MAX3463CPA+中文资料

合集下载

34063技术手册

34063技术手册

MC34063ADC-DC CONVERTER CONTROL CIRCUITS®April 2000sOUTPUT SWITCH CURRENT IN EXCESS OF 1.5As 2%REFERENCE ACCURACYs LOW QUIESCENT CURRENT:2.5mA (TYP.)s OPERATING FROM 3V TO 40Vs FREQUENCY OPERATION TO 100KHz sACTIVE CURRENT LIMITINGDESCRIPTIONThe MC34063A series is a monolithic control circuit delivering the main functions for DC-DC voltage converting.The device contains an internal temperature compensated reference,comparator,duty cycle controlled oscillator with an active current limit circuit,driver and high current output switch.Output voltage is adjustable through two external resistors with a 2%reference accuracy.Employing a minimum number of external components the MC34063A devices series is designed for Step-Down,Step-Up and Voltage-Inverting applications.BLOCK DIAGRAMDIP-8SO-81/15ABSOLUTE MAXIMUM RATINGSSymbol ParameterValue Unit V CC Power Supply Voltage50V V ir Comparator Input Voltage Range -0.3to 40V V SWC Switch Collector Voltage40V V SWE Switch Emitter Voltage (VSWC =40V)40V V CE Switch Emitter to Collector Voltage 40V V d c Driver Collector Voltage 40V I dc Driver Collector Current 100mA I SW Switch Current1.5A P tot Power Dissipation at T amb =25o C (for Plastic Package )(for SOIC Package ) 1.250.625WT op Operating Ambient Temperature Range (for AC SERIES )(for AB SERIES )0to 70-40to 85o C o C T st gStorage Temperature Range-40to 150oCAbsolute Maximum Rating are those values beyond which damage to the device may occur.Functional operation under these condition is not implied.THERMAL DATASymbolParameterDIP-8SO-8UnitR thj-amb Thermal Resistance Junction-ambient (*)Max100160oC/W(*)This value depends from thermal design of PCB on which the device is mounted.ORDERING NUMBERSTypeDIP-8SO-8SO-8(tape &reel)MC34063AB MC34063ABN MC34063ABD MC34063ABD-TR MC34063ACMC34063ACNMC34063ACDMC34063ACD-TRCONNECTION DIAGRAM (top view)PIN CONNECTIONSPin No Symbol Name and Function 1SWC Switch Collector 2SWE Switch Emitter 3TC Timing Capacitor 4GND Ground5CII Comparator Inverting Input 6V CC Voltage Supply 7I pk I pk Sense8DRCVoltage Driver CollectorMC34063A2/15ELECTRICAL CHARACTERISTICS(Refer to the test circuits,V CC=5V,T a=T LOW to T HIGH,unless otherwise specified,see note2)OSCILLATORSymbol Parameter Test Conditions Min.Typ.Max.Unitf OSC Frequency V pin5=0V C T=1nF T a=25o C243342KHzI ch g Charge Currernt V CC=5to40V T a=25o C243342µAI dischg Discharge Current V CC=5to40V T a=25o C140200260µA I d is chg/I chg Discharge to ChargeCurrent RatioPin7=V CC T a=25o C 5.2 6.27.5V i pk(sense)Current Limit Sense Voltage I chg=I dischg T a=25o C250300350mV OUTPUT SWITCHSymbol Parameter Test Conditions Min.Typ.Max.Unit V CE(sat)Saturation Voltage,Darlington ConnectionI SW=1A Pins1,8connected1 1.3VV CE(sat)Saturation Voltage I SW=1A R pin8=82Ωto V CC,Forcedβ~200.450.7Vh F E DC Current Gain I SW=1A V CE=5V T a=25o C50120I C(off)Collector Off-State Current V CE=40V0.01100µA COMPARATORSymbol Parameter Test Conditions Min.Typ.Max.UnitV t h Threshold Voltage T a=25o CT a=T LOW to T HIGH 1.2251.211.25 1.2751.29VVReg li ne Threshold Voltage LineRegulationV CC=3to40V15mVI I B Input Bias Current V IN=0V-5-400nA TOTAL DEVICESymbol Parameter Test Conditions Min.Typ.Max.UnitI CC Supply Current V CC=5to40V C T=1nFPin7=V CC V pin5>V th Pin2=GNDRemaining pins open2.54mANOTES:1)Maximum package power dissipation limit must be observed.2)T LOW=0o C,T HIGH=70o C(AC series);T LOW=-40o C,T HIGH=85o C(AB series).3)If Darlington configuration is not used,care must be taken to avoid deep saturation of output switch.The resulting switch-off time may be adversely affected.In a Darlington configuration the following output driver condition is suggested:Forcedβ of output current switch=I COUTPUT/(I CDRIVER-1mA*)≥10*Current less due to a built in1KΩantileakage resistor.MC34063A3/15Common Emitter Configuration Output Switch Saturation Voltage vs Collector Current Power Collector Emitter Saturation Voltage (V CE(sat))vs Temperature Darlington Configuration Collector Emitter Saturation Voltage(V CE(sat))vs Temperature Current Limit Sense Voltage Voltage(V ipk)vs TemperatureEmitter Follower Configuration Output Saturation Voltage vs Emitter Current Output Switch ON-OFF Time vs Oscillator Timing CapacitorTYPICAL ELECTRICAL CHARACTERISTICS MC34063A4/15MC34063ATYPICAL ELECTRICAL CHARACTERISTICS(Continued)Reference Voltage vs Temperature Bias Current vs TemperatureSupply Current vs Temperature Supply Current vs Input Voltage5/15MC34063ATYPICAL APPLICATION CIRCUITStep-Up ConverterPrinted DemoboardSymbol PinVout1GND2GND3Vin4Test Condition(V OUT=28V)Test Conditions Value(Typ.)Unit Line Regulation V IN=8to16V,I O=175mA30mV Load Regulation V IN=12V,I O=75to175mA10mV Output Ripple V IN=12V,I O=175mA300mV Efficency V IN=12V,I O=175mA89%6/15MC34063A Step-Down ConverterPrinted DemoboardSymbol PinVout1GND2GND3Vin4Test Condition(V OUT=5V)Test Conditions Value(Typ.)Unit Line Regulation V IN=15to25V,I O=500mA5mV Load Regulation V IN=25V,I O=50to500mA30mV Output Ripple V IN=25V,I O=500mA100mV Efficency V IN=25V,I O=500mA80%I SC V IN=25V,R LOAD=0.1Ω 1.2A7/15MC34063AVoltage Inverting ConverterPrinted DemoboardSymbol PinVout1GND2GND3Vin4Test Condition(V OUT=-12V)Test Conditions Value(Typ.)Unit Line Regulation V IN=4.5to6V,I O=100mA15mV Load Regulation V IN=5V,I O=10to100mA20mV Output Ripple V IN=5V,I O=100mA230mV Efficency V IN=5V,I O=100mA58% I SC V IN=5V,R lLOAD=0.1Ω0.9A8/15CalculationParameter Step-Up(Discontinuos mode)Step-Down(Continuos mode)Voltage Inverting(Discontinuos mode)t on/t off V out+V F−V in(min)V i n(min)−V sa tV out+V FV i n(min)−V sat−V out|V out|+V FV in−V s at(t on+t off)max1/f min1/f min1/f mi nC T 4.5x10-5t on 4.5x10-5t on 4.5x10-5t o nI PK(switch)2I ou t(max)[(t o n/t off)+1]2I out(max)2I out(max)[(t on/t off)+1] R SC0.3/I PK(switc h)0.3/I PK(switc h)0.3/I PK(switch)C O≅I out t onV ri pple(p−p)I PK(s witc h)(t on+t off)8V ri pple(p−p)≅I out t o nV ripp le(p−p)L(min)V in(mi n)−V s atI PK(swit ch)t o n(max)V in(min)−V sa t−V o utI PK(swit ch)t on(max)V in(mi n)−V satI PK(s witch)t on(ma x)NOTES:V sat=Saturation voltage of the output switchV F=Foward voltage drop of the output rectifierTHE FOLLOWING POWER SUPPLY CHARACTERISTICS MUST BE CHOSEN:V in=Nominal input voltageV out=Desired output voltage,|V out|=1.25(1+R2/R1)I out=Desired output currentf min=Minimum desired output switching frequency at the selected values of Vin and IoV ripple=Desired peak to peak output ripple voltage.In practice,the calculaed capacitor value will and to be increased due to its equivalent series resistance and board layout.The ripple voltage should be kept to a low value since it will directly affect the line and load regulation. Step-up With External NPN SwitchMC34063A9/15MC34063AStep-down With External NPN Switch Step-down With External PNP Switch 10/15Voltage Inverting With External NPN SwitchVoltage Inverting With External PNP Saturated Switch11/15Dual Output VoltageHigher Output Power,Higher Input Voltage 12/15Plastic DIP-8MECHANICAL DATAmm inchDIM.MIN.TYP.MAX.MIN.TYP.MAX.A 3.30.130a10.70.028B 1.39 1.650.0550.065B10.91 1.040.0360.041b0.50.020b10.380.50.0150.020D9.80.386E8.80.346e 2.540.100e37.620.300e47.620.300F7.10.280I 4.80.189L 3.30.130Z0.44 1.60.0170.063P001F13/15SO-8MECHANICAL DATAmm inch DIM.MIN.TYP.MAX.MIN.TYP.MAX.A 1.750.068a10.10.250.0030.009 a2 1.650.064 a30.650.850.0250.033 b0.350.480.0130.018 b10.190.250.0070.010 C0.250.50.0100.019 c145(typ.)D 4.8 5.00.1880.196E 5.8 6.20.2280.244e 1.270.050e3 3.810.150F 3.8 4.00.140.157L0.4 1.270.0150.050 M0.60.023 S8(max.)0016023 14/15Information furnished is believed to be accurate and reliable.However,STMicroelectroni c s assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.No license is granted by implication or otherwise under any patent or patent rights of STMicroelectroni c s.Specification mentioned in this publication are subject to change without notice.This publication supersedes and replaces all informati o n previously supplied.STMicroelectronics products are not authorized for use as critical components in life support devices or systems withoutexpress written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics©2000STMicroelectronics–Printed in Italy–All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia-Brazil-China-Finland-France-Germany-Hong Kong-India-Italy-Japan-Malaysia-Malta-MoroccoSingapore-Spain-Sweden-Switzerland-United Kingdom-U.S.A..15/15。

mc34063a[1]数据手册

mc34063a[1]数据手册
(3) The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions
VCC Supply voltage
TA
Operating free-air temperature
MC34063AP ZYG
M34063A
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at .
100 Ω
Ipk Oscillator CT
1 Switch Collector
2 Switch Emitter
6 VCC
+ − Comparator 5 Inverting Input
1.25-V Reference Regulator
3 Timing Capacitor
4 GND
2
Submit Documentation Feedback
SOIC – D
0°C to 70°C
PDIP – P QFN – DRJ
SOIC – D
ORDERING INFORMATION(1)
PACKAGE (2)
ORDERABLE PART NUMBER
Tube of 50
MC33063AP
Reel of 1000
MC33063ADRJR
Tube of 75
The MC33063A is characterized for operation from –40°C to 85°C, while the MC34063A is characterized for operation from 0°C to 70°C.

PLC技术培训班(第4讲)IEC61131-3标准教程 软件模型 SFC顺序功能图编程语言介绍 自动钻床的系统配置

PLC技术培训班(第4讲)IEC61131-3标准教程 软件模型 SFC顺序功能图编程语言介绍 自动钻床的系统配置
任务能周期地或由于一定的事件来处理,它们具有优先权级, 优先权是定义在资源内部分配给CPU的时间段。
有若干种类型的任务: a. 周期任务,b. 时间控制任务(时间间隔任务), c. 事件控制任务(事件任务),e. 中断任务
任务说明是由任务名,它的优先权级,以及任务执行时的条 件,条件可以是时间间隔,一个事件〈数字量输入的上升 沿或全局变量的伪(false)/真(true)变化〉或一个中断, 每一个任务能分配若干个程序,这些程序将由任务来激活。 程序是按照所指示的顺序来处理的。
PLC技术培训班 (第4讲)IEC61131-3标准教程
1 2020/8/6
热烈欢迎
2 2020/8/6
PLC培训班(第4讲)IEC 61131-3 编程语言标准介绍
1. IEC 61131-3 PLC 标准通用信息 2. IEC 61131-3 PLC 标准软件模型 3. IEC 61131-3 PLC 标准通信模式 4. IEC 61131-3 PLC 标准通用语言单元 5. IEC 61131-3 PLC 编程语言
9 2020/8/6
该标准还提供一个测试基础,允许制造商和 客户都能评估,每一个编程系统符合IEC标准 的接近程度。 为了进一步证明兼容性,PLCopen国际组织, 进一步定义兼容性等级的测试,而这些测试是 由独立的机构进行的。
10 2020/8/6
IEC 61131-3 PLC 标准软
件模型
11 2020/8/6
Function (功能)
18 2020/8/6
IEC 61131-3 PLC 标准软件模型 (程序)
整个程序具有实时性质,程序能在CPU中运行, 是由分配程序的任务来解决的,一个程序能分 配给若干个任务,亦即这若干个程序的背景是 在不同的实时性质下生成。程序中的一个是主 程序被分配给PLC外部设备、全局变量和访问路 径。

max3485esa中文资料

max3485esa中文资料

General Description The MAX3483, MAX3485, MAX3486, MAX3488,MAX3490, and MAX3491 are 3.3V , low-power transceivers forRS-485 and RS-422 communication. Each part containsone driver and one receiver. The MAX3483 and MAX3488feature slew-rate-limited drivers that minimize EMI andreduce reflections caused by improperly terminatedcables, allowing error-free data transmission at data ratesup to 250kbps. The partially slew-rate-limited MAX3486transmits up to 2.5Mbps. The MAX3485, MAX3490, andMAX3491 transmit at up to 10Mbps.Drivers are short-circuit current-limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if both inputs are opencircuit.The MAX3488, MAX3490, and MAX3491 feature full-duplex communication, while the MAX3483, MAX3485, andMAX3486 are designed for half-duplex communication.Applications ●Low-Power RS-485/RS-422 Transceivers ●Telecommunications ●Transceivers for EMI-Sensitive Applications ●Industrial-Control Local Area NetworksFeatures●Operate from a Single 3.3V Supply—No Charge Pump!●Interoperable with +5V Logic ●8ns Max Skew (MAX3485/MAX3490/MAX3491)●Slew-Rate Limited for Errorless Data Transmission (MAX3483/MAX3488)●2nA Low-Current Shutdown Mode (MAX3483/MAX3485/MAX3486/MAX3491)●-7V to +12V Common-Mode Input Voltage Range ●Allows up to 32 Transceivers on the Bus ●Full-Duplex and Half-Duplex Versions Available ●Industry Standard 75176 Pinout (MAX3483/MAX3485/MAX3486)●Current-Limiting and Thermal Shutdown for Driver Overload Protection 19-0333; Rev 1; 5/19Ordering Information continued at end of data sheet.*Contact factory for for dice specifications.PARTTEMP . RANGE PIN-PACKAGE MAX3483CPA0°C to +70°C 8 Plastic DIP MAX3483CSA0°C to +70°C 8 SO MAX3483C/D0°C to +70°C Dice*MAX3483EPA-40°C to +85°C 8 Plastic DIP MAX3483ESA-40°C to +85°C 8 SO MAX3485CPA0°C to +70°C 8 Plastic DIP MAX3485CSA0°C to +70°C 8 SO MAX3485C/D0°C to +70°C Dice*MAX3485EPA-40°C to +85°C 8 Plastic DIP MAX3485ESA -40°C to +85°C 8 SO PARTNUMBERGUARANTEED DATA RATE (Mbps)SUPPLY VOLTAGE (V)HALF/FULL DUPLEX SLEW-RATE LIMITED DRIVER/RECEIVER ENABLE SHUTDOWN CURRENT (nA)PIN COUNT MAX34830.25 3.0 to 3.6Half Yes Yes 28MAX348510Half No No 28MAX34862.5Half Yes Yes 28MAX34880.25Half Yes Yes —8MAX349010Half No No —8MAX349110Half No Yes 214MAX3483/MAX3485/MAX3486/MAX3488/MAX3490/MAX3491Selection TableOrdering Information找电子元器件上宇航军工Figure 1. MAX3483/MAX3485/MAX3486 Pin Configuration and Typical Operating Circuit Figure 2. MAX3488/MAX3490 Pin Configuration and Typical Operating Circuit Figure 3. MAX3491 Pin Configuration and Typical Operating CircuitMAX3486/MAX3488/MAX3490/MAX3491True RS-485/RS-422 TransceiversFigure 22. MAX3488/MAX3490/MAX3491 Full-Duplex RS-485 NetworkFigure 23. Line Repeater for MAX3488/MAX3490/MAX3491MAX3486/MAX3488/MAX3490/MAX3491True RS-485/RS-422 Transceivers。

SPAD346C3

SPAD346C3

P22
SPAD 346C3- 變壓器接法匹配對照表
設定單元 說 明 設定值 SGF1 /1
0
SGF1 /2
0
SGF1 /3
1
SGF1 /4
0
SGF1 /5
1
SGF1 /6
0
SGF1 /7
0
SGF1/8
0
CHECK SUM
FOR
SETTING
OF
SGF1
20
P23
SPAD 346C3-功能規劃開關組SGF2(諧波抑制)
P35

RESET STEP
鍵大約1秒

RESET STEP
鍵大約1秒

RESET STEP
鍵大約1秒

RESET STEP
鍵大約0.5秒

RESET
STEP
鍵大約0.5秒

RESET STEP
鍵大約0.5秒
(輕按一下)
(輕按一下)
(輕按一下)
操作方式 : 1.按住
RESET SETP
鍵,直到小螢幕出現紅色d且黃色燈號亮至L1(I1)位置
• CT 誤差,以5P20為例,誤差為5%,高低壓側各一組CT 誤差共10% • 變壓器之分接頭,每分接頭誤差為1.67%,有9個分接頭的 誤差為9*1.67=15%
• 變壓器之無載電流
• 變壓器之過激在過壓和欠頻時機
•在CT已飽和時,大電流流過變壓器
P3
SPAD 346C3 - 特性
1.有抑制二次及五次諧波能力的三相差動保護電驛. 1)當變壓器送電時,產生突波電流含二次諧波成分 SPAD 346C3針對二次諧波加以抑制(Block) 2)當變壓器欠頻或過頻產生過激磁時,產生差動電流含五次諧波成 SPAD 346C3針對五次諧波加以抑制(Block) 3)當變壓器過壓嚴重時,可能造成變壓器損壞 SPAD 346C3針對解除五次諧波抑制(Block) 2.一般使用容量在10MVA以上之二個繞組電力變壓器,容量在5000KW以上之發電機組 3.對二個繞組電力變壓器而言,不需加裝中間級的匹配比流器,利用SPAD 346C3 內部數位的方式設定相角匹配,同時也可以消除相電流中零相序成分. 4.以數位方式修正比流器比值誤差. 5.差動動作時間: 1)在1.5~4 x Id/In>,則動作時間 < 50ms. 2)在4 x Id/In> 以上,則動作時間 < 45ms. 6.瞬時差動元件分別設定: 1)在1.1~2.6 x Id/In>,則動作時間 < 35ms. 2)在2.6 x Id/In>以上,則動作時間 < 25ms. 7.具有靈敏的相電流及相角顯示,方便於檢查迴路(比流器迴路) 的接線及相位補償是否正確 8.具有可紀錄故障波形紀錄器

MAX3467CSA中文资料

MAX3467CSA中文资料

MAX3467CSA中文资料General DescriptionThe MAX3465–MAX3469 are high-speed differential bus transceivers for RS-485 and RS-422 communica-tions. They are designed to meet TIA/EIA-422-B,TIA/EIA-485-A, V.11, and X.27 standards. The trans-ceiver complies with the Profibus specification provid-ing +2.1V minimum output level with a 54?load,40Mbps data rate, and output skew less than 2ns. Each part contains one three-state differential line driver and one differential input line receiver. The devices operate from a +5V supply and feature true fail-safe circuitry,which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This enables all receiver outputs on a terminated bus to output logic highs when all transmitters are disabled.All devices feature a 1/4-standard-unit load receiver input impedance that allows 128 transceivers on the bus. Driver and receiver propagation delays are guar-anteed under 20ns for multidrop, clock distribution applications. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal-shutdown circuitry. The driver and receiver feature active-high and active-low enables, respective-ly, that can be connected together externally to serve as a direction control.ApplicationsHigh-Speed RS-485 Communications High-Speed RS-422 Communications Level TranslatorsIndustrial-Control Local Area Networks Profibus Applications Featureso Recommended for Profibus Applicationso Up to 40Mbps Data Rateo 15ns Transmitter Propagation Delay o 20ns Receiver Propagation Delay o 2ns Transmitter and Receiver Skew o High Differential Driver Output Level (2.1V on 54?)o Hot-Swap Versionso 1μA Shutdown Sup ply Currento Low Supply Current Requirements (2.5mA, typ)o Allow Up to 128 Transceivers on the Buso True Fail-Safe Receiver while Maintaining EIA/TIA-485 Compatibility o Designed for Multipoint Transmissions on Long or Noisy Bus Lines o Full-Duplex and Half-Duplex Versions Available o Phase Controls to Correct for Twisted-Pair Reversal for 14-Pin Versions o Current-Limiting and Thermal Shutdown for Driver Overload ProtectionMAX3465–MAX3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 TransceiversOrdering Information19-3038; Rev 0; 10/03For pricing, delivery, and ordering information,pleasecontact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering Information continued at end of data sheet.Pin Configurations appear at end of data sheet.M A X 3465–M A X 3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers2___________________________________________________________________ ____________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposureto absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC ) to GND..................................-0.3V to +6V Control Input Voltage (RE , DE, DI, SHDN, TXP, RXP)to GND....................................................-0.3V to (V CC + 0.3V)Driver Output Voltage (Y, Z) to GND.........................-8V to +13V Receiver Input Voltage (A, B) to GND.......................-8V to +13V Differential Driver Output Voltage (Y - Z)...............................±8V Differential Receiver Input (A - B)..........................................±8V Receiver Output Voltage (RO) to GND.......-0.3V to (V CC + 0.3V)Output Driver Current (Y, Z)...........................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C)................471mW 8-Pin DIP (derate 9.09mW/°C above +70°C)...............727mW 14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW 14-Pin DIP (derate 10mW/°C above +70°C)................800mW Operating Temperature RangeMAX346_C__......................................................0°C to +70°C MAX346_E__....................................................-40°C to +85°C Junction Temper ature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3465–MAX3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers________________________________________________________________ _______________________3ELECTRICAL CHARACTERISTICS (continued)Note 2:?V OD and ?V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback-current limiting; the short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.Note 4:Capacitive load includes test probe and fixture capacitance.Note 5:Shutdown is enabled by bringing RE high and DE low or by bringing SHDN high. If the enable inputs are in this state for lessthan 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 800ns, the device is guaranteed to have entered shutdown.M A X 3465–M A X 3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers4___________________________________________________________________ ____________________ELECTRICAL CHARACTERISTICS (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Note 1)NO-LOAD SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)N O -L O A D S U P P L Y C U R R E N T (m A ) 6040-20202.152.202.252.302.352.402.452.502.10-4080OUTPUT CURRENTvs. RECEIVER OUTPUT LOW VOLTAGEM A X 3465 t o c 02OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )4.54.03.53.02.52.01.51.00.510203*********5.0OUTPUT CURRENTvs. RECEIVER OUTPUT HIGH VOLTAGEM A X 3465 t o c 03OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )4321510152025303505Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)MAX3465–MAX3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers________________________________________________________________ _______________________5RECEIVER PROPAGATION DELAYvs. TEMPERATUREM A X 3465 t o c 07TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )603510-15121416182010-4085DRIVER PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )603510-156810124-4085DRIVER DIFFERENTIAL OUTPUT VOLTAGEvs. TEMPERATURE TEMPERATURE (°C)O U T P U T V O L T A G E (V )603510-152.53.03.52.0-4085DRIVER OUTPUT CURRENTvs. DIFFERENTIAL OUTPUT VOLTAGE M A X 3465 t o c 10 DIFFERENTIAL OUTPUT VOLTAGE (V) O U T P U T C U R R E N T (m A )43211101000.15OUTPUT CURRENTvs. DRIVER OUTPUT LOW VOLTAGE M A X 3465 t o c 11OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )96340801201602000012-160-120-80-400-7-1-5-3135OUTPUT CURRENTvs. DRIVER OUTPUT HIGH VOLTAGE OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics (continued)(V CC = +5V, T A = +25°C, unless otherwise noted.)SHUTDOWN SUPPLY CURRENTvs. TEMPERATUREM A X 3465 t o c 04TEMPERATURE (°C)S H U T D O W N S U P P L Y C U R R E N T (n A )603510-15501001502002503000-4085RECEIVER OUTPUT LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)R E C E I V E R O U T P U T L O W V O L T A G E (m V )603510-157510012515017520050-4085RECEIVER OUTPUT HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)R E C E I V E R O U T P U T H I G H V O L T A G E (m V )603510-154.654.704.754.804.854.904.60-4085M A X 3465–M A X 3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 TransceiversTypical Operating Characteristics (continued)(V CC = +5V, T A = +25°C, unless otherwise noted.)DRIVER AND RECEIVER PROPAGATION DELAYSMAX3465 toc1310ns/div5V/div 5V/div2V/divY, Z DI RO R DIFF = 54?DATA RATE = 20Mbps ENABLE RESPONSE TIME20ns/div5V/div 1V/divY, Z DER DIFF = 54?EYE DIAGRAMMAX3465 toc1510ns/div1V/divY, Z R DIFF = 54?DATA RATE = 20MbpsMAX3465–MAX3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers________________________________________________________________ _______________________7MAX3465/MAX3466Function TablesMAX3467MAX3468/MAX3469M A X 3465–M A X 3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers 8________________________________________________________________ _______________________Pin Configurations and Typical Operating CircuitFigure 1. MAX3465/MAX3466 Pin Configuration and Typical Full-Duplex Operating CircuitFigure 2. MAX3467 Pin Configuration and Typical Full-Duplex Operating CircuitFigure 3. MAX3468/MAX3469 Pin Configuration and Typical Full-Duplex Operating CircuitMAX3465–MAX3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers________________________________________________________________ _______________________9Detailed DescriptionThe MAX3465–MAX3469 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature true fail-safe cir-cuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all drivers disabled (see the T rue Fail-Safe sec-tion). The MAX3465–MAX3469’s driver slew rates allowtransmit speeds up to 40Mbps.The MAX3468 and MAX3469 are half-duplex trans-ceivers, while the MAX3465, MAX3466, and MAX3467are full-duplex transceivers. All of these parts operate from a single +5V supply. Drivers are output short-cir-cuit current limited. Thermal-shutdown circuitry protects drivers against excessive power dissipation. When acti-vated, the thermal-shutdown circuitry places the driver outputs into a high-impedance state. The MAX3465and MAX3468 devices have a hot-swap input structure that prevents disturbances on the differential signal lines when a circuit board is plugged into a hot back-plane (see the Hot-Swap Capability section). All devices have output levels that are compatible with Profibus standards.True Fail-SafeThe MAX3465–MAX3469 guarantee a logic-high receiv-er output when the receiver inputs are shorted or open,or when they are connected to a terminated transmis-sion line with all drivers disabled. This is done by set-ting the receiver threshold between -50mV and -200mV. If the differential receiver input voltage (A - B)is greater than or equal to -50mV, RO is logic high. If A - B is less than or equal to -200mV, RO is logic low. In the case of a terminated bus with all transmitters dis-abled, the receiver ’s differential input voltage is pulled to 0V by the termination. With the receiver thresholds of the MAX3465–MAX3469, this results in a logic high with a 50mV minimum noise margin. Unlike previous true fail-safe devices, the -50mV to -200mV threshold com-plies with the ±200mV EIA/TIA-485 standard.Hot-Swap CapabilityHot-Swap InputsWhen circuit boards are inserted into a “hot ” or pow-ered backplane, disturbances to the enable and differ-ential receiver inputs can lead to data errors. Upon initial circuit board insertion, the processor undergoes its power-up sequence. During this period, the proces-sor output drivers are high impedance and are unable to drive the DE input of the MAX3465/MAX3468 to a defined logic level. Leakage currents up to 10μA from the high-impedance output could cause DE to drift to an incorrect logic state. Additionally, parasitic circuit board capacitance could cause coupling of V CC or GND to DE.These factors could improperly enable the driver.When V CC rises, an internal pulldown circuit holds DE low for around 15μs. After the initial power-up sequence, the pulldown circuit becomes transparent,resetting the hot-swap-tolerable input.Hot-Swap Input CircuitryThe MAX3465/MAX3468 enable inputs feature hot-swap capability. At the input there are two NMOS devices, M1and M2 (Figure 4). When V CC ramps from 0, an internal 15μs timer turns on M2 and sets the SR latch, which also turns on M1. Transistors M2, a 2mA current sink,and M1, a 100μA current sink, pull DE to GND through a 5.6k ?resistor. M2 is designed to pull DE to the disabled state against an external parasitic capacitance up to 100pF that can drive DE high. After 15μs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1remains on until an external source overcomes the required input current. At this time, the SR latch resets and M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CC drops below 1V, the hot-swap input is reset.For RE there is a complementary circuit employing two PMOS devices pulling to V CC .Figure 4. Simplified Structure of the Driver Enable Pin (DE) M A X 3465–M A X 3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers10__________________________________________________________________ ____________________Figure 5. Driver DC Test LoadFigure 6. Driver Timing Test CircuitFigure 7. Driver Propagation DelaysFigure 9. Driver Enable and Disable TimesFigure 10. Receiver Propagation DelaysFigure 11. Receiver Enable and Disable TimesFigure 8. Enable/Disable Timing Test LoadMAX3465–MAX3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers________________________________________________________________ ______________________11Applications Information128 Transceivers on the BusThe standard RS-485 receiver input impedance is 12k ?(one unit load), and the standard driver can drive up to 32 unit loads. The MAX3465–MAX3469 family of trans-ceivers has a 1/4-unit-load receiver input impedance (48k ?), allowing up to 128 transceivers to be connect-ed in parallel on one communication line. Any combina-tion of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.Low-Power Shutdown Mode(Except MAX3467)Low-power shutdown mode is initiated by bringing SHDN high (MAX3465/MAX3466), or both RE high and DE low. In shutdown, the devices typicall y draw only 1μA of supply current. RE and DE can be driven simul-taneously; the devices are guaranteed not to enter shut-down if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 800ns, the devices are guaranteed to enter shutdown.Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus con-tention. The first, a foldback current limit on the output stage, provides immediate protection against short cir-cuits over the whole common-mode voltage range (see the T ypical Operating Characteristics ). The second, a thermal-shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds +140°C.Propagation DelayMany digital encoding schemes depend on the difference between the driver and receiver propagation delay times.Typical propagation delays are shown in the Typical Operating Characteristics . The difference in receiver delay times, |t PLH - t PHL |, is a maximum of 2ns. The driver skew time |t PLH - t PHL | is also a maximum of 2ns.Typical ApplicationsThe MAX3465–MAX3469 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 13 and 14 show typical net-work applications circuits. To minimize reflections, the line should be terminated at both ends in its character-istic impedance, and stub lengths off the main line should be kept as short as possible.Profibus TerminationThe MAX3465–MAX3469 are designed for driving Profibus termination networks. With a worst-case load-ing of two termination networks with 220?termination impedance and 390?pullups and pulldowns, the dri-vers can drive V A-B > 2.1V output.Chip InformationTRANSISTOR COUNT: 610PROCESS: BiCMOSFigure 12. Receiver Propagation Delay Test CircuitOrdering Information (continued)M A X 3465–M A X 3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers12__________________________________________________________________ ____________________Figure 13. Typical Half-Duplex RS-485 NetworkFigure 14. Typical Full-Duplex RS-485 NetworkMAX3465–MAX3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers________________________________________________________________ ______________________13Package InformationM A X 3465–M A X 3469+5V , Fail-Safe, 40Mbps, Profibus RS-485/RS-422 Transceivers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.14____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600?2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。

MAX3232中文资料.pdf

MAX3232中文资料.pdf

MAX3222/MAX3232/MAX3237/MAX32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容________________________________________________________________Maxim Integrated Products119-0273; Rev 7; 1/07MegaBaud和UCSP是Maxim Integrated Products, Inc.的商标。

本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。

如需进一步确认,请在您的设计中参考英文资料。

有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),或访问Maxim的中文网站:。

M A X 3222/M A X 3232/M A X 3237/M A X 32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 1:V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.V CC ...........................................................................-0.3V to +6V V+ (Note 1)...............................................................-0.3V to +7V V- (Note 1)................................................................+0.3V to -7V V+ + V- (Note 1)...................................................................+13V Input VoltagesT_IN, SHDN , EN ...................................................-0.3V to +6V MBAUD...................................................-0.3V to (V CC + 0.3V)R_IN.................................................................................±25V Output VoltagesT_OUT...........................................................................±13.2V R_OUT....................................................-0.3V to (V CC + 0.3V)Short-Circuit DurationT_OUT....................................................................ContinuousContinuous Power Dissipation (T A = +70°C)16-Pin TSSOP (derate 6.7mW/°C above +70°C).............533mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C)....696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)........762mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)...842mW 18-Pin SO (derate 9.52mW/°C above +70°C)..............762mW 18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)..889mW 20-Pin SSOP (derate 7.00mW/°C above +70°C).........559mW 20-Pin TSSOP (derate 8.0mW/°C above +70°C).............640mW 28-Pin TSSOP (derate 8.7mW/°C above +70°C).............696mW 28-Pin SSOP (derate 9.52mW/°C above +70°C).........762mW 28-Pin SO (derate 12.50mW/°C above +70°C).....................1W Operating Temperature RangesMAX32_ _C_ _.....................................................0°C to +70°C MAX32_ _E_ _ .................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3222/MAX3232/MAX3237/MAX32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容_______________________________________________________________________________________3TIMING CHARACTERISTICS—MAX3222/MAX3232/MAX3241(V CC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)ELECTRICAL CHARACTERISTICS (continued)(V CC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)A X 3222/M A X 3232/M A X 3237/M A X 32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容4_______________________________________________________________________________________典型工作特性Ω, T A = +25°C, unless otherwise noted.)LOAD CAPACITANCE (pF)0246810121416182022150MAX3222/MAX3232SLEW RATEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /µs )20003000100040005000510152025303540MAX3222/MAX3232SUPPLY CURRENT vs. LOAD CAPACITANCEWHEN TRANSMITTING DATALOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )20003000100040005000TIMING CHARACTERISTICS—MAX3237(V CC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)Note 2:MAX3222/MAX3232/MAX3241: C1–C4 = 0.1µF tested at 3.3V ±10%; C1 = 0.047µF, C2–C4 = 0.33µF tested at 5.0V ±10%.MAX3237: C1–C4 = 0.1µF tested at 3.3V ±5%; C1–C4 = 0.22µF tested at 3.3V ±10%; C1 = 0.047µF, C2–C4 = 0.33µF tested at 5.0V ±10%.Note 3:Transmitter input hysteresis is typically 250mV.MAX3222/MAX3232/MAX3237/MAX32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容_______________________________________________________________________________________5-7.5-5.0-2.502.55.07.50MAX3241TRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )2000300010004000500046810121416182022240MAX3241SLEW RATEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /µs )20003000100040005000510152025303545400MAX3241SUPPLY CURRENT vs. LOADCAPACITANCE WHEN TRANSMITTING DATALOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )20003000100040005000-7.5-5.0-2.502.55.07.50MAX3237TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = GND)LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )200030001000400050000102030504060700MAX3237SLEW RATE vs. LOAD CAPACITANCE(MBAUD = V CC )LOAD CAPACITANCE (pF)S L E W R A T E (V /µs )500100015002000-7.5-5.0-2.502.55.07.50MAX3237TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = V CC )LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )5001000150020001020304050600MAX3237SUPPLY CURRENT vs.LOAD CAPACITANCE (MBAUD = GND)LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )200030001000400050000246810120MAX3237SLEW RATE vs. LOAD CAPACITANCE(MBAUD = GND)LOAD CAPACITANCE (pF)S L E W R A T E (V /µs )2000300010004000500010302040506070MAX3237SKEW vs. LOAD CAPACITANCE(t PLH - t PHL )LOAD CAPACITANCE (pF)1000150050020002500____________________________________________________________________典型工作特性(续)(V CC = +3.3V, 235kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k Ω, T A = +25°C, unless otherwise noted.)M A X 3222/M A X 3232/M A X 3237/M A X 32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容6_________________________________________________________________________________________________________________________________________________________________引脚说明MAX3222/MAX3232/MAX3237/MAX32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容_______________________________________________________________________________________7_______________________________详细说明双电荷泵电压转换器MAX3222/MAX3232/MAX3237/MAX3241的内部电源由两路稳压型电荷泵组成,只要输入电压(V CC )在3.0V至5.5V范围以内,即可提供+5.5V (倍压电荷泵)和-5.5V (反相电荷泵)输出电压。

诺基亚智能手机使用指南说明书

诺基亚智能手机使用指南说明书
Bulbs, Halogen............................... 290
C
Capacities Chart .................... 344, 346 Carbon Monoxide Hazard .............. 52 Carrying Cargo .............................. 202 Cassette Player
Charging System Indicator .... 58, 328 Checklist, Before Driving............. 206 Child Safety ...................................... 20 Child Seats........................................ 25
Before Driving ............................... 191 Belts, Seat ..................................... 8, 41 Beverage Holder............................ 101 Body Repair .................................... 310
Maintenance............................... 279 Usage .................................. 111, 117 Air Outlets (Vents)................ 110, 115 Air Pressure, Tires ........................ 282 Alcohol in Gasoline........................ 350 Aluminum Wheels, Cleaning........ 305 Antifreeze ....................................... 253 Anti-lock Brakes (ABS) Indicator................................ 59, 219 Operation .................................... 218 Anti-theft, Audio System............... 179 Anti-theft Steering Column Lock .. 76

MAX3469中文资料

MAX3469中文资料
元器件交易网
MAX3465–MAX3469
19-3038; Rev 0; 10/03
+5V, Fail-Safe, 40Mbps, Profibus RS-485/ RS-422 Transceivers
General Description
The MAX3465–MAX3469 are high-speed differential bus transceivers for RS-485 and RS-422 communications. They are designed to meet TIA/EIA-422-B, TIA/EIA-485-A, V.11, and X.27 standards. The transceiver complies with the Profibus specification providing +2.1V minimum output level with a 54Ω load, 40Mbps data rate, and output skew less than 2ns. Each part contains one three-state differential line driver and one differential input line receiver. The devices operate from a +5V supply and feature true fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This enables all receiver outputs on a terminated bus to output logic highs when all transmitters are disabled.

萨奥丹佛斯柱塞泵手册

萨奥丹佛斯柱塞泵手册

AA
© 2007 Sauer-Danfoss. All rights reserved. Printed in U.S.A. Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer-Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations aren’t in conflict with agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss and the Sauer-Danfoss logotype are trademarks of the Sauer-Danfoss Group.
萨奥丹佛斯柱塞泵手册萨奥柱塞泵萨奥丹佛斯官网萨奥丹佛斯上海萨奥丹佛斯萨奥丹佛斯液压泵萨奥丹佛斯中国丹佛斯柱塞泵济宁萨奥机械有限公司萨奥液压泵
42系列 轴向柱塞闭式泵 服务手册
42系列轴向柱塞闭式泵 服务手册 版本
版本信息 修改信息表
日期 页码 修改项 Rev.
2008年7月
-
ቤተ መጻሕፍቲ ባይዱ
第一版,基于英文版520L0638,Rev BA
功能描述
概述及剖视图...................................................................................................................................................................10 系统回路图........................................................................................................................................................................11 泵特征..................................................................................................................................................................................11 基本闭式回路.............................................................................................................................................................11 壳体回油及散热器. ..................................................................................................................................................11 补油泵. ..........................................................................................................................................................................11 补油溢流阀..................................................................................................................................................................12 回路冲洗阀..................................................................................................................................................................12 过滤方式选项...................................................................................................................................................................13 排量限制器........................................................................................................................................................................14 单向补油/高压溢流阀..................................................................................................................................................14 旁通阀..................................................................................................................................................................................14 辅助安装法兰盘. .............................................................................................................................................................15

MAX313中文资料

MAX313中文资料

Note 1: Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current rating.
元器件交易网
MAX312/MAX313/MAX314
10Ω, Quad, SPST, CMOS Analog Switches
ABSOLUTE MAXIMUM RATINGS
Voltages Referenced to GND V+ ...........................................................................-0.3V to +44V V- ............................................................................+0.3V to -44V V+ to V-...................................................................-0.3V to +44V VL .....................................................(GND - 0.3V) to (V+ + 0.3V) All Other Pins (Note 1) ................................(V- - 2V) to (V+ + 2V)
Range (2Ω max) o Guaranteed ESD Protection > 2000V per Method

MAX3490及MAX3491

MAX3490及MAX3491

VIH DE, DI, RE
2.0
VIL DE, DI, RE
IIN1 DE, DI, RE
IIN2
DE = 0V, VCC = 0V or 3.6V
VIN = 12V VIN = -7V
IO
DE = 0V, RE = 0V,
VOUT = 12V
VCC = 0V or 3.6V, MAX3491 VOUT = -7V
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States (Note 1)
SYMBOL
CONDITIONS
RL = 100Ω (RS-422), Figure 4
VOD RL = 54Ω (RS-485), Figure 4 RL = 60Ω (RS-485), VCC = 3.3V, Figure 5
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

LINEAR LT3463 LT3463A 数据手册

LINEAR LT3463 LT3463A 数据手册

12LT3463/LT3463A3463fABSOLUTE AXI U RATI GSW W WU PACKAGE/ORDER I FOR ATIOUUW (Note 1)V IN , SHDN1, SHDN2 Voltage ...................................15V SW1, SW2, V OUT1 Voltage.......................................42V D2 Voltage.............................................................–42V FB1, FB2 Voltage Range ..............................–0.3V to 2V Junction Temperature...........................................125°C Operating Ambient Temperature Range(Note 2)..............................................–40°C to 85°C Storage Temperature Range.................–65°C to 125°CORDER PART NUMBER LT3463EDD LT3463AEDD DD PART MARKINGELECTRICAL CHARACTERISTICSThe q denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. V IN = 2.5V, V SHDN = 2.5V unless otherwise noted.PARAMETERCONDITIONSMINTYP MAX UNITSMinimum Input Voltage 2.2 2.4V Total Quiescent Current For Both Switchers, Not Switching 4060µA Shutdown Current V SHDN1 = V SHDN2 = 0V 0.11µA V REF Pin VoltageWith 124k Ω to GND q 1.23 1.25 1.27V V REF Pin Voltage Line Regulation With 124k Ω to GND 0.050.10%/V FB1 Comparator Trip Voltage High to Low Transition q1.2251.25 1.275V FB1 Comparator Hysteresis 8mV FB1 Line Regulation2.5V < V IN < 15V 0.050.10%/V FB1 Pin Bias Current (Note 3)V FB1 = 1.3Vq 2050nA FB2 Comparator Trip Voltage Low to High Transition q312mV FB2 Comparator Hysteresis8mV FB2 Line Regulation (V REF – V FB2) 2.5V < V IN < 15V 0.050.10%/V FB2 Pin Bias Current (Note 4)V FB2 = –0.1V q2050nA SW1 Switch Off Time V OUT1 – V IN = 4V 300ns V OUT1 – V IN = 0V 1.5µs SW2 Switch Off Time V FB2 < 0.1V 300ns V FB2 = 1V 1.5µs Switch V CESAT (SW1, SW2)I SW = 150mA 180mV Switch Current Limit (SW1)180250320mA Switch Current Limit (SW2)LT3463180250320mA LT3463A320400460mA Swith Leakage Current (SW1, SW2)Switch Off, V SW = 42V 0.011µA Schottky Forward Voltage (V OUT1, D2)I D = 150mA750mV Schottky Reverse Leakage Current V OUT1 – V SW = 42V 15µA V D2 = –42V 15µA SHDN1 Pin Current V SHDN1 = 2.5V 410µA SHDN2 Pin CurrentV SHDN2 = 2.5V410µA SHDN1/SHDN2 Start-Up Threshold0.311.5VNote 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.Note 2: The LT3463/LT3463A are guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the –40°C to 85°CT JMAX = 125°C, θJA = 43°C/W, θJC = 3°C/WEXPOSED PAD (PIN 11) IS GND AND MUST BE SOLDERED TO PCBLAFC LBJKConsult LTC Marketing for parts specified with wider operating temperature ranges.TOP VIEWDD PACKAGE10-LEAD (3mm × 3mm) PLASTIC DFN 10967845321FB1SHDN1SHDN2V REF FB2V OUT1SW1V IN SW2D211operating ambient temperature range are assured by design,characterization and correlation with statistical process controls.Note 3: Bias current flows into the FB1 pin.Note 4: Bias current flows out of the FB2 pin.3LT3463/LT3463A45LT3463/LT3463A3463fChoosing an InductorSeveral recommended inductors that work well with the LT3463 are listed in Table 1, although there are many other manufacturers and devices that can be used. Consult each manufacturer for more detailed information and for their entire selection of related parts. Many different sizes and shapes are available. Use the equations and recommenda-tions in the next few sections to find the correct inductance value for your design.Table 1. Recommended InductorsMAX MAX HEIGHTPART L (µH)I DC (mA)DCR(Ω)(mm)MANUFACTURER CMD4D064.77500.220.8Sumida 105000.46(847) 956-066622310 CDRH3D16105000.19 1.8Sumida 223100.36LPO48124.76000.16 1.2Coilcraft 104000.30(847) LQH32C104500.39 1.8Murata 153000.75(714) LQH31C4.73400.85 1.8MurataInductor Selection—Boost RegulatorThe formula below calculates the appropriate inductorvalue to be used for a boost regulator using the LT3463 (or at least provides a good starting point). This value pro-vides a good tradeoff in inductor size and system perfor-mance. Pick a standard inductor close to this value. A larger value can be used to slightly increase the available output current, but limit it to around twice the value calculated below, as too large of an inductance will in-crease the output voltage ripple without providing much additional output current. A smaller value can be used (especially for systems with output voltages greater than 12V) to give a smaller physical size. Inductance can be calculated as:L V V V I t OUT IN MIN DLIMOFF=−+()where V D = 0.5V (Schottky diode voltage), I LIM = 250mA (or 400mA) and t OFF = 300ns; for designs with varying V INAPPLICATIO S I FOR ATIOW UUU such as battery powered applications, use the minimum V IN value in the above equation. For most regulators with output voltages below 7V, a 4.7µH inductor is the best choice, even though the equation above might specify a smaller value.For higher output voltages, the formula above will give large inductance values. For a 3V to 20V converter (typical LCD Bias application), a 21µH inductor is called for with the above equation, but a 10µH inductor could be used without much reduction in the maximum output current.Inductor Selection—Inverting RegulatorThe formula below calculates the appropriate inductor value to be used for an inverting regulator using the LT3463 (or at least provides a good starting point). This value provides a good tradeoff in inductor size and system performance. Pick a standard inductor close to this value (both inductors should be the same value). A larger value can be used to slightly increase the available output current, but limit it to around twice the value calculated below, as too large of an inductance will increase the output voltage ripple without providing much additional output current. A smaller value can be used (especially for systems with output voltages greater than 12V) to give a smaller physical size. Inductance can be calculated as:L V V I t OUT D LIM OFF =+2where V D = 0.5V (Schottky diode voltage), I LIM = 250mA (or 400mA) and t OFF = 300ns.For higher output voltages, the formula above will give large inductance values. For a 3V to 20V converter (typical LCD bias application), a 49µH inductor is called for with the above equation, but a 10µH or 22µH inductor could be used without much reduction in the maximum output current.Inductor Selection—Inverting Charge Pump Regulator For the inverting regulator, the voltage seen by the internal power switch is equal to the sum of the absolute value of the input and output voltages, so that generating high6LT3463/LT3463A3463finrush current include a larger more abrupt voltage step at V IN , a larger output capacitor tied to the outputs, and an inductor with a low saturation current.While the internal diode is designed to handle such events,the inrush current should not be allowed to exceed 1 amp.For circuits that use output capacitor values within the recommended range and have input voltages of less than 5V, inrush current remains low, posing no hazard to the device. In cases where there are large steps at V IN and/or a large capacitor is used at the outputs, inrush current should be measured to ensure safe operation.Setting the Output VoltagesThe output voltages are programmed using two feedback resistors. As shown in Figure 1, resistors R1 and R2program the positive output voltage (for Switcher 1), and resistors R3 and R4 program the negative output voltage (for Switcher 2) according to the following formulas:V V R R V V R R OUT OUT 1212512112543=+=.–.R1 and R3 are typically 1% resistors with values in the range of 50k to 250k.Board Layout ConsiderationsAs with all switching regulators, careful attention must be paid to the PCB board layout and component placement.To maximize efficiency, switch rise and fall times are made as short as possible. To prevent electromagnetic interfer-ence (EMI) problems, proper layout of the high frequency switching path is essential. The voltage signal of the SW pin has sharp rising and falling edges. Minimize the length and area of all traces connected to the SW pin and always use a ground plane under the switching regulator to minimize interplane coupling. In addition, the ground connection for the feedback resistor R1 should be tied directly to the GND pin and not shared with any other component, ensuring a clean, noise-free connection.APPLICATIO S I FOR ATIOW UUU output voltages from a high input voltage source will often exceed the 50V maximum switch rating. For instance, a 12V to –40V converter using the inverting topology would generate 52V on the SW pin, exceeding its maximum rating. For this application, an inverting charge pump is the best topology.The formula below calculates the approximate inductor value to be used for an inverting charge pump regulator using the LT3463. As for the boost inductor selection, a larger or smaller value can be used. For designs with varying V IN such as battery powered applications, use the minimum V IN value in the equation below.L V V V I t OUT IN MIN DLIMOFF=−+()Capacitor SelectionThe small size and low ESR of ceramic capacitors makes them ideal for LT3463 applications. Use only X5R and X7R types because they retain their capacitance over wider voltage and temperature ranges than other ceramic types.A 1µF input capacitor and a 0.22µF or 0.47µF output capacitor are sufficient for most applications. Table 2shows a list of several ceramic capacitor manufacturers.Consult the manufacturers for more detailed information on their entire selection of ceramic capacitors. For appli-cations needing very low output voltage ripple, larger output capacitor values can be used.Table 2. Recommended Ceramic Capacitor ManufacturersMANUFACTURER PHONE URLAVX Kemet Murata Taiyo Yuden408-573-4150Inrush CurrentWhen V IN is increased from ground to operating voltage while the output capacitor is discharged, an inrush current will flow through the inductor and integrated Schottky diode into the output capacitor. Conditions that increaseInformation furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.78LT3463/LT3463ALinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 q FAX: (408) 434-0507 q © LINEAR TECHNOLOGY CORPORA TION 2003LT/TP 0404 1K • PRINTED IN USA2µs/DIV3463 TA042µs/DIV3463 TA05。

MC34063中文资料极其外围电路计算

MC34063中文资料极其外围电路计算
图1 MC34063A在线电源计算器-Online Power calculation 1脚:开关管T1集电极引出端; 2脚:开关管T1发射极引出端; 3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化; 4脚:电源地; 5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不 低于1%的精密电阻;
图10 非隔离型变压器初级线圈驱动电路
隔离高压大电流变压器初级线圈驱动电路 图11为采用MC34063芯片构成的隔离高压大电流变压器初级线圈驱动电路。当芯片内 部的开关管导通时,MC34063的2脚将呈现高电平,外部P型三极管Q1截止,N型 MOSFET管Q2导通。电流经变压器初级线圈和Q2到地,初级线圈储存能量。当内部开 关管关断时,MC34063的2脚为低电平,Q1导通,Q2截止,初级线圈回路断开。能量 耦合到变压器的次级线圈。从变压器的另一次级线圈对输出电压进行取样,然后经 分压后送到MC34063的5脚可保证输出电压的稳定。该电路中次级主输出端为浮地电 源输出,非常适合医疗等要求浮地的系统使用。 非隔离、隔离在此指输出信号是否和变压器输入部分相连。
40
单位 Vdc
Vdc Vdc
Vdc
射极电压开关
Switch
Collector to
Emitter Voltage
开关
VCE(switch)
40
Vdc
电压集电极到
发射极
Driver
Collector Voltage 驱动
VC(driver)
40
Vdc
集电极电压
Driver
Collector
Current (Note IC(driver) 100
图8 MC34063 升压电路 MC34063组成的电压反向电路 图9为采用MC34063芯片构成的开关反压电路。当芯片内部开关管T1导通时,电流经 MC34063的1脚、2脚和电感Ll流到地,电感Ll存储能量。此时由Co向负载提供能量。 当T1断开时,由于流经电感的电流不能突变,因此,续流二极管D1导通。此时,Ll 经D1向负载和Co供电(经公共地),输出负电压。这样,只要芯片的工作频率相对负 载的时间常数足够高,负载上便可获得连续直流电压。

MC34063中文资料PDF及MC34063应用

MC34063中文资料PDF及MC34063应用

MC34063 中文资料PDF及MC34063应用producte, reparacions d'equips, preparació tècnica i amb capacitatde producció d'equilibri. 86 segons el nostre pla de treball mensual actual dividit en fàbrica, fàbrica grau planificació de feina. 1, planta nivell mesos planific ació i divisió del treball. Plans de fàbrica de productes bàsics ?, incloent-hi: producció, model d'especificacions, el valor de la producció industrial i produir progrés. Elaborat pel Departament de planificació. ? en l'horari del producte, el seuconting ut és en les parts principals de l'horari de calendari de productes i processos clau de convergència de costures, fet pel Departament de producció. Perfil ? tall, forja i soldadura d'horaris elaborats per la planificació i programació Departament. ? utilla tges fabricació pla, elaborat pel Departament de planificació. ? capacitat balanç de situació elaborat pel Departament de planificació. ... Ha de treballar en un equip o b unitats de (crítics) pla de funcionament defàbrica per preparar la feina. Llocs de treball ? branca mesos previst treballar en equips, (crítics) capacitat i equilibri dinàmic. Pla de treball de mes de branca ? elabora els plans de branca, Director de la validació de la branca i va informar a la planificació i programació Departament. Capítol 11: 87 producció col•laboració col•laboració gestió sistema incloent-hi: processament a causa de limitacions de capacitat de producció de fàbrica cal delegar a altres unitats segons projecte defàbrica o altres unitats de processament de petició. 88th que necessitattecnologia cooperació i necessària per la capacitat de producció insuficient fora de les operacions de processament o parts,l'externalització és responsable de Relacions externes i signar un contracte. Moderadors sempre ha d'entendre el pr ogrés de la subcontractació, temps després del final de l'esquena a la fàbrica i una demanda d'informació de qualitat. Parts completats o córrer aspre comprovar els procediments d'emmagatzematge. Intermedi procésmanipulació procediments i signar el formulari de ruta després de lafàbrica per continuar el processament. edat de 89 productes importants o col•laboració de col•laboració externa d'alta precisió en contacte amb unitat de subcontractació, ha informar l'Institut, comprovar el sistema de revisió per la capacitat de producció i garantia de qualitat, productes després de la finalització de la notificació d'acceptació comprovar en lloc. 90è branca necessitat externa processament peces, ha de ser proposat encomanar divises planificació i programaciód'ar ranjaments per a aplicacions de col•laboració externalització (emplenar el formulari processat). unitat 91a a fàbrica ajuda i col•laboració de parts de mecanitzat, es farà associacions tecnològiques fàbrica dels sindicats i segellat, al seu torn planificació i programació segell del Departament, pagat per l'assentament d'Unió.Capítol 12: mesures tècniques sistema 92nd seguretat tecnologia MC34063 中文资料PDF及MC34063应用1. MC34063 DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。

广科 ACPL-P346 引脚参考手册说明书

广科 ACPL-P346 引脚参考手册说明书

ACPL-P346-000E ACPL-P346-000EReference ManualACPL-P346GaN Systems GaN E-HEMT GS66508T HalfBridge Evaluation BoardIntroductionGaN Power SemiconductorsGallium Nitride (GaN) power semiconductors are rapidly emerging into the commercial market delivering huge benefits over conventional Silicon-based power semiconductors. GaN can improve overall system efficiency with lower on-resistance and the higher switching capability can reduce the overall system size and costs. The technical benefits coupled with lower costs have increased the fast adoption of GaN power semiconductors in applications like industrial power supplies and renewable energy inverters.Broadcom® gate drive optocouplers have been used extensively in driving Silicon-based semiconductors like IGBT. This reference manual will describe how gate drive optocoupler, ACPL-P346 can also be used to drive GaN devices.A half-bridge evaluation board featuring GaN Systems 650V E-HEMT GS66508T (30A/50mΩ) transistor and 2.5A gate drive optocoupler, ACPL-P346 will be used to perform the slew rate, switching power loss and efficiency test.ACPL-P346 Reference Manual GaN Systems GaN E-HEMT GS66508T Half Bridge Evaluation Board Figure 1: Half Bridge Evaluation BoardDescription of Half Bridge Evaluation BoardFigure 2 shows the block diagram of the half bridge evaluation board. The universal mother board (GS665MB-EVB) from GaN systems is used to provide the input PWM signals and power to the half bridge evaluation board. Figure 2: Half Bridge Evaluation Board Block Diagram Gate Drive Optocouplers 2 x ACPL-P346Half Bridge Evaluation BoardUniversal Mother Board(GS665MB-EVB) ACPL-P346 Gate Driver Optocoupler ACPL-P346 Gate Driver Optocoupler GS66508TGaN E-HEMTGS66508TGaN E-HEMTACPL-P346 Reference Manual GaN Systems GaN E-HEMT GS66508T Half Bridge Evaluation Board Figure 3: Gate Bias and Driver CircuitFigure3 shows the schematic of the gate bias and driver circuit. The isolated DC-DC 5V to 10V converters (PES1-S5-D5-M) are used to provide +6V and –4V bipolar gate drive bias for more robust gate drive and better noise immunity. The 10V is then split into +6V and –4V bias by using 6V Zener diode.The half bridge evaluation board uses two gate drive optocouplers (ACPL-P346) to drive the GaN transistor directly. The ACPL-P346 is a basic gate driver optocoupler used to isolate and drive the GaN operating at high DC bus voltage. It has a rail-to-rail output with 2.5A maximum output current to provide fast switching high voltage and driving current to turn-on and off the GaN efficiently and reliably. The drive output is separated by a diode and a 10Ω gate resistor is used to limit the current for sourcing and another 2Ω for sinking.The ACPL-P346 has a propagation delay of less than 110ns and typical rise and fall times around 8ns. The very high CMR, common mode rejection of 100kV/µs (min.) is required to isolate high transient noise during the high frequency operation from causing erroneous outputs. It can provide isolation certified by UL1577 for up to V ISO 3750V RMS/min and IEC 60747-5-5 for working voltage, V IORM up to 891V PEAK.Test Circuits and ResultsSlew Rate Test CircuitTwo 60-µH/40A inductors are connected between VDC+ and VSW to form the boost configuration also known as low side test. The low side GaN transistor QA is active in boost mode. 400V Bus voltage is applied to VDC+/VDC–.ACPL-P346 Reference Manual GaN Systems GaN E-HEMT GS66508T Half Bridge Evaluation Board Figure 4: Low Side Slew Rate Test CircuitThe double pulse test is used for easy evaluation of device switching performance at high voltage/current without the need of actually running at high power as shown in Figure5. The period of first pulse T ON1 defines the switching current I SW = (V DS × T ON1) / L. t1 (turn-off) and t2 (turn-on) are of interest for this test as they are the hard switching transients for the half bridge circuit when Q2 is under high switching stress. The slew rate tests are conducted at 400V DC and 30A hard switching as shown in Figure6.Figure 5: Input Double Pulse Test PatternV GS-4VACPL-P346 Reference Manual GaN Systems GaN E-HEMT GS66508T Half Bridge Evaluation Board Figure 6: 400V-30A Double Pulse TestSlew Rate Test ResultsThe turn on and off slew rates (dVD/dt) are measured at t1 (turn-off) and t2 (turn-on) respectively. The highest slew rate of more than 110kV/µs was measured when the GaN transistor hard turned off at 30A.Figure 7: Turn-On Slew Rate at 400V-30A Hard SwitchingV GS =6V V DS =400V30AI DV GS =-4VACPL-P346 Reference Manual GaN Systems GaN E-HEMT GS66508T Half Bridge Evaluation Board Figure 8: Turn-Off Slew Rate at 400V-30A Hard SwitchingSwitching Loss Test CircuitThe switching loss test uses the same boost configuration or the low side test. A current shunt (recommended P/N:SDN-414-10, 2-GHz B/W, 0.1Ω) is installed at JP1 (see Figure2 and Figure3) for I D measurement. The switching energy can be calculated from the measured switching waveform Psw = Vds × Id. The integral of the Psw during switching period is the measured switching loss.Figure 9: Switching Loss Test CircuitACPL-P346 Reference Manual GaN Systems GaN E-HEMT GS66508T Half Bridge Evaluation Board Figure 10: Turn-On Switching Loss MeasurementSwitching Loss Test ResultsThe turn off switching loss is kept at below 20µJ regardless of inductor load current. The turn on switching loss is less than 100µJ at a load current of 30A. Total switching loss is kept within 120µJ.ACPL-P346 Reference Manual GaN Systems GaN E-HEMT GS66508T Half Bridge Evaluation Board Figure 11: Turn On/Off Switching Loss vs. Inductor CurrentEfficiency Test CircuitTo test the efficiency of GaN transistor in hard switching operation, the board is connected as DC-DC converter in synchronous buck configuration. The converter is operated at high frequency 100 kHz.Figure 12: Efficiency Test CircuitACPL-P346 Reference Manual GaN Systems GaN E-HEMT GS66508T Half Bridge Evaluation Board Efficiency Test ResultsA very high DC-DC conversion efficiency of more than 98.5% is achieved using 650V E-HEMT GS66508T (30A/50mΩ) transistor and gate drive optocoupler, ACPL-P346 at 100 kHz.Figure 13: Efficiency Test ResultsAcknowledgementBroadcom acknowledges the technical support on the development of the half bridge evaluation board by the GaN Field Application Team from Panasonic Semiconductor Solutions, Singapore.Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.Copyright © 2017 by Broadcom. All Rights Reserved.The term “Broadcom” refers to Broadcom Limited and/or its subsidiaries. For more information, please visit.Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.ACPL-P346-000E ACPL-P346-000E。

jacobs model 346 tune-up kit instructions说明书

jacobs model 346 tune-up kit instructions说明书

TUNE-UP KIT INSTRUCTIONSTUNE-UPKI TI NSTRUCTI ONSFORMODEL34621. R emove the solenoid harness (16) and valve (17);discard the harness and the three seal rings (18, 19, 20).CONTROL VAL VE COVERS (25) AREUNDER TENSION FROM CONTROL VAL VE SPRINGS (21, 22). REMOVE COVERSCAREFULL Y AND WEAR SAFETY GLASSES.2. H old down control valve cover while removing thecapscrew (15). Remove and discard springs, control valves (23), and capscrews. Save the control valve covers.3. R emove the master piston (29); discard the flat spring(30), washer (31), and capscrew (32). Save the master piston.SLAVE PISTONS (33) ARE RETAINED BY HEAVY SPRINGS (34). TO AVOID INJURY WHEN REMOVING THE SLAVE PISTON, USE PROPER TOOLS AND WEAR SAFETY GLASSES.4. R emove locknut (1) from the slave piston adjustingscrew (reset) (2) and back out the screw until the slave piston is fully retracted.5. I nstall the slave piston tool, P/N 017397 with theadjusting screw fitted into the hole in the tool.6. C ompress the slave piston springs (34) and remove theretaining ring (36).7. Remove the retainer (35), spring, slave piston andadjusting screw.For additional information on the Model 346 engine brake, refer to Jacobs Engine Brake Installation Manuals, P/N 011498 or 017317.Use OSHA-approved cleaning solvent for cleaning parts. Original parts to be reused should be inspected for wear and replaced as required. Wear safety glasses where indicated.The following symbols in this manual signal conditionspotentially dangerous to the mechanic or equipment. Read this manual carefully. Know when these conditions can exist. Then take necessary steps to protect personnel as well as equipment.T HIS SYMBOL WARNS OF POSSIBLEPERSONAL INJURY.THIS SYMBOL REFERS TO POSSIBLE EQUIPMENT DAMAGE.INDICATES AN OPERATION, PROCEDUREOR INSTRUCTION THAT IS IMPORTANT FOR CORRECT SERVICE.Fuels, electrical equipment, exhaust gases and moving engine parts present potential hazards that could result in personal injury. Take care when installing equipment or parts. Always wear safety glasses. Always use correct tools and follow proper procedures as outlined in this manual.CAUTION! NEVER REMOVE OR ADJUST ANY ENGINEBRAKE OR COMPONENT WITH THE ENGINE RUNNING.Access Engine Brake1. Thoroughly clean engine.2. Remove accessory equipment to gain access to rockerlever covers and remove covers.3. D isconnect electrical connections at the spacer.4. Remove engine brake housing capscrew (4), nut (6),and washers (5, 7). Remove housings (8).5. Remove seal rings (27) from oil supply adapter (24) andremove terminal leadout assemblies (28). Discard seal rings and lead out assemblies.LATER-STYLE SPACERS HAVE BULLET-TYPE CONNECTORS. DO NOT REMOVE THESE.1. Clean Housings and all parts in approved cleaning sol-vent. Dry with compressed air.2. Coat all parts to be installed into housings with clean lube oil.3.Reinstall the original slave piston, reversing the removalprocedure.BEFORE REMOVING THE SLAVE PISTON FIXTURE, ROTATE THE RETAINING RING 90° FROM THE SLOT IN THE HOUSING. 4. Remove the fixture and install the adjusting screw lock-nut.5. Install the new control valves, springs and capscrews. Reinstall the original cover.6.Install the original master pistons with new flat springs, washers and capscrews.WHEN TIGHTENING THE SCREWS, BESURE THAT THE SPRING LEGS ARE CEN-TERED AROUND THE MASTER PISTONBOSS.7. Install the lower (smallest) solenoid seal ring in the bot-tom of the solenoid valve bore and the upper and center seal rings on the solenoid valve. Insert the solenoidvalve into the bore. Tighten to 110 lb.-in. (12 Nm).ENGINES WITH SERIAL NUMBERS LOWERTHAN 7FB39279 AND ALL 92U PREFIXENGINES, REQUIRE THE HOUSINGLEVELING PROCEDURE. REFER TO THELEVELING (SHIMMING) PROCEDURESCONTAINED IN THE C346C INSTALLATIONMANUAL, P/N 017317.Engine brake installations may have one or two housing support brackets (or bases) per housing (see Fig. 1). The use of different style housing supports for any engine is permissible.1. Install the seal rings on the oil supply adapters.2. Install the housings over the studs and on the supports.3. Install the nuts, capscrews and washers as shown in Fig.1.4.Torque the 3/4” hold-down nuts to 60 lb.-ft. (82 Nm).Fig. 15. Torque the capscrews in the supports to the torquesshown in Fig. 1.6. Retorque the 3/4” hold-down nuts to 100 lb.-ft. (135Nm).7. Slave piston adjustments must be made with the enginestopped and cold. Turn the engine until the exhaustvalves on the cylinder to be adjusted are in the closedposition. Be sure the slave piston adjusting screw isbacked out before starting the slave piston adjustment(see chart on next page).FOLLOW ADJUSTMENT PROCEDURESEXACTL Y. ANY OTHER METHODOF ADJUSTING THE SLAVE PISTONCLEARANCE IS NOT AUTHORIZED BYJACOBS AND MAY RESUL T IN SERIOUSENGINE AND/OR ENGINE BRAKEDAMAGE.8. Insert the proper feeler gage between the slave pistonand the exhaust valve bridge. Turn the adjusting screw in until you feel a slight drag on the feeler gage.9. Tighten the locknut to 16 lb.-ft. (22 Nm). Continueturning engine in the direction of rotation and set slavepiston clearance on the remaining cylinders at valve setmarks in firing order. Consult the Caterpillar ServiceManual to locate the valve set marks. Three slave pistons can be adjusted at any one timing position.10. Install the new terminal leadout assemblies (28) in theengine brake spacers. Inspect the spacer gasket andreplace if necessary.11. Install the spacer and torque the capscrews and nuts to13 lb.-ft. (18 Nm).12. Attach the solenoid lead wire to the inside terminal of theleadout assembly. Attach the lead wire to the outsideterminal of the leadout assembly. Install the new cableclamp in the housing and attach the wire to the clamp. 13. Replace the rocker housing covers and any enginecomponents.14. To ensure proper engine brake operation. Check enginebrake wiring and switch adjustments. Make corrections as needed.CAUTION!3JACOBS VEHICLE SYSTEMS, INC. | 22 EAST DUDLEY TOWN ROAD BLOOMFIELD, CT USA 06002 | P/N 00-017890 REV L 02/2018 | ©2018 JACOBS VEHICLE SYSTEMS, INC. | 。

MC34063仿真模型

MC34063仿真模型

MC33063/MC34063 PWM Controller Model1 ScopeThis document contains the SPICE model along with an application’s circuit for verification of the On Semiconductor MC33063/MC34063 pulse width modulation controller. A summary of the analysis and key results are provided below:This set of parameters is specified by the manufacturer’s published data sheet.The operating temperature of the model was 25 C. A 1nF capacitor was used at Vcc = 5V DC for the oscillator testing.2 Functional DescriptionThe MC34063 is a monolithic control circuit for DC-DC converters. The device includes a reference, comparator, oscillator, pulse width modulator, and an active current limit circuit. The device operates over the voltage range of 3 to 40 V DC and has an internal 1.5A Darlington output stage. The output stage provides active source / sink capability.3 Model DescriptionThe control circuit was decomposed into elemental blocks, and then modeled accordingly. Using a schematic capture for SPICE, a model of the controller was then created using the modules, and a corresponding netlist was generated. The model was then applied in one of the applications circuit s specified by the manufacturer’s data sheets for verification.▪The oscillator was modeled using a SPICE switch to provide voltage detection and hysteresis, and a behavioral switched current pump for thetiming capacitor. The switch contacts were used to derive a reset pulse forthe pulse width modulation SR register. The peak to peak amplitude and DCoffset were determined from the published data sheet, and applied to thecurrent pump and switch.▪The current control circuit was modeled by comparing the differential voltage to an internal voltage source. This is to provide the ability to applytolerances. The voltage control circuit was modeled using a set ofbehavioral voltage sources for the digital logic, comparator, and levelshifters, and an independent 1.25V DC reference. This too is to provide theability to apply tolerances.▪The output stage was created using bipolar transistor models available with SPICE.4 Methods of VerificationA model of the MC34063 driver was created using SPICE (figure1, table1). The model was tested as per the manufacturer’s datasheet into a 1000pF capacitive load. The model was driven by simple pulsed voltage sources, and the output rise times and propagation delays were monitored. As per the published datasheet, the model was run at 15 V VDD , 400 V VS , and 25 C operating temperature. These values were then compared to the manufacturer’s published data for correlation.B5B3R4100kR1010kisns vdd B7D21N4148Figure 1: SPICE schematic diagram of the MC34063 controller modelX1Figure 2: SPICE symbol created for the modelTable 1: Spice Netlist MC34063 driver model*==========================================================* MC34063* ON SEMICONDUTOR* 1.5 A, Step-Up/Down/Inverting Switching Regulator** This model was developed for On Semiconductor by:* AEI Systems, LLC* 5777 W. Century Blvd. Suite 876* Los Angeles, California 90045* Copyright 2002, all rights reserved.** This model is subject to change without notice.* Users may not directly or indirectly re-sell or* re-distribute this model. This model may not* be used, modified, or altered* without the consent of On Semiconductor.** For more information regarding modeling services,* model libraries and simulation products, please* call AEi Systems at (310) 863-8034, or contact* AEi by email: info@. ** Revision: 2/18/02, version 1.1*==========================================================***********SRC=MC33063;MC33063;Regulators;On Semiconductor;1.5A*SYM=MC34063.SUBCKT MC33063 swc swe ct 90 2 vdd isns drc* SW-col SW-em Ct gnd cinv vdd isns drive col *DC-DC controllerB5 5 0 V=~(v(9)&v(8))Q1 ct isns vdd QN2907.MODEL QN2907 PNP BF=200 BR=6 CJC=19PF CJE=23PF IKF=100E-3+ IS=1.1E-12 ISE=1.3E-11 MJC=.2 MJE=1.25 NE=1.9 NF=1.21 RC=.6+ TF=5E-10 TR=34E-9 VAF=50 VJC=.5 VJE=.85 XTB=1.5B6 7 0 V=~(v(4)&v(10))R3 5 10 100R9 13 swe 100C2 10 0 100p IC=5R4 2 90 10MEGR5 7 8 100C3 8 0 100p IC=0S1 srst 90 ct 90 _S2_mod.MODEL _S2_mod SW VT=1.75 VH=1.25R1 srst vdd 10kQ2 drc 14 13 _Q3_mod.MODEL _Q3_mod NPN BF=50B4 6 0 V=v(2,90) > (v(vref,90) + v(voff,90)) ? 0 : v(vdd)B2 vdd ct I=V(srst,90) > 3 ? 35U : -220UB3 9 0 V=(v(6,90) > 3) ? v(diff,90) > 1 ? 0 : v(vdd)B7 16 90 V=V(vdd,90)-1.5 > 1.25 ? 1.25 : V(vdd,90)-1.25 < 0 ? 0 :V(vdd,90)-1.25 V7 16 vrefR6 vref 90 400R7 vref vdd 90kQ1x swc 13 swe _Q4_mod.MODEL _Q4_mod NPN BF=50 RC=.25 RE=.25 TF=0R8 diff 90 10kD1 14 15 DN4148.MODEL DN4148 D BV=100V CJO=4PF IS=7E-09 M=.45 N=2 RS=.8+ TT=6E-09 VJ=.6VD2 swe 14 DN4148V3 drc 15 DC=700mB8 swe 14 I=v(5) > 2.5 ? 1m : -1mV4 voff 90 DC=2mC5 srst diff 10pB1 4 90 V=(v(6,90) > 3) ? (v(diff,90) > -1) ? v(vdd) : 0R10 vdd isns 10k.ENDS**********Figure 3: Oscillator Simulation. The bottom trace represents an internal PWM reset pulse derived from the timing circuit.Figure 4: Application test circuit.TIME in secs5.0005.0105.0205.0305.040V O i n v o l t sP l o t 1Figure 5: Output voltage from application test circuit. DC-DC buck converter, 25Vin, 5Vout, 500mA load.5 ConclusionsThe model of the MC33063/MC34063 driver correla tes very well with the manufacturer’s datasheet. This data should be verified against actual hardware for further confirmation.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

General DescriptionThe MAX3460–MAX3464 are high-speed differential bus transceivers for RS-485 and RS-422 communica-tions. They are designed to meet TIA/EIA-422-B,TIA/EIA-485-A, V.11, and X.27 standards. The trans-ceiver complies with the Profibus specification provid-ing +2.1V output level with a 54Ωload, 20Mbps data rate, and output skew less than 2ns. Each part contains one three-state differential line driver and one differen-tial input line receiver. The devices operate from a +5V supply and feature true fail-safe circuitry, which guaran-tees a logic-high receiver output when the receiver inputs are open or shorted. This enables all receiver outputs on a terminated bus to output logic highs when all transmitters are disabled.All devices feature a 1/4 standard unit load receiver input impedance that allows 128 transceivers on the bus. Driver and receiver propagation delays are guar-anteed under 20ns for multidrop, clock distribution applications. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry. The driver and receiver feature active-high and active-low enables, respective-ly, that can be connected together externally to serve as a direction control.ApplicationsHigh-Speed RS-485 Communications High-Speed RS-422 Communications Level TranslatorsIndustrial-Control Local Area Networks Profibus ApplicationsFeatureso Recommended for Profibus Applicationso Guaranteed 20Mbps Data Rateo 20ns Transmitter and Receiver Propagation Delay o 2ns Transmitter and Receiver Skewo High Differential Driver Output Level (2.1V on 54Ω)o Hot-Swap Versionso 1µA Shutdown Supply Currento Low Supply Current Requirements (2.5mA typ)o Allow Up to 128 Transceivers on the Buso True Fail-Safe Receiver while Maintaining EIA/TIA-485 Compatibility o Designed for Multipoint Transmissions on Long or Noisy Bus Lines o Full Duplex and Half Duplex Versions Available o Phase Controls to Correct for Twisted-Pair Reversal for 14-Pin Versions o Current-Limiting and Thermal Shutdown for Driver Overload ProtectionMAX3460–MAX3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers________________________________________________________________Maxim Integrated Products 1Ordering Information19-2217; Rev 1; 2/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering Information continued at end of data sheet.Pin Configurations appear at end of data sheet.M A X 3460–M A X 3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 TransceiversABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V CC ) to GND..................................-0.3V to +6V Control Input Voltage (RE , DE, DI, SHDN, TXP, RXP)to GND....................................................-0.3V to (V CC + 0.3V)Driver Output Voltage (Y, Z) to GND.........................-8V to +13V Receiver Input Voltage (A, B) to GND.......................-8V to +13V Differential Driver Output Voltage (Y - Z)...............................±8V Differential Receiver Input (A - B)..........................................±8V Receiver Output Voltage (RO) to GND.......-0.3V to (V CC + 0.3V)Output Driver Current (Y, Z)...........................................±250mAContinuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.88mW/°C above +70°C)................471mW 8-Pin DIP (derate 9.09mW/°C above +70°C)...............727mW 14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW 14-Pin DIP (derate 10mW/°C above +70°C)................800mW Operating Temperature RangeMAX346_C__......................................................0°C to +70°C MAX346_E__....................................................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3460–MAX3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 TransceiversELECTRICAL CHARACTERISTICS (continued)ground, unless otherwise noted.Note 2:∆V OD and ∆V OC are the changes in V OD and V OC , respectively, when the DI input changes state.Note 3:The short-circuit output current applies to peak current just prior to foldback-current limiting; the short-circuit foldback outputcurrent applies during current limiting to allow a recovery from bus contention.Note 4:Capacitive load includes test probe and fixture capacitance.Note 5:Shutdown is enabled by bringing RE high and DE low or by bringing SHDN high. If the enable inputs are in this state for lessthan 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 800ns, the device is guaranteed to have entered shutdown.M A X 3460–M A X 3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Note 1)NO LOAD SUPPLY CURRENTvs. TEMPERATURE2.002.052.152.102.302.352.252.202.40N O L O A D S U P P L Y C U R R E N T (m A )-4020-20406080TEMPERATURE (°C)030201040506002.01.50.5 1.0 2.53.0 3.54.0 4.55.0OUTPUT CURRENTvs. RECEIVER OUTPUT LOW VOLTAGEM A X 3460-64 t o c 02OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )1052015302535021345OUTPUT CURRENTvs. RECEIVER OUTPUT HIGH VOLTAGEM A X 3460-64 t o c 03OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)MAX3460–MAX3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers_______________________________________________________________________________________51110987-4010-15356085RECEIVER PROPAGATION DELAYvs. TEMPERATUREM A X 3460-64 t o c 07TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )1210864-4010-15356085DRIVER PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )4.03.53.02.52.0-4010-15356085DRIVER DIFFERENTIAL OUTPUT VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T V O L T A G E (V )0.1101100021345DRIVER OUTPUT CURRENTvs. DIFFERENTIAL OUTPUT VOLTAGEM A X 3460-64 t o c 10DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )04012080160200OUTPUT CURRENTvs. DRIVER OUTPUT LOW VOLTAGEOUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )63912-40-120-80-160OUTPUT CURRENTvs. DRIVER OUTPUT HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )-7-3-5-1135Typical Operating Characteristics (continued)(V CC = +5V, T A = +25°C, unless otherwise noted.)01030204050-4010-15356085SHUTDOWN SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)S H U T D O W N S U P P L Y C U R R E N T (n A )80120100140-4010-15356085RECEIVER OUTPUT LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)RE C E I V E R O U T P U T L O W V O L T A G E (m V )4.604.704.654.804.754.854.90-4085RECEIVER OUTPUT HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )10-153560M A X 3460–M A X 3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 TransceiversPin DescriptionTypical Operating Characteristics (continued)(V CC = +5V, T A = +25°C, unless otherwise noted.)5V/div2V/div5V/divDRIVER AND RECEIVER PROPAGATION DELAYSMAX3460-64 toc13DI Y, Z RO 10ns/divENABLE RESPONSE TIMEMAX3460-64 toc14DEY, Z20ns/div1V/div5V/divEYE DIAGRAMM A X 3460-64 t o c 1510ns/divMAX3460–MAX3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers_______________________________________________________________________________________7MAX3460/MAX3461Function TablesMAX3462MAX3463/MAX3464M A X 3460–M A X 3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers 8_______________________________________________________________________________________Pin Configurations and Typical Operating CircuitFigure 1. MAX3460/MAX3461 Pin Configuration and Typical Full-Duplex Operating CircuitFigure 2. MAX3462 Pin Configuration and Typical Full-Duplex Operating CircuitFigure 3. MAX3463/MAX3464 Pin Configuration and Typical Full-Duplex Operating CircuitMAX3460–MAX3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers_______________________________________________________________________________________9Detailed DescriptionThe MAX3460–MAX3464 high-speed transceivers for RS-485/RS-422 communication contain one driver and one receiver. These devices feature true fail-safe cir-cuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all drivers disabled (see the T rue Fail-Safe sec-tion). The MAX3460–MAX3464’s driver slew rates allow transmit speeds up to 20Mbps.The MAX3463 and MAX3464 are half-duplex trans-ceivers, while the MAX3460, MAX3461, and MAX3462are full-duplex transceivers. All of these parts operate from a single +5V supply. Drivers are output short-cir-cuit current limited. Thermal shutdown circuitry protects drivers against excessive power dissipation. When acti-vated, the thermal shutdown circuitry places the driver outputs into a high-impedance state. The MAX3460and MAX3463 devices have a hot-swap input structure that prevents disturbances on the differential signal lines when a circuit board is plugged into a “hot ” back-plane (see Hot Swap section). All devices have output levels that are compatible with Profibus standards.True Fail-SafeThe MAX3460–MAX3464 guarantee a logic-high receiv-er output when the receiver inputs are shorted or open,or when they are connected to a terminated transmis-sion line with all drivers disabled. This is done by set-ting the receiver threshold between -50mV and -200mV. If the differential receiver input voltage (A - B)is greater than or equal to -50mV, RO is logic high. If A - B is less than or equal to -200mV, RO is logic low. In the case of a terminated bus with all transmitters dis-abled, the receiver ’s differential input voltage is pulled to 0V by the termination. With the receiver thresholds of the MAX3460–MAX3464, this results in a logic high with a 50mV minimum noise margin. Unlike previous true fail-safe devices, the -50mV to -200mV threshold com-plies with the ±200mV EIA/TIA-485 standard.Hot-Swap CapabilityHot-Swap InputsWhen circuit boards are inserted into a “hot ” or pow-ered backplane, disturbances to the enable and differ-ential receiver inputs can lead to data errors. Upon initial circuit board insertion, the processor undergoes its power-up sequence. During this period, the output drivers are high impedance and are unable to drive the DE input of the MAX3460/MAX3463 to a defined logiclevel. Leakage currents up to 10µA from the high-impedance output could cause DE to drift to an incor-rect logic state. Additionally, parasitic circuit board capacitance could cause coupling of V CC or GND to DE. These factors could improperly enable the driver. When V CC rises, an internal pulldown circuit holds DE low for around 15µs. After the initial power-up sequence, the pulldown circuit becomes transparent,resetting the hot-swap tolerable input.Hot-Swap Input CircuitryThe MAX3460/MAX3463 enable inputs feature hot-swap capability. At the input there are two NMOS devices, M1and M2 (Figure 4). When V CC ramps from 0, an internal 15µs timer turns on M2 and sets the SR latch, which also turns on M1. Transistors M2, a 2mA current sink,and M1, a 100µA current sink, pull DE to GND through a 5.6k Ωresistor. M2 is designed to pull DE to the disabled state against an external parasitic capacitance up to 100pF that can drive DE high. After 15µs, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakages that can drive DE high. M1remains on until an external source overcomes the required input current. At this time, the SR latch resets and M1 turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever V CC drops below 1V, the hot-swap input is reset.For RE there is a complimentary circuit employing two PMOS devices pulling RE to V CC .Figure 4. Simplified Structure of the Driver Enable Pin (DE)M A X 3460–M A X 3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/10______________________________________________________________________________________Figure 5. Driver DC Test LoadFigure 9. Driver Enable and Disable TimesMAX3460–MAX3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers______________________________________________________________________________________11Applications Information128 Transceivers on the BusThe standard RS-485 receiver input impedance is 12k Ω(one-unit load), and the standard driver can drive up to 32 unit loads. The MAX3460–MAX3464 family of trans-ceivers has a 1/4-unit-load receiver input impedance (48k Ω), allowing up to 128 transceivers to be connect-ed in parallel on one communication line. Any combina-tion of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.Low-Power Shutdown Mode(except MAX3462)Low-power shutdown mode is initiated by bringing SHDN high (MAX3460/MAX3461), or both RE high and DE low. In shutdown, the devices typically draw only 1µA of supply current. RE and DE can be driven simul-taneously; the parts are guaranteed not to enter shut-down if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 800ns, the parts are guaranteed to enter shutdown.Driver Output ProtectionTwo mechanisms prevent excessive output current and power dissipation caused by faults or by bus con-tention. The first, a foldback current limit on the output stage, provides immediate protection against short cir-cuits over the whole common-mode voltage range (see Typical Operating Characteristics ). The second, a ther-mal shutdown circuit, forces the driver outputs into ahigh-impedance state if the die temperature exceeds +140°C.Propagation DelayMany digital encoding schemes depend on the difference between the driver and receiver propagation delay times.Typical propagation delays are shown in the Typical Operating Characteristics . The difference in receiver delay times, |t PLH - t PHL |, is a maximum of 2ns. The driver skew time |t PLH - t PHL | is also a maximum of 2ns.Typical ApplicationsThe MAX3460–MAX3464 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 13 and 14 show typical net-work applications circuits. To minimize reflections, the line should be terminated at both ends in its character-istic impedance, and stub lengths off the main line should be kept as short as possible.Profibus TerminationThe MAX3460–MAX3464 are designed for driving Profibus termination networks. With a worst-case load-ing of two termination networks with 220Ωtermination impedance and 390Ωpullups and pulldowns, the dri-vers can drive V A-B > 2.1V output.Chip InformationTRANSISTOR COUNT: 610PROCESS: BiCMOSFigure 12. Receiver Propagation Delay Test CircuitOrdering Information (continued)M A X 3460–M A X 3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers 12______________________________________________________________________________________Figure 13. Typical Half-Duplex RS-485 NetworkFigure 14. Typical Full-Duplex RS-485 NetworkMAX3460–MAX3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers______________________________________________________________________________________13Package InformationM A X 3460–M A X 3464+5V , Fail-Safe, 20Mbps, Profibus RS-485/RS-422 Transceivers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.14____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。

相关文档
最新文档