x +14 16.⎣⎢⎡⎦⎥⎤-33,33 17.(10分)解:因为z =1+i ,所以az +2b z -=(a +2b )+(a -2b )i , (a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以⎩⎨⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎨⎧a =-2,b =-1,或⎩⎨⎧a =-4,b =2.所以a =-2,b =-1或a =-4,b =2.18.(12分)解:ρ=-cos θ可变为ρ2=-ρcos θ,化为普通方程为x 2+y 2=-x ,即⎝ ⎛⎭⎪⎫x +122+y 2=14,它表示圆心为⎝ ⎛⎭⎪⎫-12,0,半径为12的圆. 将ρcos ⎝ ⎛⎭⎪⎫θ+π3=1化为普通方程为x -3y -2=0.∵圆心⎝ ⎛⎭⎪⎫-12,0到直线的距离为|-12-2|1+3=54>1,∴直线与圆相离.19. (12分)解:(1)积极参加班级工作的学生有24人,总人数为50人, 所以抽到积极参加班级工作的学生的概率P 1=2450=1225,不太主动参加班级工作且学习积极性一般的学生有19人, 所以抽到不太主动参加班级工作且学习积极性一般的学生概率P 2=1950.(2)由列联表知,K 2的观测值 k =50×(18×19-6×7)225×25×24×26≈11.538,由11.538>10.828.所以在犯错误的概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.20.(12分)解:(I)设M 点的坐标为)0,(0x , 直线l 方程为0x my x +=,代入x y =2得002=--x my y ① 21,y y 是此方程的两根, ∴1210=-=y y x ,即M 点的坐标为(1, 0).(II)由方程①,m y y =+21,121-=y y ,且 1||0==x OM , 于是=-=∆||||2121y y OM S AOB 212214)(21y y y y -+=4212+m ≥1, ∴当0=m 时,AOB ∆的面积取最小值1.1212121=⋅=∆PF PF S DF F 21.(12分)解:(1)由题意知n =10,x -=110i=8010=8,=2-0.3×8=-0.4,故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).22. (12分)解:(I)由题可得()xf x e x a '=-+, 设()()xg x f x e x a '==-+,则()1x g x e '=-, 所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增,当0x <时()0g x '<,()f x '在(),0-∞上单调递减,所以()()01f x f a ''≥=+,因为1a>-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増.………………6分(II)由(I)知()f x '在[)1,+∞上单调递増,因为 1a e <-, 所以()1 10f e a '=-+<,所以存在()1,t ∈+∞,使得()0f t '=,即0te t a -+=,即ta t e =-,所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増, 所以当[)1,x ∈+∞时()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+,令()()2111,2xh x e x x x =-+>,则()1()0xx x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122te t t -+<,即当[)1,x ∈+∞时()min12f x <, 故函数()f x 在[)1,+∞上的最小值小于12. (12)分。
郑州市第十六中学2018-2019学年高三上学期第三次月考试卷数学含答案
郑州市第十六中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.2. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题3. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.4. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-25. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2D .2 56. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=7. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好; ④采用分层抽样方法比采用简单随机抽样方法更好; A .①③ B .①④ C .②③ D .②④8. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20489. “1ab >”是“10b a>>”( ) 3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 10.已知集合,则A0或 B0或3C1或则几何体的体积为( )34意在考查学生空间想象能力和计算能()2log f x x =的图象( ).向上平移1个单位 D .向下平移1个单位分.把答案填写在横线上)上到顶点和准线距离相等的点的坐标为 .1cos 2c B a b ⋅=+,ABC ∆的面积12S =,15.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.16.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)三、解答题(本大共6小题,共70分。
陕西省神木中学2018-2019学年高三上学期第三次月考试卷数学含答案
陕西省神木中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(,22)-∞B .(,22]-∞C .(0,22]D .(22,)+∞ 2. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数3. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直4. 下列正方体或四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图形是 ( )5. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.6. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 7. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( )A . 4B . ﹣4C . 2D . ﹣28. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或109. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 10.在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( )A .323π B .16π C.253π D .312π11.设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111] 12.若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .14.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)15.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .16.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.三、解答题(本大共6小题,共70分。
山西省太原师院附中、师苑中学2018-2019年高二年级第三次月考数学(文)试卷
太原师院附中 师苑中学2018~2019学年高二第三次月考数学试题(文)出题人:胡惠芝 审核人:白鹏恩 (考试时间:120分钟 试题满分:150分)一、选择题(本题共12小题,每题5分,共60分) 1.设复数z 满足(1)2i z i +=,则z =( )A .1i +B .1i -C .1i -+D .1i --2.甲、乙、丙、丁四位同学各自对,A B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现,A B 两变量有更强的线性相关性( ) A .甲 B .乙 C .丙 D .丁 3.设曲线12xy e ax =+在点(0,1)处的切线与直线210x y +-=垂直,则实数a =( ) A .3 B .1 C .2 D .04.双曲线22:164y C x -=.经过3:2x x y yϕ'=⎧⎨'=⎩变换后所得到曲线的力程为( ) A .221916x y -= B .221169x y -= C .229116y x -= D .2291256y x -= 5.已知椭圆的参数方程为3cos 2sin x y θθ=⎧⎨=⎩(θ为参数),则椭圆的离心率为( )A B C .59 D .456.已知变量x 和y 的统计数据如下表:根据上表可得回归直线方程ˆˆ0.25ybx =-,据此可以预测当8x =时,ˆy =( )A .6.4B .6.25C .6.55D .6.45 7.在极坐标系中,点2,6π⎛⎫ ⎪⎝⎭到直线sin 16πρθ⎛⎫-= ⎪⎝⎭的距离为( ) A .3 B .4 C .2 D .18.参数方程()2t tt tx e ey e e --⎧=+⎪⎨=-⎪⎩(t 为参数)的普通方程为( ) A .221416x y -= B .221(2)416x y x -=≥ C .221(2)416x y x -=≤- D .221(2)416x y x -=≤-或(2)x ≥ 9.已知函数322()7f x x ax bx a a =++--在1x =处取得极大值为10,则ab的值为( ) A .23-B .2-C .2-或23-D .2或23- 10.设三次函数()f x 的导函数为()f x ',函数()y xf x '=的图像的一部分如图所示,则下列说法中正确的是( )A .()f x的极大值为f,极小值为(f B .()f x的极大值为(f,极小值为f C .()f x 的极大值为(3)f -,极小值为(3)f D .()f x 的极大值为(3)f ,极小值为(3)f -11.极坐标方程2(2sin )2sin 0ρρθθ-++=表示的图形为( ) A .一个圆与一条直线 B .一个圆 C .两个圆 D .两条直线12.()f x 是定义在R 上的偶函数,当0x <时,()()0xf x f x ''-<,且(3)0f -=,则不等式()0f x x>的解集为( )A .(,3)(3,)-∞-⋃+∞B .(,3)(0,3)-∞-⋃C .(3,3)-D .(3,0)(3,)-⋃+∞ 二、填空题(本题共4小题,每小题5分,共20分)13.复数(12)(3)z i i =+-,其中i 为虚数单位.则||z =________. 14.已知,M N 两点的极坐标分别是52,,3,66M N ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则||MN =________.15.已知直线的参数方程为32545x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),且它与抛物线22y x =相交于,A B 两点,且线段AB的中点为M ,则点M 的坐标为_______________.16.已知函数3()1f x x ax =--.若()f x 在(1,1)-上为减函数,则实数a 的取值范围__________. 三、解答题(本题共6道大题,共70分)17.(本小题10分)已知定点(0,4),(6,0)Q P -,动点C 在椭圆22194x y +=上运动,求CPQ V 面积的最大值.18.(本小题12分)在直角坐标系xoy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线2C :sin 2cos (0)a a ρθθ=>,过点(2,4)P --的直线2:42x l y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t为参数)与曲线C 相交于,M N 两点.(1)求曲线C 和直线l 的普通方程.(2)若||,||,||PM MN PN 成等比数列,求实数a 的值.19.(本小题12分)某种新产品投放市场一段时间后,经过调研获得了时间x (天数)与销售单价y (元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).表中10111,10i i i i w w w x ===∑. (1)根据散点图判断,ˆˆˆy a bx =+与ˆˆˆd y c x=+哪一个更适合作价格y 关于时间x 的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y 关于x 的回归方程. (3)若该产品的日销售量()g x (件)与时间x 的函数关系为()*100()120g x x N x-=+∈,求该产品投放市场第几天的销售额最高?最高为多少元?附:对于一组数据()()()()112233,,,,,,,n n u v u v u v u v ⋯,其回归直线v u αβ=+的斜率和截距的最小二乘法估计分别为()()()121ˆˆˆ,nii i nii vv u uav u u u ββ==--==--∑∑.20.(本小题12分)已知函数()cos xf x e x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. 21.(本小题12分)2018年11月21日,意大利奢侈品牌“&D G ”在广告中涉嫌辱华,中国明垦纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分別统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组[0,10),[10,20),[20,30),[30,40),[40,50),[50,60):得到如图所示的频率分布直方图:并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如下表.(1)在答题卡上补全列联表中数据;并判断能否有95%把握认为网友对此事件是否为“强烈关注”与性别有关?(2)现已从“强烈关注”的网友中按性别分层抽样选取了5人,再从这5人中选取2人,求这2人中至少有1名女性的概率.参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,23.(本小题12分)已知函数1()ln(0)f x a x ax=+>.(1)求函数()f x的极值.(2)是否存在实数a,使得函数()f x在[1,]e上的最小值为0?若存在,试求出a的值:若不存在,请说明理由.。
三中高二数学上学期第一次月考试题(2021年整理)
甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题的全部内容。
2018—2019学年第一学期第一次月考考试高二级数学试卷一、单选题(共12题;共24分)1。
在等差数列中,,则()A. 6 B。
7C。
8D. 92.已知数列的前前项和 ,那么它的通项公式是( )A. B。
C . D。
3。
已知数列满足 ,若,则等于()A。
1 B 。
2 C. 64D. 1284.设等差数列的前n项和为,已知,则 ( )A. -27B. 27C。
-54D. 545.在中,,,,则等于()A. B。
C.D。
6.﹣401是等差数列﹣5,﹣9,﹣13…的第()项.A。
98 B。
99C。
100D。
1017。
在等比数列{a n}中,已知a7a12=5,则a8a9a10a11=( )A。
10 B。
50C。
25D。
758.若数列{a n}为等差数列,a2 , a10是方程x2﹣3x﹣5=0的两根,则a4+a8的值为()A. 3B. ﹣3 C. 5D. ﹣59.已知等差数列{a n}的公差d≠0,且a3=2a1 , 则的值为 ( )A. B。
C.D.10。
+1与﹣1的等差中项是( )A. 1 B。
﹣1C.D。
±111.在△ABC中,若a2+b2<c2,则△ABC的形状是()A。
锐角三角形B。
直角三角形C。
钝角三角形D。
长治第二中学校高二下学期第二次月考数学(文)试卷含答案
2018—2019学年第二学期高二第二次月考数学试题(文科)命题人:武贤发 审题人:王宏伟【满分150分,考试时间为120分钟】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={1,2,3,4},若A ={1,3},B ={3},则(∁U A )∩(∁U B )等于( ) A .{1,2} B .{1,4}C .{2,3}D .{2,4}2.在复平面内,复数z 1和z 2对应的点分别是A (2,1)和B (0,1),则z 1z 2等于( )A .-1-2iB .-1+2iC .1-2iD .1+2i3. “p ∧q 为假”是“p ∨q 为假”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 4.已知a =4.09.1,b =9.1log 4.0,c =9.14.0,则( ) A .a >b >cB .b >c >aC .a >c >bD .c >a >b5.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =x)21(6.某大型超市开业天数x 与每天的销售额y 的情况如下表所示:根据上表提供的数据,求得y 关于x 的线性回归方程为y =9.5467.0 x ,由于表中有一个数据模糊看不清,请你推断出该数据的值为( )A .67B .68C .3.68D .717.如图是一个程序框图,若输入n 的值是13,输出S 的值是46,则a 的取值范围是( ) A .9≤a <10B .9<a ≤10C .10<a ≤11D .8<a ≤98.函数f (x )=)1(1-+x x e x e (其中e 为自然对数的底数)的图象大致为()9.已知f (x )为定义在R 上周期为2的奇函数,当-1≤x <0时,f (x )=x (ax +1),若1)25(-=f ,则a 等于( ) A .6B .4C .-1425D .-610.已知函数f (x )=320192019+--x x ,则关于x 的不等式f (1-2x )+f (x )>6的解集为( )A .(1,2)B .(1,4)C .(1,+∞)D .(-∞,1)11.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,1,12,则此三棱锥外接球的表面积为()A .174πB .214πC .4πD .5π12.设f (x )=⎪⎩⎪⎨⎧>++≤-0,10,)(2x a x x x a x ,若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]二.填空题(本大题共4小题,每小题5分,共20分。
安徽省淮南第二中学2018-2019学年高三上学期第三次月考试卷数学含答案
安徽省淮南第二中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 执行如图所示的程序框图,则输出结果S=( )A .15B .25C .50D .1002. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为( )A .4B .4C .2D .23. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.4. 点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .5. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,46. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 7. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .8. 函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的部分图象如图所示,则φω的值为( )A.18 B .14C.12D .19. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(10.随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .411.某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.12.若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 . 14.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.15.函数1()lg(1)1f x x x=++-的定义域是 ▲ .16.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 三、解答题(本大共6小题,共70分。
2018-2019学年高二数学下学期第三次月考试题文
2018-2019学年高二数学下学期第三次月考试题文一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.[2014·山东卷] 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=( )A.(0,2] B.(1,2)C.[1,2) D.(1,4)答案: C2.复数z=+(1-i)2的虚部等于( )A.1 B.0C.-1 D.i解析:z=+(1-i)2=i-2i=-i.答案:C3.否定“自然数a、b、c中恰有一个偶数”时正确的反设为( )A.a、b、c都是奇数B.a、b、c都是偶数C.a、b、c中至少有两个偶数D.a、b、c中或都是奇数或至少有两个偶数解析:恰有一个偶数的否定有两种情况,其一是无偶数(全为奇数),其二是至少有两个偶数.答案:D4.下列说法中错误的是( )A.如果变量x与y之间存在着线性相关关系,则我们根据实验数据得到的点(xi,yi)(i=1,2,…,n)将散布在某一条直线的附近B.如果两个变量x与y之间不存在线性相关关系,那么根据它们的一组数据(xi,yi)(i=1,2,…,n)不能写出一个线性方程C.设x,y是具有线性相关关系的两个变量,且y关于x的线性回归方程为y=bx+a,则b叫做回归系数D.为使求出的线性回归方程有意义,可以求出相关系数r来判断变量y与x之间是否存在线性相关关系解析:任何两个变量之间,如果知道了一个样本的数据,都可以根据最小二乘法求得一个线性方程,但对于非线性相关的两个变量,所求的线性回归方程是无意义的.答案:B5.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤解析:由归纳推理、演绎推理和类比推理的性质知②④错误,①③⑤正确.答案:D6.由①正方形的四个内角相等;②矩形的四个内角相等;③正方形是矩形,根据“三段论”推理出一个结论,则作为大前提、小前提、结论的分别为( )A.②①③B.③①②C.①②③D.②③①解析:根据三段论的一般形式,可以得到大前提是②,小前提是③,结论是①.答案:D7.已知某种产品的合格率是95%,合格品中的一级品率是20%.则这种产品的一级品率为( )A.15% B.19%C.20% D.21%解析:A=“产品为合格品”,B=“产品为一级品”,P(B)=P(AB)=P(B|A)P(A)=0.2×0.95=0.19.所以这种产品的一级品率为19%.答案:B8.[2014·广东卷] 在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“s in A≤sin B”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件答案: A9.如果执行下面的框图,输入N=5,则输出的数等于( )A. B.C. D.解析:该框图是计算++++的和.答案:D10.在对某小学的学生进行的是否吃零食的调查中,得到如下表数据:根据上述数据分析.我们得出的结论是( )A.认为男女学生与吃零食与否有关系B.认为男女学生与吃零食与否没有关系C.性别不同决定了吃零食与否D.以上都是错误的解析:∵χ2==≈3.69>2.706.∴有90%的把握认为男女学生与吃零食与否有关系.答案:A11.下图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A.an=3n-1(n∈N*)B.an=3n(n∈N*)C.an=3n-2n(n∈N*)D.an=3n-1+2n-3(n∈N*)解析:观察发现新产生的一个三角形的周围伴随三个着色三角形的产生.答案:A12.设a,b,c均为正实数,P=a+b-c,Q=b+c-a,R =c+a-b,则“PQR>0”是“P,Q,R同时大于0”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】必要性显然成立;PQR>0,包括P,Q,R同时大于0,或其中两个为负两种情况.假设P<0,Q<0,则P+Q=2b<0,这与b为正实数矛盾.同理当P,R同时小于0或Q,R同时小于0的情况亦得出矛盾,故P,Q,R同时大于0,所以选C.【答案】C二、填空题(本大题共4小题,每小题5分,共20分。
弓长岭区第三中学2018-2019学年高二上学期第二次月考试卷数学
弓长岭区第三中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.两个随机变量x,y的取值表为若x,y具有线性相关关系,且y^=bx+2.6,则下列四个结论错误的是()A.x与y是正相关B.当y的估计值为8.3时,x=6C.随机误差e的均值为0D.样本点(3,4.8)的残差为0.652.函数f(x)=Asin(ωx+θ)(A>0,ω>0)的部分图象如图所示,则f()的值为()A.B.0 C.D.3.若命题p:∃x∈R,x﹣2>0,命题q:∀x∈R,<x,则下列说法正确的是()A.命题p∨q是假命题B.命题p∧(¬q)是真命题C.命题p∧q是真命题 D.命题p∨(¬q)是假命题4.设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.已知集合M={0,1,2},则下列关系式正确的是()A.{0}∈M B.{0}∉M C.0∈M D.0⊆M6.已知函数f(x)=Asin(ωx+φ)(a>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是()A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+) D .f (x )=sin (2x+)7. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( )A .2B .﹣2C .8D .﹣88. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A .9B .11C .13D .159. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.10.已知M 是△ABC 内的一点,且=2,∠BAC=30°,若△MBC ,△MCA 和△MAB 的面积分别为,x ,y ,则+的最小值是( ) A .20 B .18C .16D .911.在极坐标系中,圆的圆心的极坐标系是( )。
兴国县三中2018-2019学年高二上学期第二次月考试卷数学
兴国县三中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.20种B.22种C.24种D.36种2.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2a>),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总X N a(0~100,,则此次数学考试成绩在100分到110分之间的人数约为()人数的110(A)400 (B )500 (C)600 (D)8003.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()ABCD4. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 5.已知,,那么夹角的余弦值( )A.B.C .﹣2 D.﹣6. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .37. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个 8. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B两点,且,则的值是( )A.B.C .D .09. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5} C .{1,2,3,4,5} D .∅10.从单词“equation ”选取5个不同的字母排成一排,含有“qu ”(其中“qu ”相连且顺序不变)的不同排列共有( ) A .120个B .480个C .720个D .840个11.已知函数f (x )满足f (x )=f (π﹣x ),且当x∈(﹣,)时,f (x )=e x+sinx ,则( )A .B .C .D .12.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.二、填空题13.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .14.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .15.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .16.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 .17.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.18.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .三、解答题19.已知函数f (x )=|x ﹣a|.(Ⅰ)若不等式f (x )≤2的解集为[0,4],求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若∃x 0∈R ,使得f (x 0)+f (x 0+5)﹣m 2<4m ,求实数m 的取值范围.20.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b==,a=﹣b.21.如图,点A是单位圆与x轴正半轴的交点,B(﹣,).(I)若∠AOB=α,求cosα+sinα的值;(II)设点P为单位圆上的一个动点,点Q满足=+.若∠AOP=2θ,表示||,并求||的最大值.22.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.23.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。
乌鲁木齐县三中2018-2019学年高二上学期第二次月考试卷数学
乌鲁木齐县三中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设集合A={ x|﹣3≤2x﹣1≤3},集合B为函数y=lg(x﹣1)的定义域,则A∩B=()A.(1,2) B.[1,2] C.[1,2)D.(1,2]2.过点P(﹣2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有()A.3条B.2条C.1条D.0条3.复数=()A.B.C.D.4.在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也非必要条件5.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.15B.C.15D.15【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力.6.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C .充分必要条件D .既不充分也不必要条件7. 把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)8. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化9. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( ) A.B.C.D.10.已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12111.等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( ) A .3B.C .±D .以上皆非12.圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( ) AB .2 CD.【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.二、填空题13.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.14.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .15.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.16.已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤17.设函数f (x )=,则f (f (﹣2))的值为 .18.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.三、解答题19..(1)求证:(2),若.20.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2).试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.21.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*n N ∈,p ,为常数),且145x x x ,,成等差数列,求:(1)p q ,的值;(2)数列{}n x 前项和n S 的公式.22.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF=3,H 是CF 的中点. (1)求证:AC ⊥平面BDEF ; (2)求二面角H ﹣BD ﹣C 的大小.23.已知z是复数,若z+2i为实数(i为虚数单位),且z﹣4为纯虚数.(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围.24.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.乌鲁木齐县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由A中不等式变形得:﹣2≤2x≤4,即﹣1≤x≤2,∴A=[﹣1,2],由B中y=lg(x﹣1),得到x﹣1>0,即x>1,∴B=(1,+∞),则A∩B=(1,2],故选:D.2.【答案】C【解析】解:假设存在过点P(﹣2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则.即2a﹣2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l的方程为:,即x﹣y+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.3.【答案】A【解析】解:===,故选A.【点评】本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.4. 【答案】A【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0, ∴cosA=, ∴A=, ∴sinA=, 当sinA=,∴A=或A=,故在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的充分非必要条件,故选:A5. 【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面ABCD ,如图所示,所以此四棱锥表面积为1S =262创?1123+22622创创?15=,故选C .4646101011326E VD CBA6. 【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x ﹣1=0,2x ﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y ﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.7.【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8).故答案选D.8.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.9.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.10.【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)(1)52222n +++==,∴120n =,选C . 11.【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a 62=a 3a 9=3,即a 6=±.故选C12.【答案】C二、填空题13.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.14.【答案】(﹣2,﹣6).【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),故答案为:(﹣2,﹣6).【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.15.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.16.【答案】①②③④【解析】因为只有是中的最小项,所以,,所以,故①②③正确;,故④正确;,无法判断符号,故⑤错误, 故正确答案①②③④答案:①②③④17.【答案】 ﹣4 .【解析】解:∵函数f (x )=,∴f (﹣2)=4﹣2=,f (f (﹣2))=f ()==﹣4.故答案为:﹣4.18.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
最新2018-2019高二下学期第三次月考数学(文)试卷
一、选择题(本大题共12小题,每小题5分,共计60分。
在每小题给出的四个选项中,只有一项是符合题目要求。
) 1. 已知i 是虚数单位,则复数11z i=-在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知命题52,:>∈∀xR x P ,则P ⌝为A .52,>∉∀x R xB .52,≤∈∀xR x C .52,00>∈∃x R x D .52,00≤∈∃x R x3.设抛物线22y px =的焦点与椭圆221204x y +=的右焦点重合,则该 抛物线的准线方程为A .1x =-B .2x =-C .3x =-D .4x =-4.某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,根据表中提供ˆˆˆA .20B .12C .10D .55.若函数()y f x =的导函数...在区间[]a b ,上是增函数,则函数()y f x =在区间[]a b ,上的图象可能是A B C D6.“m ≥221y x mx =-+在(),-∞+∞内存在零点”的 A. 充分必要条件 B. 必要而不充分条件 C. 充分而不必要条件 D. 既不充分也不必要条件7.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为A .23B .75C .77D .1398.运行下列程序,若输入的,p q 的值分别为65,36,则输出的p q -的值为 A .47 B .57 C .61 D .679.已知函数()f x 在0x >上可导且满足()()0xf x f x '->,则下列一定成立的为A .()()f f e e ππ>B .()()f f e π<C .()()f f e eππ< D .()()f f e π> 10.设抛物线22(0)C y px p =>:,过点,0)M p (的直线l 与抛物线相交于,A B 两点,O 为坐标原点,设直线,OA OB 的斜率分别为12,k k ,则12k k = A .1- B .2 C .2- D .不确定 11.若函数32()21f x ax x x =+++在()1,2上有最大值无最小值,则实数a 的取值范围为A .34a >-B .53a <- C .5334a -<<- D .5334a -≤≤-12.已知函数3()=f x x ax b ++,其图象在点0,0()处的切线方程为y x =,又当π02θ≤≤时,有0)1sin (sin )sin (2>+++θθθf m f 恒成立,则实数m 的取值范围是 A . (-∞,-1) B .(-1, +∞) C . (-∞,-3) D .(-3, +∞)第Ⅱ卷(非选择题,满分90分)注意事项:1.请用蓝黑钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上。
长顺县三中2018-2019学年高二上学期第二次月考试卷数学
长顺县三中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如图所示,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则()A.x=﹣B.x=C.x=﹣D.x=2.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.3.圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16的位置关系是()A.外离 B.相交 C.内切 D.外切4.若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()A.{x|﹣1<x<1} B.{x|﹣2<x<1} C.{x|﹣2<x<2} D.{x|0<x<1}5.抛物线x2=4y的焦点坐标是()A.(1,0)B.(0,1)C.()D.()6.下列函数中,在区间(0,+∞)上为增函数的是()A.y=x﹣1B.y=()x C.y=x+D.y=ln(x+1)7.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为()A.B.C.D.8.设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)<0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|0<x<4}9. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种10.实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)11.i 是虚数单位,=( )A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i12.数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2C .3D .4二、填空题13.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 14.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .15.已知x 、y 之间的一组数据如下:x 0 1 23 y 8 2 64则线性回归方程所表示的直线必经过点 .16.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.17.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .18在这段时间内,该车每100千米平均耗油量为升.三、解答题19.已知m∈R,函数f(x)=(x2+mx+m)e x.(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)≥x2+x3.20.(本小题满分12分)为了普及法律知识,达到“法在心中”的目的,某市法制办组织了普法知识竞赛.5名职工的成绩,成绩如下表:(1掌握更稳定;(2)用简单随机抽样法从乙单位5名职工中抽取2名,他们的成绩组成一个样本,求抽取的2名职工的分数差至少是4的概率.21.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.22.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α23.设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0(Ⅰ)求实数a,b的值(Ⅱ)求函数f(x)的极值.24.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点1,2P ⎛ ⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.长顺县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=,故选:A.【点评】本题考查了空间向量的应用问题,是基础题目.2.【答案】B【解析】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.3.【答案】D【解析】解:由圆C1:(x+2)2+(y﹣2)2=1与圆C2:(x﹣2)2+(y﹣5)2=16得:圆C1:圆心坐标为(﹣2,2),半径r=1;圆C2:圆心坐标为(2,5),半径R=4.两个圆心之间的距离d==5,而d=R+r,所以两圆的位置关系是外切.故选D4.【答案】D【解析】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.5.【答案】B【解析】解:∵抛物线x2=4y中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1),故选:B.【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线x2=2py的焦点坐标为(0,),属基础题.6.【答案】D【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,②y=()x是减函数,③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,④y=lnx在区间(0,+∞)上为增函数,∴A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间.7.【答案】D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.8.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.9.【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C.10.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.11.【答案】D【解析】解:,故选D.【点评】本小题考查复数代数形式的乘除运算,基础题.12.【答案】A【解析】解:设等差数列{a n }的公差为d , 由a 1+1,a 3+2,a 5+3构成等比数列,得:(a 3+2)2=(a 1+1)(a 5+3), 整理得:a 32+4a 3+4=a 1a 5+3a 1+a 5+3即(a 1+2d )2+4(a 1+2d )+4=a 1(a 1+4d )+4a 1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A .【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.二、填空题13.【答案】1ln 2 【解析】 试题分析:()()111ln 2ln 2f x k f x ''=∴== 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 14.【答案】 4 .【解析】解:∵f ′(x )=3cosx+4sinx , ∴f ′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.15.【答案】 (,5) .【解析】解:∵,=5∴线性回归方程y=a+bx 所表示的直线必经过点(1.5,5)故选C【点评】解决线性回归直线的方程,利用最小二乘法求出直线的截距和斜率,注意由公式判断出回归直线一定过样本中心点.16.【答案】2a ≥ 【解析】试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10af x x=-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题. 17.【答案】 1 .【解析】解:若对双曲线C 上任意一点A (点A 在圆O 外), 均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD , 可通过特殊点,取A (﹣1,t ),则B (﹣1,﹣t ),C (1,﹣t ),D (1,t ), 由直线和圆相切的条件可得,t=1.将A (﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.18.【答案】 8 升.【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8. 故答案是:8.三、解答题19.【答案】【解析】解:(1)令f (x )=0,得(x 2+mx+m )e x =0,所以x 2+mx+m=0.因为函数f (x )没有零点,所以△=m 2﹣4m <0,所以0<m <4.(2)f'(x )=(2x+m )e x +(x 2+mx+m )e x =(x+2)(x+m )e x,令f'(x )=0,得x=﹣2,或x=﹣m ,当m >2时,﹣m <﹣2.列出下表:x(﹣∞,﹣m ) ﹣m (﹣m ,﹣2) ﹣2(﹣2,+∞) f'(x ) + 0﹣0 +f (x ) ↗me ﹣m ↘(4﹣m )e ﹣2↗当x=﹣m 时,f (x )取得极大值me ﹣m. 当m=2时,f'(x )=(x+2)2e x≥0,f (x )在R 上为增函数,所以f (x )无极大值.当m <2时,﹣m >﹣2.列出下表:x (﹣∞,﹣2) ﹣2 (﹣2,﹣m ) ﹣m (﹣m ,+∞) f'(x ) + 0﹣0 + f (x ) ↗(4﹣m )e ﹣2↘me ﹣m↗当x=﹣2时,f (x )取得极大值(4﹣m )e ﹣2,所以(3)当m=0时,f (x )=x 2e x ,令ϕ(x )=e x ﹣1﹣x ,则ϕ'(x )=e x﹣1,当x >0时,φ'(x )>0,φ(x )为增函数;当x <0时,φ'(x )<0,φ(x )为减函数,所以当x=0时,φ(x )取得最小值0.所以φ(x )≥φ(0)=0,e x ﹣1﹣x ≥0,所以e x≥1+x ,因此x 2e x ≥x 2+x 3,即f (x )≥x 2+x 3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.20.【答案】(1)90=甲x ,90=乙x ,5242=甲s ,82=乙s ,甲单位对法律知识的掌握更稳定;(2)21. 【解析】试题分析:(1)先求出甲乙两个单位职工的考试成绩的平均数,以及他们的方差,则方差小的更稳定;(2)从乙单位抽取两名职工的成绩,所有基本事件用列举法得到共10种情况,抽取的两名职工的分数差至少是的事件用列举法求得共有种,由古典概型公式得出概率.试题解析:解:(1)90939191888751=++++=)(甲x ,90939291898551=++++=)(乙x 524])9093()9091()9091()9088()9087[(51222222=-+-+-+-+-=甲s8])9093()9092()9091()9089()9085[(51222222=-+-+-+-+-=乙s∵8524<,∴甲单位的成绩比乙单位稳定,即甲单位对法律知识的掌握更稳定. (6分)考点:1.平均数与方差公式;2.古典概型. 21.【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义 【试题解析】(Ⅰ)函数定义域为,又,所求切线方程为,即(Ⅱ)函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根 等价于在上恰有两个不同的实根,令则当时,,在递减;当时,,在递增.故,又.,,即22.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.23.【答案】【解析】解:(Ⅰ)因f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b从而f′(x)=6y=f′(x)关于直线x=﹣对称,从而由条件可知﹣=﹣,解得a=3又由于f′(x)=0,即6+2a+b=0,解得b=﹣12(Ⅱ)由(Ⅰ)知f(x)=2x3+3x2﹣12x+1f′(x)=6x2+6x﹣12=6(x﹣1)(x+2)令f′(x)=0,得x=1或x=﹣2当x∈(﹣∞,﹣2)时,f′(x)>0,f(x)在(﹣∞,﹣2)上是增函数;当x∈(﹣2,1)时,f′(x)<0,f(x)在(﹣2,1)上是减函数;当x∈(1,+∞)时,f′(x)>0,f(x)在(1,+∞)上是增函数.从而f(x)在x=﹣2处取到极大值f(﹣2)=21,在x=1处取到极小值f(1)=﹣6.24.【答案】(1)2212xy+=;(2)证明见解析.【解析】试题解析:(1)22PF QO =,∴212PF F F ⊥,∴1c =,2222221121,1a b c b a b +==+=+, ∴221,2b a ==,即2212x y +=; (2)设AB 方程为y kx b =+代入椭圆方程22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22221,1122A B A B kb b x x x x k k --+==++,11,A B MA MB A B y y k k x x --==,∴()112A B A B A B A B MA MB A BA By x x y x x y y k k x x x x +-+--+=+==,∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.。
元谋县三中2018-2019学年高二上学期第二次月考试卷数学
元谋县三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x+y,则( )A .x=﹣B .x=C .x=﹣D .x=2. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q3. 设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .4. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥5. 把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )的图象关于直线x=对称,则φ的值为( )A .﹣B .﹣C .D .6. 已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)7. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]8. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 309. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 10.“a ≠1”是“a 2≠1”的( ) A .充分不必条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件11.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.915212.数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)二、填空题13.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________. 14.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .15.已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为 .16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .17.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 . 18.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.三、解答题19.设△ABC 的内角A ,B ,C 所对应的边长分别是a ,b ,c 且cosB=,b=2 (Ⅰ)当A=30°时,求a 的值;(Ⅱ)当△ABC 的面积为3时,求a+c 的值.20.如图,已知几何体的底面ABCD 为正方形,AC ∩BD=N ,PD ⊥平面ABCD , PD=AD=2EC ,EC ∥PD .(Ⅰ)求异面直线BD 与AE 所成角: (Ⅱ)求证:BE ∥平面PAD ;(Ⅲ)判断平面PAD 与平面PAE 是否垂直?若垂直,请加以证明;若不垂直,请说明理由.21.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.22.已知数列{a n }的前n 项和为S n ,a 1=3,且2S n =a n+1+2n . (1)求a 2;(2)求数列{a n }的通项公式a n ;(3)令b n =(2n ﹣1)(a n ﹣1),求数列{b n }的前n 项和T n .23.已知函数,.(Ⅰ)求函数的最大值; (Ⅱ)若,求函数的单调递增区间.24. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.元谋县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=,故选:A.【点评】本题考查了空间向量的应用问题,是基础题目.2.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.3.【答案】B【解析】解:∵是5a与5b的等比中项,∴5a•5b=()2=5,即5a+b =5, 则a+b=1,则+=(+)(a+b )=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.4. 【答案】D【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,故选项A 错误;对于选项B ,2b aab+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .5. 【答案】B【解析】解:把函数y=cos (2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f (x )=cos[2(x+)+φ]=cos (2x+φ+)的图象关于直线x=对称,则2×+φ+=k π,求得φ=k π﹣,k ∈Z ,故φ=﹣,故选:B .6. 【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x 的不等式f (2x ﹣1)﹣f (x+1)>0得到关于x 的不等式f (2x ﹣1)>f (x+1),∴|2x ﹣1﹣2|<|x+1﹣2|即|2x ﹣3|<|x ﹣1|,化简为3x 2﹣1x+8<0,解得x ∈(,2);故选:B .7. 【答案】D【解析】解:x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,所以(x+y )(+)=10+≥10=16,当且仅当时等号成立,所以2m ﹣1≤16,解得m;故m 的取值范围是(﹣];故选D .8. 【答案】C【解析】解:an ==1+,该函数在(0,)和(,+∞)上都是递减的,图象如图, ∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a 10,a 9.故选:C . 【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.9. 【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 10.【答案】B【解析】解:由a 2≠1,解得a ≠±1.∴“a ≠1”推不出“a 2≠1”,反之由a 2≠1,解得a ≠1. ∴“a ≠1”是“a 2≠1”的必要不充分条件.故选:B.【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.11.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.12.【答案】C【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,∵a n=﹣n+p,∴{a n}是递减数列,∵b n=2n﹣5,∴{b n}是递增数列,∵c8>c n(n≠8),∴c8是c n的最大者,则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,当n=7时,27﹣5<﹣7+p,∴p>11,n=9,10,11,…时,2n﹣5>﹣n+p总成立,当n=9时,29﹣5>﹣9+p,成立,∴p<25,而c8=a8或c8=b8,若a8≤b8,即23≥p﹣8,∴p≤16,则c8=a8=p﹣8,∴p﹣8>b7=27﹣5,∴p>12,故12<p≤16,若a8>b8,即p﹣8>28﹣5,∴p>16,∴c8=b8=23,那么c8>c9=a9,即8>p﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.二、填空题13.【答案】26【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和.14.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.15.【答案】 [,] .【解析】解:由m 2﹣7am+12a 2<0(a >0),则3a <m <4a即命题p :3a <m <4a ,实数m 满足方程+=1表示的焦点在y 轴上的椭圆,则, ,解得1<m <2,若p 是q 的充分不必要条件,则,解得, 故答案为[,].【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p ,q 的等价条件是解决本题的关键.16.【答案】 A .【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A .故答案为:A .【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.17.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a ax x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111] 18.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.001()x x k f x e-'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23. 三、解答题19.【答案】【解析】解:(Ⅰ)∵cosB=,B ∈(0,π),∴sinB==,由正弦定理可知:,∴a=.(Ⅱ)∵S △ABC ===3,∴ac=.由余弦定理得:b 2=a 2+c 2﹣2accosB=(a+c )2﹣2ac ﹣2ac ×=4,∴(a+c )2=+4=28,故:a+c=2.20.【答案】【解析】解:(Ⅰ)PD ⊥平面ABCD ,EC ∥PD , ∴EC ⊥平面ABCD , 又BD ⊂平面ABCD , ∴EC ⊥BD ,∵底面ABCD 为正方形,AC ∩BD=N , ∴AC ⊥BD ,又∵AC ∩EC=C ,AC ,EC ⊂平面AEC , ∴BD ⊥平面AEC , ∴BD ⊥AE ,∴异面直线BD 与AE 所成角的为90°. (Ⅱ)∵底面ABCD 为正方形, ∴BC ∥AD ,∵BC ⊄平面PAD ,AD ⊂平面PAD ,∴BC ∥平面PAD ,∵EC ∥PD ,EC ⊄平面PAD ,PD ⊂平面PAD , ∴EC ∥平面PAD ,∵EC ∩BC=C ,EC ⊂平面BCE ,BC ⊂平面BCE ,∴ ∴平面BCE ∥平面PAD , ∵BE ⊂平面BCE , ∴BE ∥平面PAD .(Ⅲ) 假设平面PAD 与平面PAE 垂直,作PA 中点F ,连结DF , ∵PD ⊥平面ABCD ,AD CD ⊂平面ABCD , ∴PD ⊥CD ,PD ⊥AD , ∵PD=AD ,F 是PA 的中点, ∴DF ⊥PA , ∴∠PDF=45°,∵平面PAD ⊥平面PAE ,平面PAD ∩平面PAE=PA ,DF ⊂平面PAD , ∴DF ⊥平面PAE , ∴DF ⊥PE ,∵PD ⊥CD ,且正方形ABCD 中,AD ⊥CD ,PD ∩AD=D , ∴CD ⊥平面PAD . 又DF ⊂平面PAD , ∴DF ⊥CD ,∵PD=2EC ,EC ∥PD , ∴PE 与CD 相交, ∴DF ⊥平面PDCE , ∴DF ⊥PD ,这与∠PDF=45°矛盾,∴假设不成立即平面PAD 与平面PAE 不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.21.【答案】(1)证明见解析;(2)250x y --=. 【解析】试题分析:(1)L 的方程整理为()()4270x y m x y +-++-=,列出方程组,得出直线过圆内一点,即可证明;(2)由圆心()1,2M ,当截得弦长最小时, 则L AM ⊥,利用直线的点斜式方程,即可求解直线的方程.1111](2)圆心()1,2M ,当截得弦长最小时, 则L AM ⊥, 由12AM k =-得L 的方程()123y x -=-即250x y --=. 考点:直线方程;直线与圆的位置关系. 22.【答案】【解析】解:(1)当n=1时,2S 1=2a 1=a 2+2, ∴a 2=4…1;(2)当n ≥2时,2a n =2s n ﹣2s n ﹣1=a n+1+2n ﹣a n ﹣2(n ﹣1)=a n+1﹣a n +2, ∴a n+1=3a n ﹣2,∴a n+1﹣1=3(a n ﹣1)…4, ∴,∴{a n ﹣1}从第二项起是公比为3的等比数列…5, ∵,∴, ∴;(3)∴ (8)∴①…9 ∴②①﹣②得:,=,=(2﹣2n )×3n﹣4,…11 ∴ (12)【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n 项和,考查计算能力,属于中档题. 23.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合 【试题解析】(Ⅰ)由已知当 ,即, 时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为24.【答案】 【解析】(Ⅰ)(3,0)F 在圆22:(3)16M x y +=内,∴圆N 内切于圆.M4NM NF FM +=>,∴点N 的轨迹E 为椭圆,且24,3,1a c b ==∴=∴轨迹E 的方程为22 1.4x y += .........4分(Ⅱ)①当AB 为长轴(或短轴)时,此时122ABC S OC AB ∆=⨯⨯=. ...5分 ②当直线AB 的斜率存在且不为0时,设直线AB 方程为y kx =,联立方程2214x y y kx⎧+=⎪⎨⎪=⎩得2222244,,1414A A k x y k k ==++222224(1).14A A k OA x y k +∴=+=+4(11OA OC =2(14)(14k k ++≤当且仅当182,5>∴∆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段性测试文科数学学科试题(考试时间120分钟,满分150分)一、选择题(本题共12小题,共60分)1的导数为y ',y '=( )A .1-2、若复数z 满足()()112z i i -+=,则在复平面内表示复数z 的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3、抛物线2y x =在点 )A .30°B .45°C .60°D .90° 4、对任意的x ,有3()4f x x '=,(1)1f =-,则此函数解析式可以为( ) A .4()f x x = B .4()2f x x =- C .4()1f x x =+ D .4()f x x =- 5、曲线在点处的切线方程为( )A 、B 、C 、D 、6、若复数()12bib R i-∈+的实部与虚部相等,则b 的值为( ) A.-6 B.-3 C.3 D.67在点()()1,1f 处的切线与 则a =( )A .-1B .0C .1D .2 8、已知函数f (x )=x ln x ,若f (x )在x 0处的函数值与导数值之和等于1,则x 0的值等于( )A.1B.-1C.±1D.不存在9、函数x ax x f ln )(-=在区间),1[+∞上为减函数,则实数a 的取值范围是( ) A .]2,(--∞ B .]0,(-∞ C .]1,(-∞ D .),1[+∞10 )A .B .C .D .11、设()x x f cos 0=,()()x f x f '=01,()()x f x f '=12,⋅⋅⋅,()()x f x f n n '=+1,*N n ∈,则()=x f 2016( )A .x sinB .x cosC .x sin -D .x cos - 12、已知)(x f 为R 上的可导函数,且对R x ∈,均有)(')(x f x f >,则有( )A.)0()2016(),0()2016(20162016f e f f f e <<- B .)0()2016(),0()2016(20162016f e f f f e >>- C .)0()2016(),0()2016(20162016f e f f f e ><- D .)0()2016(),0()2016(20162016f e f f f e <>-二、填空题(本题共4小题,共20分)13、设复数z 满足()34z i i i +=-+(i 为虚数单位),则z 的模为 . 14、如图,函数()y f x =的图象在点P 处的切线方程是8y x =-+,则 (5)'(5)f f +=___________.15、已知函数()()3261f x x ax a x =++++有极大值和极小 值,则a 的取值范围是 ___________.16、已知函数()f x 的定义域[]15-,,部分对应值如表,()f x 的导函数()'y f x =的图象如图所示,下列关于函数()f x 的命题;①函数()f x 的值域为[]12,; ②函数()f x 在[]02,上是减函数;③如果当[]1x t ∈-,时,()f x 最大值是2,那么t 的最大值为4; ④当12a <<时,函数()y f x a =-最多有4个零点. 其中正确命题的序号是___________.三、解答题(本题共6小题,共70分)17、(10分)已知函数3()16f x x x =+-. (1)求曲线()y f x =在点(2,6)-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.18、(12(1)求函数的的极值(2)求函数在区间[-3,4]上的最大值和最小值。
19、(12分)已知函数x b ax x f ln )(2+=在1=x 处有极值(1)求b a ,的值; (2)求)(x f 的单调区间.20、(12分)在边长为60cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?21、(12分)已知函数f (x )=x 2+2x+alnx (a ∈R ). (1)当a=﹣4时,求f (x )的最小值;(2)若函数f (x )在区间(0,1)上为单调函数,求实数a 的取值范围.22、(12分)已知)g=x3+ax2﹣x+2.(xf=xlnx,)(x(1)如果函数)(xg的解析式;g的单调递减区间为,求函数)(x(2)若不等式2)g+2恒成立,求实数a的取值范围.('x(xf≤)(答案)一、选择题(本题共12小题,共60分)1、【答案】C2、【答案】D3、【答案】B4、【答案】B5、【答案】A6、【答案】B 【解析】因5)1225)2)(1(21ib b i bi i bi +--=--=+-,故由题设122--=-b b ,即3-=b ,应选B.7、【答案】C1a =,故选C .8、【答案】A【解析】 因为f (x )=x ln x ,所以f ′(x )=ln x +1,于是有x 0ln x 0+ln x 0+1=1,解得x 0=1或x 0=-1(舍去),故选A.9、【答案】B 【解析】由题意得,因为函数x ax x f ln )(-=在区间),1[+∞上为减函数,所以()0f x '≤恒成立,即在区间),1[+∞上恒成立,在区间),1[+∞上恒成立,所以0a ≤,故选B . 10、【答案】A 【解析】 由2230x x ->得0x <或所以当0x <或时,0y >,时,0y <,排除B 、D ,又,(3,)+∞上单调递减,在区间B ,故选A.11、【答案】B 【解析】()()x x x f sin cos 1-='=,()x x f cos 2-=,()x x f sin 3=,()x x f cos 4=,()x x f sin 5-=,因此()x f n 的周期4=T ,()()x x f x f cos 02016==,故答案为B .12、【答案】DD 正确.二、填空题(本题共4小题,共20分)13、【答案】14、【答案】2.【解析】∵函数()y f x =的图象在点P 处的切线方程是8y x =-+, ∴()'51f =-,()5583f =-+=∴312f f +'=-=(5)(5).故答案为:2. 15、【答案】3a <-或6a >.【解析】由题意得()23260f x x ax a '=+++=有两个不相等的实根, ∴()()2243603a a a ∆=-⋅+>⇒<-或6a >.故答案为:3a <-或6a >. 16、【答案】①②④【解析】因为()f x 的导函数()y f x '=的图象如图所示, 观察函数图象可知,在区间[1,0),(2,4)-内,()0f x '>,所以函数()f x 上单调递增,在区间(0,2),(4,5)内,()0f x '<,所以函数()f x 上单调递减,所以①②是正确的;两个极大值点,结合图象可知:函数()f x 在定义域[1,5]-,在0x =处极大值()02f =,在2x =处极大值()2f ,在4x =处极大值()42f =,又因为()11,(5)1f f -==,所以()f x 的最大值是2,最小值为()2f , 当[1,]x t ∈-时,()f x 的最大值是2,那么0t =或4t =,所以③错误;求函数()y f x a =-的零点,可得()f x a =因为不知最小值的值,结合图象可知,当12a <<时,函数()y f x a =-最多有4个零点,所以④正确.三、解答题(本题共6小题,共70分)17、.试题解析:(1)()'231f x x =+. (2)所以在点()2,6-处的切线的斜率()'213k f==,∴切线的方程为1332y x =-; (5)(2)设切点为()00,x y ,则直线l 的斜率为()'20031fx x =+,所以直线l 的方程为:()()2300003116y x x x x x =+-++-, (6)所以又直线l 过点()0,0∴()()23000003116x x x x x =+-++-,整理,得308x =-,∴02x =-, (8)∴()()30221626y =-+--=-,l 的斜率13k =, ......9 ∴直线l 的方程为13y x =,切点坐标为()2,26--. (10)18、试题解析:(1)因为,所以。
令,得下面分两种情况讨论: (1)当>0,即,或时;(2)当<0,即时.当x 变化时,,的变化情况如下表:极大值极小值 因此,=,=.(2)所以函数的最大值,函数最小值.19(Ⅱ)函数定义域为()0,+∞单增区间为()1,+∞; ,∴单减区间为()0,1。
20、试题解析:设箱底边长为xcm ,则箱高2xh =cm ,得箱子容积23260()2x x V x x h -==(060)x <<. 23()602x V x x '=-(060)x <<令23()602x V x x '=-=0,解得x=0(舍去),x=40 并求得V (40)=16000由函数的单调性可知16000是最大值 ∴当x=40cm 时,箱子容积最大,最大容积是16000cm 3 21、解:(1)当a=﹣4时,f (x )=x 2+2x ﹣4lnx ,x >0,令f′(x )=0,得x=﹣2(舍),或x=1, 列表,得x (0,1)1(1,+∞) f′(x )﹣0+ f (x )↓极小值↑∴f (x )的极小值f (1)=1+2﹣4ln1=3, ∵f (x )=x 2+2x ﹣4lnx ,x >0只有一个极小值, ∴当x=1时,函数f (x )取最小值3. (2)∵f (x )=x 2+2x+alnx (a ∈R ), ∴,(x >0),设g (x )=2x 2+2x+a ,∵函数f (x )在区间(0,1)上为单调函数, ∴g (0)≥0,或g (1)≤0, ∴a≥0,或2+2+a≤0,∴实数a 的取值范围是{a|a≥0,或a≤﹣4}.22、【答案】(I )g ′(x )=3x 2+2ax ﹣1由题意3x 2+2ax ﹣1<0的解集是即3x2+2ax﹣1=0的两根分别是.将x=1或代入方程3x2+2ax﹣1=0得a=﹣1.∴g(x)=x3﹣x2﹣x+2.(Ⅱ)∵2f(x)≤g′(x)+2即:2xlnx≤3x2+2ax+1对x∈(0,+∞)上恒成立可得对x∈(0,+∞)上恒成立设,则令h′(x)=0,得(舍)当0<x<1时,h′(x)>0;当x>1时,h′(x)<0 ∴当x=1时,h(x)取得最大值﹣2∴a≥﹣2.∴a的取值范围是[﹣2,+∞).。