高考数学总复习 基础知识名师讲义 第三章 第五节三角函数的图象与性质 文

合集下载

高考数学总复习 基础知识名师讲义 第三章 第五节三角函数的图象与性质 文

高考数学总复习 基础知识名师讲义 第三章 第五节三角函数的图象与性质 文

第五节 三角函数的 图象与性质1.能画出y =sin x ,y =cos x ,y =tan x 的图象.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如值域、单调性、奇偶性、最大值和最小值以及与x 轴交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2上的性质.了解三角函数的周期性.知识梳理一、正弦函数、余弦函数、正切函数的性质(续上表)二、研究函数y=A sin(ωx+φ)性质的方法类比于研究y=sin x的性质,只需将y=A sin(ωx+φ)中的ωx+φ看成y=sin x中的x,但在求y=A sin(ωx+φ)的单调区间时,要特别注意A和ω的符号,通过诱导公式先将ω化为正数.研究函数y=A cos(ωx+φ),y=A tan(ωx+φ)的性质的方法与其类似,也是类比、转化.三、求三角函数的周期的常用方法经过恒等变形化成“y=A sin(ωx+φ),y=A cos(ωx+φ),y=A tan(ωx+φ)”的形式,再利用周期公式.如:函数y=A sin(ωx+φ),y=A cos(ωx+φ)的最小正周期都是2π|ω|;函数y=A tan(ωx+φ)的最小正周期是π|ω|.另外还有图象法和定义法.基础自测1.(2013·揭阳二模)设函数f (x )=cos(2π-x )+3cos ⎝⎛⎭⎫π2-x ,则函数的最小正周期为( ) A.π2B .πC .2πD .4π解析:函数f (x )=cos x +3sin x =2⎝⎛⎭⎫32sin x +12cos x =2sin ⎝⎛⎭⎫x +π6, 故其最小正周期为2π1=2π,故选C.答案:C2.(2013·天津卷)函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1B .-22C.22D .0解析:因为x ∈⎣⎡⎦⎤0,π2,所以-π4≤2x -π4≤3π4,令n =2x -π4,则sin ⎝⎛⎭⎫2x -π4=sin n 在n ∈⎣⎡⎦⎤-π4,3π4上的最小值为sin ⎝⎛⎭⎫-π4=-22.故选B. 答案:B3.(2012·浙江名校新高考联盟二联) 若函数f (x )=sin (x +α)-2cos(x -α)是奇函数,则sin αcos α=________.解析:因为函数f (x )=sin(x +α)-2cos(x -α)是奇函数,所以f (0)=sin α-2cos α=0,即tan α=2.所以sin αcos α>0,不妨设α为锐角,可得sin α=25,cos α=15.所以sin αcos α=25. 答案:254.(2012·合肥模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx -π6(ω>0)在⎝⎛⎭⎫0,4π3上单调递增,在⎝⎛⎭⎫4π3,2π上单调递减,则ω=___________.1.(2013·山东卷)函数y =x cos x +sin x 的图象大致为( )解析:函数y =x cos x +sin x 为奇函数,排除B.取x =π2,排除C ;取x =π,排除A ,故选D.答案:D2.已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值.解析:(1)∵f (x )=4cos x ⎝⎛⎭⎫sin x cos π6+cos x sin π6-1 =23sin x cos x +2cos 2x -1 =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最小正周期为π.(2)∵-π6≤x ≤π4,∴-π6≤2x +π6≤2π3.∴当2x +π6=π2,即x =π6时,函数f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,函数f (x )取得最小值-1.1. (2013·佛山一模)函数y =sin x +sin ⎝⎛⎭⎫x -π3 的最小正周期为________,最大值是________.解析:因为函数y =sin x +sin ⎝⎛⎭⎫x -π3=sin x +12sin x -32cos x =3sin ⎝⎛⎭⎫x -π6. 所以函数的周期为T =2π1=2π;函数的最大值为: 3. 答案:2π 32.已知函数f (x )=2sin x cos x +cos 2x (x ∈R ).(1)当x 取什么值时,函数f (x )取得最大值?并求其最大值. (2)若θ为锐角,且f ⎝⎛⎭⎫θ+π8=23,求tan θ的值.解析:(1)f (x )=2sin x cos x +cos 2x =sin 2x +cos 2x =2⎝⎛⎭⎫22sin 2x +22cos 2x =2sin ⎝⎛⎭⎫2x +π4. ∴当2x +π4=2k π+π2,即x =k π+π8(k ∈Z )时,函数f (x )取得最大值,其最大值为 2.(2)∵f ⎝⎛⎭⎫θ+π8=23, ∴2sin ⎝⎛⎭⎫2θ+π2=23. ∴cos 2θ=13.∵θ为锐角,即0<θ<π2,∴0<2θ<π.∴sin 2θ=1-cos 22θ=223.∴tan θ=sin θcos θ=2sin θcos θ2cos 2θ=sin 2θ1+cos 2θ=22.。

三角函数及反三角函数图像性质、知识点总结

三角函数及反三角函数图像性质、知识点总结

千里之行,始于足下。

三角函数及反三角函数图像性质、知识点总结三角函数及反三角函数是高中数学中重要的内容之一,它们的图像性质是我们学习和理解这些函数的基础。

下面是关于三角函数及反三角函数图像性质的知识点总结。

一、正弦函数的图像性质:1. 定义域:正弦函数的定义域为全体实数。

2. 值域:正弦函数的值域为闭区间[-1,1]。

3. 周期性:正弦函数的周期是2π,即在一个周期内,正弦函数的图像重复出现。

4. 奇偶性:正弦函数是奇函数,即sin(-x)=-sin(x)。

5. 对称轴:正弦函数的对称轴是y轴。

6. 最值点:正弦函数的最值点包括最大值1和最小值-1,最值点的横坐标为周期的整数倍。

二、余弦函数的图像性质:1. 定义域:余弦函数的定义域为全体实数。

2. 值域:余弦函数的值域为闭区间[-1,1]。

3. 周期性:余弦函数的周期是2π,即在一个周期内,余弦函数的图像重复出现。

4. 奇偶性:余弦函数是偶函数,即cos(-x)=cos(x)。

5. 对称轴:余弦函数的对称轴是x轴。

6. 最值点:余弦函数的最值点包括最大值1和最小值-1,最值点的横坐标为周期的半整数倍。

三、正切函数的图像性质:1. 定义域:正切函数的定义域为全体实数,除了临界点kπ(k为整数)。

第1页/共3页锲而不舍,金石可镂。

2. 值域:正切函数的值域为全体实数。

3. 周期性:正切函数的周期是π,即在一个周期内,正切函数的图像重复出现。

4. 奇偶性:正切函数是奇函数,即tan(-x)=-tan(x)。

5. 渐近线:正切函数有两条渐近线,分别是x=kπ+π/2(k为整数)和x=kπ(k为整数)。

6. 最值点:正切函数没有最值点。

四、反正弦函数的图像性质:1. 定义域:反正弦函数的定义域为闭区间[-1,1]。

2. 值域:反正弦函数的值域为闭区间[-π/2,π/2]。

3. 奇偶性:反正弦函数是奇函数,即arcsin(-x)=-arcsin(x)。

4. 递增性:反正弦函数在定义域内是递增的。

高考数学(文通用)一轮复习课件:第三章第5讲三角函数的图象与性质

高考数学(文通用)一轮复习课件:第三章第5讲三角函数的图象与性质

第三章三角函数、解三角形第5讲三角函数的图象与性质教材回顾▼夯实基础课本温故追根求源知识梳理Aj=sinxJ =COSXj=tanxJT2k盘 ----2JJI2k Jt H—,L 23Ji"2— H——2」仇wz)为减[2 吃7T, 2航+兀]仗WZ)为减;\2kn—n92kn\(k^Z)为(一-于,仇GZ)为增2.学会求三角函数值域(最值)的两种方法(1)将所给函数化为j=Asin(ft>x+ (p)的形式,通过分析亦+卩的范围,结合图象写出函数的值域;(2)换元法:把sin x(cos劝看作一个整体,化为二次函数来解决.双基自测1. (2015•高考四川卷)下列函数中,最小正周期为兀的奇函数是(A.j=sin(2x+—B.j=cos^2r+~C.y= sin 2x+ cos 2xD.y= sin x+ cos xC 项,y=sin 2x+cos 2x=\/2sin^2x+—为非奇非偶函数,不符合题意;ink+于)最小正周期为2兀, 为非奇非偶函数,不符合题意.( JIj=sin|2x+- 为偶函数,不符合题意;解析:A 项,= cos 2x,最小正周期为n ,且y= cos^2r+_j= —sin 2x,最小正周期为 函数,符合题意;B 项, 1=/兀,且为奇,最小正周期为皿,D 项,j=sin x+ cos兀B. x=——33 x=-兀4解析:由题意得 f(x)= 2cos 2^x+~J= 2sin 2x= 1— cos 2x,函 数图象的对称轴方程为尸竺kEZ,故选D.2A • x~—4 C. 71故函数/(对=$中一了丿在区间[o,于]±的最小值为一申.3・函数/(x) = sin上的最小值为A. -1B. -申C 誓 D. 0解析:由已知xG 0, 兀 8二討得加-2兀 -eJI2在区间o,兀4所以14.(必修4 P40 练习1X2)改编)函数/(x) = 4-2cos -x, xE32,取得最小值时,X的取值集合为R的最小值是—{x\x=6kn9 kEL}(JT JI \5.(必修4 P44例6改编)函数j=tan|^-x—yJ的最小正周期是—,单调增区间是G+"扌+2”(疋牛典例剖析▼考点突破*名师导悟以例说法考点一三角函数的定义域和值域^§例1 (1)函数y= lg(2sin x—1)+*\/1 —2cosx的定义域是" 兀5兀、2k Ji +—, 2k 乳—]9 ZL 3 6 丿______ .3(2)函数j=cos 2x+ 2sin x的最大值为—132'[解析]⑴要使函数丿=lg(2sinx —1)+^/1—2cos 兀有意义,sin ,■ “Ji 5 n解得 2k Ji +_^x<2^ Ji +飞-,kEL.即函数的定义域为卜—+专,2—+寻)kE 乙3i 3所以当/=扌时,函数取得最大值字2sinx —1>0, 即1—2cosx^0, cosxWq.+WWl),(2)y=cos 2x+2sin x= —2sin 2x+2sin x+1,设 f=sin x(—12Q互动探光本例(2)变为函数y = cos 2x+ 4sin5的最大值为 _________解析:j=cos 2x+4sin x= — 2sin2x+ 4sin 兀+1,设t=sin中冬怎*),则原函数可以化为y=~li +4(+1= —2(1—1『+3,所以当1=扌时,函数取得最大值丰.⑴三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sinx和cosx的值域直接求.②把所给的三角函数式变换成y=Asin(cox+^的形式求值域.③把sin兀或cos兀看作一个整体,转换成二次函数求值域・④利用sin兀土cos兀和sin xcos x的关系转换成二次函数求值域.壘踪i噬1・(1)函数y= /2+logjx + \/tanx的定义域为r i V 2jxIOVxV亍或Ji WxW4 »____________________________ ■7(2)函数y= (4— 3sin x)(4— 3cos兀)的最小值为xIOVxV 亍或 n4j.解析:⑴要使函数有意义, 厂2+10即亠0,2JIx^kn T —, I 2—o -------- o ——0 ?利用数轴可得函数的定义域是x>0, tan x^O, k 兀 WxVkii T 扌WZ)・-<—e---------(2)j = 16— 12(sin x+ cos x)+ 9sin xcos x,令Z=sinx+cosx,贝!1[—\[29 ^2],且sinxcosx=-------------------2『一1 ]所以y=16- 12Z+9X --------- =一(9,一24/+23)・2 2• 4 7故当时,Jmin = --考点二三角函数的奇偶性、周期性及对称性典例2 (1)(2014-高考课标全国卷I )在函数®j= cos 12x1,®y = Icos xl, (3)j=cos^x, (4)j= tan(2x—^中,最小正周期为n的所有函数为(C )A.②④C.①②③B.①③④D.①③(2)(2016-河北省五校联盟质量监测)下列函数中最小正周期为兀且图象关于直线兀=£■对称的函数是(B)[解析]⑴①yKOsMFOslx, 1- •②由图象知,函数的周期r= 31・③*兀・兀④丁=亍综上可知,最小正周期为询所有函数为①②③.⑵由函数的最小正周期为兀,可排除C •由函数图象关于直JT线*=〒对称知,该直线过函数图象的最高点或最低点,对选B.(i )三角函数的奇偶性的判断技巧于 A,因为 sin^2Xy+确・对于D, sinl2X ---------33 f) ( Tl JI 、 对于 B, sin|2X-——J=_:. =sin Ji =0,所以选项A 不正 =si 可羊所以D 不正确, 兀=sinT =h所以选项B 正确,故首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象进行判断.(2)求三角函数周期的方法①利用周期函数的定义.②利用公式:y=Asin(cox+(p)和y =Acos(cyx+°)的最小正周2兀JT期为面,y=tan(cox+(/)).③利用图象.(3)三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.[注意]判断函数的奇偶性时,必须先分析函数定义域是否关于原点对称.MISS] 2.(1)(2016-西安地区八校联考)若函数j = cos(ex+〒j(cyEN*)图象的一个对称中心是匕,0J,则co 的最小值为(A. 1B. 2C. 4D.(2)(2016•揭阳模拟)当心了时,函数/(gin(十)取得最小值,则函数)A.是奇函数且图象关于点仔,0)对称B.是偶函数且图象关于点(兀,0)对称C.是奇函数且图象关于直线兀=于对称D.是偶函数且图象关于直线兀=兀对称,■一JI 6; JI JI解析:(1 --------- 1=kJi ---------- (k £ Z)=>(o = 6k+ 2(kE:Z)=>(o6 6 2min =2Jl⑵因为当x=丁时,函数几兀)取得最小值,4所以sin&+J = —1,所以0=2反兀一普"(kEZ).所以/(x)=sin(+2“ 一冷9=sin|x J(k W Z).所以y=^~~x.=sin(—x)= —sin x.e 兀、JI 所以尸x)是奇函数,且图象关于直线兀=亍对称•考点三三角函数的单调性(高频考点)三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度适中,多为中档题.高考对三角函数单调性的考查有以下四个命题角度:(1)求已知三角函数的单调区间;⑵已知三角函数的单调区间求参数;(3)利用三角函数的单调性求值域(或最值);(4)利用三角函数的单调性比较大小.⑴求心)的最小正周期和最大值;⑵讨论心)在[十,牛] 上的单调性.• sin (2015•高考重庆卷)已知函数几兀)=os 2x.[解](l)Ax)=sin 仔一Jsin x —A /§C =cos xsinx — 2 (H~cos 2x)1・,© o 並=-sm 2x — cos 2x —因此冷)的最小正周期为兀,最大值为2苫.os 2x(2)当兀丘[于,牛]时'0W2x —于W 兀,从而当弓^加一7~Wn,即弓时,/(兀)单调递减. Z Q 丄/ J调递减•J fl _ 7 y \ TL1 lz\ A A J KX& M n I y-Z z 产〒 r^Q^i 0« h P <Jlu tz 二\ J nf r/7 J? ryj n r^z^C 77 f r三角函数单调性问题解题策略.兀 兀 当0»亍亏, JI 5 JT . 即訐Tr 时' 的单调递增, 综上可知,几r )在单调递增; 刊上单(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律"同增异减”:②求形如j=Asin(ft)x+^)或y=Acos(ov +卩)(其中少>0)的单调区间时,要视“ov+卩”为一个整体, 通过解不等式求解.但如果evO,那么一定先借助诱导公式将少化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.⑶利用三角函数的单调性求值域(或最值).形如j=Asin(ft>x +°)+〃或可化为y=4sin@v+°)+〃的三角函数的值域(或最值)问题常利用三角函数的单调性解决.通关练习3.(1)已知函数/(x)=2sinC+亍) ,则a9 b9 c的大小关系是(BB. c<a<bD. b<c<aA. a<c<bC. b<a<c减,则 少的取值范围是(A54-(2)已知 ft»O,函数 f(x)=sirA. 12-D. (0, 2]10 —n 21兀因为j=sinx 在0,—上递增,——= 2sin 解:⑴选Ra兀= 2sin所以c<a<b.6>>0,JlJTJIH < 3X ---- < 3 兀 H - ,44 4G JI 3131〒+亡'313 JI3 JI H —W —4 2又 j=sinx所以6) JI3 31"T解得詳。

三角函数的图象、性质及应用(高中数学知识点讲解)

三角函数的图象、性质及应用(高中数学知识点讲解)

(5)不能认为y=tan
x在定义域上为增函数,应在区间
kπ-
π 2
,kπ
+
π 2
(k∈Z)内
为增函数.
知能拓展
考法一 关于三角函数图象的问题
例1 (1)(2018广东茂名化州二模,9)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<
φ<π)的部分图象如图所示,且f(α)=1,α∈
求φ及ω,从而
得到f(x)的解析式,由f(α)=1求α,进而得cos

+
5π 6
.
A = 5,
(2)①根据已知表格中的数据可得方程组
π 3
ω
+
φ
=
π 2
,
解之可得函数f(x)的
5π 6
ω
+
φ
=
3π 2
,
解析式,进而可补全表格.
②由①并结合函数图象平移可得,g(x)=5sin
2
x
+
2θ -
π 3
-2x
实质上是y=tan
x与y=
π 3
-2x的复合,应
按复合函数单调性求解.
方法总结 三角函数的单调性问题的常见类型及解题策略
1.已知三角函数解析式求单调区间
(1)求函数的单调区间应遵循简单化原则,将解析式进行化简,并注意复合
函数单调性规律“同增异减”.
(2)求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调区间时,要视“ωx
2π ω
=4×
7π 12
-
π 3
=π,得ω=2,故f(x)=3sin(2x+φ),将

高考总复习一轮数学精品课件 第五章 三角函数 第五节 三角函数的图象与性质

高考总复习一轮数学精品课件 第五章 三角函数 第五节 三角函数的图象与性质
π
A. 2
B.π
(2)函数 f(x)=cos x+2cos
A.π
B.2π
C.4π
1
x
2
D.2π
的一个周期为(
C.3π
)
)
D.4π
(3)(2023新高考Ⅰ,15)已知函数f(x)=cos ωx-1(ω>0)在区间[0,2π]上有且仅
有3个零点,则ω的取值范围是
.
答案 (1)D
(2)D
2
(3)[2,3)
2
π

A.[ +4kπ, +4kπ](k∈Z)
3
3
1
5
B.[3+4k,3+4k](k∈Z)
π

C.[6+4kπ, 6 +4kπ](k∈Z)
1
5
D.[6+4k,6+4k](k∈Z)
)
(2)函数y=tan(
π
4
-2x)的定义域是
答案 (1)B (2) ≠
解析
π

+ ,
2
8
.

π
(1)由题意得,2sin x-1≥0,所以
,则(
A.函数f(x)的周期为π
B.函数f(x)的图象关于原点对称
C.f(x)的最大值为2
D.函数 f(x)在区间
答案 AC
π
0,
2
上单调递增
)
解析由三角函数周期得函数 f(x)的周期为
f(0)=2sin
π
3

T= 2 =π,A
正确;
=-√3≠0,B 错误;
由正弦函数性质知 f(x)max=2,C 正确;

高考数学复习讲义:三角函数的图象与性质

高考数学复习讲义:三角函数的图象与性质

2
突破点二 三角函数的性质
3
课时跟踪检测
返回
突破点一 三角函数的定义域和值域
返回
抓牢双基·自学回扣
[基本知识]
三角
余弦函数 y=
正弦函数 y=sin x
正切函数 y=tan x
函数
cos x
图象
定义 R

{ x| x∈R ,且 x
R

kπ+π2
,k∈Z
返回
三角 函数 值域
正弦函数 y=sin x
()
返回
二、填空题
1.y= 2sin x- 2的定义域为________________________.
解析:要使函数式有意义,需2sin
x-
2≥0,即sin
x≥
2 ,借 2
助正弦函数的图象(图略),可得 π4 +2kπ≤x≤34π +2kπ,k∈Z,所
以该函数的定义域是π4+2kπ,34π+2kπ(k∈Z).
换元法 asin xcos x+b(sin x±cos x)+c的三角函数,可先设t =sin x±cos x,化为关于t的二次函数求值域(最值)
返回
[集训冲关]
1.[考法一]函数y=log2(sin x)的定义域为________.
解析:根据题意知sin x>0,得x∈(2kπ,2kπ+π)(k∈Z).
(2)依题意,f(x)=sin2x+ 3cos x-34=-cos2x+ 3cos x
+14=-cos x- 232+1, 因为 x∈0,π2,所以 cos x∈[0,1],
因此当 cos x= 23时,f(x)max=1.
返回
(3)设t=sin x-cos x, 则t2=sin2x+cos2x-2sin xcos x, 即sin xcos x=1-2 t2,且-1≤t≤ 2. ∴y=-t22+t+12=-12(t-1)2+1. 当t=1时,ymax=1;当t=-1时,ymin=-1. ∴函数的值域为[-1,1]. [答案] (1)B (2)1 (3)[-1,1]

高考数学一轮复习 第3章 三角函数、解三角形 第5讲 三

高考数学一轮复习 第3章 三角函数、解三角形 第5讲 三

5.函数 y=tanπ2 x-π3 的最小正周期是___2_____,单调增 区间是_-__13_+__2_k_,__53_+__2_k__(_k_∈__Z_)_.
考点一 三角函数的定义域和值域
(1)函数 y=lg(2sin x-1)+ 1-2cos x的定义域是
___2_k_π__+__π3__,__2_k_π__+__5_π6___,__k_∈__Z_.
即函数的定义域为2kπ +π3 ,2kπ +56π ,k∈Z.
(2)y=cos 2x+2sin x=-2sin2x+2sin x+1,设 t=sin x(-1
≤t≤1),则原函数可以化为 y=-2t2+2t+1=-2t-122+
32,所以当 t=12时,函数取得最大值32.
本例(2)变为函数 y=cos 5
(B)
A.-1 C. 2
2
B.- 2 2
D.0
解析:由已知
x∈0,π2
,得
2x-π 4
∈-π4
,3π 4

所以 sn2x-π4
在区间0,π2
上的最小值为-
2 . 2
4.(必修 4 P34 习题 1-6A 组 T3(2)改编)函数 f(x)=4-2cos 13x,x∈R 的最小值是___2_____,取得最小值时,x 的取值集 合为_{_x_|_x_=__6_k_π_,__k_∈__Z_}__.
( D)
A.x=π 4
B.x=π 3
C.x=3π 4
D.x=π
解析:由题意得 f(x)=2cos2x+π2 =2sin2x=1-cos 2x,函
数 f(x)图象的对称轴方程为 x=kπ,k∈Z,故选 D. 2
3. 函 数 f(x)=sin2x-π4 在 区间0,π2 上 的 最小 值为

高三数学总复习讲义——三角函数性质与图像x

高三数学总复习讲义——三角函数性质与图像x

09级高三数学总复习讲义——三角函数性质与图像 知识清单:arcsin ,22a ππ⎡⎤∈-⎢⎥⎣⎦、[]arccos 0,a π∈、arc tan (,)22a ππ∈-注意:反三角数符号只表示...这个范围的角,其他范围的角需要用诱导公式变到这个范围.备注:以上性质的理解记忆关键是能想象或画出函数图象........... 函数sin()y A x ωϕ=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x=−−−−→图例变化为②sin()y A x ωϕ=+(A >0,ω>0)相应地,①的单调增区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦−−−→变为2222k x k πππωϕπ-+++≤≤的解集是②的增区间.注:⑴)sin(ϕω+=x y 或cos()y x ωϕ=+(0≠ω)的周期ωπ2=T ;⑵sin()y x ωϕ=+的对称轴方程是2x k ππ=+(Z k ∈),对称中心(,0)k π;cos()y x ωϕ=+的对称轴方程是x k π=(Z k ∈),对称中心1(,0)2k ππ+;)tan(ϕω+=x y 的对称中心(0,2πk ). 课前预习1.函数sin cos y x x =-的最小正周期是 . 2. 函数1π2sin()23y x =+的最小正周期T = . 3.函数sin 2xy =的最小正周期是( ) (A)2π(B)π (C) 2π (D) 4π 4.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )(A)]3,0[π (B)]127,12[ππ (C) ]65,3[ππ (D)],65[ππ5.函数22cos()()363y x x πππ=-≤≤的最小值是( )()2A -()B ()1C - ()1D6.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是__________________.8.函数sin y x x =在区间[0,2π]的最小值为______.9.适合13sin ,,32x x ππ⎡⎤=-∈⎢⎥⎣⎦的角x 是( )1()arcsin()3A - 1()arcsin 3B - 1()2arcsin()3C π+- 1()arcsin()3D π--10.已知f (x )=5sin x cos x -35cos 2x +325(x ∈R ) ⑴求f (x )的最小正周期; ⑵求f (x )单调区间;⑶求f (x )图象的对称轴,对称中心。

高中数学知识点精讲精析 三角函数的图像与性质

高中数学知识点精讲精析 三角函数的图像与性质

1.3.2 三角函数的图像与性质一、三角函数的性质1. 几何法作图第一步:列表.首先在单位圆中画出正弦线和余弦线.在直角坐标系的x 轴上任取一点,以为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成几等份,过圆上的各分点作x 轴的垂线,可以得到对应于角,,,…,2π的正弦线及余弦线(这等价于描点法中的列表).第二步:描点.我们把x 轴上从0到2π这一段分成几等份,把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.将y=sinx 的图象向左平移即得y=cosx 的图象2.用五点法作正弦函数和余弦函数的简图(描点法)(1)正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (,1) (π,0) (,-1) (2π,0) 1O 1O 6,0π3π2π2π2π23π(2)余弦函数y=cosx x ∈[0,2π]的图象中,五个关键点是:(0,1) (,0) (π,-1) (,0) (2π,1)3. 正弦函数的性质(1)定义域:正弦函数、余弦函数的定义域都是实数集R分别记作: y =sin x ,x ∈R y =cos x ,x ∈R(2)值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =+2k π,k ∈Z 时,取得最大值1.②当且仅当x =-+2k π,k ∈Z 时,取得最小值-1.而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.(3)周期性正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.函数及函数(其中A ,为常数,且)的周期(4)奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称(5)单调性 正弦函数在每一个闭区间[-+2k π,+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[+2k π,+2k π](k ∈Z )上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.二、正切函数的图象和性质1. 正切函数图象的作法在的区间作出它的图象2π23π2π2πR x ),x sin(A y ∈+=ϕωR x ),x cos(A y ∈+=ϕωωφ0,0A >≠ωωπ2T =2π2π2π23π⎪⎭⎫ ⎝⎛-2,2ππ,且的图象,称“正切曲线”正切函数的性质: 1. 定义域: 2. 值域:R3. 当时,当时4. 周期性:5. 奇偶性:奇函数6. 单调性:在开区间内,函数单调递增h(mm)与时间t(s)之间的函数关系如图所示(1)求该函数的周期;(2)求t =10s 时钟摆的高度.【解析】R x x y ∈=tan ()z k k x ∈+≠ππ2⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππz k k k x ∈⎪⎭⎫ ⎝⎛+∈2,πππ0>y z k k k x ∈⎪⎭⎫ ⎝⎛-∈πππ,20<y π=T ()x x tan tan -=-z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2解:(1)由图象知,周期为1.5s(2)故高度为20mm.2. 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:;【解析】(1)解:作出正弦函数y=sinx ,x ∈[0,2π]的图象:由图形可以得到,满足条件的x 的集合为:(2)解:作出余弦函数y=cosx ,x ∈[0,2π]的图象:3. 求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么.(1)y =cos x +1,x ∈R ;(2)y =sin2x ,x ∈R .【解析】解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z }.函数y =cos x +1,x ∈R 的最大值是1+1=2.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且使函数y =sin Z ,Z ∈R 取得最大值的Z 的集合是{Z |Z =+2k π,k ∈Z }由2x =Z =+2k π,得x =+k π即使函数y =sin2x ,x ∈R 取得最大值的x 的集合是{x |x =+k π,k ∈Z }.函数y =sin2x ,x ∈R 的最大值是1.4. 求下列函数的定义域:(1)y = (2)y=【解析】(10)(16 1.5)(1)20f f f =+⨯==21sin )1(≥x 21cos )2(≤x Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππ2π2π4π4π11sin x +x cos解:(1)由1+sin x ≠0,得sin x ≠-1即x ≠+2k π(k ∈Z )∴原函数的定义域为{x |x ≠+2k π,k ∈Z }(2)由cos x ≥0得-+2k π≤x ≤+2k π(k ∈Z )∴原函数的定义域为[-+2k π,+2k π](k ∈Z )5. (1)函数y =sin(x +)在什么区间上是增函数?(2)函数y =3sin(-2x )在什么区间上是减函数?【解析】解:(1)函数y =sin x 在下列区间上是增函数:2k π-<x <2k π+(k ∈Z )∴函数y =sin(x +)为增函数,当且仅当2k π-<x +<2k π+即2k π-<x <2k π+(k ∈Z )为所求.(2)∵y =3sin(-2x )=-3sin(2x -)由2k π-≤2x -≤2k π+得k π-≤x ≤k π+(k ∈Z )为所求.或:令u =-2x ,则u 是x 的减函数又∵y =sin u在[2k π-,2k π+](k ∈Z )上为增函数,∴原函数y =3sin(-2x )在区间[2k π-,2k π+]上递减.设2k π-≤-2x ≤2k π+解得k π-≤x ≤k π+(k ∈Z )∴原函数y =3sin(-2x )在[k π-,k π+](k ∈Z )上单调递减.23π23π2π2π2π2π4π3π2π2π4π2π4π2π3π4π3π3π2π3π2π12π125π3π2π2π3π2π2π2π3π2π12π125π3π12π125π6. 求函数的定义域、值域,并指出它的周期性、奇偶性、单调性. 【解析】由得, 所求定义域为 值域为R ,周期,是非奇非偶函数在区间上是增函数.7. 观察正切曲线写出满足下列条件的x 的值的范围:tanx >0.【解析】画出y =tanx 在(-,)上的图象,不难看出在此区间上满足tanx >0的x 的范围为:0<x <结合周期性,可知在x ∈R ,且x ≠k π+上满足的x 的取值范围为(k π,k π+)(k ∈Z ) ⎪⎭⎫ ⎝⎛-=33tan πx y 233πππ+≠-k x 1853ππ+≠k x ∴⎭⎬⎫⎩⎨⎧∈+≠∈z k k x R x x ,1853,|ππ且3π=T ()z k k k ∈⎪⎭⎫ ⎝⎛+-1853,183ππππ2π2π2π2π2π。

高考数学一轮复习讲义3三角函数的图象与性质

高考数学一轮复习讲义3三角函数的图象与性质

2x+π 3
B.y=2sin
2x-π 6
x+π C.y=2sin 2 3
2x-π D.y=2sin 3
答案 B
解析
函数 y=2sin
2x-π 6
的最小正周期 T=2π=π,
2
2×π-π 又 sin 3 6 =1,
∴函数 y=2sin
2x-π 6
的图象关于直线 x=π对称.
3
π-2x 6.函数 f(x)=4sin 3 的单调递减区间是______________________.
解析

x∈
0,π 2
时,2x-π∈
-π,5π 66

6
2x-π -1,1 sin 6 ∈ 2 ,
2x-π -3,3 故 3sin 6 ∈ 2 ,
2x-π
-3,3
即 y=3sin
6 的值域为 2 .
2x-3π
4.函数 y=-tan
4 的单调递减区间为________________.
π+kπ,5π+kπ 答案 8 2 8 2 (k∈Z)
2
2
递减区间 对称中心 对称轴方程
2kπ+π,2kπ+3π
2
2
(kπ,0)
x=kπ+π 2
[2kπ,2kπ+π] kπ+π,0 2 x=kπ
无 kπ,0 2

概念方法微思考 1.正(余)弦曲线相邻两条对称轴之间的距离是多少?相邻两个对称中心的距离呢? 提示 正(余)弦曲线相邻两条对称轴之间的距离是半个周期;相邻两个对称中心的距离也为 半个周期. 2.思考函数 f(x)=Asin(ωx+φ)(A≠0,ω≠0)是奇函数,偶函数的充要条件? 提示 (1)f(x)为偶函数的充要条件是φ=π+kπ(k∈Z);

高三数学总复习讲义——三角函数性质与图像10页

高三数学总复习讲义——三角函数性质与图像10页

高三数学总复习讲义——三角函数性质与图像知识清单:注意:反三角数符号只表示...这个范围的角,其他范围的角需要用诱导公式变到这个范围.备注:以上性质的理解记忆关键是能想象或画出函数图象........... 函数sin()y A x ωϕ=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x=−−−−→图例变化为②sin()y A x ωϕ=+(A >0,ω>0)相应地,①的单调增区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦−−−→变为 2222k x k πππωϕπ-+++≤≤的解集是②的增区间.注:⑴)sin(ϕω+=x y 或cos()y x ωϕ=+(0≠ω)的周期ωπ2=T ;⑵sin()y x ωϕ=+的对称轴方程是2x k ππ=+(Z k ∈),对称中心(,0)k π;cos()y x ωϕ=+的对称轴方程是x k π=(Z k ∈),对称中心1(,0)2k ππ+;)tan(ϕω+=x y 的对称中心(0,2πk ). 课前预习1.函数sin cos y x x =-的最小正周期是 . 2. 函数1π2sin()23y x =+的最小正周期T = . 3.函数sin 2xy =的最小正周期是( ) (A)2π(B)π (C) 2π (D) 4π 4.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )(A)]3,0[π (B)]127,12[ππ (C) ]65,3[ππ(D)],65[ππ5.函数22cos()()363y x x πππ=-≤≤的最小值是( )6.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是__________________.8.函数sin y x x =+在区间[0,2π]的最小值为______.9.适合13sin ,,32x x ππ⎡⎤=-∈⎢⎥⎣⎦的角x 是( )10.已知f (x )=5sin x cos x -35cos 2x +325(x ∈R ) ⑴求f (x )的最小正周期; ⑵求f (x )单调区间;⑶求f (x )图象的对称轴,对称中心。

高考数学一轮复习 第三章 三角函数 3.2 三角函数的图象和性质讲义

高考数学一轮复习 第三章 三角函数 3.2 三角函数的图象和性质讲义

§3.2三角函数的图象和性质考纲解读考点内容解读要求五年高考统计常考题型预测热度2013 2014 2015 2016 20171.三角函数的图象及其变换1.由图象求参数2.由表达式确定图象B填空题解答题★★☆2.三角函数的性质及其应用1.判断三角函数的性质2.由性质求相关参数B填空题解答题★★☆分析解读三角函数的图象与性质是研究三角函数的基础,也是江苏高考的热点,考查重点在以下几个方面:函数解析式、函数图象及图象变换、两域(定义域、值域)、四性(单调性、奇偶性、对称性、周期性).五年高考考点一三角函数的图象及其变换1.(2017课标全国Ⅰ理改编,9,5分)已知曲线C1:y=cos x,C2:y=sin,则下面结论正确的是.①把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2;②把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2;③把C1上各点的横坐标缩短到原来的,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2;④把C1上各点的横坐标缩短到原来的,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2.答案④2.(2016课标全国Ⅰ改编,6,5分)将函数y=2sin 的图象向右平移个周期后,所得图象对应的函数为.答案y=2sin3.(2016四川理改编,3,5分)为了得到函数y=sin的图象,只需把函数y=sin 2x的图象上所有的点向平移个单位长度.答案右;4.(2016课标全国Ⅲ,14,5分)函数y=sin x-co s x的图象可由函数y=2sin x的图象至少向右平移个单位长度得到.答案5.(2015湖南改编,9,5分)将函数f(x)=sin 2x的图象向右平移φ个单位后得到函数g(x)的图象.若对满足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=,则φ=.答案6.(2014辽宁改编,9,5分)将函数y=3sin的图象向右平移个单位长度,所得图象对应的函数在区间上单调递增.答案(k∈Z)7.(2013湖北理改编,4,5分)将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是.答案教师用书专用(8—9)8.(2015湖北,17,11分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+φ0 π2πxAsin(ωx+0 5 -5 0φ)(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.解析(1)根据表中已知数据,解得A=5,ω=2,φ=- .数据补全如下表:ωx+φ0 π2πxπAsin(ωx+0 5 0 -5 0φ)且函数表达式为f(x)=5sin.(2)由(1)知 f(x)=5sin,得g(x)=5sin.因为y=sin x的对称中心为(kπ,0),k∈Z.所以令2x+2θ-=kπ,k∈Z,解得x=+-θ,k∈Z.由于函数y=g(x)的图象关于点中心对称,所以令+-θ=,k∈Z,解得θ=-,k∈Z.由θ>0可知,当k=1时,θ取得最小值.9.(2013福建理,20,14分)已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为.将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式;(2)是否存在x0∈,使得f(x0),g(x0), f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数;若不存在,说明理由;(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2 013个零点.解析(1)由函数f(x)=sin(ωx+φ)的周期为π,ω>0,得ω==2.又曲线y=f(x)的一个对称中心为,φ∈(0,π),故f=sin=0,得φ=,所以f(x)=cos 2x.将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得到y=cos x的图象,再将y=cos x的图象向右平移个单位长度后得到函数g(x)=cos的图象,所以g(x)=sin x.(2)当x∈时,<sin x<,0<cos 2x<,所以sin x>cos 2x>sin xcos 2x.问题转化为方程2cos 2x=sin x+sin xcos 2x在内是否有解.设G(x)=sin x+sin xcos 2x-2cos 2x,x∈,则G'(x)=cos x+cos xcos 2x+2sin 2x(2-sin x).因为x∈,所以G'(x)>0,G(x)在内单调递增.又G=-<0,G=>0,且函数G(x)的图象连续不断,故可知函数G(x)在内存在唯一零点x0,即存在唯一的x0∈满足题意.(3)依题意得,F(x)=asin x+cos 2x,令F(x)=asin x+cos 2x=0.当sin x=0,即x=kπ(k∈Z)时,cos 2x=1,从而x=kπ(k∈Z)不是方程F(x)=0的解,所以方程F(x)=0等价于关于x的方程a=-,x≠kπ(k∈Z).现研究x∈(0,π)∪(π,2π)时方程a=-的解的情况.令h(x)=-,x∈(0,π)∪(π,2π),则问题转化为研究直线y=a与曲线y=h(x),x∈(0,π)∪(π,2π)的交点情况.h'(x)=,令h'(x)=0,得x=或x=.当x变化时,h'(x),h(x)的变化情况如下表:xh'(x) + 0 - - 0 +h(x) ↗ 1 ↘↘-1 ↗当x>0且x趋近于0时,h(x)趋向于-∞,当x<π且x趋近于π时,h(x)趋向于-∞,当x>π且x趋近于π时,h(x)趋向于+∞,当x<2π且x趋近于2π时,h(x)趋向于+∞.故当a>1时,直线y=a与曲线y=h(x)在(0,π)内无交点,在(π,2π)内有2个交点;当a<-1时,直线y=a与曲线y=h(x)在(0,π)内有2个交点,在(π,2π)内无交点;当-1<a<1时,直线y=a与曲线y=h(x)在(0,π)内有2个交点,在(π,2π)内有2个交点.由函数h(x)的周期性,可知当a≠±1时,直线y=a与曲线y=h(x)在(0,nπ)内总有偶数个交点,从而不存在正整数n,使得直线y=a与曲线y=h(x)在(0,nπ)内恰有2 013个交点;又当a=1或a=-1时,直线y=a与曲线y=h(x)在(0,π)∪(π,2π)内有3个交点,由周期性,2 013=3×671,所以依题意得n=671×2=1 342.综上,当a=1,n=1 342或a=-1,n=1 342时,函数F(x)=f(x)+ag(x)在(0,nπ)内恰有2 013个零点.考点二三角函数的性质及其应用1.(2017课标全国Ⅲ文改编,6,5分)函数f(x)=sin+cos的最大值为.答案2.(2016课标全国Ⅱ理改编,7,5分)若将函数y=2sin 2x的图象向左平移个单位长度,则平移后图象的对称轴为.答案x=+(k∈Z)3.(2015浙江,11,6分)函数f(x)=sin2x+sin xcos x+1的最小正周期是,单调递减区间是.答案π;(k∈Z)4.(2014安徽改编,6,5分)设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时, f(x)=0,则f= .答案5.(2015山东,16,12分)设f(x)=sin xcos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.解析(1)由题意知f(x)=-=-=sin 2x-.由-+2kπ≤2x≤+2kπ,k∈Z,可得-+kπ≤x≤+kπ,k∈Z;由+2kπ≤2x≤+2kπ,k∈Z,可得+kπ≤x≤+kπ,k∈Z.所以f(x)的单调递增区间是(k∈Z);单调递减区间是(k∈Z).(2)由f=sin A-=0,得sin A=,由题意知A为锐角,所以cos A=.由余弦定理可得1+bc=b2+c2≥2bc,即bc≤2+,且当b=c时等号成立.因此bcsin A≤.所以△ABC面积的最大值为.教师用书专用(6)6.(2013湖南理,17,12分)已知函数f(x)=sin+cos,g(x)=2sin2.(1)若α是第一象限角,且f(α)=,求g(α)的值;(2)求使f(x)≥g(x)成立的x的取值集合.解析f(x)=sin+cos=sin x-cos x+cos x+sin x=sin x,g(x)=2sin2=1-cos x.(1)由f(α)=得sin α=.又α是第一象限角,所以cos α>0.从而g(α)=1-cos α=1-=1-=.(2)f(x)≥g(x)等价于sin x≥1-cos x,即sin x+cos x≥1.于是sin≥.从而2kπ+≤x+≤2kπ+,k∈Z,即2kπ≤x≤2kπ+,k∈Z.故使f(x)≥g(x)成立的x的取值集合为x2kπ≤x≤2kπ+,k∈Z.三年模拟A组2016—2018年模拟·基础题组考点一三角函数的图象及其变换1.(2018江苏天一中学调研)将函数y=5sin的图象向左平移φ个单位后,所得函数图象关于直线x=对称,则φ=.答案2.(苏教必4,二,3,变式)函数y=sin x的图象和y=的图象交点的个数是.答案 33.(苏教必4,二,3,变式)定义在区间上的函数y=6cos x的图象与y=5tan x的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sin x的图象交于点P2,则线段P1P2的长为.答案4.(2017江苏南京、盐城一模,9)将函数y=3sin的图象向右平移φ个单位后,所得图象对应的函数为偶函数,则φ=.答案考点二三角函数的性质及其应用5.(2018江苏徐州铜山中学期中)函数f(x)=2sin的最小正周期为.答案 66.(2018江苏南通中学高三阶段练习)已知函数y=cos x与y=sin(2x+φ)(0≤φ<π)的图象有一个横坐标为的交点,则φ的值是.答案7.(2018江苏常熟期中)函数y=sin(2x+φ)图象的一条对称轴是x=,则φ的值是.答案8.(2017江苏南京学情检测,4)若函数f(x)=sin(ω>0)的最小正周期为π,则f的值是.答案9.(2017江苏南通中学高三上学期期中,7)函数y=2sin的图象与y轴最近的对称轴方程是.答案x=-10.(苏教必4,二,3,变式)已知函数f(x)=sin(x∈R),下面结论错误的是.(只填序号)①函数f(x)的最小正周期为2π;②函数f(x)在区间上是增函数;③函数f(x)的图象关于直线x=0对称;④函数f(x)是奇函数.答案④11.(2016江苏如东期中,9)函数f(x)=sin x-cos x(-π≤x≤0)的单调增区间是.答案B组2016—2018年模拟·提升题组(满分:35分时间:20分钟)一、填空题(每小题5分,共20分)1.(2018江苏常熟期中)已知函数f(x)=sin,若对任意的实数α∈,都存在实数β∈[0,m],使f(α)+f(β)=0,则实数m的最小值是.答案2.(2018江苏扬州中学高三月考)已知函数y=sin ωx(ω>0)在区间上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为.答案3.(2017江苏徐州沛县中学质检,12)若函数y=sin x+mcos x图象的一条对称轴方程为x=,则实数m的值为.答案4.(2016江苏常州武进期中,9)已知函数f(x)=2sin,x∈的图象与直线y=m的三个交点的横坐标分别为x1,x2,x3,其中x1<x2<x3,那么x1+2x2+x3的值为.答案二、解答题(共15分)5.(2018江苏常熟期中)已知函数f(x)=-sin++b(a>0,b>0)的图象与x轴相切,且图象上相邻两个最高点之间的距离为.(1)求a,b的值;(2)求f(x)在上的最大值和最小值.解析(1)∵f(x)图象上相邻两个最高点之间的距离为,∴f(x)的周期为,∴=,∵a>0,∴a=2,此时f(x)=-sin++b,又∵f(x)的图象与x轴相切,∴=,∵b>0,∴b=-.(2)由(1)可得f(x)=-sin+,∵x∈,∴4x+∈,∴当4x+=,即x=时,f(x)取得最大值;当4x+=,即x=时,f(x)取得最小值0.C组2016—2018年模拟·方法题组方法1 三角函数性质1.函数y=3tan的对称中心是.答案(k∈Z)2.函数y=-3sin2x+9sin x+的最大值为.答案方法2 利用三角函数性质求参数3.已知ω是正实数,函数f(x)=2sin ωx在上是增函数,则ω的取值范围为.答案4.是否存在实数k,使得当x∈时,k+tan的值总不大于零?若存在,求出k的范围;若不存在,请说明理由.解析假设存在实数k,符合题意,则k≤tan恒成立,∴k≤tan,而当x∈时,0≤2x-≤,0≤tan≤,∴k≤0,所以存在符合条件的实数k,其取值范围为(-∞,0].。

2021届新课标数学一轮复习讲义_第三章_第5讲_三角函数的图象与性质

2021届新课标数学一轮复习讲义_第三章_第5讲_三角函数的图象与性质

第5讲 三角函数的图象与性质正弦、余弦、正切函数的图象与性质函数 y =sin x y =cos x y =tan x图象定义域 R R{x |x ∈R 且x ≠k π+π2,k ∈Z }值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性奇函数偶函数 奇函数单调性[2k π-π2,2k π+π2](k ∈Z )为增;[2k π+π2,2k π+3π2](k ∈Z )为减[2k π,2k π+π](k ∈Z )为减;[2k π-π,2k π](k ∈Z )为增⎝⎛k π-π2,⎭⎫k π+π2(k ∈Z )为增对称中心 (k π,0)(k ∈Z ) (k π+π2,0) (k ∈Z )(k π2,0)(k ∈Z ) 对称轴x =k π+π2(k ∈Z )x =k π(k ∈Z )无[做一做]1.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数答案:B2.函数y =tan 3x 的定义域为____________.答案:⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π3,k ∈Z1.辨明三个易误点(1)y =tan x 不能认为其在定义域上为增函数,应在每个区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )内为增函数.(2)三角函数存在多个单调区间时易错用“∪”联结.(3)求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解.2.求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域; (2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. [做一做]3.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A.⎝⎛⎭⎫-π4,0B.⎝⎛⎭⎫0,π2C.⎝⎛⎭⎫π2,3π4D.⎝⎛⎭⎫3π4,π解析:选B.由f (x )=-cos 2x 知递增区间为⎣⎡⎦⎤k π,k π+π2,k ∈Z ,故只有B 项满足.4.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( )A .-1B .-22 C.22D .0 解析:选B.由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4,所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22.考点一__三角函数的定义域和值域____________(1)函数y =sin x -cos x 的定义域为________;(2)函数y =cos 2x +2sin x 的最大值为________. [解析] (1)要使函数有意义,必须有sin x -cos x ≥0,即sin x ≥cos x ,同一坐标系中作出y =sin x ,y =cos x ,x ∈[0,2π]的图象如图所示.结合图象及正、余弦函数的周期是2π知,函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z .(2)y =cos 2x +2sin x =-2sin 2x +2sin x +1,设t =sin x (-1≤t ≤1),则原函数可以化为y =-2t 2+2t +1=-2⎝⎛⎭⎫t -122+32,∴当t =12时,函数取得最大值32. [答案] (1)⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z(2)32本例(2)变为函数y =cos 2x +4sin x (|x |≤π6)的最大值为________. 解析:y =cos 2x +4sin x =-2sin 2x +4sin x +1,设t =sin x (-12≤t ≤12),则原函数可以化为y =-2t 2+4t +1=-2(t -1)2+3,∴当t =12时,函数取得最大值52.答案:52[规律方法] (1)三角函数定义域的求法:求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. (2)三角函数值域的不同求法: ①利用sin x 和cos x 的值域直接求.②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域(本讲典例2(3)). ③把sin x 或cos x 看作一个整体,转换成二次函数求值域. ④利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.1.(1)函数y =2+log 12x +tan x 的定义域为________;(2)函数y =sin x +cos x +sin x cos x 的值域为________. 解析:(1)要使函数有意义,则⎩⎪⎨⎪⎧2+log 12x ≥0x >0tan x ≥0x ≠k π+π2,k ∈Z ⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2(k ∈Z ). 利用数轴可得函数的定义域是⎩⎨⎧⎭⎬⎫x |0<x <π2或π≤x ≤4.(2)设t =sin x +cos x ,则sin x cos x =t 2-12(-2≤t ≤2).y =t +12t 2-12=12(t +1)2-1,当t =2时,y 取最大值为2+12,当t =-1时,y 取最小值为-1.∴函数值域为[-1,12+2].答案:(1)⎩⎨⎧⎭⎬⎫x |0<x <π2或π≤x ≤4 (2)[-1,12+2]考点二__三角函数的单调性(高频考点)__________三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度适中,多为中档题.高考对三角函数单调性的考查有以下四个命题角度:(1)求已知三角函数的单调区间;(2)已知三角函数的单调区间求参数;(3)利用三角函数的单调性求值域(或最值);(4)利用三角函数的单调性比较大小. (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( )A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )(2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D .(0,2)(3)已知函数f (x )=(sin x +cos x )2+2cos 2x -2.①求f (x )的单调增区间;②当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值,最小值.[解析] (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 在⎝⎛⎭⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A.[答案] (1)B (2)A(3)解:①f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .②∵x ∈⎣⎡⎦⎤π4,3π4,∴3π4≤2x +π4≤7π4,∴-1≤sin ⎝⎛⎭⎫2x +π4≤22,∴-2≤f (x )≤1,∴当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.[规律方法] 三角函数单调性问题解题策略(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.(3)利用三角函数的单调性求值域(或最值).形如y =A sin(ωx +φ)+b 或可化为y =A sin(ωx +φ)+b 的三角函数的值域(或最值)问题常利用三角函数的单调性解决.2.(1)已知函数f (x )=2sin ⎝⎛⎭⎫x +π3,设a =f ⎝⎛⎭⎫π7,b =f ⎝⎛⎭⎫π6,c =f ⎝⎛⎭⎫π3,则a ,b ,c 的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a(2)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( )A.23B.32 C .2 D .3 (3)函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________.(4)函数y =|tan x |的单调增区间为________.解析:(1)a =f ⎝⎛⎭⎫π7=2sin 1021π,b =f ⎝⎛⎭⎫π6=2sin π2=2,c =f ⎝⎛⎭⎫π3=2sin 2π3=2sin π3,因y =sin x 在⎣⎡⎦⎤0,π2上递增,则c <a <b .(2)∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.(3)由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4,得2k π≤2x -π4≤2k π+π(k ∈Z ), 故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ).(4)如图,观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z .答案:(1)B (2)B (3)⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) (4)⎣⎡⎭⎫k π,k π+π2,k ∈Z考点三__三角函数的奇偶性、周期性及对称性__(1)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .②④B .①③④C .①②③D .①③(2)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x ( )A .是奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B .是偶函数且图象关于点()π,0对称C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称[解析] (1)①y =cos|2x |=cos 2x ,T =π. ②由图象知,函数的周期T =π. ③T =π.④T =π2.综上可知,最小正周期为π的所有函数为①②③.(2)∵当x =π4时,函数f (x )取得最小值,∴sin ⎝⎛⎭⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝⎛⎭⎫x +2k π-3π4=sin ⎝⎛⎭⎫x -3π4(k ∈Z ).∴y =f ⎝⎛⎭⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎫3π4-x 是奇函数,且图象关于直线x =π2对称. [答案] (1)C (2)C[规律方法] (1)三角函数的奇偶性的判断技巧:首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象做判断. (2)求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③利用图象.(3)三角函数的对称性:正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.[提醒] 判断函数的奇偶性时,必须先分析函数定义域是否关于原点对称.3.(1)已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为πB .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称D .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数(2)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:(1)f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎡⎦⎤0,π2上是增函数,D 正确,故选C.(2)∵f (x )在⎣⎡⎦⎤π6,π2上具有单调性,∴T 2≥π2-π6,∴T ≥2π3.∵f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3,∴f (x )的一条对称轴为x =π2+2π32=7π12.又∵f⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6,∴f (x )的一个对称中心的横坐标为π2+π62=π3. ∴14T =7π12-π3=π4,∴T =π. 答案:(1)C (2)π考题溯源——函数y =A sin(ωx +φ)的性质已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.[解] 法一:(1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2. (2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .法二:f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1=2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sin π4+1=2.(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .[考题溯源] 本考题源于教材人教A 版必修4 P 147复习参考题A 组11题“已知函数f (x )=2sin x (sin x +cos x ).(1)求f (x )的最小正周期和最大值;(2)画出函数y =f (x )在区间⎣⎡⎦⎤-π2,π2上的图象.”已知函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin ⎝⎛⎭⎫x -π4sin ⎝⎛⎭⎫x +π4.(1)求函数f (x )的最小正周期和图象的对称轴方程; (2)求函数f (x )在区间⎣⎡⎦⎤-π12,π2上的值域.解:(1)∵f (x )=cos ⎝⎛⎭⎫2x -π3+2sin ⎝⎛⎭⎫x -π4·sin ⎝⎛⎭⎫x +π4=12cos 2x +32sin 2x +(sin x -cos x )·(sin x +cos x ) =12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝⎛⎭⎫2x -π6. ∴函数f (x )的最小正周期为T =2π2=π,对称轴方程为x =π3+k π2,k ∈Z .(2)∵x ∈⎣⎡⎦⎤-π12,π2,∴2x -π6∈⎣⎡⎦⎤-π3,5π6.∴f (x )=sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π12,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,∴当x =π3时,f (x )取最大值1.又∵f ⎝⎛⎭⎫-π12=-32<f ⎝⎛⎭⎫π2=12,∴当x =-π12时,f (x )取最小值-32.所以函数f (x )在区间⎣⎡⎦⎤-π12,π2上的值域为⎣⎡⎦⎤-32,1.1.函数y =cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6,k ∈ZC.⎣⎡⎦⎤2k π-π6,2k π+π6,k ∈Z D .R解析:选C.∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 2.函数f (x )=(1+sin x )(sin 2x +cos 2x -sin x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数解析:选B.f (x )=(1+sin x )(1-sin x )=1-sin 2x =cos 2x =12cos 2x +12,所以f (x )是最小正周期为π的偶函数.3.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .-1-3B .-1C .0D .2- 3 解析:选D.∵0≤x ≤9,∴-π3≤πx 6-π3≤7π6,∴sin ⎝⎛⎭⎫πx 6-π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3.4.如果函数y =3sin(2x +φ)的图象关于直线x =π6对称,则|φ|的最小值为( )A.π6B.π4C.π3D.π2 解析:选A.依题意得,sin ⎝⎛⎭⎫π3+φ=±1,则π3+φ=k π+π2(k ∈Z ), 即φ=k π+π6(k ∈Z ),因此|φ|的最小值是π6.5.设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12 解析:选A.∵f (x +π)=f (x )+sin x ,∴f (x +2π)=f (x +π)-sin x . ∴f (x +2π)=f (x )+sin x -sin x =f (x ).∴f (x )是以2π为周期的周期函数. 又f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6,f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6,∴f ⎝⎛⎭⎫5π6=f ⎝⎛⎭⎫-π6-12.∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, ∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫-π6=12.故选A.6.比较大小:sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10.解析:因为y =sin x 在⎣⎡⎦⎤-π2,0上为增函数且-π18>-π10,故sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10.答案:> 7.函数y =32sin 2x +cos 2x 的最小正周期为________. 解析:∵y =32sin 2x +cos 2x =32sin 2x +12cos 2x +12=sin ⎝⎛⎭⎫2x +π6+12,∴函数的最小正周期T =2π2=π. 答案:π8.函数y =2sin ⎝⎛⎭⎫2x +π3-1,x ∈⎣⎡⎦⎤0,π3的值域为________,并且取最大值时x 的值为________.解析:∵0≤x ≤π3,∴π3≤2x +π3≤π,∴0≤sin ⎝⎛⎭⎫2x +π3≤1,∴-1≤2sin ⎝⎛⎭⎫2x +π3-1≤1,即值域为[-1,1],且当sin ⎝⎛⎭⎫2x +π3=1,即x =π12时,y 取最大值.答案:[-1,1] π129.已知函数f (x )=3sin 2x +cos 2x .(1)求f (x )的单调减区间;(2)求f (x )图象上与原点最近的对称中心的坐标. 解:f (x )=3sin 2x +cos 2x =2sin(2x +π6).(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z )得,k π+π6≤x ≤k π+2π3(k ∈Z ).∴f (x )的单调减区间为[k π+π6,k π+2π3](k ∈Z ). (2)由sin(2x +π6)=0,得2x +π6=k π(k ∈Z ),即x =k π2-π12(k ∈Z ).∴f (x )图象上与原点最近的对称中心坐标是(-π12,0).10.已知函数f (x )=cos x ·sin ⎝⎛⎭⎫x +π3-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.解:(1)由已知,有f (x )=cos x ·⎝⎛⎭⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34=14sin 2x -34(1+cos 2x )+34=14sin 2x -34cos 2x =12sin ⎝⎛⎭⎫2x -π3. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π4,-π12上是减函数,在区间⎣⎡⎦⎤-π12,π4上是增函数.f ⎝⎛⎭⎫-π4=-14,f ⎝⎛⎭⎫-π12=-12,f ⎝⎛⎭⎫π4=14,所以,函数f (x )在闭区间⎣⎡⎦⎤-π4,π4上的最大值为14,最小值为-12.1.若函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上是单调减函数,且函数值从1减少到-1,则f ⎝⎛⎭⎫π4=( ) A.12 B.22 C.32 D .1 解析:选C.由题意得函数f (x )的周期T =2⎝⎛⎭⎫2π3-π6=π,所以ω=2,此时f (x )=sin(2x +φ),将点⎝⎛⎭⎫π6,1代入上式得sin ⎝⎛⎭⎫π3+φ=1⎝⎛⎭⎫|φ|<π2,所以φ=π6,所以f (x )=sin ⎝⎛⎭⎫2x +π6,于是f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32.2.已知函数f (x )=sin 2x cos φ+cos 2x sin φ(x ∈R ),其中φ为实数,且f (x )≤f ⎝⎛⎭⎫2π9对任意实数R 恒成立,记p =f ⎝⎛⎭⎫2π3,q =f ⎝⎛⎭⎫5π6,r =f ⎝⎛⎭⎫7π6,则p 、q 、r 的大小关系是( ) A .r <p <q B .q <r <p C .p <q <r D .q <p <r解析:选C.f (x )=sin 2x cos φ+cos 2x sin φ=sin(2x +φ),∴f (x )的最小正周期T =π. ∵f (x )≤f ⎝⎛⎭⎫2π9,∴f ⎝⎛⎭⎫2π9是最大值.∴f (x )=sin ⎝⎛⎭⎫2x +π18,∴p =sin 25π18,q =sin 31π18,r =sin 7π18,∴p <q <r .3.当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝⎛⎭⎫sin x -142+78. ∴当sin x =14时,y min =78,当sin x =-12或sin x =1时,y max =2.答案:7824.给出下列命题:①函数f (x )=4cos ⎝⎛⎭⎫2x +π3的一个对称中心为⎝⎛⎭⎫-5π12,0;②已知函数f (x )=min{sin x ,cos x },则f (x )的值域为⎣⎡⎦⎤-1,22; ③若α、β均为第一象限角,且α>β,则sin α>sin β.其中所有真命题的序号是________.解析:对于①,令x =-512π,则2x +π3=-56π+π3=-π2,有f ⎝⎛⎭⎫-512π=0,因此⎝⎛⎭⎫-512π,0为f (x )的一个对称中心,①为真命题;对于②,结合图象知f (x )的值域为⎣⎡⎦⎤-1,22,②为真命题;对于③,令α=390°,β=60°,有390°>60°,但sin 390°=12<sin 60°=32,故③为假命题,所以真命题为①②.答案:①②5.设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R .(1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.解:由已知:f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4.(1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4,又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,∴f (x )max =2,此时12x -π4=2k π+π2,k ∈Z .即x ∈⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z ,又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,此时其最小正周期为π.6.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.解:(1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6.∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ].∴f (x )∈[b ,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1,g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z .又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。

高考数学复习重要知识点:三角函数的图象与性质

高考数学复习重要知识点:三角函数的图象与性质

2019高考数学复习重要知识点:三角函数的图象与性质三角函数在研究三角形和圆等几何形状的性质时有重要作用,下面是2019高考数学复习重要知识点:三角函数的图象与性质,希望对考生有帮助。

1、周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.T叫做这个函数的周期.2、最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.1、求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2、求解涉及三角函数的值域(最值)的题目一般常用以下方法:(1)、利用sin x、cos x的值域;教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

(2)、形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 三角函数的 图象与性质1.能画出y =sin x ,y =cos x ,y =tan x 的图象.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如值域、单调性、奇偶性、最大值和最小值以及与x 轴交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2上的性质.了解三角函数的周期性.知识梳理一、正弦函数、余弦函数、正切函数的性质(续上表)二、研究函数y =A sin(ωx +φ)性质的方法类比于研究y =sin x 的性质,只需将y =A sin(ωx +φ)中的ωx +φ看成y =sin x 中的x ,但在求y =A sin(ωx +φ)的单调区间时,要特别注意A 和ω的符号,通过诱导公式先将ω化为正数.研究函数y =A cos(ωx +φ),y =A tan(ωx +φ)的性质的方法与其类似,也是类比、转化.三、求三角函数的周期的常用方法经过恒等变形化成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式.如:函数y =A sin(ωx +φ),y =A cos(ωx +φ)的最小正周期都是2π|ω|;函数y =A tan(ωx +φ)的最小正周期是π|ω|.另外还有图象法和定义法.基础自测1.(2013·揭阳二模)设函数f (x )=cos(2π-x )+3cos ⎝⎛⎭⎫π2-x ,则函数的最小正周期为( ) A.π2B .πC .2πD .4π解析:函数f (x )=cos x +3sin x =2⎝⎛⎭⎫32sin x +12cos x =2sin ⎝⎛⎭⎫x +π6, 故其最小正周期为2π1=2π,故选C.答案:C2.(2013·天津卷)函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1B .-22C.22D .0解析:因为x ∈⎣⎡⎦⎤0,π2,所以-π4≤2x -π4≤3π4,令n =2x -π4,则sin ⎝⎛⎭⎫2x -π4=sin n 在n ∈⎣⎡⎦⎤-π4,3π4上的最小值为sin ⎝⎛⎭⎫-π4=-22.故选B. 答案:B3.(2012·浙江名校新高考联盟二联) 若函数f (x )=sin (x +α)-2cos(x -α)是奇函数,则sin αcos α=________.解析:因为函数f (x )=sin(x +α)-2cos(x -α)是奇函数,所以f (0)=sin α-2cos α=0,即tan α=2.所以sin αcos α>0,不妨设α为锐角,可得sin α=25,cos α=15.所以sin αcos α=25.答案:254.(2012·合肥模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx -π6(ω>0)在⎝⎛⎭⎫0,4π3上单调递增,在⎝⎛⎭⎫4π3,2π上单调递减,则ω=___________.1.(2013·山东卷)函数y =x cos x +sin x 的图象大致为( )解析:函数y =x cos x +sin x 为奇函数,排除B.取x =π2,排除C ;取x =π,排除A ,故选D.答案:D2.已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解析:(1)∵f (x )=4cos x ⎝⎛⎭⎫sin x cos π6+cos x sin π6-1 =23sin x cos x +2cos 2x -1 =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最小正周期为π.(2)∵-π6≤x ≤π4,∴-π6≤2x +π6≤2π3.∴当2x +π6=π2,即x =π6时,函数f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,函数f (x )取得最小值-1.1. (2013·佛山一模)函数y =sin x +sin ⎝⎛⎭⎫x -π3 的最小正周期为________,最大值是________.解析:因为函数y =sin x +sin ⎝⎛⎭⎫x -π3=sin x +12sin x -32cos x =3sin ⎝⎛⎭⎫x -π6. 所以函数的周期为T =2π1=2π;函数的最大值为: 3. 答案:2π32.已知函数f (x )=2sin x cos x +cos 2x (x ∈R ).(1)当x 取什么值时,函数f (x )取得最大值?并求其最大值. (2)若θ为锐角,且f ⎝⎛⎭⎫θ+π8=23,求tan θ的值. 解析:(1)f (x )=2sin x cos x +cos 2x =sin 2x +cos 2x =2⎝⎛⎭⎫22sin 2x +22cos 2x =2sin ⎝⎛⎭⎫2x +π4. ∴当2x +π4=2k π+π2,即x =k π+π8(k ∈Z )时,函数f (x )取得最大值,其最大值为 2.(2)∵f ⎝⎛⎭⎫θ+π8=23, ∴2sin ⎝⎛⎭⎫2θ+π2=23. ∴cos 2θ=13.∵θ为锐角,即0<θ<π2,∴0<2θ<π.∴sin 2θ=1-cos 22θ=223.∴tan θ=sin θcos θ=2sin θcos θ2cos 2θ=sin 2θ1+cos 2θ=22. 中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

(请学生讨论这几种字体的特点?)古文字是一种以象形为主的字体。

②今文字系统隶书——草书——行书——楷书到了秦末、汉初这一时期,各地交流日见繁多而小篆书写较慢,不能满足需要,隶书便在这种情况下产生了,隶书另一层意思是平民使用,同时还出现了一种草写的章草(独草),这时笔墨纸都已出现,对书法的独立创作起到了积极的推动作用。

狂草在魏晋出现,唐朝的张旭、怀素将它推向顶峰;行书出现于晋,是一种介于楷、行之间的字体;楷书也是魏晋出现,唐朝达到顶峰,著名的书法家有欧阳询、颜真卿、柳公权。

(请学生谈一下对今文字是怎样理解的?),教师进行归纳:它们的共同特点是已经摆脱了象形走向抽象化。

B主要书体的形式特征①古文字:甲骨文,由于它处于文明的萌芽时期,故字形错落有致辞,纯古可爱,目前发现的总共有3000多字,可认识的约1800字。

金文,处在文明的发展初期,线条朴实质感饱满而丰腴,因它多附在金属器皿上,所以保存完整。

石鼓文是战国时期秦的文字,记载的是君王外出狩猎和祈祷丰年,秦篆是一种严谨刻板的纯实用性的字体,艺术价值很小。

②今文字:隶书是在秦篆严谨的压抑下出现的一种潇洒开放型的新字体,课本图例《张迁碑》结构方正,四周平稳,刚劲沉着,是汉碑方笔的典范,章草是在隶书基础上更艺术化,实用化的字体,索靖《急就章》便是这种字体的代表作,字字独立,高古凝重,楷书有两大部分构成:魏碑、唐楷魏碑是北魏时期优秀书法作品的统称。

《郑文公碑》和《始平公造像》是这一时期的代表,前者气势纵横,雄浑深厚,劲健绝逸是圆笔的典型;唐楷中的《醴泉铭》法度森严、遒劲雄强,浑穆古拙、浑厚刚健,《神策军碑》精练苍劲、风神整峻、法度谨严,以上三种书体分别代表了唐楷三个时期的不同特点。

《兰亭序》和《洛神赋》作者分别是晋代王羲之、王献之父子是中国书法史上的两座高峰,前者气骨雄骏、风神跌宕、秀逸萧散的境界,后者在技法上达到了由拙到巧、笔墨洗练、丝丝入扣的微妙的境界。

他们都是不拘泥于传统的章法和技能,对后世学书者产生了深远的影响;明代文征明的书法文雅自如,现代书家沈尹默在继承传统书法方面起到了不可魔灭的作用。

3、欣赏要点:先找几位同学说一下自己评价书法作品的标准或原则是什么?[或如何来欣赏一幅书法作品?]学生谈完后,对他们的观点进行归纳总结。

然后自己要谈一下自己的观点:书法艺术的欣赏活动,有着不同于其它艺术门类的特征,欣赏书法伤口不可能获得相对直接的印象、辨识与教益,也不可能单纯为了使学生辨识书写的内容,去探讨言词语汇上的优劣。

进而得出:书法主要是通过对抽象的点画线条、结构形态和章法布局等有“情趣意味“的形式,从客观物象各种美的体态,安致这些独有的特性中,使人们在欣赏时得到精神上健康闲静的愉悦和人们意念境界里的美妙享受(结合讲授出示古代书法名作的图片,并与一般的书法作品进行比较,让学生在比较中得出什么是格调节器高雅,什么是粗庸平常)。

相关文档
最新文档