高考数学总复习习题6-2

合集下载

高中数学6-2排列与组合6-2-2排列数课后提能训练新人教A版选择性必修第三册

高中数学6-2排列与组合6-2-2排列数课后提能训练新人教A版选择性必修第三册

第六章 6.2.2A级——基础过关练1.4·5·6·…·(n-1)·n等于( )A.A4n B.A n-4nC.n!-4! D.A n-3n【答案】D 【解析】因为A m n=n(n-1)(n-2)…(n-m+1),所以A n-3n=n(n-1)(n-2)…[n-(n-3)+1]=n(n-1)(n-2)·…·6·5·4.2.要从a,b,c,d,e5个人中选出1名组长和1名副组长,但a不能当副组长,则不同的选法种数是( )A.20 B.16C.10 D.6【答案】B 【解析】不考虑限制条件有A25种选法,若a当副组长,有A14种选法,故a 不当副组长,有A25-A14=16(种)选法.3.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!)3C.(3!)4D.9!【答案】C 【解析】利用“捆绑法”求解,满足题意的坐法种数为A33·(A33)3=(3!)4.故选C.4.从2,3,5,7四个数中任选两个分别相除,则得到的结果有( )A.6个B.10个C.12个D.16个【答案】C 【解析】符合题意的商有A24=4×3=12(个).5.由1,2,3,4,5组成没有重复数字的四位数,按从小到大的顺序排成一个数列{a n},则a72等于( )A.1 543 B.2 543C.3 542 D.4 532【答案】C 【解析】首位是1的四位数有A34=24(个),首位是2的四位数有A34=24(个),首位是3的四位数有A34=24(个),由分类加法计数原理得,首位小于4的所有四位数共3×24=72(个).由此得a72=3 542.6.不等式A2n-1-n<7的解集为________.【答案】{3,4} 【解析】由不等式A2n-1-n<7,得(n-1)(n-2)-n<7,整理得n2-4n -5<0,解得-1<n<5.又因为n-1≥2且n∈N*,即n≥3且n∈N*,所以n=3或n=4,故不等式A2n-1-n<7的解集为{3,4}.7.从6名短跑运动员中选出4人参加4×100 m接力赛,甲不能跑第一棒和第四棒,则共有________种参赛方案.【答案】240 【解析】方法一从人(元素)的角度考虑,优先考虑甲,分以下两类:第1类,甲不参赛,有A45种参赛方案;第2类,甲参赛,可优先将甲安排在第二棒或第三棒,有2种方法,然后安排其他3棒,有A35种方法,此时有2A35种参赛方案.由分类加法计数原理可知,甲不能跑第一棒和第四棒的参赛方案共有A45+2A35=240(种).方法二从位置(元素)的角度考虑,优先考虑第一棒和第四棒,则这两棒可以从除甲之外的5人中选2人,有A25种方法;其余两棒从剩余4人中选,有A24种方法.由分步乘法计数原理可知,甲不能跑第一棒和第四棒的参赛方案共有A25A24=240(种).方法三(间接法) 不考虑甲的约束,6个人占4个位置,有A46种安排方法,剔除甲跑第一棒和第四棒的参赛方案有2A35种,所以甲不能跑第一棒和第四棒的参赛方案共有A46-2A35=240(种).8.六个停车位置,有3辆汽车需要停放,若要使三个空位连在一起,则停放的方法数为________.【答案】24 【解析】把3个空位看作一个元素,与3辆汽车共有4个元素全排列,故停放的方法有A44=4×3×2×1=24(种).9.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前4个节目要有舞蹈节目,有多少种排法?解:(1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目、3个舞蹈节目排在中间6个位置上有A66种排法,故共有不同排法A25A66=14 400(种).(2)先不考虑排列要求,有A88种排列,其中前4个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余4个节目排列在后四个位置,有A45A44种排法,所以前4个节目要有舞蹈节目的排法有A88-A45A44=37 440(种).10.4个男同学,3个女同学站成一排.(1)3个女同学必须排在一起,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?解:(1)3个女同学是特殊元素,共有A33种排法;由于3个女同学必须排在一起,则可视排好的女同学为一个整体,再与4个男同学排队,应有A55种排法.由分步乘法计数原理得,有A33A55=720(种)不同的排法.(2)先将男同学排好,共有A44种排法,再在这4个男同学的中间及两头的5个空当中插入3个女同学,则有A35种方法.故符合条件的排法共有A44A35=1 440(种).(3)先排甲、乙、丙3人以外的其他4人,有A44种排法;由于甲、乙要相邻,故先把甲、乙排好,有A22种排法;最后把甲、乙排好的这个整体与丙分别插入原先排好的4人的中间及两头的5个空当中,则有A25种排法.所以共有A44A22A25=960(种)不同的排法.B级——能力提升练11.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A .24B .48C .60D .72【答案】D 【解析】第一步,先排个位,有A 13种选择;第二步,排前4位,有A 44种选择.由分步乘法计数原理,知有A 13·A 44=72(个).12.世界华商大会的某分会场有A ,B ,C 三个展台,将甲、乙、丙、丁共四名“双语”志愿者分配到这三个展台,每个展台至少一人,其中甲、乙两人被分配到同一展台的分配方法有( )A .12种B .10种C .8种D .6种 【答案】D 【解析】将甲、乙看作一个元素与另外两个组成三个元素,分配到三个展台,共有A 33=6(种)不同的分配方法.13.航天员在进行一项太空实验时,先后要实施6个程序,其中程序B 和C 都与程序D 不相邻,则实验顺序的编排方法共有( )A .216种B .288种C .180种D .144种【答案】B 【解析】当B ,C 相邻,且与D 不相邻时,有A 33A 24A 22=144(种)方法;当B ,C不相邻,且都与D 不相邻时,有A 33A 34=144(种)方法,故共有288种编排方法.14.(多选)下列等式成立的是( )A .A 3n =(n -2)A 2nB .1n A n n +1=A n -1n +1C .n A n -2n -1=A n nD .nn -m A m n -1=A m n【答案】ACD 【解析】A 中右边=(n -2)(n -1)n =A 3n ;C 中左边=n (n -1)(n -2)×…×2=n (n -1)(n -2)×…×2×1=A n n ;D 中左边=n n -m ×n -1!n -m -1!=n !n -m !=A m n ,只有B 不正确.15.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为________.【答案】2 903 040 【解析】(插空法)8名学生的排列方法有A 88种,隔开了9个空位,在9个空位中排列2位老师,方法数为A 29,由分步乘法计数原理,总的排法总数为A 88A 29=2 903 040.16.在某艺术馆中展出5件艺术作品,其中不同的书法作品2件,不同的绘画作品2件,标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则展出这5件作品的不同方案有________种.【答案】24 【解析】把2件书法作品当作一个元素,与其他3件艺术品进行全排列,有2A 44=48(种)方案.其中,2件绘画作品相邻,有2×2A 33=24(种)方案,则该艺术馆展出这5件作品的不同方案有48-24=24(种).17.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?(1)一个唱歌节目开头,另一个放在最后压台;(2)2个唱歌节目互不相邻;(3)2个唱歌节目相邻且3个舞蹈节目不相邻.解:(1)先排唱歌节目有A22种排法,再排其他节目有A66种排法,所以共有A22·A66=1 440(种)排法.(2)先排3个舞蹈节目、3个曲艺节目有A66种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A27种插入方法,所以共有A66·A27=30 240(种)排法.(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A44种排法,再将3个舞蹈节目插入,共有A35种插入方法,最后将2个唱歌节目互换位置,有A22种排法,故所求排法共有A44·A35·A22=2 880(种)排法.C级——探究创新练18.从1到9这9个数字中取出不同的5个数进行排列.问:(1)奇数的位置上是奇数的有多少种排法?(2)取出的奇数必须排在奇数位置上有多少种排法?解:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A35种排法;第二步再排偶数位置,有4个偶数和余下的2个奇数可以排,排法为A26种,由分步乘法计数原理知,排法种数为A35·A26=1 800(种).(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A24种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A37种,由分步乘法计数原理知,排法种数为A24·A37=2520(种).。

2023年高考数学一轮复习(新高考地区专用)6-2 古典概型及条件概率(精讲)(解析版)

2023年高考数学一轮复习(新高考地区专用)6-2 古典概型及条件概率(精讲)(解析版)

6.2 古典概型及条件概率(精讲)(基础版)思维导图考点呈现例题剖析考点一古典概型【例1】(2022·河南安阳)某市在疫情期间,便民社区成立了由网格员、医疗人员、志愿者组成的采样组,并上门进行,核酸检测,某网格员对该社区需要上门核酸检测服务的老年人的年龄(单位:岁)进行了统计调查,将得到的数据进行适当分组后(每组为左开右闭区间),得到的频率分布直方图如图所示.(1)求m 的值,并估计需要上门核酸检测服务的老年人的年龄的平均数;(精确到1,同一组中的数据用该组区间的中点值作为代表)(2)在年龄处于(]70,90的老人中,用分层随机抽样的方法选取9人,再从9人中随机选取2人,求2人中恰有1人年龄超过需要上门核酸检测服务的老年人的平均年龄的概率. 【答案】(1)0.016m =,平均数为80岁(2)59【解析】(1)解:由图可得()0.0320.0400.012101m +++⨯=,解得0.016m =.估计需要上门核酸检测服务的老年人的年龄的平均数为650.16750.32850.4950.1279.880⨯+⨯+⨯+⨯=≈岁.(2)解:(]70,80,(]80,90两组的人数之比为0.032:0.0404:5=,∴在(]70,80,(]80,90的老人中抽取的人数分别为4,5,分别记为1a ,2a ,3a ,4a ,1b ,2b ,3b ,4b ,5b ,从9人中随机选取2人,样本空间()()()()()()()(){1213141112131415Ω,,,,,,,,,,,,,,,,a a a a a a ab a b a b a b a b =()()()()()()()23242122232425,,,,,,,,,,,,,,a a a a a b a b a b a b a b ()()()()()()343132333435,,,,,,,,,,,,a a a b a b a b a b a b ()()()()()4142434445,,,,,,,,,,a b a b a b a b a b ()()()()12131415,,,,,,,,b b b b b b b b ()()()232425,,,,,,b b b b b b ()()3435,,,,b b b b ()}45,b b ,共有36个样本点,恰有一人年龄超过80岁,即恰有一人年龄在(]80,90,令“恰有一人年龄在(]80,90”为事件B ,则()()()()(){1112131415,,,,,,,,,,B a b a b a b a b a b =()()()()()2122232425,,,,,,,,,,a b a b a b a b a b ()()()()()3132333435,,,,,,,,,,a b a b a b a b a b ()()()()()}4142434445,,,,,,,,,a b a b a b a b a b ,共有20个样本点,∴()205369P B ==.【一隅三反】1.(2022河北省)某校为了保障体艺节顺利举办,从高一、高二两个年级的同学中挑选了志愿者60人,人数如下表所示:(1)从所有志愿者中任意抽取一人,求抽到的这人是女同学的概率;(2)用等比例分层随机抽样的方法从所有的女志愿者中按年级抽取六人,再从这六人中随机抽取两人接受记者采访,求这两人中恰有一人来自高一年级的概率.【答案】(1)35(2)815【解析】(1)高一年级志愿者有121628+=人,其中女同学12人,高二年级志愿者有82432+=人,其中女同学24人.故抽到的这人是女同学的概率1224328325+==+P .(2)在高一年级中抽取的志愿者的人数为2,在高二年级中抽取的志愿者的人数为4.记从高一年级中抽取的志愿者为a ,b ,从高二年级中抽取的志愿者为A ,B ,C ,D ,样本空间{(),(),(),(),(),(),(),(),(),(),(),(),(),(),()}Ω=ab aA aB aC aD bA bB bC bD AB AC AD BC BD CD ,共15个样本点.设事件M =“这两人中恰有一人来自高一年级”,则{(),(),(),(),(),(),(),()}=M aA aB aC aD bA bB bC bD ,共8个样本点.故所求概率为8()15P M =. 2.(2022·广东)新冠肺炎疫情期间,某地为了了解本地居民对当地防疫工作的满意度,从本地居民中随机抽取若干居民进行评分(满分为100分),根据调查数据制成如下频率分布直方图,已知评分在[)70,90的居民有660人.(1)求频率分布直方图中a 的值;(2)根据频率分布直方图估计本次评测分数的平均数(同一组中的数据用该组区间的中点值作代表,并精确到0.1);(3)为了今后更好地完成当地的防疫工作,政府部门又采用比例分配的分层抽样的方法,从评分在[)40,60的居民中选出6人进行详细的调查,再从中选取两人进行面对面沟通,求选出的两人恰好都是评分在[)40,50之间的概率.【答案】(1)0.025(2)80.7(3)115【解析】(1)()0.0020.0040.0140.0200.035101a +++++⨯=,0.025a ∴=.(2)平均数为()450.002550.004650.014750.020850.035950.0251080.7⨯+⨯+⨯+⨯+⨯+⨯⨯=.(3)评分在[)40,50和[)50,60的频率之比为1:2,∴应在评分在[)40,50的居民中应抽取2人,记为,A B ;在[)50,60的居民中应抽取4人,记为a b c d ,,,,则从中选取两人有AB ,Aa ,Ab ,Ac ,Ad ,Ba ,Bb ,Bc ,Bd ,ab ,ac ,ad ,bc ,bd ,cd ,共15种情况;其中选出的两人恰好都是评分在[)40,50之间的有AB ,仅有1种;∴所求概率115p =. 3.(2022·四川眉山)某校高二(2)班的一次化学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图:(1)求全班人数及全班分数的中位数;(2)根据频率分布直方图估计该班本次测试的平均成绩(同一组中的数据用该组区间的中点值为代表). (3)若从分数在[)80,90及[]90,100的答题卡中采用分层抽样的方式抽取了5份答题卡,再从抽取的这5份答题卡中随机抽取2份答题卡了解学生失分情况,求这2份答题卡至少有一份分数在[]90,100的概率. 【答案】(1)50人,76.5分(2)77.2(3)710【解析】(1)解:由茎叶图可知,分数在[)50,60内的频数为3,由频率分布直方图可知,分数在[)50,60内的频率为0.006100.06⨯=,所以, 全班人数为3500.06=人,因为分数在[)60,70内的频数为11,分数在[)70,80内的频数为16,所以,全班分数的中位数767776.52+=. (2)解:由茎叶图知,分数在[)50,60内的频数为3,在[)60,70内的频数为11,分数在[)70,80内的频数为16,在[]90,100内的频数为8,所以,分数在[)80,90内的频数为5031116812----=,所以,该班本次测试的平均成绩为550.06650.22750.32850.24950.1677.2⨯+⨯+⨯+⨯+⨯=.(3)解:因为分数在[)80,90内的频数为12,在[]90,100内的频数为8,所以,由分层抽样抽取了5份答题卡中,分数在[)80,90内的有3份,分别记为,,a b c ,分数在[]90,100内的有2份,分别记为,m n ,所以,从抽取的这5份答题卡中随机抽取2份答题卡的所有情况有:()()()(),,,,,,,a b a c a m a n ,()()(),,,,,b c b m b n ,()(),,,c m c n ,(),m n 共10种,其中,这2份答题卡至少有一份分数在[]90,100内的情况有:()(),,,a m a n ,()(),,,b m b n ,()(),,,c m c n ,(),m n 共7种,所以,这2份答题卡至少有一份分数在[]90,100的概率为710P =. 考点二 条件概率【例2-1】(2022·广东·石门高级中学高二阶段练习)设()()()11,||32P P P B A A B A ===,则()P B =( )A .16B .14C .13D .12【答案】D 【解析】因为()()()1|3P AB P B A P A ==,且()12P A =,所以()16P AB = ()()()1|3P AB P A B P B ==,所以()12P B =,故选:D. 【例2-2】(2022·陕西渭南·高二期末(文))甲、乙两人到一商店购买饮料,他们准备分别从加多宝、唯怡豆奶、雪碧这3种饮品中随机选择一个,且两人的选择结果互不影响.记事件A =“甲选择唯怡豆奶”,事件B =“甲和乙选择的饮品不同”,则条件概率()P B A =________. 【答案】23【解析】由题意得,设加多宝、唯怡豆奶、雪碧分别标号为1,2,3,则两人的选择结果有: (1,1)(1,2)(1,3)(2,1)(2,2)(2,3),,,,,,(3,1,)(3,2)(3,3),,,则事件A 的可能结果为:(2,1)(2,2)(2,3),,,共3个, 在事件A 的条件下发生事件B 的结果有(2,1)(2,3),,共2个,所以2()3P B A =.故答案为: 23.【例2-3】(2022·广东·石门高级中学高二阶段练习)已知箱中有5个大小相同的产品,其中3个正品,2个次品,每次从箱中取1个,不放回的取两次,求: (1)第一次取到正品的概率;(2)在第一次取到正品的条件下,第二次取到正品的概率.【答案】(1)35(2)12【解析】(1)解:设A =“第一次取到正品” B =“第二次取到正品”,所以()11341154C C 3C C 5P A ==,第一次取到正品的概率为35;(2)解:()11321154C C 3C C 10P AB ==,所以()()()3110|325P A P AB P B A ===,故在第一次取到正品的条件下第二次取到正品的概率为12. 【一隅三反】1.(2022·福建)设A ,B 为两个事件,已知()0.4P B =,()0.5P A =,()|0.3P B A =,则()|P A B =( ) A .0.24B .0.375C .0.4D .0.5【答案】B 【解析】由()0.5P A =,()|0.3P B A =,得()()()|0.15P AB P B A P A =⋅=,所以()()()0.15|0.3750.4P AB P A B P B ===.故选:B 2.(2022·陕西西安)长时间玩手机可能影响视力,据调查,某校学生大约30%的人近视,而该校大约有40%的学生每天玩手机超过2h ,这些人的近视率约为60%.现从该校近视的学生中任意调查一名学生,则他每天玩手机超过2h 的概率为( ) A .45B .15C .35D .320【答案】A【解析】从该校学生中任意调查一名学生他是近视记为事件A ,且()0.3P A =,从该校学生中任意调查一名学生他每天玩手机超过2h 记为事件B ,且由题可知,()0.60.40.24P AB =⨯=,所以从该校近视的学生中任意调查一名学生,则他每天玩手机超过2h 的概率为:()0.244(|)()0.35P BA P B A P A ===.故B ,C ,D 错误.故选:A.3.(2022·福建三明)有3箱同一品种的零件,每箱装有10个零件,其中第一箱内一等品6个,第二箱内一等品4个,第三箱内一等品2个,现从3箱中随机挑出一箱,然后从该箱中依次随机取出2个,取出的零件均不放回,求:(1)第1次取出的零件是一等品的概率;(2)在第1次取出的零件是一等品的条件下,第2次取出的零件也是一等品的概率. 【答案】(1)25(2)1127【解析】(1)设i A =“被挑出的是第i 箱”()i 1,2,3=,i B =“第i 次取出的零件是一等品”()i 1,2=, 则()()()12313P A P A P A ===, 因为()()()311121634221|,|,|105105105P B A P B A P B A ======,()()()()()()()223111111313212|||35555P B P A P B A P A P B A P A P B A ⎛⎫=++=++= ⎪⎝⎭,所以第1次取出的零件是一等品的概率是25.(2)由(1)得()125P B =, 因为()()()222642121122123222101010C C C 121|,|,|C 3C 15C 45P B B A P B B A P B B A ======,所以()()()()()()()12112212231231|||P B B P A P B B P A P B B A P A P B B A A =++1112112233315345135=⨯+⨯+⨯=,所以()()()1221111|27P B B P B B P B ==.故在第1次取出的零件是一等品的条件下,第2次取出的零件也是一等品的概率为1127. 考点三 综合运用【例3】(2022·江苏扬州·高三期末)为了更好满足人民群众的健身和健康需求,国务院印发了《全民健身计划(20212025-)》.某中学为了解学生对上述相关知识的了解程度,先对所有学生进行了问卷测评,所得分数的分组区间为(]50,60、(]60,70、(]70,80、(]80,90、(]90,100,由此得到总体的频率分布直方图,再利用分层抽样的方式随机抽取20名学生进行进一步调研,已知频率分布直方图中a 、b 、c 成公比为2的等比数列.(1)若从得分在80分以上的样本中随机选取2人,用X 表示得分高于90分的人数,求X 的分布列及期望;(2)若学校打算从这20名学生中依次抽取3名学生进行调查分析,求在第一次抽出1名学生分数在区间(]70,80内的条件下,后两次抽出的2名学生分数在同一分组区间(]80,90的概率.【答案】(1)分布列见解析,期望为1;(2)257. 【解析】(1)解:由题意得2b a =,4c a =,因为10101010101a b c b a ++++=,所以0.01a =. 由分层抽样,抽出的20名学生中得分位于区间(]50,60内有200.12⨯=人, 位于(]60,70内有200.24⨯=人,位于(]70,80内有200.48⨯=人, 位于(]80,90内有200.24⨯=人,位于区间(]90,100学生有200.12⨯=人, 这样,得分位于80分以上的共有6人,其中得分位于(]90,100的有2人,所以X 的可能取值有0、1、2,()3436C 10C 5P X ===,()214236C C 31C 5P X ===()124236C C 12C 5P X ===, 所以X 的分布列为:所以()1310121555E X =⨯+⨯+⨯=.(2)解:记事件:A 第一次抽出1名学生分数在区间(]70,80内, 记事件:B 后两次抽出的2名学生分数在同一分组区间(]80,90内,则()82205P A ==,()1284320C A 4A 1519P AB ==⨯,由条件概率公式可得()()()4521519257P AB P B A P A ==⨯=⨯. 【一隅三反】1.(2022·全国·高三专题练习)某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)求男生甲被选中的概率;(2)在已知男生甲被选中的条件下,女生乙被选中的概率.【答案】(1)13;(2)15.【解析】记4名男生为A ,B ,C ,D ,2名女生为a ,b ,则从6名成员中挑选2名成员,有AB ,AC ,AD ,Aa ,Ab ,BC ,BD ,Ba ,Bb ,CD ,Ca ,Da ,Db ,ab ,共15种情况.(1)记“男生甲被选中”为事件M ,不妨假设男生甲为A ,事件M 所包含的基本事件为AB ,AC ,AD ,Aa ,Ab ,共有5个,∴()51153P M ==. (2)记“男生甲被选中”为事件M ,“女生乙被选中”为事件N ,不妨设男生甲为A ,女生乙为b ,则()115P M N ⋂=. 又由(1)知:()13P M =,故()()()15P M N P N M P M ⋂==. 2.(2022·辽宁沈阳·二模)甲、乙是北京2022冬奥会单板滑雪坡面障碍技巧项目的参赛选手,二人在练习赛中均需要挑战3次某高难度动作,每次挑战的结果只有成功和失败两种.(1)甲在每次挑战中,成功的概率都为12.设X 为甲在3次挑战中成功的次数,求X 的分布列和数学期望;(2)乙在第一次挑战时,成功的概率为0.5,受心理因素影响,从第二次开始,每次成功的概率会发生改变其规律为:若前一次成功,则该次成功的概率比前一次成功的概率增加0.1;若前一次失败,则该次成功的概率比前一次成功的概率减少0.1.(∴)求乙在前两次挑战中,恰好成功一次的概率; (∴)求乙在第二次成功的条件下,第三次成功的概率. 【答案】(1)分布列见解析,32(2)(∴)0.4;(∴)0.62. 【解析】(1)由题意得,1~3,2X B ⎛⎫ ⎪⎝⎭,则()3311C 122k kk P X k -⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,其中0,1,2,3k =, 则X 的分布列为:则()13322E X =⨯=. (2)设事件i A 为“乙在第i 次挑战中成功”,其中1,2,3i =.(∴)设事件B 为“乙在前两次挑战中,恰好成功一次”,则1212B A A A A =+, 则()()()()()()()1212121121P B P A A P A A P A P A A P A P A A =+=+()()0.510.610.50.40.4=⨯-+-⨯=.即乙在前两次挑战中,恰好成功一次的概为0.4.(∴)因为()()()()()()21212121121P A P A A A A P A P A A P A P A A =+=+0.50.60.50.40.5=⨯+⨯=,且()()()()23123123123123P A A P A A A A A A P A A A P A A A =+=+0.50.60.70.50.40.50.31=⨯⨯+⨯⨯=,所以()()()233220.310.620.5P A A P A A P A ===. 即乙在第二次成功的条件下,第三次成功的概率为0.62.。

高三数学一轮复习 第六章(数列)6-2精品练习 试题

高三数学一轮复习 第六章(数列)6-2精品练习 试题

心尺引州丑巴孔市中潭学校第6章 第2节一、选择题1.(2021·宁夏)一个等差数列的前4项是a ,x ,b,2x ,那么a b等于( ) A.14B.12 C.13D.23[答案] C [解析] ⎩⎨⎧2x =a +b2b =x +2x,∴a =x 2,b =32x . ∴a b =13. 2.(文)(2021·模考)数列{a n }的前n 项和为S n ,假设a n =1nn +1,那么S 4等于( ) A.45B.15C.120D.56[答案] A [解析] ∵a n =1nn +1=1n -1n +1, ∴S 4=a 1+a 2+a 3+a 4=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+⎝⎛⎭⎫14-15=45,应选A. (理)等差列{a n }共有2021项,所有项的和为2021,所有偶数项的和为2,那么a 1004=( ) A .1 B .2 C.1502D.1256[答案] B[解析] 依题意得2021a 1+a 20212=2021,a 1+a 2021=1005502,1004a 2+a 20212=2,a 2+a 2021=1251, 故a 2-a 1=-1003502=d (d 为公差),又a 2+a 2021=2a 1005, ∴a 1005=1502,a 1004=a 1005-d =1502+1003502=2. 3.(文)(2021·模拟)等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,假设a m =8,那么m 为( ) A .12 B .8 C .6D .4[答案] B[解析] 由等差数列性质知,a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32, ∴a 8=8. ∴m =8.应选B.(理)(2021·)设等差数列{a n }的前n 项和为S n ,假设S 3=9,S 6=36,那么a 7+a 8+a 9=( ) A .63 B .45 C .43D .27[答案] B[解析] 由等差数列的性质知,S 3,S 6-S 3,S 9-S 6成等差数列,∴2(S 6-S 3)=S 3+(S 9-S 6),∴a 7+a 8+a 9=S 9-S 6=2(S 6-S 3)-S 3=45.4.(2021·十校)等差数列{a n }中,S n 是{a n }前n 项和,S 6=2,S 9=5,那么S 15=( ) A .15 B .30 C .45D .60[答案] A[解析] 解法1:由等差数列的求和公式及⎩⎨⎧S 6=2S 9=5知,⎩⎨⎧6a 1+6×52d =29a 1+9×82d =5,∴⎩⎨⎧a 1=-127d =427,∴S 15=15a 1+15×142d =15.解法2:由等差数列性质知,{S n n }成等差数列,设其公差为D ,那么S 99-S 66=3D =59-26=29,∴D =227,∴S 1515=S 99+6D =59+6×227=1,∴S 15=15. 5.(文)(2021·一中)设数列{a n }的通项公式为a n =20-4n ,前n 项和为S n ,那么S n 中最大的是( )A .S 3B .S 4或S 5C .S 5D .S 6[答案] B[解析] 由a n =20-4n ≥0得n ≤5,故当n >5时,a n <0,所以S 4或S 5最大,选B.(理)(2021·山师大附中){a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,那么使得S n 到达最大值的n 是( )A .21B .20C .19D .18[答案] B[解析] ∵3d =(a 2+a 4+a 6)-(a 1+a 3+a 5)=99-105=-6,∴d =-2,由a 1+a 3+a 5=105得3a 1+6d =105,∴a 1=39,∴a n =39-2(n -1)=41-2n ,由a n ≥0,n ∈N 得,n ≤20,∴a 20>0,a 21<0,应选B.6.(文)(2021·)公差不为零的等差数列{a n }中,2a 3-a 72+2a 11=0,数列{b n }是等比数列,且b 7=a 7,那么b 6b 8=( )A .2B .4C .8D .16[答案] D[解析] ∵2a 3-a 72+2a 11=0,{a n }为等差数列,∴a 72=2(a 3+a 11)=4a 7,∵{b n }为等比数列,b 7=a 7,∴a 7≠0,∴a 7=4, ∴b 7=4,∴b 6b 8=b 72=16.(理)(2021·)等比数列{a n }的前n 项和为S n ,假设S 3、S 9、S 6成等差数列,那么( ) A .S 6=-12S 3B .S 6=-2S 3C .S 6=12S 3D .S 6=2S 3[答案] C[解析] ∵S 3、S 9、S 6成等差数列,∴2S 9=S 3+S 6, ∵S n 是等比数列{a n }前n 项的和,∴2q 9=q 3+q 6,∵q ≠0,∴2q 6=1+q 3,∴q 3=1或-12,q 3=1时,S 3、S 9、S 6不成等差数列,应舍去,∴q 3=-12,∴S 6=(a 1+a 2+a 3)+(a 1+a 2+a 3)q 3=S 3(1+q 3)=12S 3.7.(2021·)数列{a n }中,a 1=3,a 2=7,当n ≥1时,a n +2等于a n ·a n +1的个位数字,那么a 2021=( ) A .1 B .3 C .7D .9[答案] D[解析] 由条件知,a 1=3,a 2=7,a 3=1,a 4=7,a 5=7,a 6=9,a 7=3,……可见{a n }是周期为6的周期数列,故a 2021=a 6=9.8.(2021·五校、模拟)在等差数列{a n }中,a 1=-2021,其前n 项的和为S n .假设S 20212021-S 20072007=2,那么S 2021=( )A .-2021B .-2021C .2021D .2021[答案] A[解析] ∵S 20212021-S 20072007=2,∴(a 1+1004d )-(a 1+1003d )=2,∴d =2, ∴S 2021=2010a 1+2021×20212d =-2021. 9.(文)将正偶数按下表排成4列:那么2021在( A .第502行,第1列 B .第502行,第2列 C .第252行,第4列 D .第251行,第4列[答案] C[解析] 2021是第1005个偶数,又1005=8×125+5,故前面共排了125×2+1=251行,余下的一个数2021应排在第4列. (理)数列{a n }满足a 1=0,a n +1=a n +2n ,那么a 2021的值是( )A .2021×2021B .2021×2021C .2021×2021D .2021×2021[答案] C[解析] 解法1:a 1=0,a 2=2,a 3=6,a 4=12,考虑到所给结论都是相邻两整数乘积的形式,可变形为:a 1=0×1 a 2=1×2 a 3=2×3 a 4=3×4猜想a 2021=2021×2021,应选D. 解法2:a n -a n -1=2(n -1),a n -1-a n -2=2(n -2),…a 3-a 2=2×2, a 2-a 1=2×1.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1 =2[(n -1)+(n -2)+…+1]. =2n -1n -1+12=n (n -1).∴a 2021=2021×2021.10.在函数y =f (x )的图象上有点列(x n ,y n ),假设数列{x n }是等差数列,数列{y n }是等比数列,那么函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝⎛⎭⎫34x[答案] D[解析] 对于函数f (x )=⎝⎛⎭⎫34x 上的点列(x n ,y n ),有y n =⎝⎛⎭⎫34x n ,由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n=⎝⎛⎭⎫34x n+1⎝⎛⎭⎫34x n =⎝⎛⎭⎫34x n+1-x n =⎝⎛⎭⎫34d,这是一个与n 无关的常数,故{y n }是等比数列.应选D.二、填空题11.一个等差数列前4项之和为26,最末4项之和为110,所有项之和为187,那么它的项数为________. [答案] 11[解析] ∵a 1+a 2+a 3+a 4=26,a n +a n -1+a n -2+a n -3=110,∴a 1+a n =26+1104=34,又∵S n =n a 1+a n2=187,∴n =11.12.数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,设b n =1a n a n +1,那么数列{b n }的前n项和S n =________.[答案]4n n +1[解析] 由条件知a n =1n +1+2n +1+…+n n +1=n2, ∴b n =4nn +1=4⎝⎛⎭⎫1n -1n +1,∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)]=4n n +1. 13.(09·)函数f (x )=sin x +tan x .项数为27的等差数列{a n }满足a n ∈⎝⎛⎭⎫-π2,π2,且公差d ≠0.假设f (a 1)+f (a 2)+…+f (a 27)=0,那么当k =_______________时,f (a k )=0.[答案] 14[解析] ∵f (x )=sin x +tan x 为奇函数,且在x =0处有定义,∴f (0)=0. ∵{a n }为等差数列且d ≠0, 且f (a 1)+f (a 2)+…+f (a 27)=0,∴a n (1≤n ≤27,n ∈N *)对称分布在原点及原点两侧∴f (a 14)=0. ∴k =14.14.给定81个数排成如下列图的数表,假设每行9个数与每列的9个数按表中顺序构成等差数列,且表中正中间一个数a 55=5,那么表中所有数之和为______.a 11 a 12 … a 19 a 21 a 22 … a 29… … … …a 91 a 92 … a 99[答案] 405[解析] S =(a 11+…+a 19)+…+(a 91+…+a 99)=9(a 15+a 25+…+a 95)=9×9×a 55=405. 三、解答题15.(09·)数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a n 2·b n ,证明:当且仅当n ≥3时,c n +1<c n .[解析] (1)a 1=S 1=4,当n ≥2时,a n =S n -S n -1=2n (n +1)-2(n -1)n =4n . 又a 1=4适合上式,∴a n =4n (n ∈N *).将n =1代入T n =2-b n ,得b 1=2-b 1, ∴T 1=b 1=1.当n ≥2时,T n -1=2-b n -1,T n =2-b n , ∴b n =T n -T n -1=b n -1-b n ,∴b n =12b n -1, ∴b n =21-n.(2)解法1:由c n =a n 2·b n =n 2·25-n,得c n +1c n =12⎝⎛⎭⎫1+1n 2. 当且仅当n ≥3时,1+1n ≤43<2,即c n +1<c n .解法2:由c n =a n 2·b n =n 2·25-n得,c n +1-c n =24-n [(n +1)2-2n 2]=24-n[-(n -1)2+2].当且仅当n ≥3时,c n +1-c n <0,即c n +1<c n .16.(2021·)等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a n 2-1(n ∈N *),求数列{b n }的前n 项和T n . [分析] (1)由条件和等差数列的通项公式可列出关于a 1、d 的方程组解出a 1和d ,代入通项公式及前n 项和公式可求得a n ,S n .(2)由a n 可得b n ,观察b n 的结构特点可裂项求和.[解析] (1)设等差数列{a n }的公差为d ,因为a 3=7,a 5+a 7=26, 所以有⎩⎨⎧a 1+2d =72a 1+10d =26,解得a 1=3,d =2,所以a n =3+2(n -1)=2n +1;S n =3n +n n -12×2(2)由(1)知a n =2n +1,所以b n =1a n 2-1=12n +12-1=14·1n n +1=14·⎝⎛⎭⎫1n -1n +1, 所以T n =14·⎝⎛⎭⎫1-12+12-13+…+1n -1n +1 =14·⎝⎛⎭⎫1-1n +1=n4n +1, 即数列{b n }的前n 项和T n =n 4n +1.[点评] 数列在高考中主要考查等差、等比数列的定义、性质以及数列求和,解决此类题目要注意合理选择公式,对于数列求和应掌握经常使用的方法,如:裂项、叠加、累积.此题应用了裂项求和.17.(文)数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a n 2+n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式.[分析] 利用a n 与S n 的关系及条件式可消去S n (或a n ),得到a n 与a n -1(或S n 与S n -1)的关系式,考虑待求问题,故应消去S n .[解析] (1)当n =1时,有2a 1=a 12+1-4,即a 12-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a n -12+n -5,又2S n =a n 2+n -4,两式相减得2a n =a n 2-a n -12+1,即a n 2-2a n +1=a n -12,也即(a n -1)2=a n -12,因此a n -1=a n -1或a n -1=-a n -1.假设a n -1=-a n -1,那么a n +a n -1=1,而a 1=3,所以a 2=-2这与数列{a n }的各项均为正数相矛盾,所以a n -1=a n -1,即a n -a n -1=1,因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2. (理)(2021·全国)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . [解析] (1)由得,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1.①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.②(1-22)S n =2+23+25+…+22n -1-n ·22n +1.=23(4n -1)-n ·22n +1 =13(22n +1-2-3n ·22n +1) =13[(1-3n )2n +1-2] ∴S n =19[(3n -1)22n +1+2].。

专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)

专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)
n 1
)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:

1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数

(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)

2023年高考数学一轮复习(新高考地区专用)6-2 古典概型及条件概率(精练)(解析版)(1)

2023年高考数学一轮复习(新高考地区专用)6-2 古典概型及条件概率(精练)(解析版)(1)

6.2 古典概型及条件概率(精练)(基础版)题组一古典概型1.(2022·山东滨州)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们(书籍的作者)一一进行交谈,也就是和他们传播的优秀思想进行交流,阅读会让精神世界闪光”.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求a;(2)根据频率分布直方图,估计该地年轻人每天阅读时间的中位数(精确到0.1)(单位:分钟);(3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的年轻人中抽取5人,再从中任选3人进行调查,求其中恰好有2人每天阅读时间位于[80,90)的概率.2.(2022·青海西宁)新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动,开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表.分组频数频率[)6,6.550.10[)6.5,780.16[)7,7.5x0.14[)7.5,812y(1)求该校学生总数及频率分布表中实数,,x y z 的值;(2)已知日睡眠时间在区间[)6,6.5的5名高二学生中,有2名女生,3名男生,若从中任选2人进行面谈,求选中的2人恰好为一男一女的概率.3.(2022·河北张家口)英才中学为普及法律知识,组织高一学生学习法律常识小册子,并随机抽出100名学生进行法律常识考试,并将其成绩制成如图所示的频率分布直方图.(1)估计这100人的平均成绩;(2)若成绩在[]90,100的学生中恰有两位是男生,现从成绩在[]90,100的学生中抽取3人去校外参加社会法律知识竞赛,求其中恰有一位男生的概率.4.(2022·河南·商丘市)蹦床是一项将运动和美学完美结合的运动,随着全民健身时代的到来,蹦床越来越受到人们的喜爱,某大型蹦床主题公园为吸引顾客,推出优惠活动对首次消费的顾客,先注册成为会员,首次按60元收费,对会员逐次消费给予相应优惠,标准如下:该蹦床主题公园从注册的会员中,随机抽取了100位统计他们的消费次数,得到数据如下:假设每消费一次,蹦床主题公园的成本为30元,根据所给数据,解答下列问题: (1)以频率估计概率,估计该蹦床主题公园一位会员至少消费2次的概率; (2)某会员消费6次,求这6次消费中,该蹦床主题公园获得的平均利润;(3)以样本估计总体,假设从消费次数为3次和4次的会员中采用分层抽样的方法共抽取6人进行满意度调查,再从这6人中随机选取3人进一步了解情况,求抽取的3人中恰有一人的消费次数为4次的概率. 5.(2022·广西柳州)某政府部门为促进党风建设,拟对政府部门的服务质量进行量化考核,每个群众办完业务后可以对服务质量进行打分,最高分为100分.上个月该部门对100名群众进行了回访调查,将他们按所打分数分成以下几组:第一组[)0,20,第二组[)20,40,第三组[)40,60,第四组[)60,80,第五组[]80,100,得到频率分布直方图如图所示.(1)估计所打分数的众数,平均数;(同一组中的数据用该组区间的中点值作为代表)(2)该部门在第一、二组群众中按比例分配的分层抽样的方法抽取6名群众进行深入调查,之后将从这6人中随机抽取2人聘为监督员,求监督员来自不同组的概率. 1.(2022·吉林)先后抛掷一颗质地均匀的骰子两次,观察向上的点数.在第一次向上的点数为奇数的条件下,两次点数和不大于7的概率为( ) A .1318B .712C .310D .232(2022·江西·高三阶段练习(理))从1,2,…,6这六个数字中随机抽取2个不同的数字,记事件A =“恰好抽取的是2,4”,B =“恰好抽取的是4,5”,C =“抽取的数字里含有4”.则下列说法正确的是( ) A .()()()P AB P A P B =B .1()6P C =C .()()P C P AB = D .(|)(|)P A C P B C =3.(2022·福建·莆田华侨中学模拟预测)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以A 表示事件“由甲罐取出的球是黑球”,再从乙罐中随机取出一球,以B 表示事件“由乙罐取出的球是黑球”,则下列说法错误的是( ) A .()25P A =B .()3|5P B A =C .()1325P B =D .()1|2P A B =题组二 条件概型4.(2022·山东济宁)在8件同一型号的产品中,有3件次品,5件合格品,现不放回的从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( ) A .128B .110 C .19D .275.(2022·黑龙江)已知()12P AB =,()35P A =,则()P B A 等于( ).A .56B .910C .310D .1106.(2022·湖南·长沙一中高三开学考试)每年的6月6日是全国爱眼日,某位志愿者跟踪调查电子产品对视力的影响,据调查,某高校大约有45%的学生近视,而该校大约有20%的学生每天操作电子产品超过1h ,这些人的近视率约为50%.现从每天操作电子产品不超过1h 的学生中任意调查一名学生,则他近视的概率为( ) A .716B .38C .516 D .147.(2022·河北张家口·高二期末)某个闯关游戏规定:闯过前一关才能去闯后一关,若某一关没有通过,则游戏结束.小明闯过第一关的概率为34,连续闯过前两关的概率为12,连续闯过前三关的概率为13,且各关相互独立.事件A 表示小明第一关闯关成功,事件C 表示小明第三关闯关成功,则()|P C A =( )A .18B .23C .13D .498.(2022·山东济宁)(多选)设M 、N 是两个随机事件,则下列等式一定成立的是( )A .()()()P M N P M P N ⋃=+ B .()()1P MN P MN =- C .()()()|P MN P M P N M =D .()()()()||P N M P M P M N P N =9.(2022·福建福州)(多选)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以12,A A 和3A 表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则( ) A .事件B 与事件3A 相互独立 B .()159P A B =C .()2655P A B =D .()922P B =题组三 古典与条件综合运用1.(2022·河南)从标有1,2,3,4的卡片中不放回地先后抽出两张卡片,则4号卡片“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是()A.14,14,12B.14,14,14C.13,13,12D.14,13,122.(2023·全国·高三专题练习(理))一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(|)(|)P B AP B A与(|)(|)P B AP B A的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)P A B P A BRP A B P A B=⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B的估计值,并利用(ⅰ)的结果给出R的估计值.附22()()()()()n ad bcKa b c d a c b d-=++++,3.(2022·全国·高三专题练习)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.6.2 古典概型及条件概率(精练)(基础版)1.(2022·山东滨州)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们(书籍的作者)一一进行交谈,也就是和他们传播的优秀思想进行交流,阅读会让精神世界闪光”.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求a ;(2)根据频率分布直方图,估计该地年轻人每天阅读时间的中位数(精确到0.1)(单位:分钟); (3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的年轻人中抽取5人,再从中任选3人进行调查,求其中恰好有2人每天阅读时间位于[80,90)的概率.【答案】(1)0.020a =(2)74.4分钟(3)310【解析】(1)因为频率分布直方图的所有矩形面积之和为1,所以(0.0100.0450.005)101a a ++++⨯=,解得0.020a =.(2)因为(0.0100.020)100.30.5+⨯=<,(0.0100.0200.045)100.750.5++⨯=>.则中位数位于区间[70,80)内,设中位数为x ,则0.3(70)0.0450.5x +-⨯=,解得74.4x ≈,所以估计该地年轻人阅读时间的中位数约为74.4分钟.(3)由题意,阅读时间位于[50,60)的人数为1000.110⨯=,阅读时间位于[60,70)的人数为1000.220⨯=,阅读时间位于[80,90)的人数为1000.220⨯=,所以在这三组中按照分层抽样抽取5人的抽样比例为515010=,则抽取的5人中位于区间[50,60)有1人,设为a ,位于区间[60,70)有2人,设为1b ,2b ,位于区间[80,90)有2人,设为1c ,2c .则从5人中任取3人,样本空间()()()(){12111221Ω,,,,,,,,,,,,a b b a b c a b c a b c =()()()()()()}2212121122112212,,,,,,,,,,,,,,,,,a b c a c c b b c b b c b c c b c c .含有10个样本点.设事件A 为“恰有2人每天阅题组一 古典概型读时间在[80,90)”,()()(){}12112212,,,,,,,,A a c c b c c b c c =,含有3个样本点.所以3()10P A =,所以恰好有2人每天阅读时间位于[80,90)的概率为310. 2.(2022·青海西宁)新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动,开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h )的频率分布表.(1)求该校学生总数及频率分布表中实数,,x y z 的值;(2)已知日睡眠时间在区间[)6,6.5的5名高二学生中,有2名女生,3名男生,若从中任选2人进行面谈,求选中的2人恰好为一男一女的概率.【答案】(1)1800人,7,0.24,8x y z ===(2)35【解析】(1)设该校学生总数为n ,由题意1501505045660n --=,解得1800n =, ∴该校学生总数为1800人.由题意0.1450x=,解得127,0.2450x y ===,()505812108.z x =-----= (2)记“选中的2人恰好为一男一女”为事件A ,记5名高二学生中女生为12,F F ,男生为123,,M M M , 从中任选2人有以下情况:()()()()()()()12111213212223,,,,,,,,,,,,,F F F M F M F M F M F M F M ,()()()121323,,,,,M M M M M M ,基本事件共有10个,其中事件A 包含的基本事件有6个,故()63105P A ==, 所以选中的2人恰好为一男一女的概率为35.3.(2022·河北张家口)英才中学为普及法律知识,组织高一学生学习法律常识小册子,并随机抽出100名学生进行法律常识考试,并将其成绩制成如图所示的频率分布直方图.(1)估计这100人的平均成绩;(2)若成绩在[]90,100的学生中恰有两位是男生,现从成绩在[]90,100的学生中抽取3人去校外参加社会法律知识竞赛,求其中恰有一位男生的概率.【答案】(1)73分(2)35【解析】(1)由频率分布直方图可知()0.0050.040.030.005101a ++++⨯=,解得0.02a =, 所以这100人的平均成绩为:()550.005650.04750.03850.02950.0051073⨯+⨯+⨯+⨯+⨯⨯=, 即这100人的平均成绩为73分.(2)依题意可知成绩在[]90,100的有1000.005105⨯⨯=人,其中2位男生、3位女生,设3位女生分别为a 、b 、c ,2位男生为A 、B ,从中任取3人的取法有(),,a b c 、(),,a b A 、(),,a b B 、(),,a c A 、(),,a c B ,(),,a A B ,(),,b c A ,(),,b c B ,(),,b A B ,(),,c A B 共10种取法,其中恰有一个男生的有(),,a b A 、(),,a b B 、(),,a c A 、(),,a c B ,(),,b c A ,(),,b c B 共6种, 所以恰有一位男生的概率63105P ==. 4.(2022·河南·商丘市)蹦床是一项将运动和美学完美结合的运动,随着全民健身时代的到来,蹦床越来越受到人们的喜爱,某大型蹦床主题公园为吸引顾客,推出优惠活动对首次消费的顾客,先注册成为会员,首次按60元收费,对会员逐次消费给予相应优惠,标准如下:该蹦床主题公园从注册的会员中,随机抽取了100位统计他们的消费次数,得到数据如下:假设每消费一次,蹦床主题公园的成本为30元,根据所给数据,解答下列问题: (1)以频率估计概率,估计该蹦床主题公园一位会员至少消费2次的概率; (2)某会员消费6次,求这6次消费中,该蹦床主题公园获得的平均利润;(3)以样本估计总体,假设从消费次数为3次和4次的会员中采用分层抽样的方法共抽取6人进行满意度调查,再从这6人中随机选取3人进一步了解情况,求抽取的3人中恰有一人的消费次数为4次的概率.【答案】(1)25(2)23(元)(3)35【解析】(1)随机抽取的100位会员中,至少消费2次的会员有20105540+++=(位), 所以该蹦床主题公园一位会员至少消费2次的概率4021005P == (2)第1次消费时,蹦床主题公园获取的利润为603030-=(元), 第2次消费时,蹦床主题公园获取的利润为600.953027⨯-=(元), 第3次消费时,蹦床主题公园获取的利润为600.903024⨯-=(元), 第4次消费时,蹦床主题公园获取的利润为600.853021⨯-=(元), 第5次或第6次消费时,蹦床主题公园获取的利润为600.803018⨯-=(元) 所以这6次消费中,该蹦床主题公园获得的平均利润为302724211818236+++++=(元)(3)由题意知,从消费次数为3次和4次的会员中抽取的人数分别为4人,2人, 这6人中,将消费3次的会员分别记为a ,b ,c ,d ,消费4次的会员分别记为e ,f 从6人中随机抽取3人的情况有(,,),(,,),(,,),(,,)a b c a b d a b e a b f ;(,,),(,,),(,,)a c d a c e a c f ;(,,),(,,)a d e a d f ;(,,)a e f ;(,,),(,,),(,,)b c d b c e b c f ;(,,),(,,)b d e b d f ;(,,)b e f ;(,,),(,,)(,,)c d e c d f c e f ;(,,)d e f ,共20种设“抽取的3人中恰有一人的消费次数为4次”为事件A ,则事件A 包含的情况有(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,)a b e a b f a c e a c f a d e a d f b c e b c f b d e b d f c d e c d f ,共12种.根据古典概型的概率计算公式可得,()123205P A ==5.(2022·广西柳州)某政府部门为促进党风建设,拟对政府部门的服务质量进行量化考核,每个群众办完业务后可以对服务质量进行打分,最高分为100分.上个月该部门对100名群众进行了回访调查,将他们按所打分数分成以下几组:第一组[)0,20,第二组[)20,40,第三组[)40,60,第四组[)60,80,第五组[]80,100,得到频率分布直方图如图所示.(1)估计所打分数的众数,平均数;(同一组中的数据用该组区间的中点值作为代表)(2)该部门在第一、二组群众中按比例分配的分层抽样的方法抽取6名群众进行深入调查,之后将从这6人中随机抽取2人聘为监督员,求监督员来自不同组的概率. 【答案】(1)众数为70,平均数为65;(2)815【解析】(1)由频率分布直方图可知,众数为6080=702+; 5个组的频率分别为0.05,0.1,0.2,0.35,0.3,所以平均数为 100.05300.1500.2700.35900.365⨯+⨯+⨯+⨯+⨯=;(2)由频率分布直方图可知第一组的频率为0.05,第二组的频率为0.1, 则第一组的人数为5人,第二组的人数为10人, 所以按分层抽样的方法抽到的6人中,第一组抽2人,记为12、a a ;第二组抽4人,记为1234b b b b 、、、,则121112131421222324121314232434{,,,,,,,,,,,,,,}a a a b a b a b a b a b a b a b a b b b b b b b b b b b b b Ω=, 设事件A 为抽到的2人来着不同的组,则1112131421222324{,,,,,,,}A a b a b a b a b a b a b a b a b =,所以8()15P A =. 1.(2022·吉林)先后抛掷一颗质地均匀的骰子两次,观察向上的点数.在第一次向上的点数为奇数的条件下,两次点数和不大于7的概率为( ) A .1318B .712C .310D .23【答案】D【解析】设事件A 表示“先后抛掷一颗质地均匀的骰子两次,第一次向上的点数为奇数”,题组二 条件概型事件B 表示“先后抛掷一颗质地均匀的骰子两次,两次点数和不大于7”, 则1()2P A =,121()363P AB ==,所以1()23()1()32P AB P B A P A ===.故选:D. 2(2022·江西·高三阶段练习(理))从1,2,…,6这六个数字中随机抽取2个不同的数字,记事件A =“恰好抽取的是2,4”,B =“恰好抽取的是4,5”,C =“抽取的数字里含有4”.则下列说法正确的是( ) A .()()()P AB P A P B = B .1()6P C =C .()()P C P AB =D .(|)(|)P A C P B C =【答案】D【解析】由题知,从6个数中随机抽取2个数,共有2615C =种可能情况,则1()15P A =,1()15P B =.对于A 选项,“恰好抽取的是2,4”和“恰好抽取的是4,5”为互斥事件,()0P AB =,()()0≠P A P B ,故A 错误;对于B 选项,1526C 1()C 3P C ==,故B 错误; 对于C 选项,()0P AB =,故C 错误;对于D 选项,由于1()()15P AC P BC ==,故由条件概率公式得()()()()(|)(|)P AC P BC P A C P B C P C P C ===,故D正确. 故选:D .3.(2022·福建·莆田华侨中学模拟预测)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以A 表示事件“由甲罐取出的球是黑球”,再从乙罐中随机取出一球,以B 表示事件“由乙罐取出的球是黑球”,则下列说法错误的是( ) A .()25P A =B .()3|5P B A =C .()1325P B = D .()1|2P A B =【答案】C 【解析】因为甲罐中有3个红球、2个黑球,所以()25P A =,故选项A 正确; 因为236()5525P AB =⨯=,所以()()()6325|255P AB P B A P A ===,故选项B 正确; 因为()233212555525P B =⨯+⨯=,故选项C 错误;因为()2365525P AB =⨯=,所以()()()6125|12225P AB P A B P B ===,故选项D 正确. 故选:C .4.(2022·山东济宁)在8件同一型号的产品中,有3件次品,5件合格品,现不放回的从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( ) A .128B .110 C .19D .27【答案】D【解析】当第一次抽到次品后,还剩余2件次品,5件合格品,所以第二次抽到次品的概率为27.故选:D 5.(2022·黑龙江)已知()12P AB =,()35P A =,则()P B A 等于( ).A .56B .910C .310D .110【答案】A【解析】()()()152365P AB P B A P A ===.故选:A. 6.(2022·湖南·长沙一中高三开学考试)每年的6月6日是全国爱眼日,某位志愿者跟踪调查电子产品对视力的影响,据调查,某高校大约有45%的学生近视,而该校大约有20%的学生每天操作电子产品超过1h ,这些人的近视率约为50%.现从每天操作电子产品不超过1h 的学生中任意调查一名学生,则他近视的概率为( ) A .716B .38C .516 D .14【答案】A【解析】令事件1A =“玩手机时间超过1h 的学生”,2A =“玩手机时间不超过1h 的学生”,B =“任意调查一人,此人近视”,则样本空间12ΩA A =⋃,且12,A A 互斥,()()()()1210.2,0.8,0.5,0.45P A P A P B A P B ====∣, 依题意,()()()()()()112220.20.50.80.45P B P A P B A P A P B A P B A =+=⨯+⨯=∣∣∣, 解得()2716P BA =∣,所以所求近视的概率为716. 故选:A .7.(2022·河北张家口·高二期末)某个闯关游戏规定:闯过前一关才能去闯后一关,若某一关没有通过,则游戏结束.小明闯过第一关的概率为34,连续闯过前两关的概率为12,连续闯过前三关的概率为13,且各关相互独立.事件A 表示小明第一关闯关成功,事件C 表示小明第三关闯关成功,则()|P C A =( )A .18B .23C .13D .49【答案】D【解析】设事件B 表示小明第二关闯关成功,可得()()P AC P ABC =, 由条件概率的计算公式,可得()()()143394P ABC P CA P A ===∣.故选:D. 8.(2022·山东济宁)(多选)设M 、N 是两个随机事件,则下列等式一定成立的是( ) A .()()()P M N P M P N ⋃=+B .()()1P MN P MN =-C .()()()|P MN P M P N M =D .()()()()||P N M P M P M N P N =【答案】CD【解析】对A ,当,M N 不互斥时,()()()P M N P M P N ⋃=+不成立,故A 错误;对B ,当,M N 为对立事件时,()()0P MN P MN ==,则()()1P MN P MN =-不成立,故B 错误; 对C ,当()0P M =时,()()()|0P MN P M P N M ==成立,当()0P M ≠时,根据条件概率的公式()()()|P MN P N M P M =可得()()()|P MN P M P N M =成立,故C 正确;对D ,根据条件概率的公式,结合C 选项可得()()()()()()||P MN P N M P M P M N P N P N ==成立,故D 正确;故选:CD 9.(2022·福建福州)(多选)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以12,A A 和3A 表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则( ) A .事件B 与事件3A 相互独立 B .()159P A B =C .()2655P A B = D .()922P B =【答案】BD【解析】由题意知:()151102P A ==,()221105P A ==,()3310P A =,()1511P B A =,()2411P B A =,()3411P B A =, ()()()()()()()112233P B P A P B A P A P B A P A P B A ∴=++1514349211511101122=⨯+⨯+⨯=,D 正确;()()()()()()11111552119922P A P B A P A B P A B P B P B ⨯====,B 正确;()()()22214451155P A B P A P B A ==⨯=,C 错误;()()()333346101155P A B P A P B A ==⨯=,()()339271022220P A P B =⨯=, ()()()33P A B P A P B ∴≠,∴事件B 与事件3A 不相互独立,A 错误.故选:BD. 1.(2022·河南)从标有1,2,3,4的卡片中不放回地先后抽出两张卡片,则4号卡片“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是( )A .14,14,12B .14,14,14C .13,13,12D .14,13,12【答案】A【解析】4号卡片“第一次被抽到的概率”114P =, “第二次被抽到的概率”2311434P =⨯=,“在整个抽样过程中被抽到的概率”313114432P =+⨯=. 故选:A.2.(2023·全国·高三专题练习(理))一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据: 不够良好 良好 病例组 40 60 对照组 1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?题组三 古典与条件综合运用(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)答案见解析 (2)(i )证明见解析;(ii)6R =;【解析】(1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯,又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii) 由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|)100P A B =,所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅3.(2022·全国·高三专题练习)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求: (1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【答案】(1)23(2)25(3)35【解析】(1)设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB ,从6个节目中不放回地依次抽取2个的基本事件总数为()26A 30n Ω==,根据分步计数原理有()1145A A 20n A ==,所以()()()202303n A P A n Ω===.(2)由(1)知,()24A 12n AB ==,所以()()()122305n AB P AB n Ω===. (3)由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为 ()()()235253P AB P B A P A ===.。

2022届高考数学第一轮总复习-6-2经典实用学案课件2

2022届高考数学第一轮总复习-6-2经典实用学案课件2
第三第十三三十页三,编页辑,于编星辑期于一星:十期三四点:四二十十六点分二。十八分。
(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总 费用最少?
(2)若提供面粉的公司规定:当一次购买面粉不少于210吨时,其价 格可享受9折优惠(即原价的90%),问该厂是否考虑利用此优惠条件?请 说明理由.
11.1千辆/时,如果要求在该时段内车流量超过10千辆/时,则 汽车的平均速度应大于25千米/时且小于64千米/时.
第四第十四二十页二,页编,辑编于辑星于期星一期:四十:三二点十四点十二六十分八。分。
使用均值不等式求最值,其失误的真正原因是其存在前提 “一正、二定、三相等”的忽视.要利用均值不等式求最值,这 三个条件缺一不可.

第十第六十页六,页编,辑编于辑星于期星一期:四十:三二点十四点十二六十分八。分。
第十七第页十,编七辑页于星,期一编:辑十三于点星四十期六四分。:二十点 二十八分。
解法2:∵a>b>0,∴a-b>0,
∴原式的最小值为16.
答案:16
第十第八十页八,页编,辑编于辑星于期星一期:四十:三二点十四点十二六十分八。分。
4.已知x>0,y>0,xy=2,则 的最小值为________.
答案:2
第十第四十页四,页编辑,于编星辑期于一星:期十三四点:二四十十六点分二。十八分。
5.(教材P333题原题)已知a>b>0,求a2+
的最小值.
命题意图:考查算术平均数大于等于几何平均数的应用. 分析:为求最小值,从题中可以看出,应使两数乘积为定
第五第页,五编页辑,于星编期辑一于:十星三期点四四:十六二分十。点 二十八分。
四、利用两个定理求最大、最小值问题
1.x,y∈(0,+∞),且xy=P(定值),那么当x=y时,x+y有

2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(知识点讲解)解析版

2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(知识点讲解)解析版

专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。

高考一轮数学复习 6-2算术平均数和几何平均数 理 同步练习(名师解析)

高考一轮数学复习 6-2算术平均数和几何平均数 理 同步练习(名师解析)

第6章 第2节 知能训练·提升考点一:利用均值不等式求最值1.已知x 、y 均是正数,且2x +8y -xy =0,则x +y 的最小值为( )A .9B .18C .6D .20 解析:由2x +8y -xy =0,得8x +2y =1,(x +y )(8x +2y )=8+2+(8y x +2x y )≥10+28y x ·2xy =18. 当且仅当⎩⎨⎧8y x =2xy8x +2y =1⇒⎩⎪⎨⎪⎧x =12y =6时取等号. 答案:B2.(2010·成都检测)下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x >0时,x +1x ≥2C .当x ≥2时,x +1x的最小值为2D .当0<x ≤2时,x -1x 无最大值解析:A 错误,若0<x <1,则lg x <0, ∴lg x +1lg x≥2不成立.C 错误,x +1x 的最小值是2,当且仅当x =1时成立.D 错误,当x =2时,取到最大值. 答案:B3.(2010·江西联考)函数f (x )=5-4x +x 22-x在(-∞,2)上的最小值是( )A .0B .1C .2D .3解析:∵x <2,∴2-x >0.∴f (x )=(2-x )2+12-x =(2-x )+12-x ≥2,当且仅当x =1时取“=”. 答案:C考点二:利用的值不等式证明不等式4.(2010·重庆调研)当a >b >c 时,不等式1a -b +1b -c ≥ma -c 恒成立,则m 的最大值为________.解析:令x =a -b ,y =b -c ,则x >0,y >0,且a -c =x +y , ∴只要m ≤(x +y )(1x +1y ).∵(x +y )(1x +1y )≥2xy ·21xy =4,∴m ≤4.∴m 的最大值为4. 答案:45.求证:a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). 证明:∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,c 4+a 4≥2c 2a 2, 2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2, 又a 2b 2+b 2c 2≥2ab 2c ,b 2c 2+c 2a 2≥2abc 2, c 2a 2+a 2b 2≥2a 2bc ,∴2(a 2b 2+b 2c 2+c 2a 2)≥2(ab 2c +abc 2+a 2bc ),即a 2b 2+b 2c 2+c 2a 2≥ab 2c +abc 2+a 2bc =abc (a +b +c ). 6.证明下列不等式:(1)a ,b ,c ∈R +,求证:bc a +ca b +ab c≥a +b +c .(2)a ,b ,c ∈R +,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ). 证明:(1)由不等式的对称性可知: ∵a ,b ,c ∈R +,∴bc a +ac b≥2bc a ·cab=2c 同理bc a +ab c ≥2b ac b +abc≥2a将上式同向不等式相加,得 bc a +ca b +bc a +ab c +ac b +abc ≥2(a +b +c ) 即bc a +ca b +abc≥a +b +c (2)由不等式两边的结构特点,我们联想到重要不等式x 2+y 2≥2xy及变形不等式:x 2+y 22≥(x +y 2)2(x ,y ∈R ).故可运用它们进行证明.∵a 2+b 22≥(a +b 2)2,∴a 2+b 2≥22|a +b |≥22(a +b ).同理b 2+c 2≥22(b +c ), c 2+a 2≥22(c +a ).三式相加得 a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ).考点三:利用均值不等式解决实际问题7.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 为________吨.解析:设一年的总运费与总存储费之和为y ,则y 与每次购买量x 间的函数关系式: y =400x·4+4x ≥2400x·4·4x =160. 当且仅当400x ·4=4x 时取等号,∴x 2=400,又x >0,∴x =20(吨). 答案:208.学校食堂定期从某粮店以每吨1 500元的价格买大米,每次购进大米需支付运输劳务费100元,已知食堂每天需要大米1吨,贮存大米的费用为每吨每天2元,假定食堂每次均在用完大米的当天购买.(1)该食堂每多少天购买一次大米,能使平均每天所支付的费用最多?(2)粮店提出价格优惠条件:一次购买量不少于20吨时,大米价格可享受九五折优惠(即是原价的95%),问食堂可否接受此优惠条件?请说明理由.解:设该食堂每x 天购买一次大米,则每次购买x 吨,设平均每天所支付的费用为y 元,则(1)y =1x (1 500x +100+2(1+2+…+x )]=x +100x+1501≥1521,当且仅当x =100x,即x =10时取等号.故该食堂每10天购买一次大米,能使平均每天支付费用最少.(2)y =1x [1500x ·0.95+100+2(1+2+…+x )]=x +100x+1 462(x ≥20).函数y 在[20,+∞)上为增函数,所以y ≥20+10020+1426=1451,而1451<1521,故食堂可接受粮店的优惠条件.1.(2007·海南、宁夏)已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2cd的最小值是( )A .0B .1C .2D .4解析:由等差、等比数列的性质得(a +b )2cd =(x +y )2xy =x y +yx +2≥2y x ·xy+2=4,当且仅当x =y 取“=”,故选D.答案:D2.(2008·陕西)“a =1”是“对任意正数x,2x +ax≥1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =1时,2x +a x =2x +1x ≥22(当且仅当x =22时取等号)所以a =1⇒2x +ax ≥1(x>0).a =1为2x +a x ≥1(x >0)的充分条件.反过来,对任意正数x ,当a ≥18时,2x +ax ≥1恒成立,所以2x +ax≥1⇒a =1.故为非必要条件.故选A.答案:A3.(2008·浙江)已知a ≥0,b ≥0,且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3解析:解法一:由a +b 2≥ab 得ab ≤(a +b2)2=1,又a 2+b 2≥2ab ⇒2(a 2+b 2)≥(a +b )2⇒a 2+b 2≥2.故选C.解法二:(特值法)取a =0,b =2满足a +b =2,代入选项可排除B 、D.又取a +b =1满足a +b =2.但ab =1.可排除A.故选C.答案:C4.(2009·天津)设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1b的最小值是( )A .8B .4C .1D.14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1, ∵a >0,b >0,∴ab ≤a +b 2=12⇒ab ≤14.∴1a +1b =a +b ab =1ab ≥114=4. 答案:B1.若直线2ax +by -2=0(a ,b ∈R +)平分圆x 2+y 2-2x -4y -6=0,则2a +1b的最小值是( )A .1B .5C .4 2D .3+2 2解析:直线平分圆,则必过圆心. 圆的标准方程为(x -1)2+(y -2)2=11. ∴点(1,2)在直线上⇒2a +2b -2=0⇒a +b =1. (2a +1b )(a +b )=2+2b a +a b +1=3+2b a +ab ≥3+2 2. 答案:D。

高考数学总复习高效课时作业6-2文新人教版

高考数学总复习高效课时作业6-2文新人教版

一、选择题1. (2011 年湖南 ) 已知函数f () = e x- 1, () =-x2+ 4x-3. 如有f( ) =( ),则b的取值x g x a g b范围为 ()A.[2 - 2,2+ 2]B.(2 - 2,2+ 2)C. [1 ,3]D. (1 ,3)分析:函数 f ( x)=e x-1为增函数,其值域为 ( - 1,+∞ ) ,故f ( a)> -1. 如有f ( a) =g( b) ,则需知足( )=-b 2+ 4- 3>- 1,化简整理得2- 4+ 2<0,解得 2-2< <2+ 2.g b b b b b答案: B2. (2012 年湖南卷 ) 不等式x2- 5x+6≤0的解集为 ________.分析: x2-5x+6≤0∴(x-2)( x-3)≤0∴2≤x≤3∴解集{ x|2 ≤x≤3}答案: { x|2 ≤x≤3}x2+4x, x≥0,3.已知函数 f ( x)=4x-x2,x<0.若f (2- a2)>f ( a),则实数 a 的取值范围是()A. ( -∞,- 1) ∪(2 ,+∞)B. ( -1, 2)C. ( -2, 1)D. ( -∞,- 2) ∪(1 ,+∞)分析: y= x2+4x=( x+2)2-4在[0,+∞)上单一递加;y=- x2+4x=-( x-2)2+4在(-∞,0)上单一递加.又 x2+4x-(4 x- x2)=2x2≥0,∴f (2-a2)> f ( a) ? 2- a2> a? a2+ a-2<0?-2<a<1,应选C.答案: C4. (2012 年东北三省四市教研协作体高三第二次调研测试x,( x≥0)) 已知函数f ( x) =2,x2,( x<0)则 f [ f ( x)]≥1的充要条件是() A.x∈( -∞,- 2]B.x∈[4 2,+∞)C.x∈( -∞,- 1] ∪[4 2,+∞) D.x∈( -∞,- 2] ∪[4 ,+∞)x x22分析:当 x≥0时,f [ f ( x)]=4≥1,所以 x≥4;当 x<0时,f [ f ( x)]=2≥ 1,所以x≥ 2,x≥2(舍)或 x≤- 2.所以 x∈(-∞,-2] ∪[4 ,+∞ ) .应选 D.答案: D5.设奇函数f ( x) 在 (0 ,+∞ ) 上为增函数,且f ( x)- f (- x)< 0的解f (1)=0,则不等式x集为()A. ( -1,0) ∪(1 ,+∞ )B. ( -∞,- 1) ∪(0 , 1)C. ( -∞,- 1) ∪(1 ,+∞ )D. ( - 1,0) ∪(0 ,1)分析:由题意知 x∈(-∞,-1)∪(0,1)时, f ( x)<0;x∈(-1,0)∪(1,+∞)时, f ( x)> 0.对于2f(x)< 0,可化为x>0x<0 x或,f ( x)<0 f ( x)>0所以不等式的解集为( - 1,0) ∪(0 , 1).答案: D二、填空题2-x6.不等式4+x> 0 的解集为 ________.2-x分析:由4+x>0,得 (2 -x)(4 +x) > 0,得( x- 2)( x+ 4) <0,∴解集为 { x| - 4<x< 2} .答案: { x| - 4<x< 2}7.设二次函数f (x) =x2+bx+,知足f(x+3) =(3 -) ,则使f(x)>-8的x的取值范围c f x c为 ________.分析:∵ f ( x+3)= f (3- x),∴ x=3是 y= f ( x)的对称轴,b∴-=3,∴ b=-6,2∴(x ) =x2- 6x+,f c∴ f ( x)> c-8,即 x2-6x+8>0,解得 x<2或 x>4.答案: ( -∞, 2) ∪(4 ,+∞)8.若对于x的不等式 (2 x- 1) 2<ax2的解集中的整数恰有 3 个,则实数a的取值范围是 ______.分析:不等式可化为 (4 -a) x2- 4x+ 1< 0 ①,因为原不等式的解集中整数恰有 3 个,所4-a> 0即 0<a< 4,故由①得11111以< x<,又<2+a <,= 16- 4(4-a)> 0,2+a2-a42所以解集中的 3 个整数必为1, 2, 3,所以 3<125<49≤ 4,解得9≤ .2-a a162549答案: ( 9,16]9.若函数f ( x) 是定义在 (0 ,+∞ ) 上的增函数,且对全部x>0,y>0知足 f ( xy)= f ( x)+ f ( y),则不等式 f ( x+6)+ f ( x)<2f (4)的解集为________.分析:由已知得 f ( x+6)+f ( x)= f [( x+6) x],2f (4)= f (16).依据单一性得( x+6) x<16,解得- 8<x< 2.又 x+6>0, x>0,所以0< x<2.答案: { x|0 <x<2}三、解答题.若不等式2+≥0的解集是1,10ax+x-≤ x≤2bx c3求不等式 cx2+ bx+a<0的解集.分析:法一:由ax2+ bx+c≥0的解集为1x-3≤ x≤2,知 a<0,1c又-3× 2=a<0,则c>0.12又-,2为方程ax+bx+c=0的两个根.b5b5∴-=,即=- .a3a3c2又∵ a=-3,∴ =-5,=-2.b3ac3a∴不等式变成-32a x2+-35a x+ a<0,即 2ax2+ 5ax- 3a>0.又∵ a<0,∴2x2+5x-3<0,1∴所求不等式的解集为x -3< x<2.法二:由已知得a<01b 1 c且 - 3 + 2=- a , - 3 ×2= a ,知 c > 0. 设方程 cx 2+ bx + a =0 的两根分别为 x 1,x 2,ba则 x 1+ x 2=- c , x 1x 2= c ,b1+2a1b -a - 3 此中c =1,- c = c = 1-×2a-×23 311=1 +2,- 3∴ x1 1=- 3, x = 1=2.12-3∴不等式 cx 2+ bx +a < 0( c > 0) 的解集为1x | -3< x <2 .11.已知函数 f ( x ) =ax 2+ a 2x + 2b - a 3,当 x ∈( - 2,6) 时,其值为正,而当 x ∈( -∞,-2) ∪(6 ,+∞ ) 时,其值为负.(1) 务实数 a , b 的值及函数 f ( x ) 的表达式;(2)设 () =- k (x )+4( k + 1) x +2(6 k -1),问k 取何值时,函数 ( ) 的值恒为负值?F x4fF x分析: (1) 由题意可知- 2和 6是方程 f ( x ) =0 的两根,- a =- 2+ 6=4, ∴ 2b -a 3a=- 2×6=- 12,a =- 4, ∴b =- 8,∴ f ( x ) =- 4x 2+ 16x + 48.(2) F ( x )k2=- ( - 4x + 16x +48) + 4( k + 1) x + 2(6 k - 1)= kx 2+ 4x - 2.当 k = 0 时, F ( x ) = 4x - 2 不恒为负值;当 k ≠0时,若 F ( x ) 的值恒为负值,k < 0,则有16+ 8k < 0,解得 k<-2.综上有 k<-2.12.已知f ( x) 是二次函数,不等式 f ( x)<0的解集是(0,5),且 f ( x)在区间[-1,4]上的最大值是 12.(1)求 f ( x)的分析式;(2)解对于 x 的不等式(a+2)x2-5x>1( a<0). f ( x)分析: (1) ∵f ( x) 是二次函数,且f ( x)<0的解集是(0,5),∴可设 f ( x)= Ax( x-5)( A>0),5∴ f ( x)的对称轴为x=2且张口向上.∴ f ( x)在区间[-1,4]上的最大值是 f (-1)=6A=12.∴A=2.∴f ( x)=2x( x-5)=2x2-10x.(2) 由 (1) 知不等式可化为(a+2) x2-5x-1>0,2x2- 10x+ 55ax即2(x-5)> 0,它等价于 ( x- 5)( x+a) <0( ∵a< 0) ,5x 5①若- 1<< 0,则 5<-,∴ 5<<-;a a a②若 a=-1,则 x∈?;55③若 a<-1,则-a<5,∴-a< x<5.综上可知:当-1<a< 0 时,5原不等式的解集为{ x|5 <x<-a} ;当 a=-1时,原不等式的解集为?;5当 a<-1时,原不等式的解集为{ x| -a<x<5} .。

高考数学一轮复习全套课时作业6-2等差数列

高考数学一轮复习全套课时作业6-2等差数列

题组层级快练 6.2等差数列一、单项选择题1.(2021·河北辛集中学月考)已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于()A .1B.53C .2D .32.(2017·课标全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为()A .1B .2C .4D .83.(2021·南昌市一模)已知{a n }为等差数列,若a 2=2a 3+1,a 4=2a 3+7,则a 5=()A .1B .2C .3D .64.(2020·西安四校联考)在等差数列{a n }中,a 2=5,a 7=3,在该数列中的任何两项之间插入一个数,使之仍为等差数列,则这个新等差数列的公差为()A .-25B .-45C .-15D .-355.(2020·安徽合肥二模)a 1=1,a 4=4,则a 10=()A .-45B .-54C.413D.1346.(2021·合肥市一检)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),a 5+a 7-a 62=0,则S 11的值为()A .11B .12C .20D .227.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=()A.310B.13C.18D.198.(2021·福建高三质检)设等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 8+a 13=2π21,则tanS 14=()A .-33B.33C .-3D.39.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为()A .4B .5C .6D .4或510.(2021·沈阳二中模拟)《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌”就是其中一首:“一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.”这首歌诀的大意是:“一位老公公有九个儿子,九个儿子从大到小排列,相邻两人的年龄差三岁,并且儿子们的年龄之和为207岁,请问大儿子多少岁,其他几个儿子年龄如何推算.”在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 3=()A .17B .29C .23D .3511.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为()A .13B .12C .11D .10二、多项选择题12.已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有()A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0三、填空题与解答题13.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S n T n =3n -12n +3,则a 10b 10=________.14.(2020·沈阳市模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2019,则m =________.15.设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a n 2和a n 的等差中项.(1)证明:数列{a n }为等差数列;(2)若b n =-n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值.16.已知A n ={x|2n <x<2n +1且x =7m +1,m ,n ∈N },则A 6中各元素的和为________.9个数构成一个首项为71,公差为7的等差数列.∴71+78+…+127=71×9+9×82×7=891.17.(2019·课标全国Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.6.2等差数列参考答案1.答案C解析由已知得S 3=3a 2=12,即a 2=4,∴d =a 3-a 2=6-4=2.2.答案C解析设等差数列{a n }的公差为d ,1+3d +a 1+4d =24,1+6×52d =48,1=-2,=4,故选C.3.答案B解析设数列{a n }的公差为d ,将题中两式相减可得2d =6,所以d =3,所以a 2=2(a 2+3)+1,解得a 2=-7,所以a 5=a 2+(5-2)d =-7+9=2.故选B.4.答案C解析∵{a n }的公差d =3-57-2=-25,∴新等差数列的公差d×12=-15.故选C.5.答案A解析由题意,得1a 1=1,1a 4=14,d =1a 4-1a 13=-14,由此可得1a n=1+(n -1)=-n 4+54,因此1a 10=-54,所以a 10=-45.故选A.6.答案D解析方法一:设等差数列的公差为d(d >0),则由(a 1+4d)+(a 1+6d)-(a 1+5d)2=0,得(a 1+5d)(a 1+5d -2)=0,所以a 1+5d =0或a 1+5d =2,又a 1>0,所以a 1+5d >0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d)=11×2=22.故选D.方法二:因为{a n }为正项等差数列,所以由等差数列的性质,并结合a 5+a 7-a 62=0,得2a 6-a 62=0,a 6=2,则S 11=11(a 1+a 11)2=11×2a 62=11a 6=22.故选D.7.答案A解析令S 3=1,则S 6=3,∴S 9=1+2+3=6.S 12=S 9+4=10,∴S 6S 12=310.故选A.8.答案D 9.答案B解析由{a n }为等差数列,设公差为d ,有S 99-S55=a 5-a 3=2d =-4,即d =-2,又a 1=9,所以a n =-2n+11,由a n =-2n +11<0,得n>112,所以S n 取最大值时n 为5.故选B.10.答案B解析依题意{a n }为等差数列,且d =-3,S 9=9(a 1+a 9)2=9a 5=207,∴a 5=23,∴a 3=a 5-2d =29.故选B.11.答案A解析因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146,所以a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180.又因为a 1+a n =a 2+a n -1=a 3+a n -2,所以3(a 1+a n )=180,从而a 1+a n =60.所以S n =n (a 1+a n )2=n·602=390,即n =13.12.答案AC解析根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8,即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d ,又由a n =a 1+(n -1)d =(n -10)d ,则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确;又由S n =na 1+n (n -1)d 2=-9nd +n (n -1)d 2=d2×(n 2-19n),则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,∵d ≠0,∴S 20≠0,则D 不正确.13.答案5641解析在等差数列中,S 19=19a 10,T 19=19b 10,因此a 10b 10=S 19T 19=3×19-12×19+3=5641.14.答案1010解析设公差为d ,由题知S 3=a 5,即3a 1+3d =a 1+4d ,得d =2a 1,又a 1=1,故d =2.于是a n =1+2(n -1)=2n -1,再由2m -1=2019,得m =1010.15.答案(1)证明见解析(2)当n=2或n=3时,{a n·b n}的最大值为6解析(1)证明:由已知可得2S n=a n2+a n,且a n>0,当n=1时,2a1=a12+a1,解得a1=1.当n≥2时,有2S n-1=a n-12+a n-1,所以2a n=2S n-2S n-1=a n2-a n-12+a n-a n-1,所以a n2-a n-12=a n+a n-1,即(a n+a n-1)(a n-a n-1)=a n+a n-1,因为a n+a n-1>0,所以a n-a n-1=1(n≥2).故数列{a n}是首项为1,公差为1的等差数列.(2)由(1)可知a n=n,设c n=a n·b n,则c n=n(-n+5)=-n2+5n+254,因为n∈N*,所以n=2或3,c2=c3=6,因此当n=2或n=3时,{a n·b n}取最大项,且最大项的值为6. 16.答案891解析∵A6={x|26<x<27且x=7m+1,m∈N},∴A6的元素有9个:71,78,85,92,99,106,113,120,127,9个数构成一个首项为71,公差为7的等差数列.∴71+78+…+127=71×9+9×82×7=891.17.答案(1)a n=10-2n(2){n|1≤n≤10,n∈N}解析(1)设{a n}的公差为d.由S9=-a5得a1+4d=0.由a3=4得a1+2d=4.于是a1=8,d=-2.因此{a n}的通项公式为a n=10-2n.(2)由(1)得a1=-4d,故a n=(n-5)d,S n=n(n-9)d2.由a1>0知d<0,故S n≥a n等价于n2-11n+10≤0,解得1≤n≤10.所以n的取值范围是{n|1≤n≤10,n∈N}.。

专题6-2 数列大题综合18种题型(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(原卷版)

专题6-2 数列大题综合18种题型(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(原卷版)

专题6-2数列大题综合18种题型目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】恒成立求参...............................................................................................................................................2【题型二】数列“存在型”求参.............................................................................................................................2【题型三】“存在型”证明题.................................................................................................................................3【题型四】数列“存在型不定方程型...................................................................................................................3【题型五】双数列相同项“存在型”...................................................................................................................4【题型六】新数列与“子数列”型........................................................................................................................4【题型七】“下标”数列型......................................................................................................................................5【题型八】指数型常规裂项求和.............................................................................................................................5【题型九】“指数等差型”裂项求和...................................................................................................................5【题型十】“指数分子拆分型”裂项求和..........................................................................................................6【题型十一】“正负裂和”型裂项求和...............................................................................................................7【题型十二】“分离常数型”裂项求和...............................................................................................................7【题型十三】先放缩再裂项求和.............................................................................................................................7【题型十四】前n 项积型...........................................................................................................................................8【题型十五】解数列不等式......................................................................................................................................8【题型十六】证明数列不等式.................................................................................................................................9【题型十七】求和:范围最值型.............................................................................................................................9【题型十八】“隐和型”...........................................................................................................................................9专题训练. (10)讲高考1.(·湖南·高考真题)数列{}n a 22122π0,2,1cos 4sin ,1,2,3,22n nn n a a a a n π+⎛⎫===++=⋅⋅⋅ ⎪⎝⎭.(1)求34,a a ,并求数列{}n a 的通项公式;(2)设()13212422,,2kk k k k k kS S a a a T a a a W k T *-=+++=+++=∈+N ,求使1k W >的所有k 的值,并说明理由.2.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.3.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.4.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.5.(2021·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n n S b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.题型全归纳【题型一】恒成立求参【讲题型】例题1.已知正项数列{}n a 的前n 项和为n S,且1n a +=.(1)求{}n a 的通项公式;(2)数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,且()112nn n n n T a S λ++≤对任意的*N n ∈恒成立,求实数λ的取值范围.(参考数据:132 1.26≈)已知数列{}n a 中,111,31n n a a a +==+.(1)求证:12n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()1312nn n nn b a +=-⋅⋅,数列{}n b 的前n 项和为n T ,若不等式()(8)42252n T n n λλ+-≤-+成立的自然数n 恰有4个,求正整数λ的值.【题型二】数列“存在型”求参【讲题型】例题1.设正项数列{}n a 的前n 项和为n S ,首项为1,已知对任意整数,m n ,当n m >时,m n m n m S S q S --=⋅(q 为正常数)恒成立.(1)求证:数列{}n a 是等比数列;(2)证明:数列1{}n n SS +是递增数列;(3)是否存在正常数c ,使得{lg()}n c S -为等差数列?若存在,求出常数c 的值;若不存在,说明理由.【练题型】已知n S 是数列{}n a 的前n 项和,且11a =,数列n n S a ⎧⎫⎨⎩⎭是公差为12的等差数列.(1)求数列{}n a 的通项公式;(2)记数列{}2nn a 的前n 项和为n T ,是否存在实数t 使得数列2n n T t +⎧⎫⎨⎬⎩⎭成等差数列,若存在,求出实数t 的值;若不存在,说明理由.【题型三】“存在型”证明题【讲题型】例题1.已知正项数列{}n a ,其前n 项和n S ,满足()12N n n nS a n a *=+∈.(1)求证:数列{}2n S 是等差数列,并求出n a 的表达式;(2)数列{}n a 中是否存在连续三项12,,k k k a a a ++,使得()12111,,N k k k k a a a *++∈构成等差数列?请说明理由.在数列{}n a 中,已知10a =,26a =,且对于任意正整数n 都有2156n n n a a a ++=-.(1)令12n n n b a a +=-,求数列{}n b 的通项公式;(2)设m 是一个正数,无论m 为何值,是否都有一个正整数n 使13n na m a +-<成立.【题型四】数列“存在型不定方程型【讲题型】例题1.设公比为正数的等比数列{}n a 的前n 项和为n S ,已知38a =,248S =,数列{}n b 满足24log n n b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*N m ∈,使得12m m m b b b ++⋅是数列{}n b 中的项?若存在,求出m 的值;若不存在,请说明理由.已知数列{}n a 满足()121232n n n a a a a -⋅⋅⋅= .(1)证明:{}n a 是等比数列.(2)判断()223*8mm -∈N 是否可能是数列{}na 中的项.若是,求出m 的最大值;若不是,请说明理由.【题型五】双数列相同项“存在型”【讲题型】例题1.已知{}n a 是等差数列,{}n b 是公比不为1的等比数列,1122532,,a b a b a b ====.(1)求数列{}{},n n a b 的通项公式;(2)若集合*,,N M b b a m k ==∈∣,且1100k ≤≤,求M 中所有元素之和.已知数列{}n a 的通项公式为21n a n =+,等比数列{}n b 满足211b a =-,321b a =-.(1)求数列{}n b 的通项公式;(2)记{}n a ,{}n b 的前n 项和分别为n S ,n T ,求满足n m T S =(410n <≤)的所有数对(),n m .【题型六】新数列与“子数列”型【讲题型】例题1.已知数列{}n a ,{}n b 其前n 项和分别为n S ,n T 且分别满足23122n S n n =-,()31N 22n n T b n +=-∈.(1)求数列{}n a ,{}n b 的通项公式.(2)将数列{}n a ,{}n b 的各项按1a ,1b ,2a ,2b …n a ,n b 顺序排列组成数列{}n c ,求数列{}n c 的前n 项和n M .【练题型】已知等差数列{}n a 和等比数列{}n b 满足3121,8,log n n a b a b ===,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n a 中不在数列{}n b 中的项按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n S ,求50S .【题型七】“下标”数列型【讲题型】例题1.已知数列{}n a ,{}n b ,n S 是数列{}n a 的前n 项和,已知对于任意*N n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且25b +,41b +,63b -成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记2,,n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前n 项和n T .【练题型】定义集合{}1*2N k M k -=∈,数列{}n a 满足12,0,n n a n M a n M-+∉⎧=⎨∈⎩(1)定义数列122n n n b a -+=,证明:{}n b 为等比数列(2)记数列{}n a 的前n 项和为n S ,求满足2310n S =的正整数n【题型八】指数型常规裂项求和【讲题型】例题1.设数列{}n a 的前n 项和为()*,226n n n S S a n n =+-∈N .(1)求数列{}n a 的通项公式;(2)若数列112n n n a a ++⎧⎫⎨⎬⎩⎭的前m 项和127258m T ,求m 的值.已知数列{}n a 满足1123333n n nn a a a n -+++=⋅ .(1)求数列{}n a 的通项公式;(2)令()()111nn n n a b a a +=++,设{}n b 的前n 项和为n S ,若n m S >对*N n ∈恒成立,求实数m的取值范围.【题型九】“指数等差型”裂项求和【讲题型】例题1..等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足13a =,11b =,2210b S +=,5232a b a -=.(1)求数列{}n a 和{}n b 的通项公式;(2)令n n n c a b =⋅,设数列{}n c 的前n 项和为n T ,求n T ;(3)令()121nn n n n b d a a +-⋅=-⋅,设数列{}n d 的前n 项和为n K ,求证:13n K <.天津市宝坻区第四中学2022-2023学年高二上学期期末数学试题已知{}n a 为等差数列,{}n b 为公比大于0的等比数列,且11a =,12b =,2312b b +=,4642a a b +=.(1)求{}n a 和{}n b 的通项公式;(2)设22,381,.n nn n n n n a n b c a n a a b ++⎧⎪⎪=⎨+⎪⋅⎪⎩为偶数;为奇数求数列{}n c 的前2n 项和2n T .【题型十】“指数分子拆分型”裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和为n S ,152a =,124n n S a +=-.(1)求{}n a 的通项公式;(2)若()()()121111n n n n n a b a a +--=++,求数列{}n b 的前n 项和为nT .已知数列{}n a 是公比1q >的等比数列,前三项和为13,且1a ,22a +,3a 恰好分别是等差数列{}n b 的第一项,第三项,第五项.(1)求{}n a 和{}n b 的通项公式;(2)已知*k ∈N ,数列{}n c 满足21,21,2n n n n nn k b b c a b n k +⎧=-⎪=⎨⎪=⎩,求数列{}n c 的前2n 项和2n S ;(3)设()()2(810)12121n n n n n a d a a +--=++,求数列{}n d 的前n 项和n T .【题型十一】“正负裂和”型裂项求和【讲题型】例题1.记正项数列{}n a 的前n 项积为n T ,且121n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1441n n n n n b T T ++=-⋅,求数列{}n b 的前2n 项和2n S .已知数列{}n a 的满足11a =,m n m n a a a +=+()*,m n ∈N .(1)求{}n a 的通项公式;(2)记121(1)n n n n n b a a ++=-⋅,数列{}n b 的前2n 项和为2n T ,证明:2213n T -<≤-.【题型十二】“分离常数型”裂项求和【讲题型】例题1.数列{}n a12a =且324,3,a a a 成等差数列.(1)求数列{}n a 的通项公式;(2)若2122log ,n nn n n b b b ac b b +-==+,求数列{}n c 的前n 项和n S .已知等差数列{}n a 的通项公式为()22n a n c c =-<,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)求数列}n a 的通项公式;(2)设数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【题型十三】先放缩再裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和()2n S n n λλ=+∈R ,且36a =,正项等比数列{}n b 满足:11b a =,2324.b b a a +=+(1)求数列{}n a 和{}n b 的通项公式;(2)若2022n nc b =-,求数列{}n c 的前n 项和n T ;(3)证明:()2131nii i b b =<-∑.【练题型】已知函数()e 1xf x a x =--,a ∈R(1)讨论函数()f x 的单调性;(2)若()0f x ≥恒成立,①求a 的取值范围;②设*n ∈N ,证明:()()1121ln 1.32121ini i i +=⎡⎤+<⎢⎥++⎢⎥⎣⎦∑【题型十四】前n 项积型【讲题型】例题1.在等比数列{}n a 中,18a =,前n 项和为2,1n S S -是1S 和3S 的等差中项.(1)求{}n a 的通项公式;(2)设12n n T a a a =⋅ ,求n T 的最大值.已知数列{}n a 满足()*123N ,2n n a a n n n -+=+∈≥,且24a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足()12,1log ,2n nn n b a n +=⎧⎪=⎨≥⎪⎩,*N n ∈,若()*1238N k b b b b k ⋅⋅=∈ ,求k 的值.【题型十五】解数列不等式【讲题型】例题1.已知数列{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)已知数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列,求公比q ;(2)若11100ni ia =<∑,求满足条件的最大整数n .【练题型】已知等差数列{}n a 的前n 项和为n S ,且412716,28a a S +==.(1)求{}n a 的通项公式;(2)若数列{}n b 满足43n nn a a b =,且{}n b 的前n 项和为n T ,求满足不等式31n n a T ⋅->的n 的值.【题型十六】证明数列不等式【讲题型】例题1.已知等差数列{}n a 满足312a =,5748a a +=,{}n a 的前n 项和为n S .(1)求n a 及n S 的通项公式;(2)记12111n n T S S S =++⋅⋅⋅+,求证:1142n T ≤<.【练题型】已知数列{}n a ,11a =,11nn na a a +=+.(1)求数列{}n a 通项公式;(2)若数列{}n b 满足:2111n n i i i i b a -===∑∑.(i )证明:1n b ≤;(ii )证明:11112321nn ++++≤- .【题型十七】求和:范围最值型【讲题型】例题1.已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,且11111n n n n S a S a +++-=+.(1)求数列{}n a 的通项公式;(2)设13n n n a ab -=,且数列{}n b 的前n 项和为n T ,求n T 的取值范围.【练题型】已知数列{}n a 的前n 项和为n S ,且满足 2 3n n S a n =+-,*n ∈N .(1)求数列{}n a 的通项公式;(2)21n n n b a =-,数列{}n b 是否存在最大项,若存在,求出最大项.【题型十八】“隐和型”【讲题型】例题1.已知等差数列{an }的首项a 1=1,公差d >0,且其第二项、第五项、第十四项分别是等比数列{bn }的第二、三、四项.(1)求数列{an }与{bn }的通项公式;(2)设数列{cn }对任意自然数n 均有1231123nn nc c c c a b b b b +++++= 成立,求1232023c c c c ++++ 的值.【练题型】已知等比数列{}n a 的前n 项和为3614126n S S S ==,,.(1)求数列{}n a 的通项公式;(2)当*n ∈N 时,112141nn n n a b a b a b -++⋯+=-,求数列{}n b的通项公式.1.已知n T 为数列{}n a 的前n 项积,且131n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1651nn n n n b T T ++=-⋅,求数列{}n b 的前n 项和n S .2.记n S 为数列{}n a 的前n 项和,已知()12121n n na n a a S +-++=- .(1)求n S ;(2)设()121n n n b n n S ++=+,数列{}n b 的前n 项和为n T ,证明:1n T <.3.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(1)求数列{}n a 的通项公式;(2)设14(1)2n a n n n b λ-=+-⋅(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有1n n b b +>成立.4.(河北省邯郸市2023届高三上学期期末数学试题)设n S 为数列{}n a 的前n 项和,已知0n a >,2364n n n a a S +=+.(1)求数列{}n a 的通项公式;(2)若11n n n c a a +=,记数列{}n c 的前n 项和为n T ,证明:112812n T ≤<.5(2022秋·贵州贵阳·高三贵阳一中校考阶段练习)已的数列{}n a 的首项123a =,112n n n n a a a a ++=-,+n ∈N .(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭等比数列;(2)记12111n n T a a a =++⋅⋅⋅+,若7n T <,求n 的最大值.。

【走向高考】(2013春季发行)高三数学第一轮总复习 6-2等差数列 新人教A版

【走向高考】(2013春季发行)高三数学第一轮总复习 6-2等差数列 新人教A版

6-2等差数列基础巩固强化1.(文)(2012·辽宁文,4)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( ) A .12 B .16 C .20 D .24[答案] B[解析] 本题考查等差数列的性质.由等差数列的性质得,a 2+a 10=a 4+a 8=16,B 正确. [点评] 解决此类问题的关键是熟练掌握等差数列的性质.(理)(2013·浙江金华一中12月月考)已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64a n的最小值为( ) A .7 B .8 C.152 D.172[答案] D[解析] 由题意知⎩⎪⎨⎪⎧a 1+d =4,10a 1+45d =110.∴⎩⎪⎨⎪⎧a 1=2,d =2.∴S n =n 2+n ,a n =2n .∴S n +64a n =n 2+n +642n =n 2+12+32n ≥12+2n 2·32n =172.等号成立时,n 2=32n,∴n =8,故选D.2.(文)(2011·福州模拟)等差数列{a n }的前n 项和为S n ,若a 2+a 6+a 7=18,则S 9的值是( )A .64B .72C .54D .以上都不对[答案] C[解析] 由a 2+a 6+a 7=3a 1+12d =3a 5=18,得a 5=6. 所以S 9=9a 1+a 92=9a 5=54.(理)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( )A .12B .8C .6D .4[答案] B[解析] 由等差数列性质知,a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32,∴a 8=8. ∴m =8.故选B.3.(2011·西安五校一模)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .8B .7C .6D .9[答案] C[解析] 设等差数列{a n }的公差为d ,依题意得a 3+a 7=2a 5=-6,∴a 5=-3,∴d =a 5-a 15-1=2,∴a n =-11+(n -1)×2=2n -13.令a n >0得n >6.5,即在数列{a n }中,前6项均为负数,自第7项起以后各项均为正数,因此当n =6时,S n 取最小值,选C.4.已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为( )A .3B .-1C .2D .3或-1[答案] D[解析] 由x 2-2x -3<0及x ∈Z 得x =0,1,2. ∴a 4=3或-1.故选D.5.(2012·大纲全国理,5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( ) A.100101 B.99101 C.99100D.101100[答案] A[解析] 本小题主要考查等差数列的通项公式和前n 项和公式的运用,以及裂项求和的综合应用.∵a 5=5,S 5=15,∴5a 1+a 52=15,即a 1=1.∴d =a 5-a 15-1=1,∴a n =n . ∴1a n a n +1=1n n +1=1n -1n +1.则数列{1a n a n +1}的前100项的和为:T 100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101. 故选A.[点评] 本题亦可利用等差数列的性质,由S 5=15得5a 3=15,即a 3=3,再进一步求解.6.(文)在函数y =f (x )的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝ ⎛⎭⎪⎫34x[答案] D[解析] 对于函数f (x )=⎝ ⎛⎭⎪⎫34x 上的点列(x n ,y n ),有y n =⎝ ⎛⎭⎪⎫34x n ,由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n =⎝ ⎛⎭⎪⎫34xn +1⎝ ⎛⎭⎪⎫34x n =⎝ ⎛⎭⎪⎫34x n +1-x n =⎝ ⎛⎭⎪⎫34d,这是一个与n 无关的常数,故{y n }是等比数列.故选D.[点评] 根据指数与对数运算的性质知真数成等比(各项为正),其对数成等差,指数成等差时,幂成等比.(理)已知直线(3m +1)x +(1-m )y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 2014=( )A.20134029 B.20144029 C.40174029D.40184029[答案] B[解析] 依题意,将(3m +1)x +(1-m )y -4=0化为(x +y -4)+m (3x -y )=0,令⎩⎪⎨⎪⎧x +y -4=03x -y =0,解得⎩⎪⎨⎪⎧x =1y =3,∴直线(3m +1)x +(1-m )y -4=0过定点(1,3), ∴a 1=1,a 2=3,公差d =2,a n =2n -1, ∴b n =1a n ·a n +1=12(12n -1-12n +1),∴T 2014=12×[(11-13)+(13-15)+…+(14027-14029)]=12×(1-14029)=20144029.故选B.7.(2011·洛阳部分重点中学教学检测)已知a ,b ,c 是递减的等差数列,若将其中两个数的位置对换,得到一个等比数列,则a 2+c 2b2的值为________.[答案] 20 [解析] 依题意得①⎩⎪⎨⎪⎧a +c =2b ,b 2=ac .或②⎩⎪⎨⎪⎧a +c =2b ,a 2=bc .或③⎩⎪⎨⎪⎧a +c =2b ,c 2=ab .由①得a=b =c ,这与“a ,b ,c 是递减的等差数列”矛盾;由②消去c 整理得(a -b )(a +2b )=0,又a >b ,因此a =-2b ,c =4b ,a 2+c 2b 2=20;由③消去a 整理得(c -b )(c +2b )=0,又b >c ,因此有c =-2b ,a =4b ,a 2+c 2b2=20.8.(文)(2011·天津文,11)已知{a n }是等差数列,S n 为其前n 项和,n ∈N *,若a 3=16,S 20=20,则S 10的值为________.[答案] 110[解析] 由题意,设公差为d ,则⎩⎪⎨⎪⎧a 1+2d =16,20a 1+20×20-12d =20,解得⎩⎪⎨⎪⎧a 1=20,d =-2.∴S 10=10a 1+1010-12d =110. (理)设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=105,则a 11+a 12+a 13=________.[答案] 75 [解析] ∵⎩⎪⎨⎪⎧a 1+a 2+a 3=15,a 1a 2a 3=105,∴⎩⎪⎨⎪⎧a 2=5,a 1a 3=21,∴⎩⎪⎨⎪⎧a 1+d =5,a 1a 1+2d =21,∵d >0,∴⎩⎪⎨⎪⎧d =2,a 1=3,∴a 11+a 12+a 13=3a 1+33d =75. 9.(文)将正偶数按下表排成5列:[答案] 252 2[解析] 通项a n =2n ,故2014为第1007项,∵1007=4×251+3,又251为奇数,因此2014应排在第252行,且第252行从右向左排第3个数,即252行第2列.(理)已知a n =n 的各项排列成如图的三角形状:记A (m ,n )表示第m 行的第n 个数,则A (31,12)=________.a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9… … … … … … … … … …[答案] 912[解析] 由题意知第1行有1个数,第2行有3个数,……第n 行有2n -1个数,故前n 行有S n =n [1+2n -1]2=n 2个数,因此前30行共有S 30=900个数,故第31行的第一个数为901,第12个数为912,即A (31,12)=912.10.(文)(2011·济南模拟)已知数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)在函数f (x )=3x 2-2x 的图象上.(1)求数列{a n }的通项公式; (2)设b n =3a n ·a n +1,求数列{b n }的前n 项和T n .[解析] (1)由已知点(n ,S n )(n ∈N +)在函数f (x )=3x 2-2x 的图象上,可得S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -3(n -1)2+2(n -1)=6n -5, 当n =1时,a 1=S 1=1也适合上式,∴a n =6n -5. (2)b n =3a n a n +1=36n -56n +1=12(16n -5-16n +1), ∴T n =12(11-17+17-113+…+16n -5-16n +1)=12(1-16n +1)=12-112n +2. (理)(2011·重庆文,16)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n . [解析] (1)设等比数列{a n }的公比为q ,由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍),∴q =2, ∴a n =a 1·qn -1=2·2n -1=2n.(2)数列b n =1+2(n -1)=2n -1, ∴S n =2×1-2n1-2+[n ×1+n n -12×2]=2n +1+n 2-2.能力拓展提升11.(文)已知在等差数列{a n }中,对任意n ∈N *,都有a n >a n +1,且a 2,a 8是方程x 2-12x +m =0的两根,且前15项的和S 15=m ,则数列{a n }的公差是( )A .-2或-3B .2或3C .-2D .3[答案] A[解析] 由2a 5=a 2+a 8=12,得a 5=6, 由S 15=m 得a 8=m15.又因为a 8是方程x 2-12x +m =0的根, 解之得m =0,或m =-45, 则a 8=0,或a 8=-3.由3d =a 8-a 5得d =-2,或d =-3. (理)如表定义函数f (x ):n 1n n -12014A .1 B .2 C .3 D .4[答案] A[解析] 本题可通过归纳推理的方法研究数列的规律.由特殊到一般易知a 1=4,a 2=f (a 1)=f (4)=1,a 3=f (a 2)=f (1)=5,a 4=f (a 3)=f (5)=2,a 5=f (a 4)=f (2)=4,…,据此可归纳数列{a n }为以4为周期的数列,从而a 2014=a 2=1.12.(2011·烟台诊断)设等差数列{a n }的前n 项和为S n 且S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的是( ) A.S 15a 15 B.S 9a 9 C.S 8a 8D.S 1a 1[答案] C[解析] ⎩⎪⎨⎪⎧S 15>0,S 16<0,⇒⎩⎪⎨⎪⎧a 1+7d >0,a 1+152d <0,⇒⎩⎪⎨⎪⎧a 8>0,a 9<0.∴0<S 1<S 2<…<S 8>S 9>S 10>…>S 15>0>S 16,a 1>a 2>…>a 8>0>a 9, ∴S 8a 8最大.故选C.13.(文)(2011·湖北文,9)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3L ,下面3节的容积共4L ,则第5节的容积为( )A .1L B.6766L C.4744L D.3733L [答案] B[解析] 设该数列为{a n }公差为d ,则⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解之得⎩⎪⎨⎪⎧a 1=1322,d =766,所以第5节的容积为a 5=a 1+4d =1322+766×4=6766.(理)(2011·哈师大附中、东北师大附中、辽宁实验中学联合模拟)已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4000,O 为坐标原点,点P (1,a n ),点Q (2011,a 2011),则OP →·OQ →等于( )A .2011B .-2011C .0D .1[答案] A[解析] S 21=S 4000⇒a 22+a 23+…+a 4000=0⇒a 2011=0,又P (1,a n ),Q (2011,a 2011),则OP →=(1,a n ),OQ →=(2011,a 2011),∴OP →·OQ →=(1,a n )·(2011,a 2011)=2011+a n a 2011=2011,故选A.14.(文)(2011·哈尔滨六中模拟)若数列{x n }满足x n -x n -1=d ,(n ∈N *,n ≥2),其中d 为常数,x 1+x 2+…+x 20=80,则x 5+x 16=________.[答案] 8[解析] 由x n -x n -1=d 知{x n }为公差为d 的等差数列, ∴x 1+x 2+…+x 20=80⇒10(x 1+x 20)=80⇒x 1+x 20=8, ∴x 5+x 16=x 1+x 20=8.(理)(2011·莱阳模拟)数列{a n },{b n }都是等差数列,a 1=0,b 1=-4,用S k 、S k ′分别表示等差数列{a n }和{b n }的前k 项和(k 是正整数),若S k +S k ′=0,则a k +b k =________.[答案] 4[解析] 由条件知,S k +S k ′=k k -12d +k k -12d ′-4k =k k -1d +d ′2-4k =0,∵k 是正整数,∴(k -1)(d +d ′)=8, ∴a k +b k =(k -1)d -4+(k -1)d ′ =(k -1)(d +d ′)-4=4.15.(文)(2011·杭州质量检测)已知正数数列{a n }的前n 项和为S n ,且对任意的正整数n 满足2S n =a n +1.(1)求数列{a n }的通项公式; (2)设b n =1a n ·a n +1,求数列{b n }的前n 项和B n .[解析] (1)由2S n =a n +1,n =1代入得a 1=1, 两边平方得4S n =(a n +1)2①①式中n 用n -1代替得4S n -1=(a n -1+1)2(n ≥2)②①-②,得4a n =(a n +1)2-(a n -1+1)2,0=(a n -1)2-(a n -1+1)2, [(a n -1)+(a n -1+1)]·[(a n -1)-(a n -1+1)]=0, ∵{a n }是正数数列,∴a n -a n -1=2,所以数列{a n }是以1为首项,2为公差的等差数列, ∴a n =2n -1.(2)b n =1a n ·a n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,裂项相消得B n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=n2n +1.(理)(2011·河南郑州质量检测)已知数列{a n }的前n 项和S n =2-a n ,数列{b n }满足b 1=1,b 3+b 7=18,且b n -1+b n +1=2b n (n ≥2).(1)求数列{a n }和{b n }的通项公式; (2)若c n =b n a n,求数列{c n }的前n 项和T n . [解析] (1)由题意S n =2-a n ,① 当n ≥2时,S n -1=2-a n -1,② ①-②得a n =S n -S n -1=a n -1-a n , 即a n =12a n -1,又a 1=S 1=2-a 1,∴a 1=1,故数列{a n }是以1为首项,12为公比的等比数列,所以a n =12n -1;由b n -1+b n +1=2b n (n ≥2)知,数列{b n }是等差数列, 设其公差为d ,则b 5=12(b 3+b 7)=9,所以d =b 5-b 14=2,b n =b 1+(n -1)d =2n -1.综上,数列{a n }和{b n }的通项公式为a n =12n -1,b n =2n -1.(2)c n =b n a n=(2n -1)·2n -1,T n =c 1+c 2+c 3+…+c n=1×20+3×21+5×22+…+(2n -1)×2n -1,③2T n =1×21+3×22+…+(2n -3)×2n -1+(2n -1)×2n,④③-④得:-T n =1+2(21+22+23+…+2n -1)-(2n -1)·2n=1+2×2-2n1-2-(2n -1)·2n =-(2n -3)·2n-3.∴T n =(2n -3)·2n+3.16.(2012·湖北文,20)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.[分析] (1)利用等差数列的通项公式,及相关关系求出首项和公差.(2)先确定数列的通项公式,由于首项a 1<0需判断从哪一项开始a n >0,将{|a n |}前n 项和写为分段函数的形式.[解析] (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7.故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7, n =1,2.3n -7, n ≥3.记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4; 当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2[2+3n -7]2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧4, n =1,32n 2-112n +10, n >1.1.(2011·郑州一测)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.18 B.13 C.19D.310[答案] D[解析] 设a 1+a 2+a 3+a 4=A 1,a 5+a 6+a 7+a 8=A 2,a 9+a 10+a 11+a 12=A 3,a 13+a 14+a 15+a 16=A 4,∵数列{a n }为等差数列,∴A 1、A 2、A 3、A 4也成等差数列,S 4S 8=A 1A 1+A 2=13,不妨设A 1=1,则A 2=2,A 3=3,A 4=4,S 8S 16=A 1+A 2A 1+A 2+A 3+A 4=1+21+2+3+4=310,故选D.2.(2011·济宁模拟)将正偶数集合{2,4,6…}从小到大按第n 组有2n 个偶数进行分组,第一组{2,4},第二组{6,8,10,12},第三组{14,16,18,20,22,24},则2010位于第( )组.A .30B .31C .32D .33[答案] C[解析] 因为第n 组有2n 个正偶数,故前n 组共有2+4+6+…+2n =n 2+n 个正偶数.2010是第1005个正偶数.若n =31,则n 2+n =992,而第32组中有偶数64个,992+64=1056,故2010在第32组.3.(2011·黄冈3月质检)设数列{a n }是以2为首项,1为公差的等差数列,b n 是以1为首项,2为公比的等比数列,则a b 1+a b 2+…+a b 10=( )A .1033B .2057C .1034D .2058[答案] A[解析] 依题意得a n =2+(n -1)×1=n +1,b n =1×2n -1=2n -1,a b n =b n +1=2n -1+1,因此a b 1+a b 2+…+a b 10=(20+1)+(21+1)+…+(29+1)=1×210-12-1+10=210+9=1033,故选A.4.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是( )A .i <4?B .i <5?C .i ≥5?D .i <6?[答案] D[解析] 由题意知S =11×2+12×3+…+1i i +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1i -1i +1=ii +1,故要输出S =56,i =5时再循环一次,故条件为i ≤5或i <6,故选D. 5.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m-n |=( )A .1 B.34 C.12 D.38[答案] C[解析] 设x 2-2x +m =0的根为x 1、x 2且x 1<x 2,x 2-2x +n =0的根为x 3、x 4且x 3<x 4,且x 1=14,又x 1+x 2=2,∴x 2=74,又x 3+x 4=2,且x 1、x 3、x 4、x 2成等差数列, ∴公差d =13(74-14)=12,∴x 3=34,x 4=54.∴|m -n |=|14×74-34×54|=12,故选C.6.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18[答案] B[解析] ∵3d =(a 2+a 4+a 6)-(a 1+a 3+a 5)=99-105=-6,∴d =-2,由a 1+a 3+a 5=105得3a 1+6d =105,∴a 1=39,∴a n =39-2(n -1)=41-2n ,由a n ≥0,n ∈N 得,n ≤20,∴a 20>0,a 21<0,故选B.7.已知函数f (x )=sin x +tan x ,项数为27的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 27)=0,则当k =________时,f (a k )=0.[答案] 14[解析] ∵f (x )=sin x +tan x 为奇函数,且在x =0处有定义,∴f (0)=0. ∵{a n }为等差数列且d ≠0,∴a n (1≤n ≤27,n ∈N *)对称分布在原点及原点两侧, ∵f (a 1)+f (a 2)+…+f (a 27)=0,∴f (a 14)=0. ∴k =14.8.(2011·南京一模)已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.[答案] 4[解析] 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4,又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n+2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n+2>19的最大正整数n 的值为4. 9.(2012·东北三校二模)公差不为零的等差数列{a n }中,a 3=7,且a 2,a 4,a 9成等比数列.(1)求数列{a n }的通项公式;(2)设a n =b n +1-b n ,b 1=1,求数列{b n }的通项公式. [解析] (1)由条件知,⎩⎪⎨⎪⎧a 3=7,a 24=a 2·a 9,∴⎩⎪⎨⎪⎧a 1+2d =7,a 1+3d 2=a 1+d ·a 1+8d ,解之得⎩⎪⎨⎪⎧a 1=1,d =3.∴a n =3n -2.(2)由条件知,b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=1+a 1+a 2+…+a n -1 =1+n -11+3n -52=3n 2-7n +62,∴b n =3n 2-7n +62.10.已知等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式; (2)令b n =S nn +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.[分析] 第(1)问是求等差数列的通项公式,需要知道首项a 1和公差d 的值,由条件a 2·a 3=45,a 1+a 5=18建立方程组不难求得;第(2)问是构造一个等差数列{b n },可考虑利用等差数列的定义,研究使b n +1-b n (n ∈N *)为一个常数时需要满足的条件.[解析] (1)由题设知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧a 1+d a 1+2d =45,a 1+a 1+4d =18,解得⎩⎪⎨⎪⎧a 1=1,d =4.所以a n =4n -3(n ∈N *).(2)由b n =S nn +c=n 1+4n -32n +c=2n n -12n +c,因为c ≠0,所以可令c =-12,得到b n =2n .因为b n +1-b n =2(n +1)-2n =2(n ∈N *), 所以数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.11.(2012·东北三省四市第二次联考)已知等差数列{a n }满足a 4=6,a 6=10. (1)求数列{a n }的通项公式;(2)设等比数列{b n }各项均为正数,其前n 项和T n ,若a 3=b 2+2,T 3=7,求T n . [解析] (1)设等差数列{a n }的公差为d ,首项为a 1,∵a 4=6,a 6=10,∴⎩⎪⎨⎪⎧a 1+3d =6,a 1+5d =10.解得⎩⎪⎨⎪⎧a 1=0,d =2.∴数列{a n }的通项公式a n =a 1+(n -1)d =2n -2. (2)设各项均为正数的等比数列{b n }的公比为q (q >0). ∵a n =2n -2,∴a 3=2×3-2=4. ∵a 3=b 2+2,∴b 2=2. ∴⎩⎪⎨⎪⎧b 1q =2,b 11+q +q 2=7.解得⎩⎪⎨⎪⎧b 1=1,q =2,或⎩⎪⎨⎪⎧b 1=4,q =12.∴T n =b 11-q n 1-q =1×1-2n1-2=2n-1,或T n =4[1-12n]1-12=8-(12)n -3.。

2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(真题测试)含详解

2023年新高考数学一轮复习6-2 平面向量的基本定理及坐标表示(真题测试)含详解

专题6.2 平面向量的基本定理及坐标表示(真题测试)一、单选题1.(2019·全国·高考真题(文))已知向量()()2332a b ==,,,,则|–|a b =( ) AB .2C .D .502.(2019·全国·高考真题(理))已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=( ) A .-3 B .-2 C .2D .33.(2020·山东·高考真题)已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是( ) A .()2,6-或()2,1 B .()2,6--或()2,1- C .()2,6或()2,1-D .()2,6-或()2,1--4.(2022·全国·高三专题练习)正方形ABCD 的边长为2,以AB 为直径的圆M ,若点P 为圆M 上一动点,则·PC PD 的取值范围为( )A .[]04,B .[]08,C .[]18-,D .[]14-, 5.(2022·广东·大埔县虎山中学高三阶段练习)已知ABC 是边长为a 的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( ) A .22a -B .238a -C .243a -D .2a -6.(2022·上海奉贤·二模)已知平面向量a ,m ,n ,满足4a =,221010m a m n a n ⎧-⋅+=⎪⎨-⋅+=⎪⎩,则当m 与n 的夹角最大时,m n -的值为( ) A .4B .2CD .17.(2017·全国·高考真题(理))已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是( ) A .2-B .32-C .43-D .1-8.(2016·四川·高考真题(文))已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( )A .B .C .D .二、多选题9.(2022·广东广州·三模)已知向量()3,1a =-,()1,2b =-,则下列结论中正确的是( ) A .5a b ⋅= B .5a b -=C .,4a b π=D .a b ∥10.(2022·湖北·模拟预测)正方形ABCD 的边长为2,E 是BC 中点,如图,点P 是以AB 为直径的半圆上任意点,AP λ=AD AE μ+,则( )A .λ最大值为12B .μ最大值为1C .AP AD ⋅最大值是2 D .AP AE ⋅211.(2022·湖北·荆州中学模拟预测)已知向量()3,1a =,()()cos ,sin 0b θθθπ=≤≤,则下列命题正确的是( )A .若a b ⊥,则tan θ=B .存在θ,使得a b a b +=-C .与a 共线的单位向量只有一个为12)D .向量a 与b 夹角的余弦值范围是[ 12.(2022·湖南·长郡中学模拟预测)已知向量(1,sin ),(cos ,2)a b θθ==,则下列命题正确的是( )A .存在θ,使得 //a bB .当tan θ=时,a 与b 垂直C .对任意θ,都有||||a b ≠D .当3a b ⋅=-时,tan θ=三、填空题13.(2020·全国高考真题(理))设,a b 为单位向量,且||1a b +=,则||a b -=______________. 14.(2018·全国·高考真题(理))已知向量()=1,2a ,()=2,2b -,()=1,c λ.若()2+ca b ,则λ=________.15.(2021·全国·高考真题(理))已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________. 16.(2022·浙江·高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++的取值范围是_______. 四、解答题17.(2022·全国·高三专题练习)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(2,1)-、(1,3)-、(3,4). 若OB OA OD λμ=+,求λμ+的值18.(2022·全国·高三专题练习)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4). O 为坐标原点,若动点S 满足向量2DS =,求OS 的最大值19.(2023·全国·高三专题练习)已知平行四边形ABCD 中,2EC DE =,2FC BF =,2FG GE =.(1)用AB ,AD 表示AG ;(2)若6AB =,32AD =45BAD ∠=︒,如图建立直角坐标系,求GB 和DF 的坐标. 20.(2023·全国·高三专题练习)已知向量a →=(1,2),b →=(-3,k ). (1)若a →∥b →,求b →的值;(2)若a →⊥(a →+2b →),求实数k 的值;(3)若a →与b →的夹角是钝角,求实数k 的取值范围.21.(2022·全国·高三专题练习)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4). 若Q 是线段BC 上的动点,求·AQ DQ 的最值22.(2017·江苏·高考真题)已知向量()([]330a cosx sinx b x π==-∈,,,,,.(1)若a b,求x的值;(2)记()f x a b=⋅,求函数y=f(x)的最大值和最小值及对应的x的值.专题6.2 平面向量的基本定理及坐标表示(真题测试)一、单选题1.(2019·全国·高考真题(文))已知向量()()2332a b ==,,,,则|–|a b =( ) AB .2C .D .50【答案】A 【解析】 【分析】本题先计算a b -,再根据模的概念求出||a b -. 【详解】由已知,(2,3)(3,2)(1,1)a b -=-=-,所以2||(1)a b -=-= 故选A2.(2019·全国·高考真题(理))已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=( ) A .-3 B .-2 C .2 D .3【答案】C 【解析】 【分析】根据向量三角形法则求出t ,再求出向量的数量积. 【详解】由(1,3)BC AC AB t =-=-,211BC =,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .3.(2020·山东·高考真题)已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是( ) A .()2,6-或()2,1B .()2,6--或()2,1-C .()2,6或()2,1-D .()2,6-或()2,1--【答案】C 【解析】 【分析】由二次函数对称轴设出P 点坐标,再由向量垂直的坐标表示计算可得. 【详解】由题意函数243y x x =--图象的对称轴是2x =,设(2,)P y ,因为PA PB ⊥,所以(2,3)(6,2)12(3)(2)0PA PB y y y y ⋅=-⋅--=-+--=,解得6y =或1y =-,所以(2,6)P 或(2,1)P -, 故选:C .4.(2022·全国·高三专题练习)正方形ABCD 的边长为2,以AB 为直径的圆M ,若点P 为圆M 上一动点,则·PC PD 的取值范围为( )A .[]04,B .[]08,C .[]18-,D .[]14-, 【答案】B 【解析】 【分析】以AB 为x 轴,线段AB 的中垂线为y 轴建立平面直角坐标系,写出,C D 坐标,设(cos ,sin )P θθ,用数量积的坐标表示计算数量积后由正弦函数性质得范围. 【详解】以AB 为x 轴,线段AB 的中垂线为y 轴建立平面直角坐标系,如图,则(1,2)C ,(1,2)D -, 圆方程为221x y +=,P 在圆上,设(cos ,sin )P θθ, (1cos ,2sin )PC θθ=--,(1cos ,2sin )PD θθ=---,2(1cos )(1cos )(2sin )PC PD θθθ⋅=---+-22cos 144sin sin θθθ=-+-+44sin θ=-,sin [1,1]θ∈-,所以[0,8]PC PD ⋅∈.故选:B .5.(2022·广东·大埔县虎山中学高三阶段练习)已知ABC 是边长为a 的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( ) A .22a - B .238a -C .243a -D .2a -【答案】B 【解析】 【分析】建立平面直角坐标系,用坐标表示出PA 、PB 和PC ,计算()PA PB PC ⋅+的最小值即可. 【详解】解:以BC 中点为坐标原点,建立如图所示的坐标系,则30,2A a ⎛⎫ ⎪ ⎪⎝⎭,1,02B a ⎛⎫- ⎪⎝⎭,1,02C a ⎛⎫ ⎪⎝⎭,设(,)P x y ,则PA x y ⎛⎫=-- ⎪ ⎪⎝⎭,1,2PB a x y ⎛⎫=--- ⎪⎝⎭,1,2PC a x y ⎛⎫=-- ⎪⎝⎭,所以()2,2PB x y PC --+=,所以()22(2)(2)22PA PB PC x x y y x y ⎫⋅+=-⋅-+-⋅-=+⎪⎪⎝⎭2223228x y a ⎛⎫=+- ⎪ ⎪⎝⎭;所以当0x =,y =时,()PA PB PC ⋅+取得最小值是238a -.故选:B .6.(2022·上海奉贤·二模)已知平面向量a ,m ,n ,满足4a =,221010m a m n a n ⎧-⋅+=⎪⎨-⋅+=⎪⎩,则当m 与n 的夹角最大时,m n -的值为( ) A .4 B .2 CD .1【答案】C 【解析】 【分析】以O 为原点建立平面坐标系,设(4,0)a =,(,)m x y =,根据向量的数量积的运算公式,分别求得向量,m n 的终点所表示的轨迹方程,进而根据圆的性质,即可求解. 【详解】设,,a m n 的起点均为O ,以O 为原点建立平面坐标系,如图所示, 不妨设(4,0)a =,(,)m x y =,则222m x y =+,4a m x ⋅=, 由210m a m -⋅+=可得22410x y x +-+=,即22(2)3x y -+=, ∴m 的终点M 在以(2,0) 同理n 的终点N 在以(2,0)显然当OM ,ON 为圆的两条切线时,MON ∠最大,即m 与n 的夹角最大.设圆心为A ,则AM =1OM =,则sin MOA ∠= ∴60MOA ∠=︒,设MN 与x 轴交于点B ,由对称性可知MN x ⊥轴,且2MN MB =,∴22sin 21MN MB OM MOA ==⋅∠=⨯= 即当m 与n 的夹角最大时,3m n -= 故选:C7.(2017·全国·高考真题(理))已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是( ) A .2- B .32-C .43-D .1-【答案】B 【解析】 【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可. 【详解】建立如图所示的坐标系,以BC 中点为坐标原点,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,则()PA x y =-,(1,)PB x y =---,(1,)PC x y =--,则22223()222[(]4PA PB PC x y x y +=-+=+-∴当0x =,y =332()42⨯-=-,故选:B .8.(2016·四川·高考真题(文))已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( )A .B .C .D .【答案】B 【解析】 【详解】试题分析:如图可得120,2ADC ADB BDC DA DB DC ∠=∠=∠=︒===.以D 为原点,直线DA 为x 轴建立平面直角坐标系,则()((2,0,1,,.A B C --设(),,P x y 由已知1AP =,得()2221x y -+=,又131,,,,222x y x PM MC M BM ⎛⎫⎛-++=∴∴= ⎪ ⎪ ⎝⎭⎝⎭()()222133||4x y BM +++∴=,它表示圆()2221x y -+=上的点(),x y 与点()1,33--的距离的平方的14,()()2222max149333144BM⎛⎫∴=++= ⎪⎝⎭,故选B. 【考点】向量的夹角,解析几何中与圆有关的最值问题【名师点睛】本题考查平面向量的夹角与向量的模,由于结论是要求向量模的平方的最大值,因此我们要把它用一个参数表示出来,解题时首先对条件进行化简变形,本题中得出120ADC ADB BDC ∠=∠=∠=︒,且2DA DB DC ===,因此我们采用解析法,即建立直角坐标系,写出点,,,A B C D 的坐标,同时动点P 的轨迹是圆,则()(22214x y BM +++=,因此可用圆的性质得出最值.因此本题又考查了数形结合的数学思想. 二、多选题9.(2022·广东广州·三模)已知向量()3,1a =-,()1,2b =-,则下列结论中正确的是( ) A .5a b ⋅= B .5a b -=C .,4a b π=D .a b ∥【答案】ABC 【解析】 【分析】按照向量数量积的坐标运算、模的坐标运算、夹角公式及平行的坐标公式依次判断即可. 【详解】31(1)(2)5a b ⋅=⨯+-⨯-=,A 正确;2(2,1),21a b a b -=-=+B 正确;22223(1)10,1(2)5a b =+-==+-=,则52cos ,,,2452a b a b a b a bπ⋅====,C 正确; ()()3211⨯-≠-⨯,D 错误.故选:ABC.10.(2022·湖北·模拟预测)正方形ABCD 的边长为2,E 是BC 中点,如图,点P 是以AB 为直径的半圆上任意点,AP λ=AD AE μ+,则( )A .λ最大值为12 B .μ最大值为1C .AP AD ⋅最大值是2 D .AP AE ⋅2【答案】BCD 【解析】 【分析】以AB 中点O 为原点建立平面直角坐标系,利用坐标表示向量,根据三角函数的性质可判断各选项. 【详解】以AB 中点O 为原点建立平面直角坐标系,()1,0A -,()1,2D -,()1,1E ,设BOP α∠=,则()cos ,sin P αα,()cos 1,sin AP αα=+,()0,2AD =,由AP AD AE λμ=+,得2cos 1μα=+且2sin λμα+=,[]0,απ∈()()112sin cos 144λαααθ=--=--A 错; 0α=时max 1μ=,故B 正确;2sin 2AP AD α⋅=≤,故C 正确;()sin 2cos 222AP AE αααφ⋅=++=++,故D 正确. 故选:BCD.11.(2022·湖北·荆州中学模拟预测)已知向量()3,1a =,()()cos ,sin 0b θθθπ=≤≤,则下列命题正确的是( )A .若a b ⊥,则tan θ=B .存在θ,使得a b a b +=-C .与a 共线的单位向量只有一个为12)D .向量a 与b 夹角的余弦值范围是[ 【答案】AB 【解析】 【分析】根据向量垂直的坐标表示判断A 、B ,根据单位向量的定义判断C ,根据向量夹角的坐标表示及正弦函数的性质判断D ; 【详解】解:对于A 选项:若a b ⊥,则0a b ⋅=, ∴sin 0θθ+=,∴tan θ=A 正确;对于B :若a b a b +=-,则22a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,所以0a b ⋅=,即a b ⊥,由A 可知,tan θ=0θπ≤≤,所以23πθ=,故B 正确;对于C 选项:与a 共线的单位向量为aa ±,故为12⎫⎪⎪⎝⎭或12⎛⎫- ⎪ ⎪⎝⎭,故C 选项错误;对于D 选项:设向量a 与b 夹角为α,则cos sin 3πθα⎛⎫+ ⎪⎝=⎭,因为0θπ≤≤,所以4333πππθ≤+≤,所以sin 13πθ⎛⎫≤+≤ ⎪⎝⎭,故cos 1α≤≤,故D 错误;故选:AB .12.(2022·湖南·长郡中学模拟预测)已知向量(1,sin ),(cos ,2)a b θθ==,则下列命题正确的是( )A .存在θ,使得 //a bB .当tan θ=时,a 与b 垂直C .对任意θ,都有||||a b ≠D .当3a b ⋅=-时,tan θ=【答案】BD 【解析】 【分析】A 选项,利用向量平行及三角函数恒等变换得到方程,sin 21θ=,故A 错误;B 选项,利用垂直得到方程,求出正切值;C 选项,计算出两向量的模长,得到ππ,2k k Z θ=+∈,C 错误;利用向量的数量积列出cos a b θθ⋅==2tan 20θ-θ+=,求出正切值.【详解】对于选项A :若 //a b sin cos =θθ,即sin 21θ=, 所以不存在这样的θ,故A 错误;对于选项B :若a b ⊥,则cos 0θθ=,即cos θ=θ,得tan 2θ=,故B 正确; 对于选项C :22||1sin ,||2cos a b θθ=+=+,当||||a b =时,cos21θ=-, 此时ππ,2k k Z θ=+∈,故C 错误;对于选项D :cos a b θθ⋅==两边同时平方得2222cos 2sin sin 3cos 3sin θθθθθθ++⋅=+,化简得222cos sin cos 0θ+θ-θθ=,等式两边同除以2cos θ得2tan 20θ-θ+=,即2(tan 0θ-=,所以tan θ=D 正确.故选:BD. 三、填空题13.(2020·全国高考真题(理))设,a b 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=14.(2018·全国·高考真题(理))已知向量()=1,2a ,()=2,2b -,()=1,c λ.若()2+c a b ,则λ=________.【答案】12 【解析】 【分析】由两向量共线的坐标关系计算即可. 【详解】由题可得()24,2a b +=()//2,c a b +()1,c λ=4λ20∴-=,即1λ2=故答案为1215.(2021·全国·高考真题(理))已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35【解析】 【分析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出. 【详解】因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=. 故答案为:35.16.(2022·浙江·高考真题)设点P 在单位圆的内接正八边形128A A A 的边12A A 上,则222182PA PA PA +++的取值范围是_______.【答案】[12+ 【解析】 【分析】根据正八边形的结构特征,分别以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设(,)P x y ,再根据平面向量模的坐标计算公式即可得到()2222212888PA PA PA x y +++=++,然后利用cos 22.5||1OP ≤≤即可解出.【详解】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,如图所示:则1345726222222(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A ⎛⎫⎛⎫⎛⎫----- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,822,22A ⎛⎫- ⎪ ⎪⎝⎭,设(,)P x y ,于是()2222212888PA PA PA x y +++=++,因为cos 22.5||1OP ≤≤,所以221cos 4512x y +≤+≤,故222128PA PA PA +++的取值范围是[12+.故答案为:[12+. 四、解答题17.(2022·全国·高三专题练习)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(2,1)-、(1,3)-、(3,4). 若OB OA OD λμ=+,求λμ+的值【答案】136【解析】【分析】设出D ,利用向量的坐标公式求出四边对应的向量,据对边平行得到向量相等,利用向量相等的充要条件列出方程组求出D 的坐标,从而求出OB 、OA 、OD 的坐标,再根据平面向量线性运算的坐标表示得到方程组,解得即可. 【详解】解:设(,)D x y ,(2,1)A -,(1,3)B -,(3,4)C ,则(1,2)AB =,(3,4)DC x y =--,又AB DC =,3142x y -=⎧∴⎨-=⎩,解得22x y =⎧⎨=⎩,即()2,2D , 所以()1,3OB =-,()2,1OA =-,()2,2OD =,因为OB OA OD λμ=+,所以()()()1,32,12,2λμ-=-+,所以22123λμλμ-+=-⎧⎨+=⎩,解得4356λμ⎧=⎪⎪⎨⎪=⎪⎩,所以136λμ+= 18.(2022·全国·高三专题练习)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4). O 为坐标原点,若动点S 满足向量2DS =,求OS 的最大值【答案】2 【解析】 【分析】先利用AB DC =求出D 点坐标,再结合2DS =求出S 的轨迹是圆,最后利用O 到圆心的距离加半径求出最大值即可. 【详解】设(,)D a b ,()(1,2),3,4AB DC a b ==--,由AB DC =得3142a b -=⎧⎨-=⎩,解得22a b =⎧⎨=⎩,故(2,2)D ,设(,)S x y ,(2,2)DS x y =--,则由2DS =得()()22224x y -+-=,即S 的轨迹是以()2,2为圆心,2为半径的圆,故OS 的最大值为O22=.19.(2023·全国·高三专题练习)已知平行四边形ABCD 中,2EC DE =,2FC BF =,2FG GE =.(1)用AB ,AD 表示AG ;(2)若6AB =,32AD =45BAD ∠=︒,如图建立直角坐标系,求GB 和DF 的坐标. 【答案】(1)5799=+AD AG AB (2)17,33GB ⎛⎫=- ⎪⎝⎭,()4,2DF =-【解析】 【分析】(1)根据向量的加法及数乘运算求解;(2)建立平面直角坐标系,利用坐标运算求解即可. (1)13AE AD AB =+,13AF AD AB =+,又2FG GE =,所以2()AG AF AE AG -=- 所以21573399AG AE AF AB AD =+=+(2)过点D 作AB 的垂线交AB 于点D ,如图,于是在Rt ADD '△中,由45BAD ∠=︒可知,3AD '=根据题意得各点坐标:()0,0A ,()6,0B ,()9,3C ,()3,3D ,()5,3E ,()7,1F ,5757(60)(3,3)9999AG AB AD =+=+=,177,33⎛⎫ ⎪⎝⎭所以177,33G ⎛⎫ ⎪⎝⎭所以()6,0AB =,177,33AG =⎛⎫⎪⎝⎭,()4,2DF =-,17,33GB AB AG ⎛⎫=-=- ⎪⎝⎭20.(2023·全国·高三专题练习)已知向量a →=(1,2),b →=(-3,k ).(1)若a →∥b →,求b →的值;(2)若a →⊥(a →+2b →),求实数k 的值;(3)若a →与b →的夹角是钝角,求实数k 的取值范围.【答案】(2)k =14;(3)k <32且k ≠-6.【解析】 【分析】(1)解方程1×k -2×(3)-=0即得解; (2)解方程1×(5)-+2×(22)k +=0即得解; (3)解不等式1×(3)-+2×k <0且k ≠-6,即得解. (1)解:因为向量a →=(1,2),b →=(-3,k ),且a →∥b →, 所以1×k -2×(3)-=0,解得k =-6,所以b →(2)解:因为a →+2b →=(5,22)k -+,且a →⊥(2)a b →→+,所以1×(5)-+2×(22)k +=0,解得k =14.(3)解:因为a →与b →的夹角是钝角,则a b →→⋅<0且a →与b →不共线.即1×(3)-+2×k <0且k ≠-6,所以k <32且k ≠-6.21.(2022·全国·高三专题练习)已知平行四边形ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4). 若Q 是线段BC 上的动点,求·AQ DQ 的最值 【答案】最小值614- ,最大值57. 【解析】 【分析】根据平行四边形,求出D 点的坐标,分别求出AQ DQ 的解析式, 根据解析式求出最值,再综合考虑即可. 【详解】依题意作上图,点D 的位置有3个,分别为12,,D D D ,下面分别求出这3个位置的坐标:设(),D x y ,则有()()1,23,4AB DC x y ===-- ,解得()2,2,2,2x y D ==∴ ;()(),1,23,4AB CD x y ==-- ,解得()14,6,4,6x y D === ; ()(),4,12,1BC DA x y ==--- ,解得()26,0,6,0x y D =-=- ;∵点Q 在BC 上,设(),,Q m n BQ BC λ= ,则有()()1,34,1m n λ+-= , 41,3m n λλ=-=+ ([]0,1λ∈) ,()41,2AQ λλ=++ ,()43,1DQ λλ=-+ ,()145,3DQ λλ=-- , ()245,3D Q λλ=++ ,21751AQ DQ λλ=-- ,当534λ=时,取最小值=9368- ,最大值=11;21171711AQ DQ λλ=-- ,当12λ= 时,取最小值=614-,最大值=-11; 22172911AQ D Q λλ=++,当0λ= 时,取最小值=11,最大值=57;所以在以A ,B ,C 为顶点的平行四边形中,AQ DQ 的最小值为614-,最大值为57;综上,最小值为614-,最大值为57. 22.(2017·江苏·高考真题)已知向量()([]330a cosx sinx b x π==-∈,,,,,. (1)若a b ,求x 的值;(2)记()f x a b =⋅,求函数y =f (x )的最大值和最小值及对应的x 的值.【答案】(1)5π6x =(2)0x =时,()f x 取到最大值3; 5π6x =时,()f x 取到最小值- 【解析】 【分析】(1)根据a b ,利用向量平行的充要条件建立等式,即可求x 的值.(2)根据()f x a b =⋅求解求函数y =f (x )解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x 的值. 【详解】解:(1)∵向量()([]330a cosx sinx b x π==-∈,,,,,. 由a b ,可得:3sinx =,即tanx = ∵x ∈[0,π] ∴56x π=.(2)由()233f x a b cosx x π⎛⎫=⋅==+ ⎪⎝⎭∵x ∈[0,π],∴225333x πππ⎡⎤+∈⎢⎥⎣⎦,∴当2233x ππ+=时,即x =0时f (x )max =3;当2332x ππ+=,即56x π=时()min f x =-。

高考数学 6-2 课后演练提升 文.doc

高考数学 6-2 课后演练提升 文.doc

一、选择题1.某商品在最近30天内的价格f (t )与时间t (单位:天)的函数关系是f (t )=t +10(0<t ≤30,t ∈N );销售量g (t )与时间t 的函数关系是g (t )=-t +35(0<t ≤30,t ∈N ),则这种商品日销售金额的最大值是( )A .505元B .506元C .510元D .600元2.(·潍坊模拟)设函数f (x )=⎩⎪⎨⎪⎧-2 x ,x 2+bx +cx,若f (-4)=f (0),f (-2)=0,则关于x 的不等式f (x )≤1的解集为( )A .(-∞,-3]∪[-1,+∞)B .[-3,-1]C .[-3,-1]∪(0,+∞)D .[-3,+∞) 3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是( ) A .{a |0<a <4} B .{a |0≤a <4} C .{a |0<a ≤4} D .{a |0≤a ≤4}4.(·汕头模拟)在R 上定义运算:x *y =x (1-y ).若不等式(x -a )*(x +a )<1对任意实数x 恒成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <125.设A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b 等于( )A .7B .-1C .1D .-7 二、填空题6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6, x ≥0x +6, x <0,则不等式f (x )>f (1)的解集是________.7.(·江南十校联考)已知f (x )=⎩⎪⎨⎪⎧x +1x -x -x,则不等式x +(x +1)f (x -1)≤3的解集是________.8.(·济南模拟)若关于x 的不等式x 2+12x -(12)≥0,在x ∈(-∞,λ]上恒成立,则实常数λ的取值范围是________.三、解答题9.若不等式2x -1>m (x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围.10.若不等式组⎩⎪⎨⎪⎧x 2-x -2>02x 2++2k x +5k <0的整数解只有-2,则k 应取怎样的值?11.解关于x 的不等式3x 2+2ax +1>0(a ∈R ).答案及解析1.【解】 设这种商品日销售金额为y 元,由题意知y =f (t )g (t )=(t +10)(-t +35)=-t 2+25t +350(0<t ≤30), 当t =12或t =13时,y 取最大值506. 【答案】 B2.【解】 由已知对x ≤0时f (x )=x 2+bx +c ,且f (-4)=f (0)知其对称轴为x =-2,故-b2=-2⇒b =4,又f (-2)=0代入得c =4,故f (x )=⎩⎪⎨⎪⎧-x ,x 2+4x +x,因此f (x )≤1⇔⎩⎪⎨⎪⎧-2≤1,x >0或⎩⎪⎨⎪⎧x ≤0,x 2+4x +4≤1,解得x >0或-3≤x ≤-1. 【答案】 C3.【解】 由题意知a =0时,满足条件.a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4,所以0≤a ≤4.【答案】 D4.【解】 依题意得x -a -x 2+a 2<1恒成立, ∴(x -12)2+(a +34-a 2)>0恒成立⇔a 2-a -34<0恒成立⇔-12<a <32.【答案】 C5.【解】 A =(-∞,-1)∪(3,+∞), ∵A ∪B =R ,A ∩B =(3,4],则B =[-1,4]. ∵-1,4为方程x 2+ax +b =0的两根, ∴a =-(-1+4)=-3,b =-1×4=-4,∴a +b =-7.【答案】 D6.【解】 f (1)=12-4×1+6=3,当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1;当x <0时,x +6>3,解得-3<x <0.综上得x >3或-3<x <1.【答案】 (-3,1)∪(3,+∞)7.【解】 ∵f (x -1)=⎩⎪⎨⎪⎧x , x <1-x , x ≥1,∴x +(x +1)f (x -1)≤3等价于⎩⎪⎨⎪⎧x <1x +x +x ≤3或⎩⎪⎨⎪⎧x ≥1x +x +-x,解得-3≤x <1或x ≥1,因此x ≥-3.【答案】 {x |x ≥-3}8.【解】 因x 2+12x ≥12在x ∈(-∞,λ]上恒成立.解不等式x 2+12x ≥12得x ≤-1或x ≥12,∴当λ≤-1时,x 2+12x ≥12在x ∈(-∞,λ]恒成立.【答案】 (-∞,-1]9.【解】 原不等式化为(x 2-1)m -(2x -1)<0, 记f (m )=(x 2-1)m -(2x -1)(-2≤m ≤2).根据题意得⎩⎪⎨⎪⎧f-=-x 2--x -f =x 2--x -即⎩⎪⎨⎪⎧2x 2+2x -3>02x 2-2x -1<0,解得x 的取值范围为-1+72<x <1+32.10.【解】 由x 2-x -2>0得x <-1或x >2.① 由2x 2+(5+2k )x +5k <0得 (x +k )(2x +5)<0.②∵①与②的交集只有一个整数解-2, ∴-k >-52.即②的解为-52<x <-k .结合数轴知-2<-k ≤3.∴-3≤k <2. 11.【解】 Δ=4a 2-12(1)当Δ=4a 2-12>0即a >3或a <-3时, 方程3x 2+2ax +1=0的两根为x 1=-a -a 2-33,x 2=-a +a 2-33,∴x <-a -a 2-33或x >- a +a 2-33,(2)当Δ=4a 2-12=0即a =±3时,方程3x 2+2ax +1= 0有两个相等的根x 1=x 2=-a3.当a =3时,原不等式的解为x ≠-33, 当a =-3时,原不等式的解为x ≠33, (3)当Δ=4a 2-12<0即-3<a <3时, 方程3x 2+2ax +1=0无解, 原不等式的解集为R ;综上知:当-3<a <3时,原不等式的解集为R ; 当a =-3时,原不等式的解集为{x |x ≠33}, 当a =3时,原不等式的解集为{x |x ≠-33}; 当a >3或a <-3时,原不等式的解集为 {x |x <-a -a 2-33,或x >-a +a 2-33}.。

高等数学练习答案6-2

高等数学练习答案6-2

习题6-21. 求图6-21 中各画斜线部分的面积: (1)解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为61]2132[)(102310=-=-=⎰x x dx x x A . (2)解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(1010=-=-=⎰x x e ex dx e e A ,解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为1)1(|ln ln 111=--=-==⎰⎰e e dy y y ydy A ee e. (3)解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为 332]2)3[(132=--=⎰-dx x x A .(4)解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为 332|)313()32(3132312=-+=-+=--⎰x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1) 221x y =与x 2+y 2=8(两部分都要计算);解:388282)218(220220220220221--=--=--=⎰⎰⎰⎰dx x dx x dx x dx x x A34238cos 16402+=-=⎰ππtdt .346)22(122-=-=ππS A .(2)x y 1=与直线y =x 及x =2;解:所求的面积为⎰-=-=212ln 23)1(dx x x A .(3) y =e x , y =e -x 与直线x =1;解:所求的面积为⎰-+=-=-1021)(ee dx e e A x x .(4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解所求的面积为a b e dy e A ba y ba y -===⎰ln ln ln ln3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:y '=-2 x +4.过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3). 过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6. 两切线的交点为)3 ,23(, 所求的面积为49]34(62[)]34(34[23023232=-+--+-+-+---=⎰⎰dx x x x x x x A .4. 求抛物线y 2=2px 及其在点),2(p p处的法线所围成的图形的面积.解2y ⋅y '=2p .在点),2(p p处, 1),2(=='p p y p y , 法线的斜率k =-1,法线的方程为)2(p x p y --=-, 即y px -=23.求得法线与抛物线的两个交点为),2(p p和)3,29(p p -.法线与抛物线所围成的图形的面积为 233232316)612123()223(p y p y y p dy p y y p A pp pp =--=--=--⎰. 5. 求由下列各曲线 所围成的图形的面积;(1)ρ=2a cos θ ; 解:所求的面积为⎰⎰==-2022222cos 4)cos 2(21πππθθθθd a d a A =πa 2. (2)x =a cos 3t , y =a sin 3t ; 解所求的面积为 ⎰⎰⎰===2042202330sin cos 34)cos ()sin (44ππtdt t a t a d t a ydx A a2206204283]sin sin [12a tdt tdt a πππ=-=⎰⎰.(3)ρ=2a (2+cos θ ) 解所求的面积为2202220218)cos cos 44(2)]cos 2(2[21a d a d a A πθθθθθππ=++=+=⎰⎰.6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积. 解:所求的面积为 ⎰⎰⎰-=--==aa a dt t a dt t a t a ydx A 20222020)cos 1()cos 1()cos 1(ππ22023)2cos 1cos 21(a dt t t a a=++-=⎰.7. 求对数螺线ρ=ae θ(-π≤θ≤π)及射线θ=π所围成的图形面积. 解所求的面积为)(421)(21222222ππππθππθθθ----===⎰⎰e e a d e a d ae A .8. 求下列各曲线所围成图形的公共部分的面积.(1)ρ=3cos θ 及ρ=1+cos θ 解曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为)3,23(πA , )3,23(π-B . 由对称性, 所求的面积为πθθθθπππ45])cos 3(21)cos 1(21[2232302=++=⎰⎰d d A . (2)θρsin 2=及θρ2cos 2=. 解曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6,22(π. 所求的面积为2316]2cos 21)sin 2(21[246602-+=+=⎰⎰πθθθθπππd d A .9. 求位于曲线y =e x 下方, 该曲线过原点的切线的左方以及x 轴上方之间的图形的面积.解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有 ⎪⎩⎪⎨⎧=='==ke x y e y kx y x x 00)(0000,求得x 0=1, y 0=e , k =e . 所求面积为21ln 21)ln 1(00020e dy y y y y y e dy y y e e e ee=⋅+-=-⎰⎰.10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为 10A A A +=.显然当2πα=时, A 1=0; 当2πα<时, A 1>0.因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 2030383822a x a dx ax A a a===⎰.11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转,计算所得旋转体的体积.解 所得旋转体的体积为20020222400x a x a axdx dx y V xx x ππππ====⎰⎰.12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y轴旋转, 计算所得两个旋转体的体积. 解 绕x 轴旋转所得旋转体的体积为 ππππ712871207206202====⎰⎰x dx x dx y V x .绕y 轴旋转所得旋转体的体积为 ⎰⎰-=-⋅⋅=8328223282dy y dy x V y πππππππ56453328035=-=y .13. 把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.解 由对称性, 所求旋转体的体积为 dx x a dx y V aa⎰⎰-==03323202)(22ππ30234323234210532)33(2a dx x x a x a a aππ=-+-=⎰.14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π.证明 ⎰⎰---==RHR R HR dy y R dy y x V )()(222ππ)3()31(232H R H y y R RH R -=-=-ππ.15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:(1)2x y =, 2y x =, 绕y 轴;解 ππππ103)5121()(1052102210=-=-=⎰⎰y y dy y ydy V .(2)ax a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ⎰⎰⎰===102302202ch ch )(udu a au x dx ax a dx x y V aaπππ令1022310223)21221(4)2(4u u uu e u e a du e e a ---+=++=⎰ππ )2sh 2(43+=a π. (3)16)5(22=-+y x , 绕x 轴.解 ⎰⎰------+=44224422)165()165(dx x dx x V ππ2421601640π⎰=-=dx x .(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱, y =0, 绕直线y =2a .解 ⎰⎰--=ππππa a dx y a dx a V 202202)2()2( ⎰----=πππ20223)sin ()]cos 1(2[8t t da t a a a232023237sin )cos 1(8ππππa tdt t a a =+-=⎰. 16. 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.解 ⎰⎰------+=aaaa dy y ab dy y a b V 222222)()(ππ222228ππb a dy y a b a=-=⎰.17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴长分别为2a 、2b 和2A 、2B , 求这截锥体的体积.解 建立坐标系如图. 过y 轴上y 点作垂直于y 轴的平面, 则平面与截锥体的截面为椭圆, 易得其长短半轴分别为y h a A A --, y hb B B --.截面的面积为π)()(y h b B B y h a A A --⋅--.于是截锥体的体积为])(2[61)()(0bA aB AB ab h dy y h b B B y h a A A V h+++=--⋅--=⎰ππ. 18. 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.解 设过点x 且垂直于x 轴的截面面积为A (x ), 由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为)(3)(22x R x A -=, 所以 322334)(3R dx x R V RR=-=⎰-.19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为⎰=ba dx x xf V )(2π.证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y 轴旋转所得的旋转体的体积近似为2πx ⋅f (x )dx , 这就是体积元素, 即 dV =2πx ⋅f (x )dx ,于是平面图形绕y 轴旋转所成的旋转体的体积为⎰⎰==bab adx x xf dx x xf V )(2)(2ππ.20. 利用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.解 2002)sin cos (2cos 2sin 2πππππππ=+-=-==⎰⎰x x x x xd xdx x V .21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度. 解 ⎰⎰⎰+=+='+=8328328321)1(1)(1dx xx dx x dx x y s ,令t x =+21, 即12-=t x , 则 23ln 211111113223232222322+=-+=-=-⋅-=⎰⎰⎰⎰dt t dt dt t t dt t tt t s . 22. 计算曲线)3(3x x y -=上相应于1≤x ≤3的一段弧的长度.解 x x x y 31-=, x x y 2121-=',x x y 4121412+-=', )1(2112x x y +='+, 所求弧长为3432)232(21)1(213131-=+=+=⎰x x x dx xx s . 23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧的长度.解 由⎪⎩⎪⎨⎧=-=3)1(32232x y x y 得两曲线的交点的坐标为)36 ,2(, )36 ,2(-.所求弧长为⎰'+=21212dx y s .因为2)1(22-='x y y , yx y 2)1(-=', )1(23)1(32)1()1(34242-=--=-='x x x y x y . 所以 ]1)25[(98)13(13232)1(2312232121-=--=-+=⎰⎰x d x dx x s . 24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长. 解 ⎰⎰⎰+=+='+=y yy dy y p p dy p y dy y x s 02202021)(1)(1yy p y p y p y p 022222])ln(22[1++++=py p y p y p p y 2222ln 22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长. 解 用参数方程的弧长公式. dt t y t x s ⎰'+'=2022)()(4π⎰⋅+-⋅=202222]cos sin 3[)]sin (cos 3[4πdt t t a t t aa tdt t 6cos sin 1220==⎰π.26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y -=.计算这曲线上相应于t 从0变到π的一段弧的长度.解 由参数方程弧长公式⎰⎰+='+'=ππ22022)sin ()cos ()]([)]([dt t at t at dt t y t x s202ππa tdt a ==⎰.27. 在摆线x =a (t -sin t ), y =a (1-cos t )上求分摆线第一拱成1: 3的点的坐标.解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则 ⎰⎰+-='+'=0220220]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s)2cos 1(42sin 2000ta dt t a t -==⎰.当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令a ta 2)2cos 1(40=-,解得320π=t , 因而分点的坐标为:横坐标a a x )2332()32sin 32(-=-=πππ,纵坐标a a y 23)32cos 1(=-=π,故所求分点的坐标为)23 ,)2332((a a -π. 28. 求对数螺线θρa e =相应于自θ=0到θ=ϕ的一段弧长. 解 用极坐标的弧长公式. θθθρθρϕθθϕd ae e d s a a ⎰⎰+='+=022022)()()()()1(1122-+=+=⎰θϕθθa a e aa d e a . 29. 求曲线ρθ=1相应于自43=θ至34=θ的一段弧长.解 按极坐标公式可得所求的弧长 ⎰⎰-+='+=3443222344322)1()1()()(θθθθθρθρd d s23ln 12511344322+=+=⎰θθθd .30. 求心形线ρ=a (1+cos θ )的全长.解 用极坐标的弧长公式. θθθθθρθρππd a a d s ⎰⎰-++='+=0222022)sin ()cos 1(2)()(2a d a 82cos 40==⎰πθθ.。

高考数学全套练习之习题6-2含答案和解析

高考数学全套练习之习题6-2含答案和解析

习题6-21.已知椭圆中心在原点,左、右焦点1F 、2F 在x 轴上,A 、B 是椭圆的长、短轴端点,P 是椭圆上一点,且1PF x ⊥轴,2//PF AB ,则此椭圆的离心率是( ). A.12B.5C.13D.22.过抛物线22(0)y px p =>的焦点F 作直线l ,交抛物线于A 、B 两点,交其准线于C 点,若3CB BF =,则直线l 的斜率为___________.3.已知定点(1,0)A -,(2,0)F ,定直线l :12x =,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N . ⑴求E 的方程;⑵试判断以线段MN 为直径的圆是否过点F ,并说明理由.4.如图,已知直线l :2y kx =-与抛物线C :22(0)x py p =->交于A点,O 为坐标原点,(4,12)OA OB +=--. ⑴求直线l 和抛物线C 的方程;⑵若抛物线上一动点P 从A 到B 运动时,求ABP ∆面积的最大值. 习题6-2 1. B.提示:设椭圆的方程为221(0)x y aba b +=>>,则||OA a =,||OB b =,12||2F F c=,21||baPF =.由1PF x⊥轴,2//PF AB,得12Rt OAB Rt F F P∆∆∽,∴121||||||||P OA OB F F F =,即22b aa bc=,解得2b c =,∴2224a c c -=,故椭圆的离心率5e =.选B.2. ±提示:过点B 向准线作垂线BM ,垂足为M ,可知1cos 3MBC ∠=,所以直线l 的斜率为±图624--3. 解:⑴设(,)P x y ,122||x -,化简得2231(0)yx y -=≠.⑵①当直线BC 与x 轴不垂直时,设BC 的方程为(2)(0)y k x k =-≠,与双曲线2231yx-=联立消去y得2222(3)4(43)0k x k x k -+-+=.由题意知230k -≠且0∆>.设11(,)B x y ,22(,)C x y ,则221243kk x x -+=,212433k k x x +-=222222121212124389333(2)(2)[2()4](4)k kkk k k y y k x x k x x x x k +----=--=-++=-+=.∵11x ≠-,21x ≠-,∴AB 的方程为111(1)y x y x +=+,∴M 点的坐标为113122(1)(,)y x +,113322(1)(,)y x FM +=-,同理可得223322(1)(,)y x FM +=-,因此221222122228134343393922(1)(1)44(1)()0k k k k k k y y x x FM FN --+--++++⋅=-+=+=.②当直线BC 与x 轴垂直时,其方程为2x =,则(2,3)B ,(2,3)C -,AB 的方程为1y x =+,∴M 点的坐标为1322(,),3322(,)FM =-,同理可得3322(,)FN =--,因此2333222()()0FM FN ⋅=-+⨯-=.综上0FM FN ⋅=,即FM FN ⊥,故以线段MN 为直径的圆经过点F .4.解:⑴由222y kx x py=-⎧⎨=-⎩,得2240x pkx p +-=.设11(,)A x y ,22(,)B x y ,则122x x pk +=-, 21212()424y y k x x pk +=+-=--21212(,)(2,24)(4,12)OA OB x x y y pk pk +=++=---=--,∴2242412pk pk -=-⎧⎨--=-⎩,解得12p k =⎧⎨=⎩,故直线l 的方程为22y x =-,抛物线C 的方程22x y =-.⑵解法一:由2222y x x y=-⎧⎨=-⎩,得2440x x +-=,∴||AB=设212(,)(22P t t t ---<-+,∵||AB 为定值,∴当点P 到直线l 的距离d最大时, ABP ∆的面积最大.而22(11|22||2)4|22t t t d+-+-=,又22t --<-+,∴当2t =-时,max 5d =.∴当P 点坐标为(2,2)--时,ABP ∆面积的最大值为25= 解法二:设00(,)P x y ,依题意,抛物线在点P 处的切线与l 平行时,ABP ∆的面积最大.∵y x '=-,∴02x =-,200122y x =-=-,(2,2)P --.此时点P 到直线l的距离|2(2)(2)2|45d ⋅----=.由2222y x x y=-⎧⎨=-⎩,得2440x x +-=,∴||AB 故ABP ∆面积的最大值为25=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 第2节
考点一:利用均值不等式求最值
1.已知x 、y 均是正数,且2x +8y -xy =0,则x +y 的最小值为
( )
A .9
B .18
C .6
D .20 解析:由2x +8y -xy =0,得8x +2
y
=1,
(x +y )(8x +2y )=8+2+(8y x +2x y )
≥10+2
8y x ·2x
y =18. 当且仅当⎩⎨⎧
8y x =2x
y
8x +2
y =1
⇒⎩
⎪⎨⎪⎧
x =12y =6时取等号. 答案:B
2.(2010·成都检测)下列结论正确的是
( )
A .当x >0且x ≠1时,lg x +1
lg x
≥2
B .当x >0时,x +1
x ≥2
C .当x ≥2时,x +1
x
的最小值为2
D .当0<x ≤2时,x -1
x
无最大值
解析:A 错误,若0<x <1,则lg x <0,
∴lg x +1
lg x
≥2不成立.
C 错误,x +1
x 的最小值是2,当且仅当x =1时成立.
D 错误,当x =2时,取到最大值. 答案:B
3.(2010·江西联考)函数f (x )=5-4x +x 2
2-x
在(-∞,2)上的最小值是
( )
A .0
B .1
C .2
D .3
解析:∵x <2,∴2-x >0.
∴f (x )=(2-x )2+12-x =(2-x )+1
2-x ≥2,
当且仅当x =1时取“=”. 答案:C
考点二:利用的值不等式证明不等式
4.(2010·重庆调研)当a >b >c 时,不等式1a -b +1b -c ≥m
a -c 恒成立,则m 的最大值为
________.
解析:令x =a -b ,y =b -c ,则x >0,y >0,且a -c =x +y ,
∴只要m ≤(x +y )(1x +1
y
).
∵(x +y )(1x +1y )≥2xy ·21
xy =4,
∴m ≤4.∴m 的最大值为4. 答案:4
5.求证:a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). 证明:∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,c 4+a 4≥2c 2a 2, 2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2, 又a 2b 2+b 2c 2≥2ab 2c ,b 2c 2+c 2a 2≥2abc 2, c 2a 2+a 2b 2≥2a 2bc ,
∴2(a 2b 2+b 2c 2+c 2a 2)≥2(ab 2c +abc 2+a 2bc ),
即a 2b 2+b 2c 2+c 2a 2≥ab 2c +abc 2+a 2bc =abc (a +b +c ). 6.证明下列不等式:
(1)a ,b ,c ∈R +
,求证:bc a +ca b +ab c
≥a +b +c .
(2)a ,b ,c ∈R +
,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ).
证明:(1)由不等式的对称性可知: ∵a ,b ,c ∈R +
,∴bc a +ac b
≥2
bc a ·ca
b
=2c 同理bc a +ab c ≥2b ac b +ab
c
≥2a
将上式同向不等式相加,得 bc a +ca b +bc a +ab c +ac b +ab
c ≥2(a +b +c ) 即bc a +ca b +ab
c
≥a +b +c (2)由不等式两边的结构特点,我们联想到重要不等式x 2
+y 2
≥2xy 及变形不等式:
x 2+y 2
2
≥(x +y 2
)2(x ,y ∈R ).故可运用它们进行证明.
∵a 2+b 22≥(a +b 2)2,∴a 2+b 2≥22|a +b |≥22
(a +b ).
同理b 2+c 2≥2
2
(b +c ), c 2+a 2≥
2
2
(c +a ).三式相加得 a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ).
考点三:利用均值不等式解决实际问题
7.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 为________吨.
解析:设一年的总运费与总存储费之和为y ,则y 与每次购买量x 间的函数关系式: y =400x ·4+4x ≥2400x
·4·4x =160.
当且仅当400
x ·4=4x 时取等号,∴x 2=400,又x >0,
∴x =20(吨). 答案:20
8.学校食堂定期从某粮店以每吨1 500元的价格买大米,每次购进大米需支付运输劳务费100元,已知食堂每天需要大米1吨,贮存大米的费用为每吨每天2元,假定食堂每次均在用完大米的当天购买.
(1)该食堂每多少天购买一次大米,能使平均每天所支付的费用最多?
(2)粮店提出价格优惠条件:一次购买量不少于20吨时,大米价格可享受九五折优惠(即是原价的95%),问食堂可否接受此优惠条件?请说明理由.
解:设该食堂每x 天购买一次大米,则每次购买x 吨,设平均每天所支付的费用为y 元,则
(1)y =1x (1 500x +100+2(1+2+…+x )]=x +100
x
+1501≥1521,
当且仅当x =100
x
,即x =10时取等号.
故该食堂每10天购买一次大米,能使平均每天支付费用最少.
(2)y =1x [1500x ·0.95+100+2(1+2+…+x )]=x +100x
+1 462(x ≥20).
函数y 在[20,+∞)上为增函数,所以y ≥20+100
20+1426=1451,而1451<1521,故
食堂可接受粮店的优惠条件.
1.(2007·海南、宁夏)已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2
cd
的最小值是
( )
A .0
B .1
C .2
D .4
解析:由等差、等比数列的性质得(a +b )2cd =(x +y )2xy =x y +y
x +2≥2
y x ·x
y
+2=4,当且仅当x =y 取“=”,故选D.
答案:D
2.(2008·陕西)“a =1”是“对任意正数x,2x +a
x
≥1”的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
解析:当a =1时,2x +a x =2x +1x ≥22(当且仅当x =22时取等号)所以a =1⇒2x +a
x ≥1(x
>0).a =1为2x +a x ≥1(x >0)的充分条件.反过来,对任意正数x ,当a ≥18时,2x +a
x ≥1
恒成立,所以2x +a
x
≥1⇒ a =1.故为非必要条件.故选A.
答案:A
3.(2008·浙江)已知a ≥0,b ≥0,且a +b =2,则
( )
A .ab ≤1
2
B .ab ≥1
2
C .a 2+b 2≥2
D .a 2+b 2≤3
解析:解法一:由a +b 2≥ab 得ab ≤(a +b 2
)2
=1,又a 2+b 2≥2ab ⇒2(a 2+b 2)≥(a +b )2⇒a 2+b 2≥2.故选C.
解法二:(特值法)取a =0,b =2满足a +b =2,代入选项可排除B 、D.又取a +b =1满足a +b =2.但ab =1.可排除A.故选C.
答案:C
4.(2009·天津)设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1
b
的最小值是
( )
A .8
B .4
C .1
D.14
解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +
b =3⇒a +b =1, ∵a >0,b >0,∴ab ≤
a +
b 2=12⇒ab ≤1
4
. ∴1a +1b =a +b ab =1ab ≥1
1
4=4. 答案:B
1.若直线2ax +by -2=0(a ,b ∈R +)平分圆x 2+y 2-2x -4y -6=0,则2a +1
b
的最小值是
( )
A .1
B .5
C .4 2
D .3+2 2
解析:直线平分圆,则必过圆心. 圆的标准方程为(x -1)2+(y -2)2=11.
∴点(1,2)在直线上⇒2a +2b -2=0⇒a +b =1. (2a +1b )(a +b )=2+2b a +a b +1=3+2b a +a
b ≥3+2 2. 答案:D。

相关文档
最新文档