五年级奥数之复杂抽屉原理
小学奥数之抽屉原理
小学奥数之抽屉原理在小学奥数中,抽屉原理是一个非常重要的概念。
它是数学中的一种思维方法,能够帮助我们解决一些看似很难的问题。
抽屉原理也被称为鸽巢原理,它的具体含义是:如果有n+1个物体放进n个抽屉,那么必定有一个抽屉里会放至少两个物体。
抽屉原理常常在解决一些排列组合和概率问题中应用。
下面我们一起来了解一下抽屉原理在小学奥数中的具体应用吧。
首先,我们来看一个经典的例子。
假设有10个苹果放在9个抽屉里,那么根据抽屉原理,必定有一个抽屉里会放至少两个苹果。
为什么会这样呢?我们可以这样来理解,假设每个抽屉最多只放一个苹果,那么最多只能放9个苹果,而实际上有10个苹果,所以必定会有一个抽屉里放至少两个苹果。
接下来,我们来看一个稍微复杂一些的例子。
假设有5个红球和4个蓝球,需要将它们放进4个抽屉里。
根据抽屉原理,必定有一个抽屉里会放至少两个球。
为什么会这样呢?我们可以这样来理解,在最坏的情况下,每个抽屉最多只能放一个球,那么最多只能放4个球,而实际上有9个球,所以必定会有一个抽屉里放至少两个球。
抽屉原理的应用并不仅限于上面两个例子,它在解决一些看似很难的问题时往往能起到关键的作用。
比如,我们可以用抽屉原理解决下面的问题:假设有9个整数,它们的和是10,那么必定存在至少一对数的和是2、我们可以将这个问题转化成将9个整数放进8个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是2除了上述的应用外,抽屉原理还可以帮助我们解决一些类似的问题。
比如,假设有12个整数,它们的和是31,那么必定存在至少一对数的和是7、我们可以将这个问题转化成将12个整数放进11个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是7从以上的例子可以看出,抽屉原理在解决一些看似很难的问题时可以起到非常关键的作用。
通过运用抽屉原理,我们能够将一个复杂的问题简化为一个更简单的问题,从而更好地解决问题。
奥数知识点解析之抽屉原理
奥数知识点解析之抽屉原理第一步:初步理解该知识点的定理及性质1、提出疑问:什么是抽屉原理?2、抽屉原理有哪些内容呢?【抽屉原理1】:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件;【逆抽屉原理】:从n个抽屉中拿出多于n件的物品,那么至少有2个物品来至于同一个抽屉。
【抽屉原理2】:将多于mn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
第二步:学习最具有代表性的题目【例1】证明:任取8个自然数,必有两个数的差是7的倍数。
【例2】对于任意的五个自然数,证明其中必有3个数的和能被3整除。
【总结】以上的例题都是在考察抽屉原理在整除与余数问题中的运用。
以上的题目我们都是运用抽屉原理一来解决的。
第三步:找出解决此类问题的关键【例3】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
【例4】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
【例5】从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。
{1,2,4,8,16}{3,6,12},{5,10,20}{7,14},{9,18}{11},{13},{15},{17},{19}。
【总结】根据题目条件灵活构造“抽屉”是解决这类题目的关键。
第四步:重点解决该类型的拓展难题我们先来做一个简单的铺垫题:【铺垫】请说明,任意3个自然数,总有2个数的和是偶数。
【例6】请说明,对于任意的11个正整数,证明其中一定有6个数,它们的和能被6整除。
【总结】上面两道题目用到了抽屉原理中的“双重抽屉”与“合并抽屉”,都是在原有典型抽屉原理题目的基础上进行的拓展。
什么是抽屉原理?(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
小学奥数抽屉原理
小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。
抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。
这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。
首先,我们来看一个简单的例子。
假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。
这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。
抽屉原理在解决实际问题时非常有用。
比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。
这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。
除了生日问题,抽屉原理还可以应用在许多其它实际问题中。
比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。
这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。
在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。
通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。
同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。
总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。
通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。
希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。
奥数精讲——抽屉原理
奥数精讲——抽屉原理1.把3个苹果放到2个抽屉中,那么至少有1个抽屉中放有2个苹果,把它进一步延伸就可以得到抽屉原理,即:把n+1或多于n+1个物体放到n个抽屉里,其中必定有一个抽屉里至少有2个或2个以上的物体,我们把这种现象称为抽屉原理。
2.抽屉原理的公式:(1)物体数÷抽屉数=商至少数=商(2)物品数÷抽屉数=商……余数至少数=商+1(3)最少物体数=(至少数-1)×抽屉数+余数3.用抽屉原理解决问题时,关键是要明白哪些数量是“抽屉”,哪些数量是“物体”,再利用公式解答。
精讲1:把5个苹果放入4个抽屉里,至少有一个抽屉要放进几个苹果?解: 5÷4=1(个)……1(个)1+1=2(个)答:至少有一个抽屉要放进2个苹果。
精讲2:把若干条金鱼放进8个鱼缸里,不管怎么放,要保证总有一个鱼缸里至少放进3条金鱼,那么金鱼的总数至少应该是多少条?分析:最少物体数=(至少数-1)×抽屉数+余数。
解:8×(3-1)+1=17(条)答:金鱼最少有17条。
精讲3:盒子里有5支蓝铅笔和4支红铅笔,要想保证一次能拿出两个同颜色的铅笔,至少要拿出多少支铅笔?分析:把两种铅笔看作2个抽屉:(1)如果每次拿2支铅笔会有三种情况:①一支蓝铅笔、一支红铅笔;②两支蓝铅笔;③两支红铅笔。
这样不能保证一次能拿出两支同颜色的铅笔。
(2)如果每次拿3支铅笔会有四种情况:①一支蓝铅笔、两支红铅笔;②一支红铅笔、两支蓝铅笔;③三支蓝铅笔;④三支红铅笔。
2+1=3(支)答:至少要拿出3支铅笔。
精讲4:有红、黄、绿三种颜色的帽子各6顶,装在一个黑色的布袋里,从袋子里任意取出帽子,为确保至少有2顶帽子不同颜色,则至少要取出多少顶帽子?分析:考虑最坏的情况,若已经取出了一种颜色的全部6顶帽子和其他两种颜色的帽子各一顶,再取出一顶时,即得到2顶不同颜色的帽子。
所以至少要取出 6+2+1=9(顶)。
五年级奥数抽屉原理
在上一篇文章中,我们介绍了抽屉原理的基本概念和一些相关例题。
在这篇文章中,我们将进一步讨论抽屉原理,并通过更多的例题来加深对这一概念的理解。
我们先回顾一下抽屉原理的表述:如果有n+1个物体被放进n个抽屉,那么至少有一个抽屉里面至少有两个物体。
现在,我们通过一些例题来具体说明抽屉原理的应用。
例题1:有一袋子里装着10只红球和15只蓝球,现在我们从袋子里任意取出3个球。
证明:至少有两个球颜色相同。
解析:这道题目可以通过排除法来解决。
我们假设取出的3个球的颜色都不相同,即一个球是红色,一个球是蓝色,还有一个是其他非红、蓝的颜色。
那么根据抽屉原理,至少有两个球是同一种颜色,与我们的假设矛盾。
因此,我们可以得出结论:至少有两个球的颜色相同。
例题2:20日,小明去书店买了15本书,其中包含3本数学书,4本英语书,8本科普书。
现在我们需要证明,如果随机取出其中的3本书,那么至少有两本是同一科目的书。
解析:我们可以使用类似于例题1的方法来解决这个问题。
先假设取出的3本书中没有任意两本是同一科目的,即每个科目都有且仅有一本书被取出。
根据抽屉原理,我们可以推断至少有两个科目的书被取出,与假设矛盾。
因此,我们可以得出结论:至少有两本是同一科目的书。
例题3:小明有10个板块,每个板块上的数字都是从1到5的整数。
现在小明需要从这些板块中任意取出6个。
证明:至少有两个板块上的数字相同。
解析:我们可以使用与前两个例题相似的思路来解决这个问题。
设想将6个板块放进5个抽屉,将每个板块上的数字当作抽屉的标号。
根据抽屉原理,至少有一个抽屉里面有两个板块。
而在这个问题中,抽屉就是指板块上的数字。
因此,我们可以得出结论:至少有两个板块上的数字相同。
通过以上三个例题,我们可以看到抽屉原理的应用非常广泛。
它不仅用于奥数问题,同时也可以应用于生活中的诸多场景中。
对于学生们来说,理解抽屉原理可以帮助他们在解决问题时更加灵活和深入地思考。
除了以上的例题外,还有许多与抽屉原理相关的问题等待我们去发现和解决。
2024最新小学奥数抽屉原理
2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。
这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。
抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。
这个原理的证明也很简单。
假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。
但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。
抽屉原理的应用非常广泛,包括组合数学、概率论等领域。
在小学奥数中,它通常用于解决物品分配、排列组合等问题。
以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。
这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。
2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。
这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。
3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。
这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。
总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。
这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。
所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。
希望以上内容对您有所帮助。
五年级奥数第12讲:抽屉原理-课件
例题二
芭啦啦综合教育学校五年级有32名同学是在五月份出生 的,那么,其中至少有几名同学的生日在同一天?
抽屉原理1:将多 于n件的物品任意 放到n个抽屉里, 那么至少有一个 抽屉里的物品不 少于2件。
31天
32÷31=1(名)……1 (名) 1+1=2(名)
答:至少有2名同学的生日在同一天。
练习二
答:如果每个抽屉里都放一个苹果,那么6 个抽屉就有6个苹果,实际上有7个苹果, 说明至少有一个抽屉里至少有2个苹果。
练习一
5只鸽子飞进4个鸽笼,那么一定有一个鸽笼里至少飞进 2只鸽子,为什么?
5÷4=1(只)……1(只)
答:每个鸽笼里飞进一只鸽子,4个鸽笼就有4只鸽子, 实际上有5只鸽子,说明至少有1个鸽笼里至少飞 进2只。
共9种
1个足球1个排球、1个足球1个篮球、1个排球1个篮球
66÷9=7(名)……3(名) 7+1=8(名)
答:至少有8名同学所拿的球种类是完全相同的。
练习五(选做)
芭啦啦综合教育学校组织夏令营活动,游览北京颐和园、 故宫和长城三个景点,共有200名同学参加。规定每人至少去 1处,至多去2处,那么至少有几人游览的地方完全相同?
选
择
在
夏
我们,还在路上……
某兴趣小组有13名同学,其中至少有几名同学是同一个 星座的?
12个
13÷12=1(名)……1 (名) 1+1=2(名)
答:至少有2名同学是同一星座的。
小结
抽屉原理1:将多于n件的物品任意放到n个 抽屉里,那么至少有一个抽屉里的物品不少于 2件。
例题三
有红、黄、蓝、白四色小球各10个,混合放在一个暗盒 里,从中摸球,一次至少摸出几个,才能保证有3个小球是同 色的?
小学奥数之抽屉原理
小学奥数之抽屉原理抽屉原理,又称为鸽巢原理,是一种数学思维方法,它指出:如果有n+1个物体放进n个抽屉中,那么必定有一个抽屉中至少有两个物体。
抽屉原理最早由德国数学家德尔·凡登布洛赫(Dirichlet)在19世纪中提出,用于解决组合数学中一类关于集合和计数问题的问题。
它的一个直观的解释是:如果将 n 个物体放入 n-1 个以上的容器中,那么至少有一个容器中会放有两个或更多个物体。
这个原理在很多领域都有广泛的应用,尤其在概率论、图论、计算机科学等领域。
那么,如何应用抽屉原理呢?首先,要明确问题的背景和条件。
通常,抽屉原理可用来寻找在一定条件下的必然性结果,例如:有多少个物体、有多少个容器、存在什么样的关联关系等。
举个例子来说明抽屉原理的应用。
假设有一间教室,有n个学生同时参加一次抽奖活动,每个学生只能获得一个奖品。
同时,教室里还放有n-1个抽屉,每个抽屉里放有一个奖品。
那么根据抽屉原理,必然会有至少一个抽屉中放有两个以上的奖品。
要证明这个命题,假设所有抽屉中放置的奖品数目都不超过一个。
那么,每个抽屉中都放置了一个奖品,也就是说教室中最多会有n-1个奖品。
但是,根据题设,教室中的学生有n个,每个学生都要获得一个奖品,所以至少有一个学生没有获得奖品。
因此,我们得出矛盾,证明了至少有一个抽屉中放有两个以上的奖品。
这个问题虽然看似简单,但是却展示了抽屉原理的本质。
我们只需要根据问题的条件来分配物体和容器,然后通过逻辑推理得出必然的结论。
当然,抽屉原理也可以有更复杂的应用。
例如,假设有100个学生参加数学竞赛,每个学生会得到一张分数排名。
现在我们想要证明,至少有两个学生的分数排名差不超过10名。
根据题设,学生的分数排名是1到100之间的整数。
我们将这100个学生分为10组,每组包含10个学生,第一组包含1到10名的学生,第二组包含11到20名的学生,以此类推。
根据抽屉原理,至少有两个学生分别来自同一组,他们的分数排名差不超过10名。
小学五年级上学期数学培优奥数讲义(全国通用)-第21讲 抽屉原理(含答案)
第21讲抽屉原理2知识与方法桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现,至少我们可以找到一个抽屉里面至少放两个苹果。
这一现象就是我们所说的抽屉原理。
抽屉原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
抽屉原理2:把多于mn个物体放到n个抽屉里,则至少有一个抽屉里有m +1个或多于m+1个物体。
初级挑战1某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?思路引领:一年最多有()天(闰年),假设每个学生分别在不同的日期出生,则有()人,最后剩下的()名学生的出生日期必与其中一人相同。
答案:有两个学生的生日是同一天。
因为一年最多有366天,假设每个学生分别在不同的日期出生,则有366人,最后剩下的1名学生的出生日期必与其中一人相同。
能力探索11、15个小朋友中,至少有()个小朋友在同一个月出生。
2、学前班有40名小朋友,老师最少拿()本书随意分给小朋友,才能保证至少有一个小朋友能得到两本或两本以上的书。
答案:1、一年有12个月,至少有2个小朋友在同一个月出生。
2、41。
初级挑战2在一个口袋里有10个黑球,6个白球,4个红球,至少取出()个球才能保证其中有白球?思路引领:考虑最不利的情况是之前取出的全是()球和()球,共有()个,那么只有第()个才能取到白球。
答案:10+4+1=15(个)能力探索21、有红色、白色、黑色的筷子各8根混放在一起,让你闭上眼睛去摸,至少要摸出()根才敢保证一定能摸到白色筷子。
答案:8×2+1=17(根)2、有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出()只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
答案:3×3+1=10(只)中级挑战1把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有( )个苹果。
小学奥数—抽屉原理讲解精编版
小学奥数—抽屉原理讲解精编版抽屉原理是小学奥数中非常重要的概念之一,用来解决一些组合问题。
本文将对抽屉原理进行详细的讲解。
首先我们来看一个经典的抽屉原理问题:假设有10个苹果要放进9个抽屉里,那么至少有一个抽屉里会放2个以上的苹果。
要解决这个问题,首先我们需要明确两个概念:抽屉数和苹果数。
在这个问题中,抽屉数是9个,苹果数是10个。
按照抽屉原理的逻辑,我们可以假设每个抽屉里最多放1个苹果,这样总共最多放9个苹果,但是我们有10个苹果,所以根据抽屉原理,至少有一个抽屉里会放2个以上的苹果。
这个问题的解答是很直观的,但是它却引发了我们对抽屉原理的思考。
抽屉原理告诉我们,当几个对象放进比它们数量少的容器时,一定会有一个容器里放了多个对象。
这个原理不仅适用于苹果和抽屉的情况,还可以推广到其他一些组合问题上。
接下来我们来看一个稍微复杂一些的问题:如果将5名学生分配到4个班级里,那么至少有一个班级会超过1名学生。
同样地,我们按照抽屉原理的逻辑,假设每个班级里最多放1名学生,那么总共最多放4名学生。
但是我们有5名学生,所以根据抽屉原理,至少有一个班级会超过1名学生。
通过这个问题,我们可以看出抽屉原理的一个重要特征:当对象的数量多于容器的数量时,至少有一个容器会超过1个对象。
抽屉原理还可以推广到更一般的情况。
比如,如果将n+1个对象放进n个容器中,那么至少有一个容器会超过1个对象。
这个推广后的抽屉原理在解决奥数问题时会非常有用。
除了以上的例子,抽屉原理还可以应用于其他一些常见的问题中。
比如,在一副扑克牌中至少有4张同花色的牌;在任意21个自然数中,至少存在两个数的差是10。
这些问题都可以通过抽屉原理来解决。
当然,在使用抽屉原理时,我们需要注意一些限制条件。
比如在前面提到的将5名学生分配到4个班级的问题中,我们假设每个班级最多放1名学生,但是并没有规定每个班级必须有学生。
所以在应用抽屉原理时,除了考虑容器的数量和对象的数量,还需要考虑容器和对象之间的对应关系。
小学奥数教程:抽屉问题公式与原理
小学奥数教程:抽屉问题公式与原理
小学奥数教程:抽屉问题公式与原理【编者按】查字典数学网英语四六级频道为大家收集整理了小学奥数教程:抽屉问题公式与原理供大家参考,希望对大家有所帮助!
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:表示不超过X的最大整数。
关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?。
小学奥数抽屉原理简介__(定稿)
小学奥数抽屉原理简介__(定稿)第一篇:小学奥数抽屉原理简介__(定稿)小学奥数之-----抽屉原理桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
这一现象就是我们所说的抽屉原理。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。
”抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。
它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。
它是组合数学中一个重要的原理。
一.抽屉原理最常见的形式原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1 个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.原理1 2都是第一抽屉原理的表述第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能二.应用抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
例1:400人中至少有两个人的生日相同.解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.“从任意5双手套中任取6只,其中至少有2只恰为一双手套。
复杂抽屉原理(精选五篇)
复杂抽屉原理(精选五篇)第一篇:复杂抽屉原理奥数周周练——复杂抽屉原理1.证明:任给12个不同的两位数,其中一定存在着这样的两个数,它们的差是个位与十位数字相同的两位数.2.从1,2,3,…,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?3.有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子?4.某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?5.上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.奥数周周练——复杂抽屉原理6.8个学生解8道题目.(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试构造一个例子说明这点.7.试卷上共有4道选择题,每题有3个可供选择的答案.一群学生参加考试,结果是对于其中任何3人,都有一个题目的答案互不相同.问参加考试的学生最多有多少人?8.求从1到1994中不能被5整除,也不能被6或7整除的自然数的个数.【例20】一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,不答不得分。
问:要保证至少有4人得分相同,至少需要多少人参加竞赛?【例20巩固】(第十届《小数报》数学竞赛决赛)一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少____人参加这次测验,才能保证至少有3人得得分相同.奥数周周练——复杂抽屉原理【例24巩固】(小学数学奥林匹克决赛)从1,2,3,4,…,1988,1989这些自然数中,最多可以取____个数,其中每两个数的差不等于4.【例25】(北京市第十一届“迎春杯”刊赛)从1,2,3,4,…,1994这些自然数中,最多可以取个数,能使这些数中任意两个数的差都不等于9.【例27】从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【例29】从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【例34】有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?奥数周周练——复杂抽屉原理【例36】在一个矩形内任意放五点,其中任意三点不在一条直线上。
五年级奥数:抽屉原理
抽屉原理【鸽巢原理】抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。
”原理1 :把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
原理2:把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1 个的物体。
常用计算公式:A、计算其中一个抽屉至少有几个元素= 总数÷抽屉数+ 1B、计算总数= (其中一个抽屉至少有几个元素- 1)×抽屉数+ 1例1:400人中至少有两个人的生日相同抽屉:366(一年算366天),苹果:400,400 ÷366=1……1+1=2例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同抽屉:6(有6种选玩具的方法),7÷6=1……1+1=2练习:1、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?【4】2、一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?【16】3、11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型相同。
4、有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。
5、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?【6】6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人。
[第14讲]复杂抽屉原理
[第14讲]复杂抽屉原理复杂抽屉原理,也被称为鸽笼原理或抽屉原理,是数学中一个非常重要的概念。
它通过分析在一定条件下,放入抽屉中的物体个数与抽屉的个数之间的关系,来说明一些事物的不可能性或必然性。
复杂抽屉原理的基本概念可以通过一个简单的例子来说明。
假设有4枚不同的硬币要放入3个抽屉中,根据简单的推理,至少有一个抽屉里会有两个硬币。
这是由于有4枚硬币,而只有3个抽屉,所以无论怎么放,至少有一个抽屉中的硬币数会超过1个。
这个例子可以理解为:如果有n+1个物体要放入n个容器中,那么至少有一个容器中至少有2个物体。
复杂抽屉原理的应用非常广泛,它可以帮助解决各种问题。
下面我们来探讨一些与复杂抽屉原理相关的例子。
首先,我们来看一个经典的例子:生日问题。
假设有一个房间里有23个人,那么至少有两个人生日相同的概率有多大呢?根据抽屉原理,我们可以将365天当作365个抽屉,每个人的生日当作一个物体,那么至少有两个人生日相同相当于说至少有一个抽屉里放了两个物体。
根据概率计算,这个概率约为50%。
这个例子告诉我们,人数相对较小的时候,生日相同的概率并不是很高,但是随着人数的增加,这个概率会迅速增大。
接下来,我们来看一个与解决方案数量相关的例子。
假设一个班级里有30个学生,要选择其中的3个人组队,那么一共有多少种不同的组队方式呢?根据组合的原理,我们可以计算出这个数量为C(30,3)=4060种。
从另一个角度来看,我们可以将这个问题理解为将30个物体放入3个抽屉中,那么根据抽屉原理,至少有一个抽屉里的物体数目大于等于16,也就是说至少有一个组队里的人数大于等于16人。
最后,我们来看一个箱子与物品数量相关的例子。
假设我们有10个球,其中5个红色,5个蓝色。
如果我们要将这些球放入两个箱子中,那么至少需要将多少个球放入一个箱子中,才能确保另一个箱子中也有至少5个同色的球?根据抽屉原理,我们可以将红球当作一种物体,蓝球当作另一种物体。
复杂抽屉原理知识点总结
复杂抽屉原理知识点总结1.抽屉原理的基本概念抽屉原理是组合数学中的一个基本概念,它描述了一种常见的现象:如果有n个抽屉和m 个物品要放进这些抽屉中,那么当m>n时,至少有一个抽屉中会有两个或以上的物品。
这个原理背后的逻辑是很直观的,因为当物品的数量超过了抽屉的数量,就不可能每个物品都有自己独立的抽屉,必然会有抽屉中有多个物品。
这个概念在计算机科学、概率论、统计学等领域都有着十分重要的应用,因此对抽屉原理的理解和运用至关重要。
2. 抽屉原理的证明抽屉原理的证明可以通过反证法来进行。
假设有n个抽屉和m个物品,假设每个抽屉中最多只有一个物品,那么总共最多只能放n个物品,这与有m个物品的情况矛盾。
因此可以得出结论:当m>n时,至少有一个抽屉中会有两个或以上的物品。
3. 抽屉原理的应用抽屉原理在计算机科学、统计学、概率论等领域都有着广泛的应用。
在计算机科学中,抽屉原理常常用来证明算法的正确性。
在设计算法的过程中,要保证算法能够处理所有可能的输入,而抽屉原理能够帮助我们找到重复的输入,以便对算法进行优化。
在概率论中,抽屉原理可以用来解决一些问题,比如生日问题:如果在一个房间里有n个人,问至少有两个人生日相同的概率是多少?抽屉原理可以帮助我们解答这个问题。
同样地,在统计学中,抽屉原理可以帮助我们理解抽样调查的有效性,以及分析数据的相关性等问题。
4. 抽屉原理的扩展除了基本的抽屉原理,还有一些抽屉原理的扩展和变种。
比如广义抽屉原理,它描述了更一般的情况,即如果有n个容量为m的容器,要放入(m+1)(n-1)+1个物品,那么至少有一个容器中会有n+1个或以上的物品。
除此之外,还有加强版的抽屉原理、弱化版的抽屉原理,以及抽屉原理的多重运用等。
了解这些抽屉原理的扩展,有助于我们更深入地理解这个概念,以及在更多的情况下运用抽屉原理进行问题的解决。
5. 抽屉原理的启示抽屉原理不仅仅是一种数学定理,更是一种思维方式。
复杂抽屉原理(基础篇)
复杂抽屉原理从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数。
证明:任取8个自然数,必有两个数的差是7的倍数。
在任意的五个自然数中,是否其中必有三个数的和是3的倍数?8位小朋友围着一张圆桌坐下,在每位小朋友面前都放着一张纸条,上面分别写着这8位小朋友的名字。
开始时,每位小朋友发现自己面前所对的纸条上写的都不是自己的名字,请证明:经过适当转动圆桌,一定能使至少两位小朋友恰好对准自己的名字。
(★★★) (★★★)(★★★★)(★★★★)(★★★★★)在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。
1.从1、3、5、…、19、21、23这12个自然数中,至少任选几个数,可以保证其中一定包括两个数,它们的差是10。
A.6 B.7 C.8 D.92.从1到10这10个数中,任取几个不同的数,必有两个数其中一个是另一个数的倍数。
A.4 B.5 C.6 D.73.任选几个自然数,必有两个数的差是5的倍数。
A.5 B.6 C.7 D.44.求证:对于任意的几个自然数,一定能从中找到6个数a、b、c、d、e、f,使得a b c d e f---是105的倍数。
()()()A.4 B.6 C.8 D.105.10个小朋友围在一张大圆桌前吃饭,每人点一道菜,菜上齐后发现每人面前的这道菜都不是自己点的,经几次转动圆桌,一定能使至少两个小朋友恰好对准自己点的菜。
A.8 B.9 C.10 D.11。
复杂抽屉原理
复杂抽屉原理抽屉原理是数学中的一条基本原理,它也被称为鸽巢原理。
它的基本内容是:如果将n+1个物体放入n个抽屉中,则至少有一个抽屉中会放有两个物体。
这个原理的应用非常广泛,其中包括数论、组合数学、计算机科学等领域。
在这篇文章中,我们将讨论抽屉原理的一个更加复杂的应用。
抽屉原理的提高篇主要关注如何应用抽屉原理来解决更加复杂的问题。
在这篇文章中,我们将讨论两个重要的问题:分配问题和二元关系问题。
首先,让我们来看一个分配问题。
假设有10个学生和9个座位,这些座位按顺序排列在一排中。
每个学生只能坐在一个座位上,而座位上只能坐一个学生。
当我们尝试将这10个学生分配到这9个座位上时,根据抽屉原理,至少会有一个座位被两个学生占据。
这是因为我们有10个学生和9个座位,所以无论怎样分配,至少有一个座位会被多个学生占据。
另一个例子是二元关系问题。
假设有10个人,他们间有一些人是否认识对方的关系。
那么必然存在两个人同时认识对方或者同时不认识对方。
为了解释这个问题,我们可以将每个人表示为一个抽屉,如果两个人认识对方,则在他们之间有一条线连接。
根据抽屉原理,如果有10个人,那么至少有两个人的度数相同。
度数指的是一个人被对方认识的次数。
因为每个人可以认识其他九个人,所以度数范围是0到9、由于有10个人,而只有9个可能的度数,根据抽屉原理,至少有两个人的度数是相同的。
这个提高篇的抽屉原理实际上是对抽屉原理的进一步推广。
它告诉我们,即使是在比抽屉数目(或物体数目)少的情况下,我们仍然可以得到其中一种结论。
这对于解决一些复杂的问题非常有用,尤其是在数学和计算机科学等领域。
总结起来,抽屉原理的提高篇是抽屉原理的一个更加复杂的应用。
通过这种推广,我们可以解决一些分配问题和二元关系问题。
这对于我们理解抽屉原理的深入和应用有着重要的意义。
希望这篇文章可以帮助读者更好地理解和应用这个重要的数学原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识大总结 1. 抽屉原理: ⑴ 有余+1,无余取整 无余取整 ⑵ 找苹果、找抽屉 2 最不利原则: 2. ⑴ 保证发生,最少 ⑵ 个数=最倒霉+1 3. 难点:以某些东西的种类作为抽屉. 【今日讲题】 例1、例2、例3、 超常大挑战 超常 【讲题心得】 __________________________________________________________________. 【家长评价】 ________________________________________________________________. 2
【例5】(★★★★) ⑴ 在边长为1的正方形里随意放入3个点,以这3个点为顶点的三角形 的面积最大是_____. ⑵ 在边长为1的正方形里随意放入9个点,这9个点任意3个点不共线, 请说明 这9个点中一定有 请说明:这 个点中 定有3个点构成的三角形面积不超过正方形 1 的 . 8
【超常大挑战】(★★★★★) 假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的 线段连起来 都连好后 问你能不能找到 个由这些线构成的 角形 线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形, 使三角形的三边同色?
板块一:基本的抽屉原理 【例1】(★★★) 将能否在4×4的方格表的每一个格子中填入 的方格表的每 个格子中填入1、2、3中的一个数字,使 中的 个数字 使 得每行、每列以及它的两条对角线上数字的和互不相同?
【例3】(★★★) (华杯赛团体决赛口试题) 圆上的100个点将该圆等分为100段等弧,随意将其中的一些点染成红 点,要保证至少有4个红Байду номын сангаас是一个正方形的4个顶点,问:你至少要染 红多少个点?
本讲主线 1. 复习基本的抽屉原理 2. 关于抽屉原理的讨论
复杂抽屉原理
1. 抽屉原理: ⑴ 10个苹果放到9个抽屉中,一定有一个抽屉至少有2个苹果. ⑵ 100个苹果放到9个抽屉中,一定有一个抽屉中至少有12个苹果. 2. 最不利原则: ⑴ 保证发生的最少情况 保 发生的最少情 ⑵ 保证=最倒霉+1 3 同余定理: 3. a、b两数对于c同余,那么a-b的差值一定可以被c整除.
【例2】(★★★) 从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可 保证其中 定包括两个数,它们的差是12. 以保证其中一定包括两个数,它们的差是
1
板块二:抽屉原理的讨论 【例4】(★★★★) 求证:对于任意的8个自然数,一定能从中找到6个数 a、b、c、d、e、f,使得(a-b)(c-d)(e-f)是105的倍数.
【课前小练习】(★) ⑴ 现在有10个苹果放在9个抽屉里,那么一定有一个抽屉 那么 定有 个抽屉 里至少有___个 苹果; ⑵ 现在有10个苹果放在10个抽屉里,那么一定有一个抽屉里至少有___ 个苹果; ⑶ 现在有 在有103个苹果 个苹果放在 在9个抽 个抽屉里,那 那么一定有一个抽屉里至少有 有 个抽 少有___ 个苹果. ⑷ 一副扑克牌有54张,包括2张王牌,四个花色,各有13张. 至少取___ 张 张,保证有 有4张不同花色 张 花色. ⑸ 现在有10个抽屉,要想保证有一个抽屉中至少有5个苹果,苹果总数 最少有____个;最多有____个.