七年级数学多项式的运算测试-考试试卷

合集下载

人教版七年级数学下册期末测试题 (16)

人教版七年级数学下册期末测试题 (16)

山东省菏泽市单县启智学校2017-2018学年七年级(下)期末数学试卷(解析版)一、选择题1.把多项式2x2﹣8分解因式,结果正确的是()A.2(x2﹣8)B.2(x﹣2)2C.2(x+2)(x﹣2)D.2x(x﹣)【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用平方差公式分解因式得出即可.【解答】解:2x2﹣8=2(x2﹣4)=2(x﹣2)(x+2).故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式分解因式是解题关键.2.下列计算正确的是()A.x3+x3=x6B.x3÷x4=C.(m5)5=m10D.x2y3=(xy)5【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方.【分析】直接利用同底数幂的乘法、幂的乘方、积的乘方以及同底数幂的除法的性质求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、x3+x3=2x3,故本选项错误;B、x3÷x4=x﹣1=,故本选项正确;C、(m5)5=m25,故本选项错误;D、(xy)5=x5y5,故本选项错误.故选B.【点评】此题考查了同底数幂的乘法、幂的乘方、积的乘方以及同底数幂的除法.此题比较简单,注意掌握指数的变化是解此题的关键.3.若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10 B.9 C.8 D.6【考点】L3:多边形内角与外角.【分析】根据多边形的外角和定理作答.【解答】解:∵多边形外角和=360°,∴这个正多边形的边数是360°÷45°=8.故选C.【点评】本题主要考查了多边形的外角和定理:任何一个多边形的外角和都为360°.4.如果等腰三角形的一个外角等于110°,则它的顶角是()A.40°B.55°C.70°D.40°或70°【考点】KH:等腰三角形的性质.【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故选D.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.5.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣1【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:A、x2+x+1,无法分解因式,故此选项错误;B、x2+2x+1=(x+1)2,故此选项正确;C、x2+2x﹣1,无法分解因式,故此选项错误;D、x2﹣2x﹣1,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.6.用加减法解方程组时,(1)×2﹣(2)得()A.3x=﹣1 B.﹣2x=13 C.17x=﹣1 D.3x=17【考点】98:解二元一次方程组.【分析】此题考查的是加减消元法,消元时两方程相减,要注意是方程的左边减去左边、方程的右边减去右边.【解答】解:(1)×2﹣(2),得2(5x+y)﹣(7x+2y)=2×4﹣(﹣9),去括号,得10x+2y﹣7x﹣2y=2×4+9,化简,得3x=17.故选D.【点评】本题要求同学们要熟悉二元一次方程组的解法:加减消元法和代入消元法,解题时要根据方程组的特点进行有针对性的计算.7.在平面直角坐标系中,已知点A(3,﹣4),B(4,﹣3),C(5,0),O是坐标原点,则四边形ABCO的面积为()A.9 B.10 C.11 D.12【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】作出图形,作AD⊥x轴于D,BE⊥x轴于E,然后把四边形ABCD的面积转化为△OAD、梯形ADEB、△BEC的面积和,再根据三角形的面积和梯形的面积公式列式计算即可得解.【解答】解:如图,作AD⊥x轴于D,BE⊥x轴于E,则S四边形ABCD=S△OAD+S梯形ADEB+S△BEC=×3×4+(3+4)×1+×1×3=6++=6+5=11.故选C.【点评】本题考查了坐标与图形性质,三角形的面积,把四边形分解成规则的三角形和梯形是解题的关键,作出图形更形象直观.8.如图所示,∠1+∠2+∠3+∠4的度数为()A.100° B.180° C.360° D.无法确定【考点】K7:三角形内角和定理;L3:多边形内角与外角.【分析】把原图形化为两个三角形,然后根据三角形内角和定理求解.【解答】解:如图,,∠1+∠2+∠3+∠4=2×180°=360°.故选C.【点评】本题考查了三角形内角和定理:记住三角形内角和是180°.9.若(1﹣2x)0=1,则()A.x≠0 B.x≠2C.x≠D.x为任意有理数【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由(1﹣2x)0=1,得1﹣2x≠0.解得x≠,故选:C.【点评】本题考查了零指数幂,利用非零的零次幂等于1得出不等式是解题关键.10.多项式4x2+mxy+25y2是完全平方式,则m的值是()A.20 B.10 C.10或﹣10 D.20或﹣20【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵4x2+mxy+25y2是完全平方式,∴m=±20,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.二、填空题11.分解因式:3x2﹣27= 3(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】观察原式3x2﹣27,找到公因式3,提出公因式后发现x2﹣9符合平方差公式,利用平方差公式继续分解.【解答】解:3x2﹣27,=3(x2﹣9),=3(x+3)(x﹣3).故答案为:3(x+3)(x﹣3).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.12.点P(﹣5,1)到x轴距离为 1 .【考点】D1:点的坐标.【分析】根据点P(x,y)到x轴距离为|y|求解.【解答】解:点P(﹣5,1)到x轴距离为1.故答案为1.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.13.已知a+b=2,ab=﹣10,则a2+b2= 24 .【考点】4C:完全平方公式.【分析】此题可将a2+b2变形为(a+b)2﹣2ab,再代入求值即可.【解答】解:∵a+b=2,ab=﹣10,∴a2+b2=(a+b)2﹣2ab,=22﹣2×(﹣10),=4+20=24.故答案为:24.【点评】本题考查了因式分解的应用,注意应用因式分解对a2+b2变形是解决此题的关键.14.若5x=18,5y=3,则5x﹣2y= 2 .【考点】48:同底数幂的除法;47:幂的乘方与积的乘方.【分析】利用同底数的幂的除法的性质,以及幂的乘方的性质,所求的式子可以变形=,代入即可求解.【解答】解:原式====2.故答案是:2.【点评】本题考查了幂的除法的性质,以及幂的乘方的性质,正确对所求的式子进行变形是关键.15.若代数式x2﹣(a﹣2)x+9是一个完全平方式,则a= 8或﹣4 .【考点】4E:完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a的值.【解答】解:∵代数式x2﹣(a﹣2)x+9是一个完全平方式,∴﹣(a﹣2)x=±2•x•3,解得:a=8或﹣4,故答案为:8或﹣4.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要,注意:完全平方公式为①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.16.(﹣)2015×22014= ﹣.【考点】47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可得积的乘方,根据积的乘方,可得答案.【解答】解:原式=(﹣)×[(﹣)2014×22014]=﹣×(﹣×2)2014=﹣,故答案为:﹣.【点评】本题考查了积的乘方,利用积的乘方是解题关键.17.蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是6.1 万元和 6.9 万元.【考点】9A:二元一次方程组的应用.【分析】设甲、乙两种贷款分别是x、y万元,根据甲、乙两种贷款,共13万元可以列出方程x+y=13,根据王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为 3.5%可以列出方程6%x+3.5%y=0.6075,联立两个方程组成方程组,解方程组即可求出甲、乙两种贷款的数目.【解答】解:设甲、乙两种贷款分别是x、y万元,则6075元=0.6075万元,依题意得,解之得,答:甲、乙两种贷款分别是6.1万元,6.9万元.【点评】此题主要考查了利率、利息和本金之间的关系,解题关键是弄清题意,合适的等量关系,列出方程组.18.如图,已知∠1=∠2,∠B=40°,则∠3= 40°.【考点】JB:平行线的判定与性质.【分析】由∠1=∠2,根据“内错角相等,两直线平行”得AB∥CE,再根据两直线平行,同位角相等即可得到∠3=∠B=40°.【解答】解:∵∠1=∠2,∴AB∥CE,∴∠3=∠B,而∠B=40°,∴∠3=40°.故答案为40°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等.19.已知是方程kx﹣2y﹣1=0的解,则k= 3 .【考点】92:二元一次方程的解.【分析】根据二元一次方程解的定义,直接把代入方程kx﹣2y﹣1=0中,得到关于k的方程,然后解方程就可以求出k的值.【解答】解:把代入方程kx﹣2y﹣1=0,得5k﹣14﹣1=0,则k=3.故答案为:3.【点评】此题主要考查了二元一次方程的解的定义,利用定义把已知的解代入原方程得到关于k的方程,解此方程即可.20.(2015﹣π)0+(﹣)﹣2= 10 .【考点】6F:负整数指数幂;6E:零指数幂.【分析】首先根据零指数幂的运算方法:a0=1(a≠0),求出(2015﹣π)0的值是多少;然后根据负整指数幂的运算方法:a﹣p=,求出(﹣)﹣2的值是多少;最后把求出的(2015﹣π)0、(﹣)﹣2的值相加,求出算式的值是多少即可.【解答】解:(2015﹣π)0+(﹣)﹣2=1+9=10.故答案为:10.【点评】(1)此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a ≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.三、计算题(20分)21.(10分)分解因式:(1)3a3﹣6a2+3a.(2)a2(x﹣y)+b2(y﹣x).【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式提取3a,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=3a(a2﹣2a+1)=3a(a﹣1)2;(2)原式=(x﹣y)(a2﹣b2)=(x﹣y)(a﹣b)(a+b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.(10分)计算:(1)4x2﹣(﹣2x+3)(﹣2x﹣3)(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2.【考点】4I:整式的混合运算.【分析】(1)先利用平方差公式,再利用整式混合运算的顺序求解即可,(2)先利用完全平方公式及多项式乘多项式的方法,再利用整式混合运算的顺序求解即可.【解答】解:(1)4x2﹣(﹣2x+3)(﹣2x﹣3)=4x2﹣(4x2﹣9)=4x2﹣4x2+9=9;(2)(x+2y)2﹣(x+y)(3x﹣y)﹣5y2=x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2=﹣2x2+2xy.【点评】本题主要考查了整式的混合运算,解题的关键是熟记平方差,完全平方公式及整式混合运算的顺序.四、解答题23.(9分)将一副直角三角板如图放置,已知AE∥BC,求∠AFD的度数.【考点】JA:平行线的性质.【分析】根据平行线的性质及三角形内角定理解答.【解答】解:由三角板的性质,可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.因为AE∥BC,所以∠EAC=∠C=30°,所以∠DAF=∠EAD﹣∠EAC=45°﹣30°=15°,所以∠AFD=180°﹣∠ADE﹣∠DAF=180°﹣90°﹣15°=75°.【点评】本题考查的是平行线的性质及三角形内角和定理,解题时注意:两直线平行,内错角相等.24.(9分)先化简再求值:(a+2b)(2a﹣b)﹣(a+2b)2﹣(a﹣2b)2,其中.【考点】4J:整式的混合运算—化简求值.【分析】利用多项式乘以多项式法则和完全平方公式法化简,然后把给定的值代入求值.【解答】解:原式=2a2+3ab﹣2b2﹣(a2+4ab+4b2)﹣(a2﹣4ab+4b2),=2a2+3ab﹣2b2﹣a2﹣4ab﹣4b2﹣a2+4ab﹣4b2,=3ab﹣10b2,当时,原式=3×(﹣)×(﹣3)﹣10×(﹣3)2=3﹣90=﹣87.【点评】考查的是整式的混合运算,主要考查了公式法、多项式与多项式相乘以及合并同类项的知识点.25.(10分)某儿童服装店欲购进A、B两种型号的儿童服装.经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.求A、B两种型号童装的进货单价各是多少元?【考点】9A:二元一次方程组的应用.【分析】可设A型号童装进货单价为x元,则B型号童装进货单价为y元,则y=2x;再利用购进A型号童装60件和B型号童装40件共用2100元.则60x+40y=2100,联立方程组解答.【解答】解:设A型号童装进货单价为x元,则B型号童装进货单价为y元,依题意得:,解得.答:A型号童装进货单价为15元,则B型号童装进货单价为30元.【点评】本题考查了二元一次方程组的应用.二元一次方程组的应用问题的解答关键是审题,找出题干中的相等关系,设未知数,列关系式解答.26.(12分)△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移5个单位后再向下平移3个单位得到△A1B1C1(1)写出经平移后△A1B1C1点A1、B1、C1的坐标;(2)作出△A1B1C1;(3)求△ABC的面积.【考点】Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用(1)中所求进而得出答案;(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:A1(3,0),B1(2,﹣1),C1(4,﹣2);(2)如图所示:△A1B1C1即为所求;(3)△ABC的面积为:2×2﹣×1×1﹣×1×2﹣×1×2=1.5.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:事件A 必然事件 随机事件m 的值 ________ ________(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

2022-2023学年广东省广州市第八十六中学七年级上学期数学期末考试试卷带讲解

2022-2023学年广东省广州市第八十六中学七年级上学期数学期末考试试卷带讲解

广州市第八十六中学(初中部)2022-2023学年第一学期期末线上测试初一数学一、选择题(共16题,共48分)1.下列等式正确的是()A.342(3)(4)(2)-+-=-+---B.(9)(10)(6)9106+---+=--C.(8)(3)(5)835---+-=-+- D.3566(35)-++=-+C【分析】根据有理数加减混合运算法则计算即可.【详解】解:A .342(3)4(2)-+-=-++-,本选项错误;B .(9)(10)(6)9106+---+=+-,本选项错误;C .(8)(3)(5)835---+-=-+-,本选项正确;D .3566(35)-++=--,本选项错误.故选:C .【点睛】本题考查了有理数的加减运算,熟知运算法则是解题的关键.2.实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数()A.aB.bC.cD.d C【分析】根据绝对值的意义:一个数的绝对值表示这个数在数轴上对应的点到原点的距离,再观察数轴上的四个点的位置即可知答案.【详解】解:观察数轴,可知:实数c 对应的点到原点的距离最小,∴实数c 的绝对值最小的数是实数c .故选C .【点睛】此题考查了实数的绝对值的意义和实数大小比较,熟练掌握绝对值的意义并灵活运用是解此题的关键.3.已知3x =,2y =,且5x y -=-,则x y +等于()A.5B.5-C.1D.1-D【分析】先根据绝对值的意义得到32x y =±=±,,再由50x y -=-<得到32x y =-=,,据此求解即可.【详解】解:∵3x =,2y =,∴32x y =±=±,,∵50x y -=-<,∴32x y =-=,,∴321x y +=-+=-,故选D .【点睛】本题主要考查了绝对值,有理数的加减法,代数式求值,正确得到32x y =-=,是解题的关键.4.2022年冬奥会由北京和张家口两市联合承办.北京到张家口的自驾距离约为196000米.196000用科学记数法表示应为()A.1.96×105 B.19.6×104 C.1.96×106 D.0.196×106A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】196000=1.96×105,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.下列叙述中,正确的是()A.单项式2x y 的系数是0,次数是3B.a 、π、0、22都是单项式C.多项式32321a b a ++是六次三项式 D.2m n +是二次二项式B 【分析】根据单项式与多项式的基本概念进行判断即可.【详解】A 选项:2x y 的系数为1,次数为3,故选项A 错误;B 选项:a 、π、0、22都是单项式,故选项B 正确;C 选项:32321a b a ++是四次三项式,故选项C 错误;D 选项:2m n +是一次二项式,故选项D 错误;故选B.【点睛】本题主要考查单项式与多项式的基本概念,在单项式中,所有字母的指数的和叫做这个单项式的次数;在多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数;掌握单项式与多项式的基本概念是解题的关键.6.下列各式化简正确的是()A.()2a a b c a b c --+=--+ B.()()2a b b c a b c+--+=++C.()352252a b c a a b c---=-+⎡⎤⎣⎦ D.()a b c d a b c d-+-=-+-C【分析】根据去括号法则逐项分析判断即可求解.【详解】解:A .()22a a b c a a b c a b c --+=-+-=-+-,故该选项不正确,不符合题意;B .()()2a b b c a b b c a b c +--+=++-=+-,故该选项不正确,不符合题意;C .()()352352352252a b c a a b c a a b c a a b c ---=--+=-+-=-+⎡⎤⎣⎦,故该选项正确,符合题意;D .()a b c d a b c d -+-=---,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了去括号,掌握去括号法则是解题的关键.括号前面是加号时,去掉括号,括号内的算式不变,括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,法则的依据实际是乘法分配律.7.一个多项式与x 2﹣2x +1的和是3x ﹣2,则这个多项式为()A.x 2﹣5x +3B.﹣x 2+x ﹣1C.﹣x 2+5x ﹣3D.x 2﹣5x ﹣13C【分析】根据题意列出关系式,去括号合并同类项即可得到结果.【详解】解:根据题意得:3x -2-(x 2-2x +1)=3x -2-x 2+2x -1=-x 2+5x -3.故选:C .【点睛】此题考查了整式的减法的运用,熟练掌握整理式减法运算法则是解本题的关键.8.甲、乙两人骑自行车同时从相距65km 的两地相向而行,2h 相遇,若甲比乙每小时多骑2.5km ,则乙的速度是每小时()A .12.5km B.15km C.17.5km D.20km B【分析】设甲的速度是x 千米/时,乙的速度是y 千米/时,根据等量关系:两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,甲比乙每小时多骑2.5千米,即可列出方程组,解出即可.【详解】设甲的速度是x 千米/时,乙的速度是y 千米/时,由题意得2()6525x yx y+=⎧⎨-=⎩,解得17.515xy=⎧⎨=⎩,则乙的速度是2.5千米/时,故选B.9.下列说法正确的是()A.射线AB与射线BA表示同一条射线B.连接两点的线段叫做这两点的距离C.平角是一条直线D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3D【分析】根据射线的定义,两点间的距离的概念,平角的定义,余角的性质即可作出选择.【详解】解:A、射线AB与射线BA表示不同的两条射线,故本选项错误;B、连接两点的线段的长度叫做这两点的距离,故本选项错误;C、平角的两条边在一条直线上,故本选项错误;D、若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3是正确的,故本选项正确.故选D.【点睛】本题考查了余角和补角、直线、射线、线段以及两点间的距离,数量掌握各基本知识点是解题的关键.10.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A. B. C. D.B【分析】由平面图形的折叠及正方体的展开图逐项分析即可得.【详解】由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图,故选B.【点睛】本题考查了正方体的展开图,熟记正方体的特征以及正方体展开图的各种情形是解题的关键.11.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°B【详解】下午2点30分时,时钟的分针与时针所成角的度数为:30°×4-30°×12=120°-15°=105°.故选B.点睛:(1)钟面被12小时分成12大格,每1格对应的度数是30°;(2)时针每分钟转动0.5°,分针每分钟转动6°.12.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积为() A.36cm 2 B.33cm 2 C.30cm 2 D.27cm 2A【详解】试题解析:正视图中正方形有6个;左视图中正方形有6个;俯视图中正方形有6个.则这个几何体中正方形的个数是:2×(6+6+6)=36个.则几何体的表面积为36cm 2.故选A .考点:几何体的表面积.13.如图,已知90AOB ︒∠=,OC 是AOB ∠内任意一条射线,,OB OD 分别平分COD ∠,∠BOE ,下列结论:①COD BOE ∠=∠;②3COE BOD ∠=∠;③BOE AOC ∠=∠;④90AOC BOD ︒∠+∠=,其中正确的有()A.①②④B.①③④C.①②③D.②③④A 【分析】根据角平分线的定和各角的关系逐一判断即可.【详解】解:∵,OB OD 分别平分COD ∠,∠BOE ,∴∠COD=2∠COB=2∠BOD ,∠BOE=2∠BOD=2∠DOE∴COD BOE ∠=∠,故①正确;∴∠COE=∠COD +∠DOE=2∠BOD +∠BOD==3∠BOD ,故②正确;∵COD BOE ∠=∠,而∠COD 不一定等于∠AOC∴∠BOE 不一定等于∠AOC ,故③不一定正确;∵90AOB ︒∠=∴∠AOC +∠COB=90°∴90AOC BOD ︒∠+∠=,故④正确.综上:正确的有①②④.故选A .【点睛】此题考查的是角的和与差,掌握角平分线的定义和各角的关系是解决此题的关键.14.如图,60AOB ∠=︒,射线OC 平分AOB ∠,以OC 为一边作15COP ∠=︒,则BOP ∠=()A.15°B.45°C.15°或30°D.15°或45°D【分析】根据∠AOB =60°,射线OC 平分∠AOB ,可得∠BOC =30°,分OP 在∠BOC 内,OP 在∠AOC 内,两种情况讨论求解即可.【详解】解:∵∠AOB =60°,射线OC 平分∠AOB ,∴∠AOC =∠BOC =12AOB =30°,又∠COP =15°①当OP 在∠BOC 内,∠BOP =∠BOC -∠COP =30°-15°=15°,②当OP 在∠AOC 内,∠BOP =∠BOC +∠COP =30°+15°=45°,综上所述:∠BOP =15°或45°.故选:D .【点睛】本题考查了角平分线的定义,解决本题的关键是运用分类讨论思想.15.如图,C ,D 是线段AB 上的两点,且1134AC CD DB ==,已知图中所有线段长度之和为81,则CD 长为()A.9B.2438C.24316D.以上都不对A【分析】设4DB x =,则,3AC x CD x ==,再根据线段和差可得4,8,7AD x AB x BC x ===,然后根据“图中所有线段长度之和为81”建立方程,解方程求出x 的值,由此即可得出答案.【详解】解:设4DB x =,则,3AC x CD x ==,4,8,7AD AC CD x AB AC CD DB x BC CD DB x ∴=+==++==+=,图中所有线段长度之和为81,81AC AD AB CD BC DB ∴+++++=,即4837481x x x x x x +++++=,解得3x =,则3339CD x ==⨯=,故选:A .【点睛】本题考查了线段的和差、一元一次方程的几何应用,正确找出图中所有的线段,并建立方程是解题关键.16.已知||5a =,||2=b ,且b a <,则a b -的值为()A.3或7B.3-或7-C.3-或7D.3或7-A【分析】根据|a|=5,|b|=2,a+b>0确定a 和b 的值,即可求解.【详解】解:∵|a|=5,|b|=2,b a <,∴a=5,b=-2或a=5,b=2,∴a−b 的值为3或7,故选:A .【点睛】本题考查有理数的运算、绝对值,根据题意确定a 和b 的值是解题的关键.二、填空题(共4题,共12分)17.某日的最低气温是零下5.6℃,用负数表示这个温度为______℃.5.6-【分析】根据零下记为负,用负数表示即可求解.【详解】解:某日的最低气温是零下5.6℃,用负数表示这个温度为 5.6-℃,故答案为: 5.6-.【点睛】本题考查了正负数的意义,理解题意是解题的关键.18.如图,(1)若AOB COD ∠=∠,则AOC ∠=∠________;(2)若AOC BOD ∠=∠,则∠________=∠________.①.BOD ##DOB②.AOB ##BOA ③.COD ##DOC 【分析】(1)根据几何图形,结合等式的性质即可求解.(2)根据几何图形,结合等式的性质即可求解.【详解】解:(1)∵AOB COD ∠=∠,∴AOB BOC COD BOC ∠+∠=∠+∠,即AOC BOD ∠=∠,故答案为:BOD ;(2)∵AOC BOD ∠=∠,∴AOC BOC BOD BOC ∠-∠=∠-∠,即AOB COD ∠=∠,故答案为:AOB ,COD .【点睛】本题考查了几何图形中角度的计算,数形结合是解题的关键.19.如图,A 、B 、C 、D 在同一条直线上,AB=6,AD=13AB ,1CD =,则BC=_____.3【详解】试题解析:163AB AD AB ==,,2,AD ∴=1,CD = 621 3.BC AB AD CD =--=--=故答案为3.20.有理数a ,b ,c 在数轴上的位置如图所示,化简:a b b c c a -+++-=________.222a b c -++【分析】根据数轴上点的位置,得出0a c b <<<,c b <,可得0a b -<,0b c +>,0c a ->,进而化简绝对值即可求解.【详解】解:根据数轴上点的位置,可知:0a c b <<<,c b <,∴0a b -<,0b c +>,0c a ->,∴a b b c c a -+++-=a b b c c a-++++-222a b c =-++,故答案为:222a b c -++.【点睛】本题考查了根据数轴上点的位置判断式子的符号,化简绝对值,整式的加减,数形结合是解题的关键.三、解答题(共5题,共60分)21.计算:()35724468⎛⎫-⨯-+ ⎪⎝⎭19-【分析】根据乘法分配律进行计算即可求解.【详解】解:()35724468⎛⎫-⨯-+ ⎪⎝⎭()()()357242424468⎛⎫=-⨯+-⨯-+-⨯ ⎪⎝⎭182021=-+-19=-.【点睛】本题考查了有理数的混合运算,掌握乘法分配律是解题的关键.22.解不等式2(41)58x x -- ,并把它的解集在数轴上表示出来.2x ≥-.【分析】根据一元一次不等式的解法,去括号,移项,合并同类项,系数化为1即可.【详解】解:去括号,得8x 2-≥5x 8-.移项,得8x 5x -≥82-+.合并,得3x ≥6-.系数化为1,得x 2≥-.不等式的解集在数轴上表示如下:【点睛】本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.先化简,再求值:32232(2)(2)(32)x y x y x y x -----+,其中,2x =-,=3y -.22+2y x y --;-11.【分析】原式去括号合并同类项得到最简结果,把x 和y 的值代入计算即可求出值.【详解】32232(2)(2)(32)x y x y x y x -----+=322324+2+32x y x y x y x ----=22+2y x y--当x=-2,y=-3时,原式=-(-3)2-2×(-2)+2×(-3)=-9+4-6=-11.【点睛】此题考查了整式的加减—化简求值,熟练掌握运算法则是解本题的关键.24.制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.【分析】本题可设共有x 人生产圆形铁片,则共有()42x -人生产长方形铁片,由两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于x 的方程,求解即可.【详解】设共有x 人生产圆形铁片,则共有()42x -人生产长方形铁片,根据题意列方程得:()12028042x x =⨯-解得:24x =则42422418x -=-=.答:共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,难度一般.25.点O 为直线AB 上一点,将一直角三角板OMN 的直角顶点放在O 处,射线OC 平分∠MOB .(1)如图(1),若∠AOM =30°,求∠CON的度数;(2)在图(1)中,若∠AOM =α,直接写出∠CON 的度数(用含α的代数式表示);(3)将图(1)中的直角三角板OMN 绕顶点O 顺时针旋转至图(2)的位置,一边OM 在直线AB 上方,另一边ON 在直线AB 下方.①探究∠AOM 和∠CON 的度数之间的关系,写出你的结论,并说明理由;②当∠AOC =3∠BON 时,求∠AOM 的度数.(1)∠CON =15°;(2)∠CON =12a ;理由见解析(3)∠AOM =144°.【分析】(1)根据角平分线的定义和余角的性质即可得到结论;(2)根据角平分线的定义和余角的性质即可得到结论;(3)设∠AOM=a,则∠BOM=180°-a,①根据角平分线的定义得到∠MOC=12∠BOM=12(180°-α)=90°-12α,根据余角的性质得到∠CON=∠MON-∠MOC=90°-(90°-12α)=12α,于是得到结论;②由①知∠BON=∠MON-∠BOM=90°-(180°-α)=α-90°,∠AOC=∠AOM+∠MOC=α+90°-12α=90°+12α,列方程即可得到结论.【小问1详解】解:由已知得∠BOM=180°-∠AOM=150°,又∠MON是直角,OC平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°;【小问2详解】解:∠CON=12a;理由如下:由已知得∠BOM=180°-∠AOM=180°-α,又∠MON是直角,OC平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12a;【小问3详解】解:设∠AOM=a,则∠BOM=180°-a,①∠CON=12 a;,理由如下:∵OC平分∠BOM,∴∠MOC=12∠BOM=12(180°-α)=90°-12α,∵∠MON=90°,∴∠CON=∠MON-∠MOC=90°-(90°-12α)=12α,∴∠CON=12∠AOM;即∠CON=12a;②由①知∠BON=∠MON-∠BOM=90°-(180°-α)=α-90°,∠AOC=∠AOM+∠MOC=α+90°-12α=90°+12α,∵∠AOC=3∠BON,∴90°+12α=3(α-90°),解得α=144°,∴∠AOM=144°.【点睛】本题主要考查的是余角与补角,角的计算、角平分线的定义的运用,正确的理解题意是解题的关键.解题时注意方程思想的运用.。

浙江省宁波市鄞州区2023-2024学年“迎春杯”七年级上学期数学能力测试试题

浙江省宁波市鄞州区2023-2024学年“迎春杯”七年级上学期数学能力测试试题
A.(1)(2)(3)B.(1)(4)C.(2)(3)D.(1)(2)(4)
3.已知ab是有理数若a在数轴上的对应点的位置如图所示 有以下结论:① ;② ;③ ;④ 则所有正确的结论是()
A.①④B.①③C.②③D.②④
4.如图线段 C是 上一点且 O是 的中点线段 的长度是( )
A.2cmB.3cmC.4cmD.5cm
16.三个三位数 由数字 组成它们的和是 则 的最大值是.
评卷人
得分
三、解答题
17.如图点C是线段AB的中点点D在AB上且D的长;
(2)若CD=2求线段AB的长.
18.美团外卖骑手分为专职和兼职两种专职骑手月工资4000元保底每送一单外卖可再得3元;兼职骑手没有保底工资每送一单外卖可得4元.小张是一名专职美团骑手小李是一名兼职美团骑手.
一双鞋
每付现金 元返购物券 元但付款时不可以使用购物券
一套化妆品
付款时可以使用购物券但不返购物券
A. 元B. 元C. 元D. 元
10.对于任意一个正整数 可以按规则生成无穷数串: … …(其中 为正整数)规则为: 下列说法:
①若 则生成的这数串中必有 ( 为正整数);
②若 则 ;
③若生成的数中有一个 则它的前一个数 应为 ;
(1)若10月小张和小李送出的外卖单数相同且小张比小李多收入了2500元求小张送出了多少单外卖.
(2)根据国家个人所得税率标准月工资超过5000时需要交纳个人所得税税率如下表所示:
级数
工资范围
税率
1
不超过5000元
2
超过5000至不超过8000的部分
3
超过8000至不超过17000的部分



如果小张在11月交了200元的个人所得税请问小张在11月送出了多少单外卖?

人教版数学七年级上册 第2章 2.1---2.2基础测试题含答案

人教版数学七年级上册 第2章 2.1---2.2基础测试题含答案

2.1整式一.选择题1.多项式3xy﹣2xy2+1的次数及最高次项的系数分别是()A.2,﹣3B.2,3C.3,2D.3,﹣2 2.单项式﹣4πab2的次数是()A.﹣4B.2C.3D.4 3.单项式﹣6ab的系数与次数分别为()A.6,1 B.﹣6,1C.6,2D.﹣6,2 4.下列说法,正确的是()A.23x2是五次单项式B.2πR2的系数是2C.0是单项式D.a3b的系数是05.下列关于多项式x2+3x﹣2的说法,其中错误的是()A.是二次三项式B.最高次项的系数是1C.一次项系数是3D.常数项是26.在式子a2+2,,ab2,,﹣8x,3中,整式有()A.6个B.5个C.4个D.3个7.下列说法正确的是()A.多项式ab+c是二次三项式B.5不是单项式C.单项式﹣x3y2z的系数是﹣1,次数是6D.多项式2x2+3y的次数是38.在式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式的个数是()A.5个B.4个C.3个D.2个9.下列说法正确的是()A.﹣1不是单项式B.2πr3+的次数是3C.的次数是3D.的系数是10.下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是1,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为二.填空题11.多项式﹣x3y2+xy﹣2的常数项是,它的项数是,它的次数是.12.单项式﹣x2y的系数是;多项式2x2y﹣xy的次数是.13.如果一个单项式的系数和次数分别为m、n,那么2mn=.14.下列代数式:﹣6x2y、、﹣、a、、、﹣x2+2x﹣1中,单项式有个.15.如果y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,则m的值是.三.解答题16.已知a、b互为相反数,c、d互为倒数,多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,单项式x2n y5﹣m的次数与这个多项式的次数相同,求(a+b)m+m n﹣(cd﹣n)2019的值.17.已知多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数.(1)求a,b的值;(2)求b2﹣3b+4b﹣5的值.18.已知多项式2x2y3+x3y2+xy﹣5x4﹣.(1)把这个多项式按x的降幂重新排列;(2)请指出该多项式的次数,并写出它的二次项和常数项.19.已知式子M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,且二次项的系数为b,在数轴上有点A、B、C三个点,且点A、B、C三点所表示的数分别为a、b、c,如图所示已知AC=6AB(1)a=;b=;c=.(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,点E为线段AP的中点,点F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,求的值.(3)点P、Q分别自A、B出发的同时出发,都以每秒2个单位长度向左运动,动点M 自点C出发,以每秒6个单位长度的速度沿数轴向右运动设运动时间为t(秒),3<t<时,数轴上的有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN 上一点(点T不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.参考答案与试题解析一.选择题1.【解答】解:多项式3xy﹣2xy2+1的次数及最高次项的系数分别是:3,﹣2.故选:D.2.【解答】解:单项式﹣4πab2的次数是3.故选:C.3.【解答】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.4.【解答】解:A、23x2是二次单项式,故A选项错误;B、2πR2的系数是2π,故B选项错误;C、0是单项式,故C选项正确;D、a3b的系数是1,故D选项错误.故选:C.5.【解答】解:A、多项式x2+3x﹣2是二次三项式,正确,不合题意;B、多项式x2+3x﹣2的最高次项的系数是1,正确,不合题意;C、多项式x2+3x﹣2的一次项系数是3,正确,不合题意;D、多项式x2+3x﹣2的常数项是﹣2,原式错误,符合题意.故选:D.6.【解答】解:在式子a2+2,,ab2,,﹣8x,3中,整式有:a2+2,ab2,,﹣8x,3共5个.故选:B.7.【解答】解:A、多项式ab+c是二次二项式,故此选项错误;B、5是单项式,故此选项错误;C、单项式﹣x3y2z的系数是﹣1,次数是6,故此选项正确;D、多项式2x2+3y的次数是2,故此选项错误.故选:C.8.【解答】解:式子,2x+5y,0,﹣2a,﹣3x2y3,中,单项式有:0,﹣2a,﹣3x2y3,共3个.故选:C.9.【解答】解:A、﹣1是单项式,错误;B、2πr3+的次数是4,错误;C、的次数是3,正确;D、﹣的系数是﹣,错误;故选:C.10.【解答】解:A、单项式的系数是﹣,次数是3,系数包括分母,故这个选项错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,故这个选项错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,故这个选项错误;D、单项式﹣的次数是2,系数为﹣,符合单项式系数、次数的定义,故这个选项正确;故选:D.二.填空题(共5小题)11.【解答】解:多项式﹣x3y2+xy﹣2的常数项是:﹣2,它的项数是:3,它的次数是:5.故答案为:﹣2,3,5.12.【解答】解:单项式﹣x2y的系数是:﹣;多项式2x2y﹣xy的次数是:3.故答案为:﹣,3.13.【解答】解:单项式的系数是﹣,次数是4,则m=﹣,n=4,所以:2mn=2×(﹣)×4=﹣,故答案为:﹣.14.【解答】解:根据单项式的定义,可以得到:﹣6x2y、、﹣、a是单项式,共4个.故答案为:4.15.【解答】解:∵y|m|﹣3﹣(m﹣5)y+16是关于y的二次三项式,∴|m|﹣3=2,m﹣5≠0,∴m=﹣5,故答案为:﹣5.三.解答题(共4小题)16.【解答】解:∵多项式﹣5x2y m+1+xy2﹣x3+6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,则2n+5﹣3=6,解得:n=2,∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴(a+b)m+m n﹣(cd﹣n)2019=0+9﹣(1﹣2)2019=9﹣(﹣1)=10.17.【解答】解:(1)∵多项式A=ax a+4x2﹣,B=3x b﹣5x,若A,B两个多项式的次数相同,且最高次数项的系数互为相反数,∴,解得a=﹣7,b=2;(2)b2﹣3b+4b﹣5=,把b=2代入得:==2+2﹣5=﹣1.18.【解答】解:(1)按x降幂排列为:﹣5x4+x3y2+2x2y3+xy﹣;(2)该多项式的次数是5,它的二次项是xy,常数项是﹣.19.【解答】解:(1)∵M=(a﹣16)x3+20x2+10x+5是关于x的二次多项式,二次项的系数为b∴a=16,b=20;∴AB=4∵AC=6AB∴AC=24∴16﹣c=24∴c=﹣8故答案为:16,20,﹣8;(2)设点P的出发时间为t秒,由题意得:EF=AE﹣AF=AP﹣BQ+AB=(24﹣2t)﹣(20﹣3t)+4=6+∴BP﹣AQ=(28﹣2t)﹣(16﹣3t)=12+t,∴=2;(3)设点P的出发时间为t秒,P点表示的数为16﹣2t,Q点表示的数为20﹣2t,M点表示的数为6t﹣8,N点表示的数为6t﹣10,T点表示的数为x,∴MQ=28﹣8t,NT=x﹣6t+10,PT=|16﹣2t﹣x|2.2整式的加减一.选择题1.下列运算正确的是()A.3a2+a3=a5B.3a2b﹣5ab2=﹣2abC.3ab﹣ab=2D.3a+2a=5a2.若﹣4x2y和23x m y n是同类项,则m,n的值分别是()A.m=2,n=1B.m=2,n=0C.m=4,n=1D.m=4,n=0 3.下列各组代数式中,属于同类项的是()A.ab与3ba B.a2b与a2c C.2a2b与2ab2D.a与b4.若代数式2x2+7kxy﹣y2中不含xy项,则k的值为()A.0B.﹣C.D.15.下列计算中,正确的是()A.a3﹣a2=a B.5a﹣7a=﹣2C.2a3+3a2=5a5D.a2b﹣ba2=﹣a2b6.下列运算正确的是()A.5a2﹣3a2=2B.x2+x2=x4C.3a+2b=5ab D.7ab﹣6ba=ab 7.下列各式去括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+cB.a+(b﹣c﹣d)=a﹣b+c+dC.a﹣(b﹣c﹣d)=a﹣b+c+dD.2a﹣[2a﹣(﹣2a)]=08.若单项式与﹣y2n x3的和仍是单项式,则(mn)2021的值为()A.﹣1B.C.D.19.已知与3xy4+b的和是单项式,那么a、b的值分别是()A.B.C.D.10.已知2x2y3a与﹣4x2a y1+b是同类项,则b a的值为()A.2B.﹣2C.1D.﹣1二.填空题11.若代数式﹣a m b4和3ab n相加后仍是单项式,则m+n=.12.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.单项式x﹣|a﹣1|y与是同类项,则b a=.15.某同学在做计算A+B时,误将“A+B”看成了“A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则A+B的正确答案为.三.解答题16.合并同类项:5m+2n﹣m﹣3n.17.化简(1)5xy﹣2y2﹣3xy﹣4y2.(2)2(2a﹣3b)﹣3(2b﹣3a).18.多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项.(1)试确定m和n的值;(2)求3A﹣2B.19.小红做一道题:已知两个多项式A,B,其中A=y2+ay﹣1,计算B﹣2A她误将B﹣2A 写成2B﹣A,结果答案是3y2+5ay﹣4y﹣1.(1)求多项式B;(2)若a为常数,要使得B中不含一次项,则a的值为多少?参考答案与试题解析一.选择题1.【解答】解:3a2与a3、3a2b与5ab2都不是同类项,不能合并,故选项A、B错误;3ab﹣ab=2≠2ab,故选项C错误;3a+2a=5a,合并正确.故选:D.2.【解答】解:∵﹣4x2y和23x m y n是同类项,∴m=2,n=1,故选:A.3.【解答】解:A、ab与3ba符合同类项的定义,它们是同类项.故本选项正确;B、a2b与a2c所含的字母不相同,它们不是同类项.故本选项错误;C、2a2b与2ab2相同字母的指数不相同,它们不是同类项.故本选项错误;D、a与b所含字母不相同,它们不是同类项.故本选项错误;故选:A.4.【解答】解:∵代数式2x2+7kxy﹣y2中不含xy项,∴7k=0.解得:k=0.故选:A.5.【解答】解:A、a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;B、5a﹣7a=﹣2a,故本选项不合题意;C、2a3与3a2不是同类项,所以不能合并,故本选项不合题意;D、,故本选项符合题意.故选:D.6.【解答】解:A、5a2﹣3a2=2a2,故本选项不合题意;B、x2+x2=2x2,故本选项不合题意;C、3a和2b不是同类项,所以不能合并,故本选项不合题意;D、7ab﹣6ba=ab,故本选项符合题意.故选:D.7.【解答】解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c;B、a+(b﹣c﹣d)=a+b﹣c﹣d;C、a﹣(b﹣c﹣d)=a﹣b+c+d;D、2a﹣[2a﹣(﹣2a)]=2a﹣(2a+2a)=2a﹣2a﹣2a=﹣2a;故选:C.8.【解答】解:依题意得:,解得:,∴(mn)2021=()2021=﹣1.故选:A.9.【解答】解:∵与3xy4+b的和是单项式,∴与3xy4+b是同类项.∴.∴a=2,b=﹣1.故选:B.10.【解答】解:根据题意可得:,解得:,所以b a的值=21=2,故选:A.二.填空题11.【解答】解:∵代数式﹣a m b4和3ab n相加后仍是单项式,∴﹣a m b4和3ab n是同类项.∴m=1,n=4.∴m+n=5.故答案为:5.12.【解答】解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.13.【解答】解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.【解答】解:由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=11=1,故答案为:1.15.【解答】解:∵A﹣B=9x2﹣2x+7,B=x2+3x+2,∴A=x2+3x+2+9x2﹣2x+7,=10x2+x+9,∴A+B=10x2+x+9+x2+3x+2,=11x2+4x+11.故答案为:11x2+4x+11.三.解答题16.【解答】解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.17.【解答】解:(1)原式=5xy﹣3xy﹣4y2﹣2y2=2xy﹣6y2.(2)原式=4a﹣6b﹣6b+9a=13a﹣12b.18.【解答】解:(1)(x3+mx2+2x﹣8)(3x﹣n)=3x4+3mx3+6x2﹣24x﹣nx3+mnx2+2nx+8n=3x4+(3m﹣n)x3+(6+mn)x2+(2n﹣24)x+8n,∵多项式A=x3+mx2+2x﹣8、B=3x﹣n,A与B的乘积中不含有x3和x项,∴3m﹣n=0,2n﹣24=0,解得:n=12,m=4;(2)由(1)得:3A﹣2B=3(x3+mx2+2x﹣8)﹣2(3x﹣n)=3(x3+4x2+2x﹣8)﹣2(3x﹣12)=3x3+12x2+6x﹣24﹣6x+24=3x3+12x2.19.【解答】解:(1)∵2B﹣A=3y2+5ay﹣4y﹣1,A=y2+ay﹣1,∴2B=3y2+5ay﹣4y﹣1+y2+ay﹣1=4y2+6ay﹣4y﹣2,∴B=2y2+3ay﹣2y﹣1。

七年级数学上册多项式练习题

七年级数学上册多项式练习题

七年级数学上册多项式练习题
1. 多项式的概念
- 什么是多项式?
- 多项式是由多个项组成的代数表达式,其中每个项由一个系数与一个或多个变量的乘积构成。

- 什么是项?
- 项是由一个系数与一个或多个变量的乘积构成的部分。

2. 多项式的运算
- 相同指数的项可以进行合并。

- 加法运算:
- 合并相同指数的项,并将系数相加。

- 减法运算:
- 将减去的多项式的各项前面的系数变为相反数,然后进行加法运算。

- 乘法运算:
- 将多项式的每一项与另一个多项式的每一项进行乘法运算,
并将结果合并。

3. 多项式的练题
1. 将多项式 3x^2 + 2x - 5 和多项式 4x^2 - 3x + 7 进行相加。

2. 将多项式 5x^3 - 2x^2 + 3 和多项式 2x^3 + 4x - 1 进行相减。

3. 将多项式 2x^2 - 3x + 5 和多项式 -3x^2 + 2x - 1 进行相加。

4. 将多项式 4x^3 - 5x^2 + 2 和多项式 -2x^3 + 3x - 4 进行相减。

5. 将多项式 2x^2 + 3x - 4 和多项式 3x^2 - 2x + 1 进行乘法运算。

请根据以上练题进行计算并写出结果。

使用方法:将以上练习题进行计算并写出结果。

七年级上册数学学案设计2.1第3课时多项式(附模拟试卷含答案)

七年级上册数学学案设计2.1第3课时多项式(附模拟试卷含答案)

2.1 整式第3课时 多项式学习内容:课本p58例3及课本p64提到的一个内容 学习目的和要求:1、通过用整式来表示事物间的关系,逐步掌握数学建模思想;2、理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。

3、通过尝试和交流,体会多项式升(降)幂排列的可行性和必要性。

4、初步体验排列组合思想与数学美感,培养审美观。

学习重点和难点:重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。

一、 自主学习:1、教材p58例3:我们知道船在河流中行驶时,船的速度需要分两种情况讨论: (1)顺水行驶:船的速度= ; (2)逆水行驶:船的速度= ;在上面两个关系式中若用字母V 表示静水速度则 船的顺水速度为 船的逆水速度为 当V=20时则甲船顺水速度 甲船逆水速度 乙船顺水速度 乙船逆水速度2..请运用加法交换律,任意交换多项式x 2+x +1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐?【提示】有六种不同的排列方式,像x 2+x +1与1+x +x 2这样的排列比较整齐。

这两种排列有一个共同点,那就是x 的指数是逐渐变小(或变大)的。

我们把这种排列叫做升幂排列与降幂排列。

例如:把多项式5x2+3x -2x 3-1按x 的指数从大到小的顺序排列,可以写成-2x 3+5x 2+3x -1,这叫做这个多项式按字母x 的降幂排列。

若按x 的指数从小到大的顺序排列,则写成-1+3x +5x 2-2x 3,这叫做这个多项式按字母x 的升幂排列。

二、合作探究1、请把卡片按x 降幂排列2、把多项式2πr -1+3πr 3-π2r 2按r 升幂排列。

【提示】:π是数字,不是字母,题目中一次项、二次项、三次项系数分别为2π、-π2、3π。

3、把多项式a3-b3-3a2b+3ab2重新排列。

(1)按a升幂排列;(2)按a降幂排列。

精选新版2019年七年级下册数学单元测试-第六章《因式分解》考试题库(含参考答案)

精选新版2019年七年级下册数学单元测试-第六章《因式分解》考试题库(含参考答案)

A. a2 b2 (a b)(a b)
B. (a b)2 a2 2ab b2
C. (a b)2 a2 2ab b2
D. a2 ab a(a b)
答案:A
19.下列各式,是完全平方式的为( )

a2
4ab
4b2
;②
4x2
20xy
25 y2
;③
x4
8x2
y2
16y4
;④
1 a2
a2 2ab b2 (a b)2
解析: a2 2ab b2 (a b)2
36.用简便方法计算: (1) 29 20.08+41 20.08 30 20.08 ; (2)已知 2x y 1 , xy 2 ,求 2x4 y3 x3 y4 的值.
3
解析:(1)2008;(2) 2x4 y3 x3 y4 x3 y3 (2x y) 8 1 8 33
(1) (2a2 3)(2a2 3) 4a4 9 ( )
(2) m2 m 5 (m 2)(m 1) 3 ( )
(3) x4 y4 (x y)(x y)(x2 y2 ) ( )
(4) (x 1 )2 x2 2 ( 1 )2 ( )
x
x
(5) a2 a2b ab a(a ab b) ( )
A. b 3, c 1
B. b 6, c 2 C. b 6, c 4 D. b 4, c 6
答案:D
14. a、b、c 是△ABC的三边,且 a2 b2 c2 ab ac bc ,那么△ABC的形状是( )
A.直角三角形
B.等腰三角形
பைடு நூலகம்
答案:D
15.下列多项式因式分解正确的是( ) A. 4 4a a2 (a 2)2

华东师大版数学 七年级上册 2. 多项式 课后练习题

华东师大版数学 七年级上册 2. 多项式 课后练习题

一、单选题
1. 多项式的次数及最高次项的系数分别是()
A.3,3 B.3,C.6,D.2,3
2. 下列说法正确的是()
A.系数是3 B.的常数项为1
C.的次数是6次D.是二次三项式
3. 若5x2y|m|﹣(m+1)y2﹣3是三次三项式,则m等于()
A.±1 B.1 C.﹣1 D.以上都不对
4. 多项式﹣5ab3+2a2+b3的次数是()
A.2 B.3 C.4 D.5
5. 多项式的次数和三次项分别是( )
A.和B.和C.和D.和
二、填空题
6. 多项式2a2b+5b-3的一次项系数是___________.
7. 是______次________项式;
8. 是_________次_________项式,常数项为___________.
三、解答题
9. 已知多项式是八次四项式,单项式的次数与这个多项式的次数相同,求的值.
10. 试至少写两个只含有字母x、y的多项式,且满足下列条件:
六次三项式;
每一项的系数均为1或;
不含常数项;
每一项必须同时含字母x、y,但不能含有其他字母.
11. 已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.。

福建省泉州实验中学2022-2023学年七年级上学期期末考试数学试卷(解析版)

福建省泉州实验中学2022-2023学年七年级上学期期末考试数学试卷(解析版)

泉州实验中学2022-23学年上学期期末质量检测初一年数学(满分:150分 考试时间:120分钟)一、选择题 (每题4分,共40 分)1.-3的倒数为( ) A.13B. -13C. 3D. 3−【答案】B【分析】直接利用倒数的定义:乘积是1的两数互为倒数.得出答案.【详解】解:3−的倒数为13−,故选:B .【点睛】此题主要考查了倒数的定义,正确掌握相关定义是解题关键. 2. 在数轴上表示数1−和 2021 的两个点之间的距离为( )个单位长度 A. 2022 B. 2021C. 2020D. 2019【答案】A【分析】直接利用数轴上两点之间的距离公式进行计算即可.【详解】解:数轴上表示数1−和 2021 的两个点之间的距离为:()20211202112022−−=+=,故选A . 【点睛】本题考查的是数轴上两点之间的距离,理解两点之间的距离的含义是解本题的关键. 3. 如果a >0,b <0,且|a |<|b |,则下列正确的是( ) A. a +b <0 B. a +b C. a +b =0D. ab =0【答案】A【分析】根据a >0,b <0,且|a |<|b |,可得a <-b ,即a +b <0. 【详解】∵a >0,b <0,且|a |<|b |, ∴a <-b ,即a +b <0.故选A .【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a <-b . 4. 下列说法中,错误的是( ) A. 数字1也是单项式B. 单项式35x y −的系数是5−C. 多项式321x x −+−的常数项是1D. 223332x y xy y −+是四次三项式【答案】C【分析】根据单项式的概念与系数的含义可判断A ,B ,根据多项式的项可判断C ,根据多项式的含义可判断D ,从而可得答案.【详解】解:A 、1是单独的一个数,也是单项式,原说法正确,故此选项不符合题意;B 、单项式35x y −的系数是5−,原说法正确,故此选项不符合题意;C 、多项式321x x −+−的常数项是1−,原说法错误,故此选项符合题意;D 、223332x y xy y −+是四次三项式,原说法正确,故此选项不符合题意.故选:C .【点睛】本题考查的是单项式的含义与系数的含义,多项式的概念与项的含义,次数的含义,熟记单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,多项式的概念是解答此题的关键.5. 如图为一个几何体的表面展开图,则该几何体是( ) A. 三棱锥 B. 四棱锥C. 四棱柱D. 圆锥【答案】B【分析】底面为四边形,侧面为三角形可以折叠成四棱锥. 【详解】解:由图可知,底面为四边形,侧面为三角形, ∴该几何体是四棱锥,故选:B .【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键. 6. 如图,直线a 与b 相交,12240∠+∠=°,3∠=( ) A. 40° B. 50°C. 60°D. 70°【答案】C【分析】直接根据对顶角相等以及邻补角性质解题即可. 【详解】解:12240∠+∠=° ,又1=2∠∠ ,1=2=120∴∠∠°,23180∠+∠=° ,3=18012060∴∠°−°=°,故选:C .【点睛】本题主要考查对顶角及邻补角的性质,关键是掌握对顶角相等,邻补角相加等于180°. 7. 在解方程13132x x x −++=时,方程两边乘 6,去分母后,正确的是( ) A. 2163(31)x x x −+=+ B. ()()11 3 1x x −+=+ C. )21 3 )1((3x x x +−=+ D. 2(1)63(31)x xx −+=+ 【答案】D【分析】方程两边乘6,进行化简得到结果,即可作出判断.【详解】解:方程两边乘6得:()()216331x x x −+=+,故选:D .【点睛】本题考查了一元一次方程的解,掌握解一元一次方程是关键. 8. 如图,下列说法正确的是( )A. 1∠和B ∠是同位角B. 2∠和3∠是内错角C. 3∠和4∠是对顶角D. B ∠和4∠是同旁内角【答案】B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可. 【详解】解:A .1∠和B ∠不是同位角,原说法错误,故此选项不符合题意; B .2∠和3∠是内错角,原说法正确,故此选项符合题意; C .3∠和4∠是邻补角,原说法错误,故此选项不符合题意;D .B ∠和4∠不是同旁内角,原说法错误,故此选项不符合题意; 故选:B .【点睛】本题考查同位角、内错角、同旁内角,理解同位角、内错角、同旁内角的定义是正确判断的前提. 9. 如图,阿杜同学用两块大小一样的等腰直角三角板先后在EOF ∠内部作了射线OG 和射线OH .则下列说法正确的是( ) A. 75EOF ∠=° B. 3GOH EOF ∠=∠ C. GOH ∠与EOF ∠互余 D. 射线 OH 平分GOF ∠【答案】C【分析】由45FOG HOE ∠=∠=°,证明FOH GOE ∠=∠,再逐一分析各选项即可. 【详解】解:由题意可得:45FOG HOE ∠=∠=°, ∴45FOH HOG HOG GOE ∠+∠=∠+∠=°, ∴FOH GOE ∠=∠,而HOG ∠与FOH ∠不一定相等,∴3EOF GOH ∠=∠不一定正确,故B 不符合题意;4575EOF FOH ∠=∠+°=°,不一定正确,故A 不符合题意;射线 OH 平分GOF ∠不一定正确,故D 不符合题意;∴90GOH EOF GOH FOH HOE FOG HOE ∠+∠=∠++∠=∠+∠=°, 故C 符合题意;故选C .【点睛】本题考查的是角的和差运算,角平分线的含义,理解题意,利用角的和差关系进行判断是解本题的关键.10. 将数组111,,234中的3个数分别求出各数的相反数与1和的倒数,第一次操作后得到的结果组成的数组记为{1a ,2a ,3a },第二次操作是将数组{1a ,2a ,3a }.再次重复上次操作方式得到新的数组{4a ,5a ,6a },……,如此重复操作,最后得到数组{211a ,212a ,213a }.则123456*********a a a a a a a a a ++++++++…+的值为( )A. 2−B. 9−C. -1112D. 1312− 【答案】D【分析】根据所给的操作方式,求出前面的数,再分析存在的规律,从而可求解.【详解】解:由题意得:112112a ==−+,2131213a ==−+,3141314a ==−+, 41121a ==−−+,512312a ==−−+,613413a ==−−+,711(1)12a ==−−+,811(2)13a ==−−+,911(3)14a ==−−+, …,则每3次操作,相应的数会重复出现, 12345678934111121232323412a a a a a a a a a ++++++++=++−−−+++=− , 213923......6÷= ,312345*********a a a a a a a a a ∴++++++…+++11112412234=−×−−−37131212=−=−.故选:D . 【点睛】本题主要考查数字的变化规律,解答的关键是求出前面的几个数,发现其存在的规律.二、填空题(每题4分,共24分)11. 习近平总书记提出了五年“精准扶贫”的战略构想,意味着每年要减贫约11600000人,将数据11600000用科学记数法表示为__________.【答案】1.16×107【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:11600000=1.16×107,故答案为:1.16×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12. 如图,经过刨平的木板上的 A ,B 两个点,可以弹出一条笔直的墨线,能解释这一实际应 用的数学知识是__.【答案】两点确定一条直线【分析】根据题意分析可得两点确定一条直线.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是“两点确定一条直线”.故答案为:两点确定一条直线.【点睛】本题考查了两点确定一条直线,掌握两点确定一条直线这个基本事实是解题的关键.13. 已知33x y −=,则代数式397x y −+的值为___________. 【答案】16【分析】观察所求代数式可知,可以将已知整体代入求代数式的值. 【详解】解:∵x −3y =3,∴3x −9y +7=3(x -3y )+7=9+7=16故答案为:16.【点睛】本题考查了代数式的求值运算,根据式子的特点,采用整体代入的方法.14. 若430a b −++=,则ab =____________. 【答案】12−【分析】根据绝对值的非负性,得40a −=,30b +=,由此即可求解.【详解】解:∵40a −≥,0b +,且430a b −++=, ∴40a −=,30b +=,∴4a =,3b =−,则4(3)12ab =×−=−,故答案为:12−.【点睛】本题主要考查绝对值的非负性,理解绝对值的非负性,绝对值与绝对值的和为零,则每个绝对值的值为零是解题的关键.15. 从海岛A 点观察海上两艘轮船 B 、C .轮船B 在点A 的北偏东 6025′°方向;轮船C 在点A 的南偏东1537′°方向,则BAC ∠=__________. 【答案】10358′°【分析】首先根据题意画出草图,然后由方向角的定义,确定AB 、AC 与正北方向、正南方向的夹角;然后根据角的关系计算,即可求出BAC ∠的度数. 【详解】解:如图,∵轮船B 在点A 的北偏东6025′°方向;轮船C 在点A 的南偏西1537′°方向,∴1806025153710358ABC ′′′∠=°−°−°=°.故答案为:10358′°.【点睛】本题主要考查了与方向角有关的计算,解决本题的关键是掌握方向角的定义. 16. 下列结论:①若1x =是关于x 的方程0a bx c ++=的一个解,则0a b c ++=; ②若(1)(1)a x b x −=−有唯一的解,则a b ¹;③若2b a =,则关于x 的方程0ax b +=的解为2x =−;④若1b c a +=+,且0a ≠,则=1x −一定是方程1ax b c ++=的解: 其中正确的有__________(填正确的序号) 【答案】①②③④【分析】根据一元一次方程的解的概念解答进行判断即可.【详解】解:①把1x =代入0a bx c ++=得:0a b c ++=,故结论正确;; ②若(1)(1)a x b x −=−有唯一的解是1x =时,a b ¹,故结论正确; ③若2b a =,则2b a=,方程移项,得:ax b =−,则2bx a =−=−,则结论正确; ④把=1x −代入1ax b c a b c ++=−++=,方程一定成立,则=1x −一定是方程1ax b c ++=的解,故结论正确.故答案为:①②③④.【点睛】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.三、解答题(共86分)17 计算:(1)1554()(1)( 3.2)566+−+++−. (2)4211(10.5)2(3)3−−−××−− . 【答案】(1)2 (2)16【分析】(1)利用加法的运算律进行运算较简便;(2)先算乘方,再算括号里的运算,接着算乘法,最后算加减即可.【小问1详解】 解:1554()(1)( 3.2)566+−+++−1554 3.21566=−+−11=+2=; 【小问2详解】4211(10.5)2(3)3 −−−××−− ()1121293=−−××−()111723=−−××−761=−+16= 【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握..18. 解下列方程:(1)4385−+x x ;(2)7531132y y −−=−. 【答案】(1)2x =−; (2)5y =.分析】(1)通过移项、合并同类项、系数化成1,三个步骤进行解答便可; (2)根据解一元一次方程的一般步骤进行解答便可.【小问1详解】 解:4385−+x x4835−=+x x48x −= 2x =−.小问2详解】 解:7531132y y −−=−()()2756331y y −=−−1410693y y −=−+ 1096314y y −+=+−5y −=−5y =.【点睛】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.19. 先化简再求值:()()222232322x x y x y x y y −−−++ ,其中12x =−,=3y −.【答案】28x y −;6;【分析】先去括号,再合并同类项,得到化简的结果,再把12x =−,=3y −代入计算即可. 【详解】解:原式()2222363222x x y x y x y y =−−−++ 2222363222x x y x y x y y =−−+−−28x y =− 当12x =−,=3y −时, 原式()21832 =−×−×−()1834=−××− 6=. 【点睛】本题考查是整式的加减运算中的化简求值,掌握“去括号,合并同类项”是解本题的关键.【【的20. 若用点A 、B 、C 分别表示有理数a 、b 、c 如图:(1)判断下列各式的符号:a+b 0;c ﹣b 0;c-a 0 (2)化简|a+b|﹣|c ﹣b|﹣|c ﹣a| 【答案】(1)<,<,>;(2)﹣2b .【分析】(1)数轴上的数,右边的数总比左边的数大,利用这个特点可比较三个数的大小.(2)由数轴可知:b >0,a <c <0,所以可知:a+b <0,c-b <0, c-a >0.根据负数的绝对值是它的相反数可求值.【详解】解:(1)a+b <0,c ﹣b <0,c ﹣a >0.故答案为<,<,>;(2)|a+b|﹣|c ﹣b|﹣|c ﹣a|=﹣(a+b )+(c ﹣b )﹣(c ﹣a )=﹣a ﹣b+c ﹣b ﹣c+a =﹣2b . 【点睛】此题考查绝对值,有理数大小比较,数轴,解题关键在于结合数轴判断各数的大小. 21. (1)如图,已知A 、B 、C 三点,画射线BA 、线段AC 、直线BC ;(2)己知ABC �的面积为 5,3AB =,求C 点到射线AB 的距离. 【答案】(1)见解析;(2)103【分析】(1)根据直线,射线,线段的定义画图即可; (2)根据三角形的面积和点到直线的距离直接计算即可.【详解】解:(1)如图,即为所求; (2)∵ABC �的面积为 5,3AB =, ∴C 点到射线AB 的距离为:105233×÷=.【点睛】本题主要考查了直线、射线、线段的定义,点到直线的距离,利用面积法求解是解题的关键. 22. 已知点B 在线段AC 上,点D 在线段AB 上.(1)如图1,若AB =6cm ,BC =4cm ,D 为线段AC 的中点,求线段DB 的长度; (2)如图2,若BD =14AB =13CD ,E 为线段AB 的中点,EC =12cm ,求线段AC 的长度.【答案】(1)1cm ;(2)18cm【分析】(1)由线段的中点,线段的和差求出线段DB 的长度为1cm ; (2)由线段的中点,线段的和差倍分求出AC 的长度为18cm . 【详解】(1)如图1所示:∵AC=AB+BC ,AB=6cm ,BC=4cm∴AC=6+4=10cm 又∵D 为线段AC 的中点 ∴DC=12AC=12×10=5cm ∴DB=DC-BC=6-5=1cm(2)如图2所示: 设BD=xcm ∵BD=14AB=13CD∴AB=4BD=4xcm ,CD=3BD=3xcm , 又∵DC=DB+BC , ∴BC=3x-x=2x , 又∵AC=AB+BC , ∴AC=4x+2x=6xcm ,∵E 为线段AB 的中点 ∴BE=12AB=12×4x=2xcm 又∵EC=BE+BC , ∴EC=2x+2x=4xcm 又∵EC=12cm ∴4x=12 解得:x=3,∴AC=6x=6×3=18cm .【点睛】本题综合考查了线段的中点,线段的和差倍分等相关知识点,重点掌握直线上两点之间的距离公式计算方法.23. 小语家新买了一套商品房,其建筑平面图如图所示,其中b a <(单位:米). (1)这套住房的建筑总面积是 平方米;(用含a 、b 的式子表示) (2)当5a =,4b =时,求出小语家这套住房的具体面积.(3)地面装修要铺设地砖或地板,小语家对各个房间的装修都提出了具体要求,明确了选用材料的品牌以及规格、品质要求.现有两家公司按照要求拿出了装修方案,两个方案中选用的材料品牌、规格、品质完全一致,但报价不同;甲公司:客厅地面每平方米240元,书房和卧室地面每平方米220元,厨房地面每平方180元,卫生间地面每平方米150元;乙公司:全屋地面每平方米210元;请你帮助小语家测算一下选择哪家公司比较合算,请说明理由.【答案】(1)(11515)a b ++ (2)90平方米 (3)选择乙公司比较合算.理由见解答 【分析】(1)根据图形,可以用代数式表示这套住房的建筑总面积;(2)将5a =,4b =代入(1)中的代数式即可求得小语家这套住房的具体面积; (3)根据住房的面积×每平方米的单价计算出甲公司和乙公司的钱数,即可得到结论. 【小问1详解】解:由题意可得:这套住房的建筑总面积是:(245)(511)(32)(41)(11515)a b a b ++×+−+×++×−=++平方米,即这套住房的建筑总面积是(11515)a b ++平方米.故答案为:(11515)a b ++; 【小问2详解】当5a =,4b =时,11515115541555201590a b ++=×+×+=++=(平方米). 答:小语家这套住房的具体面积为90平方米; 【小问3详解】选择乙公司比较合算.理由如下:甲公司的总费用:4240(55)220218092206150a a b a ×++×+×+×+×960110011003601980900a a b a =+++++(242011002880)a b ++(元), 乙公司的总费用:(11515)210(231010503150)a b a b ++×=++(元), 242011002880(231010503150)(11050270)a b a b a b ∴++−++=+−(元),2a b >> ,50100b ∴>,110220a >, 110502700a b ∴+−>, 所以选择乙公司比较合算.【点睛】本题考查了列代数式、代数式求值,解题的关键是明确题意,列出相应的代数式,求出相应的代数式的值. 24. 【概念与发现】当点C 在线段AB 上,AC nAB =时,我们称n 为点C 在线段AB 上的“点值”,记作AC d n AB=. 例如,点C 是AB 的中点时,即12AC AB =,则12AC d AB = ;反之,当12AC d AB = 时,则有12AC AB =. 因此,我们可以这样理解:“AC d n AB =”与“AC nAB =”具有相同的含义. (1)【理解与应用】 如图,点C 在线段AB 上.若3AC =,4AB =,则AC d AB =________;若2AC d AB m = ,则BC AB =________.(2)【拓展与延伸】 已知线段10cm AB =,点P 以1cm/s 的速度从点A 出发,向点B 运动.同时,点Q 以3cm/s 的速度从点B 出发,先向点A 方向运动,到达点A 后立即按原速向点B 方向返回.当P ,Q 其中一点先到达终点时,两点均停止运动.设运动时间为t (单位:s ).①小王同学发现,当点Q 从点B 向点A 方向运动时,AP AQ d m d AB AB +⋅的值是个定值,求m 的值; ②t 为何值时,35AQ AP d d AB AB −= . 【答案】(1)34,2m m − (2)①13;②1或8 【分析】(1)根据“点值”的定义得出答案;(2)①设运动时间为t ,再根据AP AQ d m d AB AB +⋅的值是个定值即可求出m 的值;②分点Q 从点B 向点A 方向运动时和点Q 从点A 向点B 方向运动两种情况分析即可.【小问1详解】解:3AC = ,4AB =,34AC AB ∴=, 3()4AC d AB ∴=, 2()mAC d AB = , 2AC AB m∴=, ∴22m BC AB AC AB AB AB m m−∴=−=−=, ∴2BC m AB m −= 故答案为:34,2m m −;【小问2详解】①设运动时间为t ,则AP t =,103AQt =−, 根据“点值”的定义得:()10AP t d AB =,103()10AQ t d AB −=, AP AQ d m d AB AB +⋅的值是个定值, ()1013103101010m m t t t m +−−∴+⋅=的值是个定值, 13m =∴; ②当点Q 从点B 向点A 方向运动时,53AQ AP d d AB AB −= , ∴103101053t t −−=, 1t ∴=;当点Q 从点A 向点B 方向运动时,53AQ AP d d AB AB −=, ∴310310105t t −−=, 8t ∴=,t ∴的值为1或8.【点睛】本题考查了一元一次方程的应用,理解新定义并能运用是本题的关键.25. 已知2AOC BOC ∠=∠,(1)如图甲,已知O 为直线AB 上一点,80DOE ∠=°,且DOE ∠位于直线AB 上方①当OD 平分AOC ∠时,EOB ∠度数为 ;②点F 在射线OB 上,若射线OF 绕点O 逆时针旋转()060n n °<<,3FOA AOD ∠=∠.请判断FOE ∠和EOC ∠的数量关系并说明理由;(2)如图乙,AOB ∠是一个小于108°的钝角,12∠=∠DOE AOB ,DOE ∠从OE 边与OB 边重合开始绕点O 逆时针旋转(OD 旋转到OB 的反向延长线上时停止旋转),当32AOD EOC BOE ∠+∠=∠时,求:COD BOD ∠∠的值【答案】(1)①40°;②2EOF COE ∠=∠; (2):COD BOD ∠∠的值为:1731或1113. 【分析】(1)①先求解120AOC ∠=°,60BOC ∠=°,再求解1602DOC AOC ∠=∠=°,20COE ∠=°,再利用角的和差关系可得答案;②当OE 在OC 的右侧,射线OF 绕点O 逆时针旋转()060n n °<<,求解120COD AOD ∠=°−∠,40COE DOE COD AOD ∠=∠−∠=∠−°,结合EOF AOF AOE ∠=∠−∠ 当OE 在OC 的左侧,射线OF 绕点O 逆时针旋转()060n n °<<,如图,此时40AOD ∠<°,而3FOA AOD ∠=∠,则120FOA ∠<°,则>60n °,不符合题意,舍去.(2)由2AOC BOC ∠=∠,设()108AOB y y ∠=°<,可得23AOC y ∠=°,13BOC y ∠=°,12DOE y ∠=°,分情况讨论:当OE 在BOC ∠内部时,如图,设BOE x ∠=°,当OE ,OD 在AOC ∠内部时,如图,设BOE x ∠=°,当OE 在AOC ∠内部,OD 在AOC ∠外部时,如图,设BOE x ∠=°,当OD ,OE 都在AOB ∠外部,如图,再分别建立方程求解x ,y 之间的关系,再求解比值即可,【小问1详解】解:①∵2AOC BOC ∠=∠,180AOC BOC ∠+∠=°, ∴18020231AOC ∠=×°=°,1180603BOC ∠=×°=°, ∵当OD 平分AOC ∠时, ∴1602DOC AOC ∠=∠=°, ∵80DOE ∠=°,∴806020COE ∠=°−°=°,602040BOE BOC COE ∠=∠−∠=°−°=°.②当OE 在OC 的右侧,射线OF 绕点O 逆时针旋转()060n n °<<,∵120AOC ∠=°,∴120COD AOD ∠=°−∠,∵80DOE ∠=°,∴8012040COE DOE COD AOD AOD ∠=∠−∠=°−°+∠=∠−°,∵3FOA AOD ∠=∠,∴EOF AOF AOE ∠=∠−∠()3AOD AOC COE ∠−∠+∠312040AOD AOD =∠−°−∠+°()240AOD =∠−°2COE =∠;当OE 在OC 的左侧,射线OF 绕点O 逆时针旋转()060n n °<<,如图,此时40AOD ∠<°,而3FOA AOD ∠=∠,则120FOA ∠<°,则>60n °,不符合题意,舍去.【小问2详解】∵2AOC BOC ∠=∠,()108AOB y y ∠=°<, ∴23AOC y ∠=°,13BOC y ∠=°, ∵12∠=∠DOE AOB , ∴12DOE y ∠=°, 当OE 在BOC ∠内部时,如图,设BOE x ∠=°, 则13COE BOC BOE y x ∠=∠−∠=°−°,111236COD DOE COE y y x y x ∠=∠−∠=°−°+°=°+°, 211362AOD AOC COD y y x y x ∠=∠−∠=°−°−°=°−°,12BOD BOE DOE y x ∠=∠+∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232y x y x x −+−=, 解得:215y x =, ∴1216617651633631625y x x x COD y x BOD y x y x x x ++∠+====∠+++, 当OE ,OD 在AOC ∠内部时,如图,设BOE x ∠=°, 则13COE x y ∠°−°,111236COD y y x y x ∠=°−°+°=°+°,211362AOD y y x y x ∠=°−°−°=°−°,12BOD y x ∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232y x x y x −+−=,解得:9y x =, 此时>BOE BOC ∠∠,即1>3x y ,则3y x <,故不符合题意,舍去, 当OE 在AOC ∠内部,OD 在AOC ∠外部时,如图,设BOE x ∠=°, 则13COE x y ∠°−°,111236COD y y x y x ∠=°−°+°=°+°, 121632AOD y x y x y ∠°+°−°°−°,12BOD y x ∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232x y x y x −+−=, 解得:35y x =,而BOE AOB ∠<∠,即y x >,故不符合题意,舍去, 当OD ,OE 都在AOB ∠外部,如图,设BOE x ∠=°, 则13COE x y ∠°−°,1136COD y y x y x ∠=°−°+°=°+°, 121632AOD y x y x y ∠°+°−°°−°,12BOD x y ∠°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232x y x y x −+−=, 解得:35y x =, ∴13661165193613625y x x x COD y x BOD y xy x x x ++∠+====∠+++, 综上::COD BOD ∠∠的值为:1731或1113. 【点睛】本题考查的是角的和差运算,角的旋转定义的理解,角平分线的定义,一元一次方程的应用,求解代数式的值,对于七年级学生来说,本题难度大,清晰的分类讨论是解本题的关键.。

七年级数学下册各单元测试试卷含答案

七年级数学下册各单元测试试卷含答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322ba 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

新人教版七年级数学上册第二章题型总结

新人教版七年级数学上册第二章题型总结

新人教版七年级数学上册第二章整式的加减知识点和典型例题I 基本题型一、列单项式、多项式1.某次旅游分甲、乙两组,已知甲组a 名队员,平均门票m 元,乙组有b 名队员,平均门票n 元,则共要付门票___元. 2.某公司职员,月工资a 元,增加10%后达到________元.3.如果一个两位数,十位上数字为x ,个位上数字为y ,则这个两位数为________.4.甲车的速度为每小时x 千米,乙车的速度为每小时y 千米.若甲、乙两车由两地同时出发,相向而行,t 小时后相遇,则两地距离为________千米.若两车同时分别从两地出发,同向而行,t 小时甲车追上乙车,则两地距离为_____千米.5.有一棵树苗,刚栽下去时,树高2.1米,以后每年长0.3米,则n 年后树高________米.6.含盐20%的盐水x 千克,其中含盐________千克,含水________千克.7.某项工程甲独干a 天完成,乙独干b 天完成,则甲、乙合作每天完成工程的_____ 8.一种小麦磨成面粉后,重量减轻15%,要得到m 千克面粉,需要小麦______千克。

9.一辆汽车从A 地出发,先行驶了s 米之后,又以υ米/秒的速度行驶了t 秒.汽车行驶的全部路程等于 米 10.电影院第一排有a 个座位,后面每排都比前一排多一个座位,若第n 排有m 个座位,那么m=11.用含有字母的式子填空:(1)a 与b 的143倍的差是_.(2)某商品原价为a 元,提高了20%后的价格 . 12.已知三角形的第一边长是2a b +,第二边比第一边长(2)b -,第三边比第二边小5。

则三角形的周长为 。

13.某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为二、判断区分单项式、多项式、整式 1.在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有 ( )A .5个整式B .4个单项,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式个数相同2.在代数式ba b a b a x a m +-+-,,2,31,0,21π中,整式有( )A 、3个 B 、4个 C 、5个 D 、6个 3.下列代数式中,是单项式的有 .①-15; ②32a ; ③π1x 2y; ④ abc32; ⑤3a+2b; ⑥0; ⑦ 7m4.单项式22ab 2c 的系数是 ,次数是 .5.πR 2是次单项式,-32是次单项式.6.把下列代数式分别填在相应的括号里:a 2b,,43,3,2,1ab y x x ---x 2-x-1 单项式:{ }多项式:{ }整 式:{ }7.整式21,3x -y 2,23x 2y ,a ,πx +21y ,522a π,x +1中,单项式有: 多项式有:8.在,中,单项式有: 。

广东省惠州市惠阳高级中学2022-2023学年数学七年级第一学期期末经典试题含解析

广东省惠州市惠阳高级中学2022-2023学年数学七年级第一学期期末经典试题含解析

2022-2023学年七上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题3分,共30分)1.如图是一个简单的运算程序,如果输入的x 值为﹣2,则输出的结果为( )A .6B .﹣6C .14D .﹣142.多项式2x 3﹣10x 2+4x ﹣1与多项式3x 3﹣4x ﹣5x 2+3相加,合并后不含的项是( )A .三次项B .二次项C .一次项D .常数项3.在下列变形中,正确的是( )A .若420x -=,则5x =B .若37322x x +=-,则32327x x +=+C .若()2105x x x -+=,则2105x x x --=D .若1224x x +-=,则()212x x -=- 4.下列各组数相等的一组是 ( )A .∣-3∣和-(-3)B .-1-(-4)和-3C .2(3)-和 23-D .21()3-和19- 5.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 6.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一.将35000用科学记数法表示应为( )A .3.5×104B .35×103C .3.5×103D .0.35×1057.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+38.下列变形不正确的是( )A .1122x x x x +-=---B .b a a b c c--+=- C .a b a b m m -+-=- D .22112323x x x x--=--- 9.若2320a a --=,则2526a a +-( )A .2B .1C .-2D .-110.数x 、y 在数轴上对应点如图所示,则化简|x+y|﹣|y ﹣x|的结果是( )A .0B .2xC .2yD .2x ﹣2y二、填空题(本大题共有6小题,每小题3分,共18分)11.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.12.如图,AOB ∠=___________.13.若(x+m )(x+3)中不含x 的一次项,则m 的值为__.14.如图,直线AB 与CD 相交于点O ,射线OM 是∠AOC 的平分线,如果∠BOC =110°,那么∠AOM =______°.15.已知点()3,21A a --与点(),3B b -关于x 轴对称,那么点(),P a b 关于y 轴的对称点P '的坐标为__________.16.已知线段6AB cm =,点C 在直线AB 上,2BC cm =,点D 为线段AC 的中点,则线段DB 的长为 _____________cm .三、解下列各题(本大题共8小题,共72分)17.(8分)一个由若干小正方形堆成的几何体,它从正面看和从左面看的图形如图1所示.()1这个几何体可以是图2中甲,乙,丙中的______;()2这个几何体最多由______个小正方体堆成,最少由______个小正方体堆成;()3请在图3中用阴影部分画出符合最少情况时的一个从上面往下看得到的图形.18.(8分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑,如果反向而行,那么他们每隔32秒相遇一次.如果同向而行,那么每隔160秒乙就追上甲一次.甲、乙的速度分别是多少?19.(8分)如图,点A D C F 、、、在同一条直线上,,,AD CF AB DE BC EF ===.(1)请说明ABC DEF △≌△;(2)BC 与EF 平行吗?为什么?20.(8分)同学们,今天我们来学习一个新知识,形如ab c d 的式子叫做二阶行列式,它的运算法则用公式表示为:a bcad bc d =-,利用此法则解决以下问题:(1)仿照上面的解释,计算出23- 14的结果;(2)依此法则化简23- 32ab a b a b ab-+--的结果; (3)如果51x + 34x =,那么x 的值为多少?21.(8分)解下列方程(1) 2x ﹣(x+10)=6x (2)2211632x x x -+--=+; 22.(10分)2018年元旦期间,某商场打出促销广告,如下表所示:(1)用代数式表示(所填结果需化简)设一次性购买的物品原价是x 元,当原价x 超过200元但不超过500元时,实际付款为 _________元;当原价x 超过500元时,实际付款为 元;(2)若甲购物时一次性付款490元,则所购物品的原价是多少元?(3)若乙分两次购物,两次所购物品的原价之和为1000元(第二次所购物品的原价高于第一次),两次实际付款共894元,则乙两次购物时,所购物品的原价分别是多少元?23.(10分)点A 在数轴上对应的数为a ,点B 对应的数为b ,且a 、b 满足22(3)0a b ++-=.(1)求点A 、B 所表示的数;(2)点C 在数轴上对应的数为x ,且x 是方程27213x x -=+的解. ①求线段BC 的长;②在数轴上是否存在点P ,使PA +PB =BC ?若存在,求出点P 对应的数;若不存在,请说明理由.24.(12分)以直线AB上一点O为端点作射线OC,将一块直角三角板的直角顶点放在O处(注:∠DOE=90°).(1)如图①,若直角三角板DOE的一边OD放在射线OB上,且∠BOC=60°,求∠COE的度数;(2)如图②,将三板DOE绕O逆时针转动到某个位置时,若恰好满足5∠COD=∠AOE,且∠BOC=60°,求∠BOD 的度数;(3)如图③,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.参考答案一、选择题(每小题3分,共30分)1、C【分析】根据图示列出算式,继而计算可得.【详解】解:根据题意可列算式[(-2)-5]×(-2)=(-7)×(-2)=14,故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.2、C【分析】把两式相加,合并同类项得5x3﹣15x2+2,结果不含一次项.【详解】解:2x3﹣10x2+4x﹣1+3x3﹣4x﹣5x2+3=5x3﹣15x2+2,则多项式2x3﹣10x2+4x﹣1与多项式3x3﹣4x﹣5x2+3相加,合并后不含的项是一次项.故选C.【点睛】本题主要考查整式的加法运算,涉及到多项式的定义知识点.3、C【分析】根据等式的基本性质及去括号法则进行判断即可.【详解】若420x -=,则5x =-,故A 错误;若37322x x +=-,则32327x x +=-,故B 错误;若()2105x x x -+=,则2105x x x --=,故C 正确; 若1224x x +-=,则()212x x +=-,故D 错误. 故选:C【点睛】本题考查的是解一元一次方程,掌握等式的基本性质及去括号法则是关键.4、A【解析】A 选项:|-3|=3,-(-3)=3,故这两个数相等;B 选项:-1-(-4)=-1+4=3,故这两个数不相等;C 选项:()23-=9和23-=-9,故这两个数不相等; D 选项:213⎛⎫- ⎪⎝⎭=19和19-,故这两个数不相等; 故选A.5、D 【解析】由题意易得:每名一级技工每天可粉刷的面积为:8503x -m 2,每名二级技工每天可粉刷的面积为:10405x +m 2,根据每名一级技工比二级技工一天多粉刷10m 2,可得方程: 85010401035x x -+=+. 故选D.6、A【分析】根据科学记数法的定义直接求解即可.把一个数表示成a 与10的n 次幂相乘的形式(1≤|a|<10,n 为整数),这种记数法叫做科学记数法.【详解】解:∵435000 3.510=⨯∴将35000用科学记数法表示应为43.510⨯.故选:A.【点睛】本题考查的知识点是科学记数法的定义,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).7、D【解析】试题分析:∵B 点在正比例函数y=2x 的图象上,横坐标为1,∴y=2×1=2,∴B (1,2),设一次函数解析式为:y=kx+b ,∵过点A 的一次函数的图象过点A (0,1),与正比例函数y=2x 的图象相交于点B (1,2),∴可得出方程组3{2b k b =+=, 解得3{1b k ==-,则这个一次函数的解析式为y=﹣x+1.故选D .考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.8、A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A 、1122x x x x+--=---,故A 不正确; B 、b a a b c c--+=-,故B 正确; C 、a b a b m m -+-=-,故C 正确; D 、22112323x x x x--=---,故D 正确. 故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.9、B【分析】先由条件得到232a a -=,再对所求式子进行变形,最后整体代入计算即可.【详解】由题可得:232a a -=,∴()225265235221a a a a +-=--=-⨯=,故选:B .【点睛】本题考查代数式求值,灵活运用添括号法则进行变形是解题关键.10、C【分析】先根据x 、y 在数轴上的位置判断出x 、y 的符号及绝对值的大小,再去括号,合并同类项即可.【详解】解:∵由图可知,y <0<x ,x >|y|,∴原式=x+y ﹣(x ﹣y )=x+y ﹣x+y=2y .故选C .二、填空题(本大题共有6小题,每小题3分,共18分)11、2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-1,故答案为2m 2+3m-1.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.12、107︒【分析】如图,根据题意可得∠AOE 的度数,然后根据角的和差计算即可.【详解】解:如图,∠AOE =90°-28°=62°,∴∠AOB =∠AOE +∠BOE =62°+45°=107°.故答案为:107°.【点睛】本题考查了方位角的概念和角的和差计算,属于基本题型,熟练掌握基本知识是解题关键.13、-1【分析】把式子展开,找到x 的一次项的所有系数,令其为2,可求出m 的值.【详解】解:∵(x+m )(x+1)=x 2+(m+1)x+1m ,又∵结果中不含x 的一次项,∴m+1=2,解得m=-1.【点睛】本题主要考查了多项式乘多项式的运算,注意当多项式中不含有哪一项时,即这一项的系数为2.14、35°【分析】根据∠AOC =180°-∠BOC ,根据射线OM 是∠AOC 的平分线,可得∠MOA =∠MOC =12∠AOC ,即可求出答案.【详解】∵射线OM 是∠AOC 的平分线,∴∠MOA =∠MOC =12∠AOC , ∵∠AOC =180°-∠BOC =180°-110°=70°,∴∠MOA =12∠AOC =35° 故答案为:35°.【点睛】本题考查了角平分线的性质和邻补角,求出∠AOC 的度数是解题关键.15、()2,3--【分析】先将a ,b 求出来,再根据对称性求出P '坐标即可.【详解】根据题意可得:﹣1=b ,2a -1=1.解得a =2,b =﹣1.P(2,﹣1)关于y 轴对称的点P '(﹣2,﹣1)故答案为: (﹣2,﹣1).【点睛】本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键.16、4或1【分析】分当点C 在线段AB 上和点C 在线段AB 的反向延长线上两种情况,根据线段中点的定义、结合图形进行计算即可.【详解】解:若点C 在AB 上,如图1所示,∵6AB cm =,2BC cm =∴AC=AB -BC=4cm∵点D 为线段AC 的中点,∴DC=12AC =1cm ∴DB=DC +BC=4cm ;若点C 在AB 的延长线上,如图1所示∵6AB cm =,2BC cm =∴AC=AB +BC=8cm∵点D 为线段AC 的中点,∴DC=12AC =4cm ∴DB=DC -BC=1cm ;故答案为:4或1.【点睛】本题考查的是两点间的距离的计算,灵活运用数形结合思想、掌握线段中点的定义是解题的关键.三、解下列各题(本大题共8小题,共72分)17、(1)甲,乙;(2)9,7;(3)答案见解析.【解析】()1依据甲和乙的主视图和左视图如图1所示,丙的左视图与图1不符,即可得到结论;()2若几何体的底层有6个小正方体,则几何体最多由9个小正方体组成;若几何体的底层有4个小正方体,则几何体最少由7个小正方体组成;()3依据几何体的底层有4个小正方体,几何体最少由7个小正方体组成,即可得到几何体的俯视图.【详解】()1图2中,甲和乙的主视图和左视图如图1所示,丙的左视图与图1不符,故答案为:甲,乙;()2由图1可得,若几何体的底层有6个小正方体,则几何体最多由9个小正方体组成;若几何体的底层有4个小正方体,则几何体最少由7个小正方体组成;故答案为:9,7;()3符合最少情况时,从上面往下看得到的图形如下:(答案不唯一)【点睛】本题考查了简单组合体的三视图,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.18、甲的速度是5米/秒,乙的速度是7.5米/秒【分析】设甲的速度是x 米/秒,乙的速度是y 米/秒,根据“如果反向而行,那么他们每隔32秒相遇一次.如果同向而行,那么每隔160秒乙就追上甲一次”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】设甲的速度是x 米/秒,乙的速度是y 米/秒,由题意得:()()32400160400x y y x ⎧+=⎪⎨-=⎪⎩解得 :57.5x y =⎧⎨=⎩ 答:甲的速度是5米/秒,乙的速度是7.5米/秒.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19、(1)详见解析;(2)//BC EF ,理由详见解析.【分析】(1)根据线段的和差关系可得AC=DF ,利用SSS 即可证明△ABC ≌△DEF ;(2)根据全等三角形的性质可得∠ACB=∠F ,即可证明BC//EF .【详解】(1)∵AD=CF ,∴AD+CD=CF+CD ,即AC=DF ,在△ABC 和△DEF 中, AB CD BC CF AC DF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF .(2)//BC EF ,理由如下:由(1)可知,ABC DEF △≌△,∴F ACB∠=∠,∴//BC EF.【点睛】本题考查全等三角形的判定与性质及平行线的判定,熟练掌握判定定理是解题关键.20、(1)11(2)5a−b−ab(3)7 2【分析】(1)利用已知的新定义计算即可;(2)利用已知的新定义化简即可;(3)已知等式利用已知的新定义化简计算即可求出x的值.【详解】(1)23-14=2×4−1×(-3)=8+3 =11(2)23-32ab a ba b ab-+--=-2×(2a−b−ab)−3×(ab−3a+b)=-4a+2b+2ab−3ab+9a−3b =5a−b−ab(3)51x+34x=∴5x-3(x+1)=4 ∴5x−3x−3=4∴2x=7∴x=7 2【点睛】此题考查了解一元一次方程,以及有理数的混合运算,理解题中的新定义是解题的关键.21、(1)x=-2 ; (2)x=-2.25【解析】试题分析:按照解一元一次方程的步骤进行运算即可.()1()2106.x x x-+=2106,x x x--=2610,x x x --=510,x -=2.x =-()22211,632x x x -+--=+ ()()222631,x x x --+=+-224633,x x x ---=+-236342,x x x --=-++49.x -=2.25.x =-点睛:解一元一次方程得步骤:去分母,去括号,移项,合并同类项,把系数化为1.22、(1)0.9x ;0.8x+1;(2)51元;(3)第一次是440元,第二次是4元.【分析】(1)根据给出的优惠办法,用含x 的代数式表示出实际付款金额即可;(2)设甲所购物品的原价是y 元,先求出购买原价为10元商品时实际付款金额,比较后可得出y>10,结合(1)的结论即可得出关于y 的一元一次方程,解之即可得出结论;(3)由第二次所购物品的原价高于第一次,可得出第二次所购物品的原价超过10元且第一次所购物品的原价低于10元,设乙第一次所购物品的原价是z 元,则第二次所购物品的原价是(1000-z )元,分0<z≤200、200<z<10两种情况列出关于z 的一元一次方程,解之即可得出结论.【详解】解:(1)当200<x≤10时,实际付款0.9x 元;当x >10时,实际付款10×0.9+0.8(x ﹣10)=(0.8x+1)元. 故答案为0.9x ;0.8x+1.(2)设甲所购物品的原价是y 元,∵490>10×0.9=41, ∴y >10.根据题意得:0.8y+1=490,解得:y=51.答:甲所购物品的原价是51元.(3)∵第二次所购物品的原价高于第一次,∴第二次所购物品的原价超过10元,第一次所购物品的原价低于10元.设乙第一次所购物品的原价是z 元,则第二次所购物品的原价是(1000﹣z )元,①当0<z≤200时,有z+0.8(1000﹣z )+1=894,解得:z=220(舍去);②当200<z <10时,有0.9z+0.8(1000﹣z )+1=894,解得:z=440,∴1000﹣z=4.答:乙第一次所购物品的原价是440元,第二次所购物品的原价是4元.【点睛】考查,列代数式,代数式求值,一元一次方程的应用,读懂题目中的优惠方案是解题的关键.23、(1)点A ,B 所表示的数分别为﹣2,3;(2)①9;②存在;﹣4或1.【分析】(1)由()2230a b ++-=,可得:a +2=0且b ﹣3=0,再解方程可得结论;(2)①先解方程27213x x -=+,再利用数轴上两点间的距离公式可得答案;②设点P 表示的数为m ,所以2,3PA m PB m =+=-,再分三种情况讨论:当m <2-时,(﹣2﹣m )+(3﹣m )=9,当23m -≤≤时,239m m ++-=,当m >3时,+2+39m m -=,通过解方程可得答案.【详解】解:(1)∵()2230a b ++-=, ∴a +2=0且b ﹣3=0,解得a =﹣2,b =3,即点A ,B 所表示的数分别为﹣2,3;(2)① 27213x x -=+, 22163,x x ∴-=+424,x ∴=-解得x =﹣6,∴点C 表示的数为﹣6,∵点B 表示的数为3,∴BC =3﹣(﹣6)=3+6=9,即线段BC 的长为9;② 存在点P ,使PA +PB =BC ,理由如下:设点P 表示的数为m ,2,3,PA m PB m ∴=+=-当m <﹣2时,(﹣2﹣m )+(3﹣m )=9,解得m =﹣4,即当点P 表示的数为﹣4时,使得PA +PB =BC ;当﹣2≤m≤3时,2359m m ++-=≠,故当﹣2≤m≤3时,不存在点P 使得PA +PB =BC ;当m >3时,+2+39m m -=,解得m =1,即当点P 表示的数为1时,使得PA +PB =BC ;由上可得,点P 表示的数为﹣4或1时,使得PA +PB =BC .【点睛】本题考查的是非负数的性质,数轴上两点之间的距离,绝对值的化简,一元一次方程的解法与应用,分类讨论的数学思想,掌握利用分类讨论解决问题是解题的关键.24、 (1) 30°;(2) 65°;(3)见解析. 【解析】分析:(1)根据∠COE+∠DOC=90°求解即可;(2)根据∠BOC+∠COD+∠DOE+∠AOE=180°求解即可;(3)由OE 恰好平分∠AOC ,得∠AOE =∠COE ,再根据平角的定义得∠COE +∠COD=∠AOE +∠BOD =90°即可得证.详解:(1)∵∠DOE =90°,∠BOC =60°, ∴∠COE =∠DOE -∠BOC =30°. (2)设∠COD =x ,则∠AOE =5x.∵∠AOE +∠DOE +∠COD +∠BOC =180°,∠DOE =90°,∠BOC =60°, ∴5x +90°+x +60°=180°,解得x =5°,即∠COD =5°. ∴∠BOD =∠COD +∠BOC =5°+60°=65°. (3)∵OE 平分∠AOC ,∴∠AOE =∠COE.∵∠DOE =∠COE +∠COD =90°,∠AOE +∠DOE +∠BOD =180°, ∴∠AOE +∠BOD =90°,又∠AOE =∠COE ,∴∠COD =∠BOD ,即OD 所在射线是∠BOC 的平分线.点睛:本题主要考查了角平分线定义和角的计算,能根据图形和已知求出各个角的度数是解此题的关键.。

2018-2019年最新苏教版七年级数学下册《多项式乘多项式》同步练习题及答案解析 二(精品试卷)

2018-2019年最新苏教版七年级数学下册《多项式乘多项式》同步练习题及答案解析 二(精品试卷)

(新课标)苏教版2017-2018学年七年级下册多项式乘多项式1.计算(2x-1)(5x+2)的结果是( )A.10x2-2 B.10x2-5x-2 C.10x2+4x-2 D.10x2-x-22.若(x+m)(x-3)=x2-nx-12,则m、n的值为( ) A.m=4,n=-1 B.m=4,n=1 C.m=-4,n=1 D.m=-4,n=-13.若(x-4)·(M)=x2-x+(N),M为一个多项式,N为一个整数,则( )A.M=x-3,N=12 B.M=x-5,N=20C.M=x+3.N=-12 D.M=x+5,N=-20 4.(1) (x-2)(x+1)=_______;(x-2y)(2x+y)=_______.(2)若(2x-3)(5-2x)=ax2+bx+c,则a+b+c=_______.(3)三个连续偶数,若中间一个为n,则它们的积是_______.(4)若多项式(x+p)(x-3)的积中不含x的一次项,则p=_______.5.计算:(1)(x+3)(x-1)-x(x-2)+1;(2)(x2-1)(x+1)-(x2-2)(x-4);(3)化简求值:m 2(m +4)+2m(m 2-1)-3m(m 2+m -1),其中m =25.6.如图,AB =a ,P 是线段AB 上的一点,分别以AP 、BP 为边作正方形.(1)设AP =x ,求两个正方形的面积之和S .(2)当AP 分别为3a 和2a 时,比较S 的大小.7.当x=24时,代数式(x+3)(x-4)-(x-6)(x+6)的值是( )A.0 B.-6 C.-13 D.-148.下列计算:①(x-y)(x-2y)=x2-3xy+2y2;②(1+2x)(1+2x)=1+4x2;③(2a-3b)(2a+3b)=4a2-9b2;④(x+y)(2x-3y)=2x2-3xy-3y2.其中正确的有( )A.1个B.2个C.3个D.4个9.已知(1+x)(2x2+ax+1)的结果中x2项的系数为-2,则a的值为( )A.-2 B.1 C.-4 D.以上都不对10.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M与N的大小关系为( )A.M>N B.M<N C.M=N D.无法确定11.填空:(1)在长为(3a+2)、宽为(2a+3)的长方形铁皮上剪去一个边长为(a-1)的小正方形,则剩余部分的面积为______________.(2)如图,正方形卡片A类、B类和长方形卡片C类各有若干张,如果要拼一个长为(a+2b)、宽为(a+b)的大长方形,那么需要C类卡片_______张.,ab=1,化简(a-2)(b-2)的(3) 已知a+b=32结果是_______.12.计算:(1)(x-1)(x-2)(x-3);(2)x2-(4x-5y)+2(x-3)(4x-1);(3)先化简,再求值:x(x2-4)-(x+3)(x2-3x+2)-2x(x-2),其中x=3.213.已知多项式(x2+px+q)(x2-3x+2)的结果中不含x3项和x2项,求p和q的值.14.探索题:(1)计算:(x+3)(x+4)=______________,(x-3)(x-4)=______________,(x+3)(x-4)=______________,(x-3)(x+4)=______________.(2)发现:(x+a)(x+b)=______________;(3)应用:(y+4)(y-5)=______________,(t+2)(t+5)=______________,(_______)(_______)=a2+a-6,(_______)(_______)=b2-5b +6.参考答案1.D 2.A 3.C 4.(1)x2-x-2 2x2-3xy-2y2(2) -3 (3) n3-4n (4)35.(1) 4x-2 (2) 5x2+x-9 (3) m2+m146.(1) S=2x2-2ax25+a2(2)略7.A 8.B 9.C 10.B 11.(1) 5a2+15a+5 (2)3 (3)2 12.(1)x3-6x2+11x-6 (2) 9x2-30x+5y+6 (3) -2x2+7x-6 013.p=3 q=7 14.(1)x2+7x+12 x2-7x+12 x2-x-12 x2+x-12(2)x2+(a+b)x+ab (3)y2-y-20 t2+7t+10 a+3 a-2 b-2 b-3。

七年级数学单项式多项式整式混合运算练习题(附答案)

七年级数学单项式多项式整式混合运算练习题(附答案)

七年级数学单项式多项式整式混合运算练习题一、单选题1.下列各式12mn -,m ,8,1a ,226x x ++,25x y -,24πx y +,1y 中,整式有( ) A.3个 B.4个 C.6个 D.7个2.下列说法正确的是( ) A.12不是单项式 B.b a 是单项式 C.x 的系数是0 D.322x y -是整式A.3个B.4个C.5个D.6个 4.下列式子22132,4,,5,07ab x x a ++-中,整式的个数是( ) A.6 B.5 C.4 D.3 5.下列式子()22122,,,,023a b a b x y a-+-中,整式的个数是( ) A.2 B.3 C.4 D.56.下列式子: 22132,?4,,,5,07ab ab x x a c ++-中,整式有( ) A.6个 B.5个 C.4个 D.3个7.下列式子: 2213,4,,,5,07ab ab x x a c +-中,整式的个数是: ( ) A.6 B.5 C.4 D.38.下列整式212a b -,227m n +,221x y ++,2x y -,332t 中,单项式有( ) A.2个 B.3个 C.4个 D.5个二、解答题9.下列代数式:a b -,15x ,13a,2xy ,17a -,,,5s x y m t +,23x x +-,23,1x y --.将它们按要求填入相应的横线内单项式: ;多项式: ;整式: 。

10.指出下列各式中哪些是单项式,哪些是多项式, 哪些是整式.222272112,,,10,61,,,25,,37a b x y x xy m n x x a x x x++-+--+. 11、化简求值::,其中12.先化简,再求值:()222213234322a b a b abc a c a c abc ⎡⎤-----⎢⎥⎣⎦,其中1a =-,3b =-,12c =. 三、填空题13.下列各式,221,,(),,3π15a x a b x y x x a b-+-+-有 .14、已知与 是同类项,则5m+3n 的值是 . 15、若单项式 与 的和仍为单项式,则16、已知: ,则代数式 的值为17.若21421242?n m a b a b a b ++-+=-, 则3?m n -=__________.参考答案1.答案:C解析:2.答案:D解析:3.答案:C式,共5个.4.答案:C解析:式子22132,4,,,5,07ab ab x x a c ++-符合整式的定义,都是整式;14,ab a c +这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选C.5.答案:C解析:根据整式的定义可知其中()2212,,,023a b a b x y -+-是整式,共有4个,故选C. 6.答案:C 解析:整式有2232,,5,07ab x x +-,共4个. 7.答案:C解析:试题分析:根试题分析:根据整式的定义分析判断各个式子,即可得到结果.整式有223,,5,4,7ab x x -共4个,故选C. 点评:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.判断整式时,式子中含有等号和分母中含有字母的式子一定不是整式8.答案:A解析:下列整式212a b -,227m n +,221x y ++,2x y -,332t 中,单项式有212a b -,332t 共2个. 故选:A.分析:利用单项式的定义求解即可.9.答案:单项式:231,2,,,15x xy m x y --; 多项式:2,,35x y a b x x +--; 整式:2321,2,,,1,,,355x y x xy m x y a b x x +---+-. 解析:10.答案:单项式有:271,10,,7x m n a -; 多项式有:222,,61,253a b x y xy x x +++--; 整式有:22227212,,,10,61,,25,,37a b x y x xy m n x x a x x++-+--+. 解析:答案: 11、解析: 本题的关键是化简,然后把给定的知代入求值.解:原式=6a-2-6+15a-9a 2=21a-9a 2-8,把a=- 代入,原式=21×(- )-9×(- ) 2-8=-7-1-8=-16. 12.答案:()222213234322a b a b abc a c a c abc ⎡⎤-----⎢⎥⎣⎦ 222213624322a b a b abc a c a c abc ⎛⎫=--+-- ⎪⎝⎭ 222213624322a b a b abc a c a c abc =-+-+- 2232a b abc a c =-++. 当11,3,2a b c =-=-=时, 原式()()()()()2211113313218222=--⨯-+⨯-⨯-⨯+⨯-⨯=. 解析:13.答案:22,1x a b x a b-+-,21,(),3,0π5a x y x +- 解析:21,(),3,0π5a x y x +-的分母中均不含有字母,因此它们是整式,而不是分式。

湘教版七年级数学(下)《多项式的运算》测试题及参考答案

湘教版七年级数学(下)《多项式的运算》测试题及参考答案

第四章《多项式的运算》测试卷班次: 姓名:一、填空题 (每题3分)1、(2a 2-3a-1)-2(a 2-2a+3)=2、 多项式323292057y xy x y x -++--1按字母y 升幂排列为 。

3、x ·x 2·x 3·x 4= ;(-x 3)2(-x 2)3= ;(-3x 2)3·(-31x )= (a +2)(a -2)(4+a 2)=4、已知a m =2,a n =3,则a m+n = ,a 3m = , a 3m+2n =5、4x 2y ·(-3xy 2z)= (x+2)(x-3)= (31ab 2-6a 2b)·(-3ab)=6、(2a+3b )(2a-3b)= (2x-3y)2=7、已知a b ab +==21,,则(a+b )2= , a 2+b 2= ,()a b -=2______。

8、如果12++mx x 是一个完全平方式,则常数m=9、如果a —a 1=3,则a 2+21a = ;如果a+a 1=3,则a 2+21a= 10、(2+1)(22+1)(24+1)…(2128+1)= ,它的个位数字是 。

二、选择题(每题3分)11. 下列计算正确的是( )A. a a a ·33=B. 3a+2a=5a 2C. ()a a 235=D. a a a 5552+=12.下面计算中,正确的是( )A .(m-1)(m-2)=m 2+2B .(1-2a )(2+a )=2a 2-3a+2C .(x+y )(x-y )=x 2-y 2D .(x+y )(x+y )=x 2+y 213.计算(a-b )(a-b )其结果为( )A .a 2-b 2B .a 2+b 2C .a 2-2ab+b 2D .a 2-2ab-b 214、下列各式不能运用平方差公式进行计算的是( )A 、(m-n )(n+m)B 、(m-n )(-n-m)C 、(m-n )(-m+n)D 、(m+n )(-m+n)15、22011·(-21)2010=( )A 、1B 、-1C 、2D 、-216、已知a = 355 b = 444 c = 533则有( )A .a < b < cB .c < b < aC .a < c < bD .c < a < b17.已知(x+3)(x-2)=x 2+ax+b ,则a 、b 的值分别是( )A .a=-1,b=-6B .a=1,b=-6C .a=-1,b=6D .a=1,b=618.下列计算不正确的是( )A 、222)(y x xy =B 、2221)1(x x x x +=- C 、 22))((b a a b b a -=+- D 、 2222)(y xy x y x ++=--19、如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )。

2022-2023学年江西省七年级数学第一学期期末达标测试试题含解析

2022-2023学年江西省七年级数学第一学期期末达标测试试题含解析

2022-2023学年七上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. “地球停电一小时”活动的某地区烛光晚餐中,设座位有 x 排,每排坐 30 人,则有 8 人无 座位;每排坐 31 人,则空 26 个座位.则下列方程正确的是( )A .30x ﹣8=31x ﹣26B .30x + 8=31x+26C .30x + 8=31x ﹣26D .30x ﹣8=31x+262.下列合并同类项中,正确的是( )A .235a b ab +=B .22523b b -=C .330ab ba -=D .277a a a += 3.下列说法,正确的是( )A .经过一点有且只有一条直线B .两条射线组成的图形叫做角C .两条直线相交至少有两个交点D .两点确定一条直线4.如图1是一个小正方体的侧面形展开图,小正方体从图2中右边所示的位置依次翻到第1格,第2格,第3格,这时小正方体朝上一面的字是( )A .中B .国C .江D .苏5.下列运算正确的是( )A .235x x x +=B .236x x x ⋅=C .633x x x ÷=D .()23636x x =6.已知a =b ,则下列等式不一定成立的是( )A .a+1=b+1B .a ﹣3=b ﹣3C .ac =bcD .a÷c =a÷c7.若a ,b 是互为相反数(a ≠0),则关于x 的一元一次方程ax +b =0的解是( )A .1B .﹣1C .﹣1或1D .任意有理数8.对于题目“如图,点O 为数轴的原点,点A 对应的数为a ,点B 对应的数为b ,且()24100a b ++-=,点P 为数轴上的动点,且点P 对应的数为x .当217PA PB +=时,求x 的值.”嘉嘉的结果是“7或11”,淇淇的结果是“13-或11”,则( )A .嘉嘉的结果正确B .淇淇的结果正确C .两人的结果合在一起才正确D .以上均不正确9.如果单项式22m x y +与n x y 的和仍然是一个单项式,则()2019m n +等于( ) A .1 B .-1 C .2019 D .-2019 10.如图,下列图形绕直线l 旋转一周后,能得到圆锥体的是( )A .B .C .D .11.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A .8×1014元B .0.8×1014元C .80×1012元D .8×1013元12.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下列等式正确的是( )A .CD =AC -DBB .CD =AB -DBC .AD = AC -DB D .AD =AB -BC二、填空题(每题4分,满分20分,将答案填在答题纸上)13.18世纪最杰出的瑞士数学家欧拉,最先把关于x 的多项式用符号“f (x )”表示,如f (x )=﹣3x 2+2x ﹣1,把x =﹣2时多项式的值表示为f (﹣2),则f (﹣2)=_____.14.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是___________.15.已知:5,3a b c d =-+=,则()()b c a d +--的值为_______.16.一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是__________(用m 表示).17.已知∠α=28°,则∠α的余角等于___.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)为发展校园足球运动,某校决定购买一批足球运动装备,经过调查发现:甲、乙两家商场以同样的价格出售相同品牌的足球队服和足球,已知每套队服比每个足球多60元,三套队服与四个足球的费用相等.经过协商,甲商场提供的优惠方案是:每购买十套队服,赠送一个足球;乙商场提供的优惠方案是:若购买队服超过90套,则购买足球打七折.(1)求每套队服和每个足球的价格是多少?(2)若需要购买100套队服和40个足球,通过计算说明到哪家商场购买更优惠.19.(5分)如图,已知ABC ∠、ACB ∠的平分线相交于点O ,EF 过点O 且//EF BC .(1)若50ABC ∠=︒,60ACB ∠=︒,求BOC ∠的度数;(2)若130BOC ∠=︒,1:23:2∠∠=,求ABC ∠、ACB ∠的度数.20.(8分)如图,B ,C 两点把线段AD 分成2∶4∶3的三部分,M 是线段AD 的中点,CD =6 cm ,求线段MC 的长.21.(10分)数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知:a 2+2a =1,则代数式2a 2+4a +4=2( a 2+2a ) +4=2×1+4=6. 请你根据以上材料解答以下问题:(1)若232x x -=,求213x x +-的值;(2)当1x =时,代数式31px qx ++的值是5,求当1x =-时,代数式px 3+qx +1的值;(3)当2019x =时,代数式535ax bx cx ++-的值为m ,求当2019x =-时,求代数式535ax bx cx ++-的值是多少?22.(10分)甲乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1个小时后调头按原速返回,汽车在返回后半个小时追上了拖拉机.(1)在这个问题中,1小时20分= 小时;(2)相向而行时,汽车行驶 小时的路程+拖拉机行驶 小时的路程=160千米;同向而行时,汽车行驶 小时的路程=拖拉机行驶 小时的路程;(3)全程汽车、拖拉机各自行驶了多少千米?23.(12分)如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,边OC 长为1.(1)数轴上点A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O ′A ′B ′C ′,移动后的长方形O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .①当S 恰好等于原长方形OABC 面积的一半时,数轴上点A ′表示的数是多少?②设点A 移动的距离AA ′=x ,当S =4时,求x 的值.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、C【解析】试题分析:设座位有x 排,根据总人数是一定的,列出一元一次方程30x+8=31x-1.故选C .2、C【分析】根据同类项的定义和合并同类项的法则逐项判断即可.【详解】解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、222523b b b -=,故本选项错误;C 、330ab ba -=,故本选项正确;D 、78a a a +=,故本选项错误.故选C.【点睛】本题考查了同类项的概念和合并同类项的法则,属于基础题型,熟练掌握合并同类项的法则是解题的关键.3、D【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D .【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.4、B【分析】先根据翻转的方向确定底面上的字,再由平面图形的折叠及立体图形的表面展开图的特点得出朝上一面的字即可得答案.【详解】由题意可知正方体翻转到3时,“盐”字在底面,∵正方体表面展开图相对面之间一定相隔一个正方形,∴“盐”字的对面是“国”字,∴小正方体朝上一面的字是“国”,故选:B .【点睛】本题考查正方体相对两个面上的文字,熟练掌握正方体的表面展开图相对面之间一定相隔一个正方形的特点并解结合实际操作是解题关键.5、C【分析】分别依据同类项概念、同底数幂的乘法、幂乘方与积的乘方和同底数幂的除法法则逐一计算即可.【详解】A 选项:2x 与3x 不是同类项,不能合并,故A 错误;B 选项:232356x x x x x +⋅==≠,故B 错误;C 选项:63633x x x x -÷==,故C 正确;D 选项:()2332663996x x x x ⨯==≠,故D 错误.故选:C .【点睛】本题主要考查幂的运算,解题的关键是掌握同类项概念、同底数幂的乘法、幂的乘方与积的乘方和同底数幂的除法法则.6、D【分析】根据等式的基本性质逐一判断可得.【详解】A 、由a =b 知a+1=b+1,此选项一定成立;B 、由a =b 知a ﹣3=b ﹣3,此选项一定成立;C 、由a =b 知ac =bc ,此选项一定成立;D 、由a =b 知当c =0时a÷c =a÷c 无意义,此选项不一定成立;故选:D .【点睛】本题考查等式的基本性质,解题的关键是掌握等式的基本性质.7、A【分析】根据解一元一次方程的步骤进行即可【详解】∵a ,b 互为相反数∴=-a b∵ax+b =0∴ax b =-∴1x =故选:A【点睛】本题考查了相反数的概念,及一元一次方程的解法,熟知以上知识是解题的关键.8、A【分析】首先根据绝对值非负性得出4,10a b =-=,进而得出AB ,然后分类讨论:若点P 在A 的左侧;若点P 在A 、B 的之间;若点P 在B 的右侧;构建一元一次方程,进行求解即可. 【详解】∵()24100a b ++-=∴40,100a b +=-=,即4,10a b =-=∴AB=14若点P 在A 的左侧,则()()421017x x --+-= 解得13x =-∵A 为-4∴相矛盾,此情况不存在;若点P 在A 、B 的之间,则()()421017x x ++-=解得7x =,符合题意;若点P 在B 的右侧,则()()421017x x ++-=解得11x =,符合题意;故x 的值为7或11,嘉嘉的结果正确;故选:A .【点睛】此题主要考查数轴上的动点问题以及绝对值非负性的运用、一元一次方程的求解,熟练掌握,即可解题.9、A【分析】根据题意,可知单项式22m x y +与n x y 是同类项,然后求出m 、n 的值,即可得到答案.【详解】解:∵单项式22m x y+与n x y 的和仍然是一个单项式, ∴单项式22m x y +与n x y 是同类项,∴21+=m ,2n =,∴1m =-,∴()20192019(12)1m n +=-+=;故选择:A.【点睛】本题考查了求代数式的值,以及同类项的定义,解题的关键是利用同类项的定义求出m 、n 的值.10、B【分析】根据点动成线,线动成面,面动成体,只有直角三角形绕直角边旋转一周,可以得到一个以旋转直角边为高,另一直角边为底面半径的圆锥.【详解】解:只有直角三角形绕直角边旋转一周,可以得到一个圆锥.故选:B .【点睛】本题考查了点、线、面、体之间的关系,抓住旋转的定义和圆锥的特征即可解决此类问题.11、D【解析】80000000000000元=8×1013元,故选D .点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.12、A【分析】根据点C 是线段AB 的中点,可得AC =BC ,根据点D 是线段BC 的中点,可得BD =CD ,据此逐项判断即可.【详解】∵点C 是线段AB 的中点,∴AC =BC ,∵点D 是线段BC 的中点,∴BD =CD .A 、CD =BC -DB =AC -DB ,故选项A 正确;B 、AB -DB =AD≠CD ,故选项B 不正确;C 、AC -DB≠AD ,故选项C 不正确;D 、AB -BC =AC≠AD ,故选项D 不正确.故选:A .【点睛】此题主要考查了两点间的距离的求法,以及线段的中点的含义和应用,要熟练掌握.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、-1【分析】把x =﹣2代入﹣3x 2+2x ﹣1,求出等于多少即可.【详解】解:当x =﹣2时,f (﹣2)=﹣3×(﹣2)2+2×(﹣2)﹣1,=﹣12﹣4﹣1,=﹣1,故答案为:﹣1.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14、81.49610【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数据1.496亿用科学记数法表示为1.496×1, 故答案为:1.496×1. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15、8【分析】先将已知5a b =-变形5b a -=,,然后原式去括号整理后,直接将已知式的值代入计算即可求解.【详解】解:∵5a b =-,∴5b a -=,又∵3c d +=,∴原式()()538b c a d b a c d =+-+=-++=+=.故答案为:8.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则、整体代入的思想是解本题的关键.16、11m+1【分析】先表示出个位数的数字为(m+1),再根据数的表示列式整理即可得解.【详解】解:根据题意,个位数的数字为(m+1),所以,这个两位数为10m+(m+1)=11m+1.故答案为:11m+1【点睛】本题考查列代数式,正确理解题意是关键.17、62°.【分析】互为余角的两角和为90︒,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为90︒而解得.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)每套队服的价格为240元,每个足球的价格为180元;(2)乙商场.【分析】(1)设每套队服的价格为x 元,从而可得每个足球的价格为(60)x -元,再根据“三套队服与四个足球的费用相等”建立方程,解方程即可得;(2)结合(1)的结论,根据甲、乙商场的优惠方案,分别求出所需费用,再比较大小即可得.【详解】(1)设每套队服的价格为x 元,则每个足球的价格为(60)x -元,由题意得:34(60)x x =-,解得240x =,则6024060180x -=-=,答:每套队服的价格为240元,每个足球的价格为180元;(2)甲商场所需费用为100100240(40)1802940010⨯+-⨯=(元), 乙商场所需费用为1002404018070%29040⨯+⨯⨯=(元),因为2904029400<,所以到乙商场购买更优惠.【点睛】本题考查了一元一次方程的实际应用,依据题意,正确建立方程是解题关键.19、(1)∠BOC =125°;(2)∠ABC=60°,∠ACB=40°.【分析】(1)由角平分线的性质可求出∠OBC 、∠OCB 的度数,再根据三角形内角和即可得出答案;(2)由邻补角的定义可求出∠1+∠2=50°,再根据1:23:2∠∠=即可分别求出∠1和∠2的度数,最后根据两直线平行内错角相等及角平分线的性质即可得出答案.【详解】解:(1)因为∠ABC 和∠ACB 的平分线BO 与CO 相交于点O ,所以∠EBO =∠OBC 12ABC =∠,∠FCO =∠OCB 12ACB =∠ 又∠ABC =50°,∠ACB =60°,所以∠OBC =25°,∠OCB =30°所以∠BOC =180°-∠OBC -∠OCB =125°(2)因为∠BOC=130°,所以∠1+∠2=50°因为∠1: ∠2=3:2所以3150305∠=⨯︒=︒,2250205∠=⨯︒=︒ 因为 EF ∥BC所以∠OBC =∠1=30°,∠OCB =∠2=20°因为∠ABC 和∠ACB 的平分线BO 与CO 相交于点O ,所以∠ABC=60°,∠ACB=40°.【点睛】本题考查了角平分线的性质、平行线的性质、三角形内角和性质,熟练掌握性质定理是解题的关键.20、3cm【分析】设AB=2x ,BC=4x ,CD=3x ,再根据CD=6cm 求出x 的值,故可得出线段AD 的长度,再根据M 是AD 的中点可求出MD 的长,由MC=MD-CD 即可得出结论.【详解】解:∵B ,C 两点把线段AD 分成2:4:3三部分,∴设AB=2x ,BC=4x ,CD=3x ,∵CD=6cm ,即3x=6cm ,解得x=2cm ,∴AD=2x+4x+3x=9x=9×2=18cm , ∵M 是AD 的中点,∴MD=12AD=12×18=9cm , ∴MC=MD-CD=9-6=3cm .【点睛】本题考查的是两点间的距离,在解答此类问题时要注意各线段之间的和、差及倍数关系.21、(1)1-;(2)3-;(3)10m --.【分析】(1)对代数式213x x +-适当变形将232x x -=整体代入即可;(2)将1x =代入代数式求得4p q +=,再将1x =-代入,对所得代数式1p q --+进行变形,整体代入即可; (3)将2019x =代入代数式求得532019201920195a b c m ⋅+⋅+⋅=+,再将2019x =-代入,对所得代数式53(2019)(2019)(2019)5a b c ⋅-+⋅-+⋅--适当变形,整体代入即可.【详解】解:(1)22131(3)121x x x x +-=--=-=-;(2)将1x =代入31px qx ++得311115p q p q ⋅+⋅+=++=, 化简得4p q +=.将1x =-代入31px qx ++得3(1)(1)11()1p q p q p q ⋅-+⋅-+=--+=-++ 将4p q +=代入得31px qx ++=()1413p q -++=-+=-;(3)当2019x =时,代数式535ax bx cx ++-的值为m∴532019201920195a b c m ⋅+⋅+⋅-=,∴532019201920195a b c m ⋅+⋅+⋅=+当2019x =-时,53535(2019)(2019)(2019)5ax bx cx a b c ++-=⋅-+⋅-+⋅--=53(201920192019)5a b c -⋅+⋅+⋅-=(5)5m -+-=10m --.【点睛】本题考查代数式求值——整体代入法. 在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出几个式子的值,这时可以把这几个式子看作一个整体,把多项式化为含这几个式子的代数式,再将式子看成一个整体代入求值.运用整体代换,往往使问题得到简化.22、(1)113;(2)113,113,12,112;(3)汽车行驶的路程为165千米,拖拉机行驶的路程为85千米. 【分析】(1)根据1小时=60分进行单位换算即可;(2)相向而行,相遇时两者行驶时间相同,行驶距离之和为160千米,同向而行,汽车追上拖拉机时,汽车行驶时间为12小时,拖拉机行驶112小时,据此填写即可; (3)设汽车、拖拉机的速度分别是,x y 千米/小时,根据(2)中的等量关系建立方程求出汽车和拖拉机的速度,再用速度乘以行驶的总时间求出行驶路程.【详解】(1)20分=201=603小时, ∴1小时20分=111=133+小时 故答案为:113. (2)相向而行,相遇时,两者行驶时间均为113小时,同向而行,汽车追上拖拉机时,汽车行驶时间为12小时,拖拉机行驶111=122⎛⎫+ ⎪⎝⎭小时 故答案为:113,113,12,112. (3) 解:设汽车、拖拉机的速度分别是,x y 千米/小时,依题意有:11111603311(1)22x y x y ⎧+=⎪⎪⎨⎪=+⎪⎩,解之得:9030x y =⎧⎨=⎩ 全程汽车行驶的路程为1141(1)()90120451653232x +=+⨯=+=(千米)全程拖拉机行驶的路程为1141(11)(1)30403015853232++=++⨯=++=y(千米)答:全程汽车行驶的路程为165千米,拖拉机行驶的路程为85千米.【点睛】本题考查了二元一次方程组的应用,熟练掌握相向而行与同向而行中的等量关系是解题的关键.23、(1)2;(2)①2或6;②8 3【分析】(1)利用面积÷OC可得AO长,进而可得答案;(2)①首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当向左运动时,当向右运动时,分别求出A′表示的数;②根据面积可得x的值.【详解】解:(1)∵OC=1,S长方形OABC=OC•OA=12,∴OA=2,即点A表示的数是2,故答案为2.(2)如图1,∵S=6,即数轴上阴影部分的边长刚好为原来边长的一半,所以,当长方形OABC向左移动时,如图1,OA′=12OA=2,∴点A′表示的数为2;如图2,当长方形OABC向右移动时,O′A=12OA=2,O′A′=OA=2,∴OA′=6,∴点A′表示的数为6,故数轴上点A′表示的数为2或6;②∵S=O′A•AB=(O′A′﹣A′A)•OC=1×(2﹣x)=2,∴x=83.【点睛】此题主要考查了一元一次方程的应用,数轴,关键是正确理解题意,利用数形结合列出方程,注意要分类讨论,不要漏解.。

初中数学浙教版七年级下册第3章 整式的乘除3.3 多项式的乘法-章节测试习题(4)

初中数学浙教版七年级下册第3章 整式的乘除3.3 多项式的乘法-章节测试习题(4)

章节测试题1.【题文】若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.【答案】m=3,n=0.【分析】本题考查了利用多项式的不含问题求字母的值,先按照多项式与多项式的乘法法则乘开,再合并关于x的同类项,然后令不含项的系数等于零,列方程求解即可.【解答】解:原式=mx3+(m-3)x2-(3+mn)x+3n,由展开式中不含x2和常数项,得到m-3=0,3n=0,解得m=3,n=0.2.【题文】化简:a(3-2a)+2(a+1)(a-1).【答案】3a-2.【分析】先去括号,然后再合并同类项即可.【解答】解:原式=3a-2a2+2(a2-1)=3a-2a2+2a2-2=3a-2.3.【题文】计算:(1)6mn2·(2-mn4)+(-mn3)2;(2)(1+a)(1-a)+(a-2)2(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2.【答案】(1)12mn2- 7m2n6;(2)-4a+5;(3)-x2+8xy.【分析】(1)根据单项式乘多项式法则和积的乘方法则计算后,再合并同类项即可;(2)根据乘法公式计算后,再合并同类项即可;(3)根据乘法公式计算后,再合并同类项即可.【解答】解:(1)原式=12mn2- 6m2n6-m2n6=12mn2- 7m2n6(2)原式=1-a2+a2-4a+4=-4a+5(3)原式=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy4.【题文】计算:(2m-3)(2m+5) -(4m-1).【答案】【分析】先进行多项式乘法运算,然后再合并同类项即可.【解答】解:原式=.5.【题文】已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.【答案】p=3,q=1.【分析】根据整式的乘法,化简完成后,根据不含项的系数为0求解即可.【解答】解:∵(x2+px+8)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.6.【题文】化简:(1)(-ab-2a)(-a2b2);(2)(2m-1)(3m-2).【答案】(1) a3b3+a3b2;(2) 6m2-7m+2.【分析】(1)根据单项式乘以多项式的运算法则进行计算即可求得结果;(2)根据多项式乘以多项式的运算法则进行计算即可求得结果.【解答】解:(1)原式=a3b3+a3b2;(2)原式=6m2-4m-3m+2=6m2-7m+2.7.【答题】若的值使得x2+4x+a=(x-5)(x+9)-2成立,则的值为______【答案】-47【分析】先根据整式的运算化简,再根据系数相等解答即可.【解答】∵(x-5)(x+9)-2=x2+9x-5x-45-2= x2+4x-47.∴a=-47.8.【答题】若(x+p)与(x+5)的乘积中,不含x的一次项,则p的值是______.【答案】-5【分析】根据整式的乘法运算解答即可.【解答】利用多项式乘以多项式法则计算得到(x+p)(x+5)=x2+(p+5)x+2p,根据乘积中不含一次项可知p+5=0,即p=-5.故答案为:-5.9.【答题】如果(x―3)(x+a)的乘积不含关于x的一次项,那么a=______.【答案】3【分析】根据整式的乘法运算解答即可.【解答】(x-3)(x+a)=x2+(a-3)-3a,由乘积中不含一次项,得到a-3=0,解得a=3.10.【答题】要使的乘积中不含项,则与的关系是()A. 相等B. 互为相反数C. 互为倒数D. 关系不能确定【答案】A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把p、q看作常数合并关于x的同类项,令x2系数为0,得出p与q的关系.【解答】解:(x2+px+2)(x﹣q)=x3﹣qx2+px2﹣pqx+2x﹣2q=x3+(p﹣q)x2﹣(pq﹣2)x﹣2q因为乘积中不含x2项,则p﹣q=0,即p=q.选A.11.【答题】M是关于x的三次式,N是关于x的五次式,下列说法正确的是()A. M+N是八次式B. N-M是二次式C. M·N是八次式D. M·N是十五次式【答案】C【分析】根据整式的运算解答即可.【解答】∵M是关于x的三次式,N是关于x的五次式,∴M•N是关于x的八(3+5)次式.选C.12.【答题】(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A. 0B.C. ﹣D. ﹣【答案】C【分析】根据整式的运算解答即可.【解答】解:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=,选C.13.【答题】如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A.B.C.D.【答案】D【分析】根据整式的运算解答即可.【解答】长方形ABCD的面积的两种表示方法可得,选D.14.【答题】当a=时,代数式(a-4)(a-3)-a(a+2)的值为()A. 9B. -9C. 3D.【答案】A【分析】先化简,再代入求值即可.【解答】解:(a-4)(a-3)-a(a+2)= =-9a+12当a=时,原式==9选A.15.【答题】如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()A. 2张B. 3张C. 4张D. 5张【答案】B【分析】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3选B.16.【答题】下列计算正确的是()A. -3x2y·5x2y=2x2yB. -2x2y3·2x3y=-2x5y4C. 35x3y2÷5x2y=7xyD. (-2x-y)(2x+y)=4x2-y2【答案】C【分析】根据整式的运算解答即可.【解答】解:A、-3x2y·5x2y=-15x4y2,故此选项错误;B、-2x2y3·2x3y=-4x5y4,故此选项错误;C、35x3y2÷5x2y=7xy,故此选项正确;D、 (-2x-y)(2x+y)=-4x2-y2+4xy,故此选项错误.选C.17.【答题】已知多项式(x+3)(x+n)=x2+mx-21,则m的值是()A. -4B. 4C. -2D. 2【答案】A【分析】根据整式的运算解答即可.【解答】∵(x+3)(x+n)=x2+nx+3x+3n= x2+(n+3)x+3n,∴x2+(n+3)x+3n =x2+mx-21,∴ ,解之得.选A.18.【答题】如果(x﹣2)(x﹣3)=x2+px+q,那么p、q的值是()A. p=﹣5,q=6B. p=1,q=﹣6C. p=1,q=6D. p=1,q=﹣6【答案】A【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【解答】解:∵(x-2)(x-3)=x2-5x+6,又∵(x-2)(x-3)=x2+px+q,∴x2+px+q= x2-5x+6,∴p=﹣5,q= 6选A.19.【答题】下列运算正确的是()A. (x2)3=x5B. (-3x2y)3=-9x6y3C. (a+b)(a+b)=a2+b2D.【答案】D【分析】根据整式的运算判断解答即可.【解答】解:A、(x2)3=x6,故本选项错误;B、(-3x2y)3=-27x6y3,故本选项错误;C、(a+b)(a+b)=a2+2ab+b2,故本选项错误;D、4x3y2•(-xy2)=-2x4y4,故本选项正确.选C.20.【答题】若,,则().A.B.C.D.【答案】A【分析】先根据整式的运算化简,再整体代入求解即可.【解答】∵,,∴原式=选A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版七年级数学下第四章多项式的运算单元测试
班级姓名计分
一、精心选一选(每题3分,共24分)
1、下列运算正确的是()
A. 5a-6a=-1
B. (a4 )3=a7
C. 6a3+2a4=8a7
D. 4a2·3a3=12a5
2、下列可以用平方差公式计算的式子是()
A. (x-y)(y-x)
B. (-a+3)(a-3)
C. (-x+y)(-x-y)
D. (-a-3)(a+3)
3、若x m=3 ,x n=2,则x m+n的值为()
A. 5
B. 6
C. 8
D. 9
4、下列计算错误的是()
A.5a+4b=9ab
B.(5x3)4=(-5x3)4
C.(a2)3=a6
D.x·x5=x6
5、计算(2a-3b)(2a+3b)的正确结果是( )
A. 4a2+9b2 B. 4a2-9b2
C. 4a2+12ab+9b2 D. 4a2-12ab+9b2
6、若0<x<1,那么代数式(1-x)(2+x)的值是( ) A.一定为正B.一定为负C.一定为非负数D.不能确定
7、如果长方形的周长为4x,一边长为x-y,则另一边长
为()
A 3x+y
B 2x+2y
C x+y
D x+3y
8、已知
x y xy x y -==+=8622,, ( ) A.14 B.48 C.52 D.76
二、细心填一填(每题3分,共24分)
9. x 4·x 5= ; (x 4)5=
10. -3a 3+5a 3= ; -3a 3·5a 3= 11 (3x -1)(4x +5)=__________;a a a 45⋅⋅ =
12. 若2x+y=9, 2x-y=4 , 则4x 2- y 2=
13. 多项式5x 2y 5- 4xy 3- 7x 3y + 4,按x 的降幂排列为
14. 若()()233232-++-nx x
mx x 的结果不含x 5的项,则m =_________
15. 已知10m =4,10n =2, 则 102m+3n 的值为
16.若多项式x mx 29++为完全平方公式,m =___________。

三、努力解一解:(共52分)
17、计算 (24分)
()()()14343a b a b +- (2) ab b a ab 3)46(22∙-
(3) 22)2()(b a a --- (4)22)()(y x y x --+
(5))2
)(
4
)(
2
(2+
+
-x
x
x(6)202
198⨯18、先化简,再求值:(12分)
(1).()()()()
2222
x y y x y x y x
-+-+-,其中x y
==
12
,。

(2).已知a b22
=,求代数式-+-
1
3
352
ab a a b a b
()
的值。

20、解方程(6分):(x+2)2-5(x-1)2=-4x2+9x-2
21、简答题(10分)
已知甲数是a,乙数是甲数的2倍多1,丙数比乙数少2,试求甲、乙、丙三数的和与积,并计算当a=-5 时甲、乙、
丙三数的和与积分别是多少.。

相关文档
最新文档