开关电源振荡过程

合集下载

llc开关电源工作原理

llc开关电源工作原理

llc开关电源工作原理全文共四篇示例,供读者参考第一篇示例:LLC开关电源是一种常见的电源类型,广泛应用于各种电子设备和通信设备中。

LLC开关电源具有高效率、高稳定性、低噪音和小体积的优点,因此备受青睐。

在了解LLC开关电源的工作原理之前,我们首先来了解一下LLC开关电源的基本结构。

LLC开关电源的基本结构包括输入端、输出端和控制电路。

输入端连接交流电源输入,通过整流电路将交流电转换为直流电。

然后交流电通过输入电容进行滤波平滑,并进入LLC谐振电路。

LLC谐振电路是LLC开关电源的核心部分,它包括电感L、电容C和谐振变压器T。

最后通过控制电路对LLC谐振电路进行控制,实现对输出端的电压和电流的稳定控制。

LLC开关电源的工作原理主要涉及到LLC谐振电路的工作原理。

在LLC谐振电路中,由电感L和电容C组成的串联谐振电路和谐振变压器T共同工作,实现电能的传输和变换。

具体工作过程如下:1. 输入电压变化:当输入电压施加在LLC谐振电路上时,电感L 和电容C组成的串联谐振电路会使输入电压经过一定的变化过程。

在这个过程中,电容C将电压调整为合适的电压值。

2. 谐振过程:当输入电压经过调整后,进入到谐振变压器T中,谐振变压器T是LLC谐振电路的重要部分,它通过调节变比实现电能的传输和变换。

在谐振过程中,输入电压被传输到输出端,并经过一定的变换后输出到负载。

3. 控制电路调节:最后通过控制电路对LLC谐振电路进行控制,实现对输出端的电压和电流的稳定控制。

控制电路可以根据实际情况调节LLC谐振电路的参数,保证输出端的电压和电流稳定在需要的范围内。

第二篇示例:LLC开关电源是一种常见的电源供电系统,其工作原理主要基于LLC谐振拓扑结构,通过合理控制开关管的开关情况,实现高效稳定的电源输出。

LLC开关电源具有功率密度高、效率高、输出波形好、寿命长等优点,被广泛应用于各种电子设备中。

本文将介绍LLC开关电源的工作原理,以便读者更好地了解这一技术。

开关电源自激频率计算公式

开关电源自激频率计算公式

开关电源自激频率计算公式在开关电源中,自激振荡是一种常见的现象,它是由于开关管的导通和关断过程中的电荷积累和放电导致的。

自激振荡的频率是开关电源设计中需要重点考虑的参数之一,因为它直接影响到开关电源的稳定性和效率。

在本文中,我们将介绍开关电源自激频率的计算公式及其相关知识。

自激频率的计算公式可以通过开关电源的电路结构和元件参数来推导得出。

一般来说,开关电源的自激频率与开关管的导通和关断时间、输出电感和输出电容等参数有关。

下面我们将分别介绍这些参数对自激频率的影响,并推导出自激频率的计算公式。

首先,我们来看开关管的导通和关断时间对自激频率的影响。

在开关电源中,开关管的导通和关断时间决定了电荷的积累和放电的速度,进而影响自激振荡的频率。

一般来说,导通时间越短、关断时间越长,自激频率越高。

导通和关断时间可以通过开关管的参数和工作条件来计算得出,一般可以通过开关管的数据手册或者实际测量来获得。

其次,输出电感和输出电容也对自激频率有一定的影响。

在开关电源中,输出电感和输出电容是用来滤波和储能的元件,它们的参数会影响到自激频率的大小。

一般来说,输出电感越大、输出电容越小,自激频率越高。

输出电感和输出电容的数值可以通过电路设计来确定,一般需要考虑到输出电压的稳定性和输出波形的纹波等因素。

基于上述参数的影响,我们可以得出开关电源自激频率的计算公式如下:f = 1 / (2 π√(L C))。

其中,f表示自激频率,L表示输出电感的值,C表示输出电容的值,π表示圆周率。

通过这个公式,我们可以清晰地看到自激频率与输出电感和输出电容的关系,进而可以通过调节这两个参数来控制自激频率的大小。

除了上述参数之外,还有一些其他因素也会对自激频率产生影响,比如开关管的驱动电路、负载的变化等。

在实际设计中,需要综合考虑所有这些因素,并通过实验和仿真来验证自激频率的计算结果。

总之,开关电源自激频率是一个重要的设计参数,它直接影响到开关电源的性能和稳定性。

开关电源工作原理及电路图

开关电源工作原理及电路图

开关电源工作原理及电路图随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析
本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos 管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

详解自激开关电源电路图

详解自激开关电源电路图

详解自激开关电源电路图该文章讲述了详解自激开关电源电路图.自激开关电源电路图,STR41090电源属于自激式并联型开关电源,适应电网电压能力为150-280V。

振荡过程 C808上约300V直流电压经R811加到N801的(2)脚内部开关管的B极,同时经T802的(1)、(3)绕组加到N801的(3)脚内部开关管的C极,开关管开始导通,电流流过T802的(1)、(3)绕组,在(1)、(3)绕组产生感应电压,极性为(3)正(1)负,经耦合,在(6)、(7)绕组也产生感应电压,极性为(7)正(6)负,此正反馈电压经C819、R817、R816送回到N801的(2)脚,使开关管电流进一步增大,雪崩的过程使开关管迅速饱和。

开关管饱和期间,T802(1)、(3)绕组的电流线性增大,VD821、VD822截止,T802储存磁场能量。

由于C819不断被充电,使N801的(2)脚电压不断下降,到某一时刻,N802(2)脚上的电压不能维持内部开关管的饱和,开关管退出饱和状态,C极电流减小,T802各绕组的感应电压极性全部翻转,反馈绕组(6)、(7)脚的电压极性为(6)正(7)负,经C819、R817、R816送到N801的(2)脚,使N801(2)脚电压进一步减小,又一雪崩过程使开关管迅速截止。

开关管截止期间,VD821导通,在C822电容上形成112V电压;VD822也导通,在C824电容上形成18V电压,T802储存的磁场能量被释放。

另一方面,C819上的电压经R817、R816、VD812、VD813放电,同时300V电压经R811给C819反向充电,这两个因素使C819左端的电压回升,即N801(2)脚的电压回升,当(2)脚电压上升0.6V以上时,开关管再次导通,开始下一周期的振荡。

稳压电路稳压电路由STR41090内部完成,T802的(5)、(6)脚为取样绕组,经VD814整流、C817滤波,在C817上形成取样电压,在正常情况下,C817上的电压约为84V,若输出电压112V升高,则取样电压也必定升高,该取样电压经R815送到N801的(1)脚,通过内部调节,最终使输出电压稳定在112V。

自激振荡开关电源

自激振荡开关电源

自激振荡(RCC)开关电源中山市技师学院一、概述目前市场上销售的手机充电器,从电路结构和充电方式上可分为两大类:第一类是“机充式”充电器,另一类是“直充式”充电器(也叫座充)。

所谓“机充式”充电器,就是电源进入手机后由充电管理IC 控制预充电、恒流充电、恒压充电、电池状态检测、温度监控、充电结束低泄漏、充电状态指示等(比SL1051、BQ241010/2/3等),输出电压一般在5.5~6.5V;而“直充式”充电器也叫万能充电器,直接对电池充电,由于锂电池(充)满电压为4.2V,所以这类充电器输出电压一定要稍小或等于4.2V。

手机充电器输出功率都比较小,一般在5W以下,国内厂商生产的充电器1更是小到2-3W。

为了节约成本,国内许多厂商都采用RCC(Ringing Chock Converter)开关电源设计方案。

RCC设计方案理论技术成熟、电路结构简单、元器件常见、成本低廉,所以深受国内厂商青睐。

然而,读者可能耳闻目睹许多充电器质量事故频频发生,原因不是产品原理有问题,而是制造厂家为了追求利润使用了质量较差元件或二次回收元件造成的;更有甚者部分厂商为了能在激烈的市场竞争环境下生存,不得不使出最下策——只要能输出电压,尽其所能地节省元件!另外,国内厂商生产的充电器初、次级通常没有设计光藕(反馈),因此输出电压很难控制,负载能力较差,空载时输出电压偏高,带上负载后电压才正常。

从目前市场上流通的充电器来看,成本基本在2-3元之间。

国外知名公司出于市场定位和维护自身品牌形象考量,一般采用集成电路设计方案,电路结构完善、生产用料考究、产品可靠性高,成本通常是国内厂商的3-5倍,质量当然要好。

由于手机充电器输出功率较小(对电网干扰小)、产品受体积所限(消费者审美要求和拼比心理把厂家“逼上梁山”),无论国内厂商还是国外知名公司出品的手机充电器,输入侧电源滤波器(与EMC测试有关的元器件)都一概省去,部分国内厂商更是把“热地”与“冷地”之间的安规电容(Y电容)也节省掉了,所以,几乎没有任何一个厂家的手机充电器能通过EMC测试。

开关电源中阻尼振荡波形

开关电源中阻尼振荡波形

开关电源中阻尼振荡波形图(1)是一个典型的Buck-Boost电路,如果其电感中电流不连续,一般教材中其开关管集电极(或漏极)电压波形的波形如图(2),其中上面曲线纵轴表示开关管T集电极(漏极)电压,下面曲线表示电感L中电流。

图(1)通常,对类似图(1)的开关电源电路分析时,总假定元件是理想的,即:忽略磁材料的非线性,忽略电感的电阻和电容的等效电阻,忽略晶体管和二极管的管压降,电容的容量足够大因而一个周期中电容两端电压不变化,等等。

而且假定电路已经达到稳态。

这个稳态指的是每个周期中占空比电压电流等与下一个周期相同。

图(2)图(2)中,从TA到TB这段时间开关管导通,集电极(或漏极)电压接近于零,因电流不连续,电感中电流已经为零,所以电感中电流从零开始线性上升,电感中储存的能量不断增加。

时刻TB开关管关断,但电感中电流不能突变,故电感中电流经二极管向电容C充电。

因为我们已经假定电容两端电压不会在一个周期中变化,所以电感中电流线性下降,电感中储存的能量向电容C转移,电感的自感电动势等于电容两端电压,方向上负下正。

所以三极管两端电压等于电源电压加上负载两端电压。

随着电感中储存的能量不断减少,在时刻TC电感中电流降到零,二极管关断。

因电感中电流不再变化,所以电感的自感电动势为零。

既然电感两端电压为零,功率管两端电压降低到电源电压,TC时刻之后开关管集电极电压出现一个“台阶”。

时刻TD功率管导通,开始重复上一周期过程。

图(3)但用示波器看功率管集电极电压波形,看到的却是如图(3)那样,时刻TC(二极管关断)到时刻TD(功率管导通)这段时间里,集电极电压是图中的衰减振荡波形。

很多开关电源的初学者感到迷惑:这是怎么回事?怎么和书上的不一样?甚至怀疑自己的电路有错误。

其实什么问题都没有,这是完全正常的波形。

那么,这样的波形是如何产生的?这样的波形与图(2)不一样,是由于前面的分析中我们把电路中的元件理想化,忽略了电感和功率管的分布电容而产生的。

开关电源工作原理及电路图

开关电源工作原理及电路图

随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。

传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40% -50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。

为了提高效率,人们研制出了开关式稳压电源,它的效率可达85% 以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。

正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

开关电源原理及原理图

开关电源原理及原理图

金星D2902、D2912等机型的电源采用了三根公司的电源厚膜块STR-S6708,该电源具有适应电网电压宽(90V-270V)、保护电路完善、外围元件少等特点,该电路能改变开关电源脉冲宽度,在待机时采用窄脉冲方式工作,在正常开机时采用宽脉冲方式工作,因而无须另设待机时的辅助电源。

开关电路振荡过STR-S6708的(9)脚是电源供应脚,只有(9)脚供电正常,厚膜电路才会正常工作。

VD908从220V交流电上直接整流,经R903、R917限流、C909滤波后得到8V左右的直流电压,加到IC901的(9)脚,IC901开始工作,开关电源开始振荡,由VD908整流得到的电压能量较小,不能维持IC901的正常工作,但是当开关电源开始振荡后,开关变压器T901的(V2)脚将输出电压,经VD903整流、C909滤波后可得到稳定的8V电压,向IC901供电。

光有VD903整流后的电压仍然是不行的,因为当电视机进入待机状态时,整机的主电压将从127V下降到30V左右,此时,开关变压器的(V2)脚输出电压也将大幅度下降,经VD903整流后的电压根本达不到8V,这时就要靠V901这一回路来继续维持供电了。

在正常开机状态,开关变压器的(V3)脚输出电压,经VD902整流、C908滤波后得到约45V左右的直流电压,加到V901的C极,但是,由于这时的V901的发射极电压为8V,而基极接有稳压管VD920,VD920的稳压值是7.2V,所以V901的基极电压比发射极电压低,V901不会导通,IC901的(9)脚供电由VD903提供。

当整机进入待机状态时,开关变压器的(V3)脚输出电压经VD902整流后的到11V左右的电压,此时,由于VD903输出的电压很低,V901得到正偏开始导通,其发射极输出电压为6.7V左右,继续为IC901的(9)脚提供电源。

V901回路的另一个作用是,当电网电压降低时,VD903整流后的电压也将降低,当降低到6.6V以下时,V901会导通,继续向STR-S6708的(9)脚供电,所以,这种开关电源适应电网电压的范围很宽。

开关电源IC中误差放大器的自激振荡原理及补偿解决方法

开关电源IC中误差放大器的自激振荡原理及补偿解决方法

根据公式:
将fz=5 kHz 带入,可得Cf=212 pF。
选择Cf为220 pF 即可。由于在电路中放入电容Cf,因此将产生一个新的极点,它的频率为:
将数值带入上式可得新的极点频率为1.5 MHz, 这相当于将外部极点P2 移动到了的P2′的位置。
由图6 可以看出尽管在增益0 dB 以上存在两个极点,但是当增益降为0 dB 时,相移依然没有超过-180°,所以自激振荡条件就被破坏,电路不会产生自激振荡。同时从图上可以看到,使用这种方法时放大器的带宽损失很小。但是根据式(3)可以看出,新极点的频率与放大器的增益有关,如果放大器增益过小,则会因为极点向高频率移动距离太小而大大影响到补偿的效果。特别地当作为电压跟随器使用时(此时放大器输出与反相输入端直接相连,反馈电阻为零),新极点的频率不会向高频移动,则此电路就会完全没有效果。由于各种因素的影响以及估算的误差,实际的特性曲线会与理论有一些差距,因此所设置的零点还需要通过实验来进行调整(后面的实验也证实了这一点)。
2 UC3875 误差放大电路
2.1 UC3875 误差放大电路结构
UC3875 是TI 公司生产的一款移相全桥软开关控制器,广泛应用于ZVS 和ZCS 拓扑结构的大功率开关电源当中。它内部包含一个误差放大器,该误差放大器输出端的输出电压与斜坡发生器的输出电压进行比较从而产生移相信号。它的AB 和CD 两组输出可以分别设定死区时间,非常适合应用于全桥谐振开关电源。本文中所用UC3875 的误差放大器部分电路接法。
误差放大器的正相输入端接参考电压,输出端通过一个150 kΩ 电阻反馈到反向输入端,反相输入端通过一个470 kΩ电阻与输出电压采样电路相连。

开关电源工作原理解析及正反激电路图解

开关电源工作原理解析及正反激电路图解

开关电源工作原理解析及正反激电路图解
本文将介绍开关电源的工作流程,开关电源正激电路、反激电路原理图及工作过程分析,希望能对您有所帮助。

 开关电源就是用通过电路控制开关管进行高速的导通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压。

转为高频交流电的原因是高频交流在变压器变压电路中的效率要比
50HZ高很多.所以开关变压器可以做的很小,而且工作时不是很热,成本很低。

如果不将50HZ变为高频,那幺开关电源就没有意义。

 开关电源的工作流程是:
 电源→输入滤波器→全桥整流→直流滤波→开关管(振荡逆变)→开关变压器→输出整流与滤波。

 交流电源输入经整流滤波成直流
 通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上
 开关变压器次级感应出高频电压,经整流滤波供给负载
 输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的
 交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;
 在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高;
 开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出;。

浅谈自激式开关电源的分析方法

浅谈自激式开关电源的分析方法

浅谈自激式开关电源的分析方法摘要CRT彩色电视机中主要采用分立元件组成的自激振荡式并联型开关电源电路,工作原理复杂、维修较困难。

本文结合笔者多年教学实际,提出了以自激振荡过程为核心的电路分析方法,便于学生较快地熟悉其工作原理,掌握保护电路和稳压电路的分析方法,具备快速检修开关电源的能力。

关键词自激振荡;开关电源;分析0 引言目前,CRT彩色电视机中主要采用分立元件组成的自激振荡式并联型开关电源电路。

由于其核心器件电源调整管工作在非线性状态,与串联稳压电源相比,具有体积小、重量轻、效率高、电压适应范围宽等显著优点,但是其工作原理复杂、维修困难,在实际教学过程中学生难以迅速掌握。

本文介绍了以自激振荡过程为核心的分析方法,便于在教学过程中使学生熟悉其工作原理,具备快速检修开关电源的能力。

1 开关电源的工作原理220V交流电直接经低频整流滤波后得到300V左右的直流电压,利用高频自激振荡电路将直流电转化为30kHz~60kHz的脉冲信号,再经储能变压器的能量转换送入高频整流滤波电路,经高频续流二极管整流后得到所需的多组直流电压输出。

通过取样调整电路,改变高频脉冲的脉冲宽度或脉冲周期来稳定输出电压。

开关电源电路常分为低频整流滤波电路、自激振荡电路、稳压电路、保护电路和高频整流滤波电路等部分。

其工作过程中的关键环节是产生高频脉冲,在将能量转化为高频脉冲时,开关管工作在饱和导通和截止状态,提高了能量利用效率;将能量转化为高频脉冲,可以通过改变占空比调节向输出端提供的能量,有利于适应电网电压大范围的波动;将能量转化为高频脉冲后,可以减小高频滤波电容容量,有利于缩小电源体积,减少电源重量。

2 自激振荡电路原理分析自激振荡电路起振是自激式开关电源正常工作的必要条件,开关调整管和变压器初级绕组L1参与振荡过程。

当开关调整管工作在饱和导通状态时,在变压器初级绕组L1上产生上正下负的感应电动势,次级绕组L2产生上负下正的感应电动势,初级绕组L1中的电流逐渐增大;当开关调整管截止时,变压器初级绕组L1上产生上负下正的感应电动势,次级绕组L2产生上正下负的感应电动势,续流二极管vD导通,向负载提供能量,并对电容C充电。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

几种常见的开关电源工作原理及电路图

几种常见的开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。

因此下面就主要介绍调宽式开关稳压电源。

调宽式开关稳压电源的基本原理可参见下图。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压U。

可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。

从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。

这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。

二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。

这部分电路目前已集成化,制成了各种开关电源用集成电路。

控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。

2、单端反激式开关电源单端反激式开关电源的典型电路如图三所示。

电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。

所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。

当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。

唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。

正激开关电源加载振荡的原因

正激开关电源加载振荡的原因

正激开关电源加载振荡是因为以下几个原因造成的:1. 电感和电容的选择不合适正激开关电源中的电感和电容是振荡电路的重要组成部分,其选择不合适会导致加载振荡。

电感的大小和电容的质量决定了振荡频率和稳定性,如果选择不当,就会导致振荡频率偏离设计值,甚至出现加载振荡现象。

2. 负载变化当正激开关电源的负载发生变化时,会导致振荡频率的变化,甚至出现加载振荡。

特别是在负载突变的情况下,振荡电路无法迅速适应负载变化,就会产生加载振荡。

3. 环境干扰正激开关电源工作时,受到环境因素的影响,比如温度变化、电磁干扰等,都会对振荡电路产生影响,导致加载振荡的发生。

4. 工艺制造不足正激开关电源的制造工艺如果不足,会导致电路中元器件的参数不稳定或者不准确,这也是加载振荡的一个重要原因。

针对以上原因,可以采取以下措施来解决加载振荡问题:1. 合理选择电感和电容,根据设计要求选取合适的参数,以确保振荡电路的稳定性和准确性。

2. 加强对负载变化的控制,可以采用反馈控制等方法,使振荡电路能够快速适应负载变化,避免加载振荡的发生。

3. 加强对环境干扰的防护,采取屏蔽措施和良好的环境管理,减少外界因素对振荡电路的影响。

4. 加强制造工艺控制,确保电路中元器件的参数稳定和准确,从根本上解决加载振荡的问题。

通过对加载振荡原因的分析和解决措施的探讨,可以有效提高正激开关电源的稳定性和可靠性,确保其正常工作,为各种应用提供稳定的电源支持。

振荡是指一个系统在受到外界干扰或者内部参数变化的情况下产生的周期性变化。

在电子电路中,振荡是一种常见的现象,正激开关电源加载振荡就是其中之一。

加载振荡是指在正激开关电源工作过程中,由于各种外部和内部因素的影响,使得输出电压或电流出现周期性的波动,而这种波动并非由负载的变化引起的,而是电路本身的工作状态发生变化引起。

加载振荡的出现会严重影响正激开关电源的稳定性和可靠性,甚至在严重情况下可能会导致电路的失效。

变频器开关电源工作原理

变频器开关电源工作原理

变频器开关电源工作原理首先我们先通俗地概括一下开关电源电路的工作原理:开关电源,顾名思义是指工作在开关状态下的电源电路,那么,电路中哪一个元件工作在开关状态呢?我想大家都知道,就是电源管(通常称为开关管)。

既然电源管工作在开关状态,因此电源管必须具备良好的开关特性,所以电源管通常采用大功率晶体管或场效应晶体管(以场效应晶体管为多)。

要让电源管工作在开关状态,就必须有一个能使电源管由截止变为导通,再由导通变为截止的电路(称为振荡电路),过去大多用分裂元件组成,而现在常用IC(如UC3844)集成电路。

而电源管的导通和截止就使流过N1(开关变压器主绕组上)的电流发生变化,从而产生一个电动势,这个电动势的波形就是一个脉冲信号(称为脉宽调制信号简称PWM)。

开关变压器是一个电磁转换器件,负责一次、二次功率转换,根据变压器的原理,初级和次级线圈匝数之比决定次级感应电动势(脉冲电压)的大小,而线圈的线径决定该绕组所能承受电流的大小(功率),这个电动势的波形也是一个脉冲信号(脉宽调制信号),且频率和输出的开关频率相同,只是峰值不一样而已,再经过整流和滤波后,就可以得到相应的直流输出电压。

变频器开关电源主要包括输入滤波电路,输入整流滤波电路,功率变换电路,控制电路,保护电路,输出整流滤波电路。

1、输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流很大(电容器的电压不会跃变,开启瞬间相当于短路,电感的电流也不会跃变,开启瞬间相当于开路)。

接入RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,这时电阻的温度快速升高后,RT1阻值减小(RT1为负温系数元件),这时它的能量消耗非常小,后级电路可正常工作。

2、整流滤波电路:交流220由桥式整流电路(D1-D4或用桥堆)整流后,经C5滤波后得到较为纯净的直流电压。

开关电源的振铃及抑制

开关电源的振铃及抑制

开关电源的振铃及抑制蒋江黔网名: PowerAnts世纪电源网电源技术研讨会2012-03-24论坛讨论同步链接:/73490.html开关电源的振铃现象振铃的危害•高的回路Q值产生过高的电压尖峰,增加MOSFET、二极管、变压器、电感等功率器件的电压应力•振铃信号串入驱动回路,加剧功率管损耗•引起EMI问题RLC谐振条件•一端口RLC电路出现电流与电压相位相同的现象,称为谐振阻尼振荡•串联/并联临界点:2R/0.5R电流源激励的并联谐振电流源激励的串联谐振•?电压源激励的并联谐振电压源激励的串联谐振振铃的寄生参数测量与计算1, 设电路的寄生电容为C1,寄生电感为L,振铃频率为f1,2, 在功率器件两端并一个可让振铃频率发生明显变化的无极性电容C2, 记录该并联C2后的振铃频率f2;3, 由公式计算出杂散参数C1及L:RC吸收参数计算1, 计算振铃的特性阻抗R2, 计算吸收电容量Cx3, 计算吸收电阻的功率PrPr = f1 * Cx* Vp-p^2案例•振铃波形•T=125nS•并联470PF•T=160nS•62R+470P•62R+220P•150R+2200P•150R+103案例•某电源开关频率60KHz, 二次侧整流管上的Vp-p 为60V, 拌有10MHz振铃, 需要削弱该振铃;•并联1000pF电容后, 振铃频率降为5MHz, 经计算得出振铃的特性阻抗为47欧, 串联电容为2nF, 吸收电阻损耗0.314W, 实际选1W金属膜电阻MOSFET 门级吸收MOSFET漏极吸收谢谢大家!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振荡过程:
C310正端的约300V电压,经R311、R312加到开关管BG311的B极,同时经开关变压器B301的(4)、(6)绕组加到BG311的C极,开关管开始导通,在B301的(2)、(3)绕组产生(2)正(3)负的正反馈电压,经R335、D335、C333加到BG311的B极,BG311迅速饱和。

BG311饱和后,B301的(4)、(6)绕组中的电流线性增大,B301储存磁场能量。

BG311的E 极电流流过R330,在R330上产生线性增大的锯齿波电压,该电压经C330送到A301的(2)脚,使(2)脚内部两只控制管导通,经A301的(3)脚对开关管BG311的B极电流分流,同时C330负端的电压也经A301的(2)、(3)脚加到BG311的B极,最终使BG311退出饱和状态。

BG311一旦退出饱和状态,B301各绕组的感应电压极性全部翻转,B301(2)、(3)绕组的电压经R335、C333的反馈,使BG311迅速截止。

BG311截止期间,D351、D353、D361、D371均导通,B301储存的磁场能量被转化成电能得到释放,从而建立180V、130V、16V、26V四组电压。

BG311截止后,B301的(4)、(6)绕组与C308、C309和C310产生自由振荡,半个周期后,300V电压经R311、R312给C333充电,经过一段时间后,BG311截止期结束,又进入下一周期的振荡。

稳压过程:
B301的(1)、(3)绕组的电压,经D332整流,在C327和C328上产生约30V左右的直流电压,该电压的大小反映了输出电压的大小,该电压经A301的(7)、(10)脚送入内部取样电路,从而控制BG1的电流大小,也就控制了BG2、BG3的导通程度,最终控制了开关管BG311的。

导通时间。

也就控制了输出电压的大小。

相关文档
最新文档