20第五章 集中趋势与离散趋势

合集下载

定量资料统计描述——集中趋势与离散程度

定量资料统计描述——集中趋势与离散程度

度量单位不同资料之间离散度的比较; 均数相差悬殊的资料之间离散度的比较。
【例4-11】
某研究收集了100例7岁男孩的身高和体重的资料,身高均数为 123.10cm,标准差为4.71cm;体重均数为22.92kg,标准差为 2.26kg,比较这100例7岁男孩的身高和体重的变异度。
身高 CV
4.71 100 % 3.83 %
M X n1
当n为奇数时,
() 2
, 位置居中的观察值
当n为偶数时,
M
(X n ()
X n )/ ( 1)
2 ,计算出位次居中的两个观察值的均数
2
2
例:7名病人患某病的潜伏期分别为2,3,4,5,6,9,16天,求其中位数。
本例n=7,为奇数
M X 71 X 4 5(天 ) () 2
例:8名患者食物中毒的潜伏期分别为1,2,2,3,5,8,15,24小时,求其中位数。
本例n=8,为偶数
M
1
2
X 8
() 2
X 8
( 1) 2
1 2
X
4
X5
1 3 5 4(小时)
2
(二) 中位数的应用
中位数可用于各种分布的资料,在正态分布资料中,中位数等于 均数,在对数正态分布资料中,中位数等于几何均数。
中位数不受极端值的影响,因此,实际工作中主要用于不对称分 布类型的资料、两端无确切值(>100)或分布不明确的资料。
患者编号:1 2 3 4 5 6 7 8 9 ... 117 118 119 120 住院天数:1 2 2 2 3 3 4 4 5 ... 40 40 42 45
n=120,120*5%=6,为整数:
P5

张小山新编《社会统计学与spss应用》课后习题答案

张小山新编《社会统计学与spss应用》课后习题答案

第二章 随机现象与基础概率练习题:1.从一副洗好的扑克牌(共52张,无大小王)中任意抽取3张,求以下事件的概率:(1) 三张K ; (2) 三张黑桃;(3) 一张黑桃、一张梅花和一张方块; (4) 至少有两张花色相同; (5) 至少一个K 。

解:(1)三张K 。

设:1A =“第一张为K ” 2A =“第二张为K ” 3A =“第三张为K ”则()()()()123121312//P A A A P A P A A P A A A ==432525150⨯⨯=15525若题目改为有回置地抽取三张,则答案为()123P A A A =444525252⨯⨯12197=(2)三张黑桃。

设:1A =“第一张为黑桃” 2A =“第二张为黑桃” 3A =“第三张为黑桃”则()()()()123121312//P A A A P A P A A P A A A ==131211525150⨯⨯=11850(3)一张黑桃、一张梅花和一张方块。

设:1A =“第一张为黑桃” 2A =“第二张为梅花” 3A =“第三张为方块”则 ()()()()123121312//P A A A P A P A A P A A A ==131313525150⨯⨯=0.017注意,上述结果只是一种排列顺序的结果,若考虑到符合题意的其他排列顺序,则最终的结果为:0.017×6=0.102(4)至少有两张花色相同。

设:1A =“第一张为任意花色”2A =“第二张的花色与第一张不同”3A =“第三张的花色与第一、二张不同”则()1P A =5252=1 ()21/P A A =5213521--=3951 312(/)P A A A =5226522--=2650()123P A A A =1-123()P A A A =3926115150⎛⎫-⨯⨯ ⎪⎝⎭=0.602(5)至少一个K 。

设:1A =第一张不为K2A =第二张不为K 3A =第三张不为K则()1P A =52452- ()21/P A A =51452- 312(/)P A A A =50452- ()123P A A A =1-123()P A A A =4847461525150⎛⎫-⨯⨯ ⎪⎝⎭=0.2172.某地区3/10的婚姻以离婚而告终。

第五章离散趋势的测量

第五章离散趋势的测量
U
• QU=(1500+1630)÷2=1565(元) • QL和QU之间包含了50%的数据,因此,我
们可以说有一半的家庭人均月收入在815~ 1565元之间。 • 根据例3.2资料计算上下四分位数,那么家 庭人均月收入的四分位差为: • QU—QL=?
• 上四分位数 下四分位数: • 数值型分组数据的四分位数(计算公式)
• [例3.17] 从一批产品中随机抽取100件产品
进行质量测试,测试的结果为9Fra bibliotek件合格,4 件不合格,试计算成数的方差和标准差。
• 是非标志的方差、标准差,当时取得最大
值,方差最大值为0.25,标准差最大值为 0.5,也就是说,此时是非标志的变异程度 最大。如某学生群体中男生数和女生数相 等,即男女生的成数均为0.5(50%), 说明该学生群体性别差异程度最大。是非 标志的方差、标准差的最小值均为0。

低 平均指标作为总体各单位某一数量标志的代表值, 其代表性的高低与总体差异程度有直接关系:总 体的标志变异指标值愈大,平均数的代表性愈低; 反之,标志变异指标值愈小,平均数代表性愈高。 另一方面,平均指标代表性的高低同总体各单位 变量值分布的均衡性也有直接关系:总体各单位 变量值分布的均衡性越高,平均指标代表性就越 高;反之,总体各单位变量值分布的均衡性越低, 平均指标代表性就越低。
第二节、全距与四分位差
• 一、全距 • 1、未分组资料计算公式 • 全距又称极差,是一组数据的最大值与最小值之 • •
i
差,用表示。计算公式为: R max( X i ) min( X i ) max( min( ) 式中, X i ) 、 X 分别表示为一组数据的最大值与 最小值。由于全距是根据一组数据的两个极值表 示的,所以全距表明了一组数据数值的变动范围。 越大,表明数值变动的范围越大,即数列中各变 量值差异大,反之,越小,表明数值变动的范围 越小,即数列中各变量值差异小。

正态分布的集中趋势和离散统计指标

正态分布的集中趋势和离散统计指标

正态分布的集中趋势和离散统计指标在统计学中,正态分布是一种非常重要且常见的概率分布,也被称为高斯分布。

它具有许多重要特性,其中包括集中趋势和离散统计指标。

在本文中,我们将探讨正态分布的集中趋势和离散统计指标,以及它们在实际应用中的意义和重要性。

1. 集中趋势指标正态分布的集中趋势指标是描述数据集中取值位置的统计量。

常见的集中趋势指标包括均值、中位数和众数。

其中,均值是所有数据值的平均数,是最常用的集中趋势指标之一。

在正态分布中,均值通常位于分布的中心位置,并且具有对称性。

除了均值,中位数和众数也是描述集中趋势的重要指标。

中位数是将数据集等分为两部分的数值,而众数则是数据集中出现最频繁的数值。

在实际应用中,集中趋势指标可以帮助我们理解数据分布的中心位置,判断数据的平均水平,并做出相应的决策。

在财务报表分析中,我们可以利用均值来评估企业的盈利水平,进而制定财务策略和规划预算。

在医学研究中,研究人员也常用中位数来描述疾病的发病率,以便做出治疗方案和预防措施。

2. 离散统计指标除了集中趋势指标外,正态分布还具有离散统计指标,用于描述数据的分散程度和波动性。

常用的离散统计指标包括标准差、方差和极差。

标准差是数据偏离均值的平均距离,是描述数据离散程度的重要统计量。

方差则是标准差的平方,用于衡量数据的波动性和离散程度。

另外,极差是描述数据取值范围的统计量,可以帮助我们了解数据的最大和最小取值之间的差异程度。

在实际应用中,离散统计指标可以帮助我们评估数据的波动性和风险程度,从而制定相应的风险管理和控制策略。

在金融投资中,我们可以利用标准差来衡量资产价格的波动性,进而评估投资风险并调整投资组合。

在生产制造中,研究人员也常用方差来评估生产过程的稳定性和一致性,以便提高生产效率和质量。

个人观点和理解对于正态分布的集中趋势和离散统计指标,我认为它们在数据分析和决策制定中起着至关重要的作用。

集中趋势指标可以帮助我们理解数据的中心位置,从而判断平均水平和典型取值。

集中和离散趋势指标

集中和离散趋势指标

集中和离散趋势指标1.引言1.1 概述概述部分将介绍集中和离散趋势指标的基本概念和背景。

集中趋势指标和离散趋势指标是统计学中常用的分析工具,用于描述和度量数据集中和离散程度的重要指标。

在实际问题中,我们经常遇到需要描述和分析数据集中和离散程度的情况。

集中趋势指标主要关注数据的中心值,用于度量数据集中在何处,以及数据的均匀分布程度。

而离散趋势指标则用于度量数据的分散程度,即数据的离散程度有多大。

集中趋势指标和离散趋势指标在统计学、经济学、金融学等领域被广泛应用。

例如,在统计学中,我们常常使用平均值、中位数、众数等指标来描述数据的集中趋势;而方差、标准差、极差等指标则用于度量数据的离散趋势。

本文将分别介绍集中趋势指标和离散趋势指标的定义和解释,并列举一些常见的集中趋势指标和离散趋势指标的示例。

通过对这些指标的应用和分析,我们能够更加客观地了解数据的分布特征,为后续的数据分析和决策提供依据。

在下一章节的正文部分,我们将详细介绍集中趋势指标和离散趋势指标的定义、计算方法和使用场景。

希望通过本文的介绍,读者能够对集中和离散趋势指标有一个全面的认识,并能够在实际应用中灵活运用这些指标,提高数据分析的精确性和准确性。

接下来,我们将开始介绍集中趋势指标的相关内容,包括定义和解释等方面的内容。

敬请关注!1.2 文章结构文章结构部分的内容:本文将围绕集中和离散趋势指标展开讨论。

首先,在引言部分进行概述,介绍集中和离散趋势指标的基本概念和作用。

然后,通过分析文章目录可以看出,正文部分将重点介绍集中趋势指标和离散趋势指标,包括它们的定义和解释以及常见的指标类型。

最后,在结论部分对集中趋势指标和离散趋势指标的应用进行总结。

具体而言,在正文部分,我们会首先介绍集中趋势指标,包括其定义和解释。

随后,会详细介绍一些常见的集中趋势指标,例如均值、中位数和众数等。

这些指标能够反映数据集中在某个位置或数值上的趋势,有助于我们对数据的整体特征进行理解和分析。

第五章 集中趋势与离中趋势的度量习题

第五章 集中趋势与离中趋势的度量习题

第五章集中趋势与离中趋势的度量习题一、填空题1.平均数就是在——内将各单位数量差异抽象化,用以反映总体的。

2.权数对算术平均数的影响作用不决定于权数的大小,而决定于权数的的大小。

3.几何平均数是,它是计算和平均速度的最适用的一种方法。

4.当标志值较大而次数较多时,平均数接近于标志值较的一方;当标志值较小而次数较多时,平均数靠近于标志值较的一方。

5.当时,加权算术平均数等于简单算术平均数。

6.利用组中值计算加权算术平均数是假定各组内的标志值是分布的,其计算结果是一个。

7.统计中的变量数列是以为中心而左右波动,所以平均数反映了总体分布的。

8.中位数是位于变量数列的那个标志值,众数是在总体中出现次数的那个标志值。

中位数和众数也可以称为平均数。

9.调和平均数是平均数的一种,它是的算术平均数的。

10.现象的是计算或应用平均数的原则。

11.当变量数列中算术平均数大于众数时,这种变量数列的分布呈分布;反之算术平均数小于众数时,变量数列的分布则呈分布。

12.较常使用的离中趋势指标有、、、、。

13.极差是总体单位的与之差,在组距分组资料中,其近似值是。

14.是非标志的平均数为、标准差为。

15.标准差系数是与之比。

16.已知某数列的平均数是200,标准差系数是30%,则该数列的方差是。

则该数列的极差为,四分位差为。

18.对某村6户居民家庭共30人进行调查,所得的结果是,人均收入400元,其离差平方和为5100000,则标准差是,标准差系数是。

19.测定峰度,往往以为基础。

依据经验,当β=3时,次数分配曲线为;当β<3时,为曲线;当β>3时,为曲线。

20.在对称分配的情况下,平均数、中位数与众数是的。

在偏态分配的情况下,平均数、中位数与众数是的。

如果众数在左边、平均数在右边,称为偏态。

如果众数在右边、平均数在左边,则称为偏态。

21.采用分组资料,计算平均差的公式是,计算标准差的公式是。

二、单项选择题1.加权算术平均数的大小( )A受各组次数f的影响最大B受各组标志值X的影响最大C只受各组标志值X的影响D受各组次数f和各组标志值X的共同影响2,平均数反映了( )A总体分布的集中趋势B总体中总体单位分布的集中趋势C总体分布的离散趋势D总体变动的趋势3.在变量数列中,如果标志值较小的一组权数较大,则计算出来的算术平均数( )A接近于标志值大的一方B接近于标志值小的一方C不受权数的影响D无法判断4.根据变量数列计算平均数时,在下列哪种情况下,加权算术平均数等于简单算术平均数( ) A各组次数递增B各组次数大致相等C各组次数相等D各组次数不相等5.已知某局所属12个工业企业的职工人数和工资总额,要求计算该局职工的平均工资,应该采用( )A简单算术平均法B加权算术平均法C加权调和平均法D几何平均法6.已知5个水果商店苹果的单价和销售额,要求计算5个商店苹果的平均单价,应该采用( ) A简单算术平均法B加权算术平均法C加权调和平均法D几何平均法7.计算平均数的基本要求是所要计算的平均数的总体单位应是( )A大量的B同质的C差异的D少量的8,某公司下属5个企业,已知每个企业某月产值计划完成百分比和实际产值,要求计算该公司平均计划完成程度,应采用加权调和平均数的方法计算,其权数是( )A计划产值B实际产值C工人数D企业数9.中位数和众数是一种( )A代表值B常见值C典型值D实际值10.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )A各组的次数必须相等B各组标志值必须相等C各组标志值在本组内呈均匀分布D各组必须是封闭组11.四分位数实际上是一种( )A算术平均数B几何平均数C位置平均数D数值平均数12.离中趋势指标中,最容易受极端值影响的是( )A极差B平均差C标准差D标准差系数13.平均差与标准差的主要区别在于( )A指标意义不同B计算条件不同C计算结果不同D数学处理方法不同A7万元B1万元C12 万元 D 3万元15.已知某班40名学生,其中男、女学生各占一半,则该班学生性别成数方差为( )A25% B 30% C 40% D 50%16.当数据组高度偏态时,哪一种平均数更具有代表性? ( )A算术平均数B中位数C众数D几何平均数17.方差是数据中各变量值与其算术平均数的( )A离差绝对值的平均数B离差平方的平均数C离差平均数的平方D离差平均数的绝对值18.一组数据的偏态系数为1.3,表明该组数据的分布是( )AlE态分布B平顶分布C左偏分布D右偏分布19.当一组数据属于左偏分布时,则( )A平均数、中位数与众数是合而为一的B众数在左边、平均数在右边C众数的数值较小,平均数的数值较大D众数在右边、平均数在左边20.四分位差排除了数列两端各( )单位标志值的影响。

集中趋势与离散趋势

集中趋势与离散趋势
交互式数据探索
允许用户自定义查询条件、筛选数据和调整图表 参数,以便更深入地探索数据的内在规律和关联 关系。
数据动画
将数据变化过程以动画形式展现出来,帮助用户 更直观地理解数据的变化趋势和动态特征。
06 总结与展望
CHAPTER
主要发现与结论
集中趋势描述
通过平均数、中位数和众数等指标,可以有 效地描述数据的集中趋势,反映数据分布的 中心位置。
众数
一组数据中出现次数最多的数。众数可能不唯一,也可能不存在。众数适用于分类数据和顺序数据,对于数值型 数据,如果数据分布的波动性较大,众数可能不能很好地代表数据的集中趋势。
03 离散趋势
CHAPTER
定义与概念
离散趋势
指一组数据中各数值之间的差异程度 或离散程度,是数据分布的另一个重 要特征。
直方图(Histogram)
将数据按照一定范围进行分组并用矩形条表示,通过矩形条的高度和宽度反映数据的分布 规律。
散点图(Scatter Plot)
用点的位置表示两个变量之间的关系,可通过观察点的分布情况和趋势线分析数据的集中 和离散趋势。
动态数据可视化在趋势分析中的应用
1 2 3
时间序列分析
通过动态展示数据随时间变化的情况,揭示数据 的长期趋势、季节波动和周期性规律。
• 关注数据质量和异常值处理:在实际数据分析中,异常值和数据质量问题是不 可忽视的。未来的研究可以关注如何有效地处理异常值和数据质量问题,以提 高集中趋势和离散趋势分析的准确性和可靠性。例如,可以采用稳健的统计方 法或者数据清洗技术对异常值进行处理,以保证分析结果的稳定性和可靠性。
谢谢
THANKS
Tableau
功能强大的数据可视化工具,支持交互式数据分析和动态图表展示, 适用于大数据处理。

张小山新编《社会统计学与spss应用》课后习题答案

张小山新编《社会统计学与spss应用》课后习题答案

第二章 随机现象与基础概率练习题:1.从一副洗好的扑克牌(共52张,无大小王)中任意抽取3张,求以下事件的概率:(1) 三张K ; (2) 三张黑桃;(3) 一张黑桃、一张梅花和一张方块; (4) 至少有两张花色相同; (5) 至少一个K 。

解:(1)三张K 。

设:1A =“第一张为K ” 2A =“第二张为K ” 3A =“第三张为K ”则()()()()123121312//P A A A P A P A A P A A A ==432525150⨯⨯=15525若题目改为有回置地抽取三张,则答案为()123P A A A =444525252⨯⨯12197=(2)三张黑桃。

设:1A =“第一张为黑桃” 2A =“第二张为黑桃” 3A =“第三张为黑桃”则()()()()123121312//P A A A P A P A A P A A A ==131211525150⨯⨯=11850(3)一张黑桃、一张梅花和一张方块。

设:1A =“第一张为黑桃” 2A =“第二张为梅花” 3A =“第三张为方块”则 ()()()()123121312//P A A A P A P A A P A A A ==131313525150⨯⨯=0.017注意,上述结果只是一种排列顺序的结果,若考虑到符合题意的其他排列顺序,则最终的结果为:0.017×6=0.102(4)至少有两张花色相同。

设:1A =“第一张为任意花色”2A =“第二张的花色与第一张不同”3A =“第三张的花色与第一、二张不同”则()1P A =5252=1 ()21/P A A =5213521--=3951 312(/)P A A A =5226522--=2650()123P A A A =1-123()P A A A =3926115150⎛⎫-⨯⨯ ⎪⎝⎭=0.602(5)至少一个K 。

设:1A =第一张不为K2A =第二张不为K 3A =第三张不为K则()1P A =52452- ()21/P A A =51452- 312(/)P A A A =50452- ()123P A A A =1-123()P A A A =4847461525150⎛⎫-⨯⨯ ⎪⎝⎭=0.2172.某地区3/10的婚姻以离婚而告终。

集中趋势离散趋势分布形态

集中趋势离散趋势分布形态

集中趋势离散趋势分布形态【最新版】目录1.什么是集中趋势和离散趋势2.集中趋势的度量指标3.离散趋势的度量指标4.集中趋势和离散趋势的应用正文集中趋势和离散趋势是统计学中常用的概念,用于描述一组数据的特征。

集中趋势是指一组数据所趋向的中心数值,而离散趋势则是指数据值之间的差异程度。

集中趋势的度量指标包括算术均数、几何均数、中位数和百分位数。

算术均数是一组数据所有数值的和除以数据个数,它对总体的平均水平具有代表性。

几何均数适用于描述正偏态分布的数据集,它是所有数据值的乘积的 n 次方根。

中位数是一组数据排序后位于中间位置的数值,它对总体的中心位置具有代表性。

百分位数则是将一组数据按照大小排序后,某个百分比位置的数值。

离散趋势的度量指标包括方差、标准差、范围、四分位差和离散系数。

方差是一组数据与其算术均值之差的平方和的平均值,它反映了数据的波动程度。

标准差是方差的平方根,它也是描述数据离散程度的一个常用指标。

范围是一组数据中最大值与最小值之差,它反映了数据的范围。

四分位差是一组数据中上四分位数与下四分位数之差,它用于描述数据的中间50% 范围内的离散程度。

离散系数是标准差与算术均值之比,它用于比较不同单位或量级的数据集的离散程度。

集中趋势和离散趋势在实际应用中有着广泛的应用。

例如,在经济学中,可以使用集中趋势度量指标来描述收入、财富或产量的分布情况,而离散趋势度量指标则可以用来评估经济不平等程度或市场竞争程度。

在生物学中,集中趋势和离散趋势可以用来描述生物种群的特征,如平均寿命、身高、体重等。

在教育学中,集中趋势和离散趋势可以用来评估学生的学术表现,如平均成绩、成绩分布等。

总之,集中趋势和离散趋势是描述数据特征的重要概念,它们在实际应用中有着广泛的应用价值。

统计简答题

统计简答题

1.简述描述一组资料的集中趋势和离散趋势的指标。

集中趋势和离散趋势是定量资料中总体分布的两个重要指标。

(1)描述集中趋势的统计指标:平均数(算术均数、几何均数和中位数)、百分位数(是一种位置参数,用于确定医学参考值范围,P50就是中位数)、众数。

算术均数:适用于对称分布资料,特别是正态分布资料或近似正态分布资料;几何均数:对数正态分布资料(频率图一般呈正偏峰分布)、等比数列;中位数:适用于各种分布的资料,特别是偏峰分布资料,也可用于分布末端无确定值得资料。

描述离散趋势的指标:极差、四分位数间距、方差、标准差和变异系数。

四分位数间距:适用于各种分布的资料,特别是偏峰分布资料,常把中位数和四分位数间距结合起来描述资料的集中趋势和离散趋势。

方差和标准差:都适用于对称分布资料,特别对正态分布资料或近似正态分布资料,常把均数和标准差结合起来描述资料的集中趋势和离散趋势;变异系数:主要用于量纲不同时,或均数相差较大时变量间变异程度的比较2.举例说明变异系数适用于哪两种形式的资料,作变异程度的比较?度量衡单位不同的多组资料的变异度的比较。

例如,欲比较身高和体重何者变异度大,由于度量衡单位不同,不能直接用标准差来比较,而应用变异系数比较。

3.试比较标准差和标准误的关系与区别。

区别:⑴标准差S:①意义:描述个体观察值变异程度的大小。

标准差小,均数对一组观察值得代表性好;②应用:与均数结合,用以描述个体观察值的分布范围,常用于医学参考值范围的估计;③与n的关系:n越大,S越趋于稳定;⑵标准误SX:①意义:描述样本均数变异程度及抽样误差的大小。

标准误小,用样本均数推断总体均数的可靠性大;②应用于均数结合,用以估计总体均数可能出现的范围以及对总体均数作假设检验;③与n的关系:n越大,SX越小。

联系:①都是描述变异程度的指标;②由SX=s/n-1可知,SX与S成正比。

n一定时,s 越大,SX越大。

4.简述应用相对数时的注意事项。

数据的集中趋势与离散程度

数据的集中趋势与离散程度

(一)知识要点知识点1:表示数据集中趋势的代表平均数、众数、中位数都是描述一组数据集中趋势的特征数,只是描述的角度不同,其中平均数的应用最为广泛。

知识点2:表示数据离散程度的代表极差的定义:一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的差叫做极差。

极差=最大值-最小值,一般来说,极差小,则说明数据的波动幅度小。

知识点3:生活中与极差有关的例子在生活中,我们经常用极差来描述一组数据的离散程度,比如一支篮球队队员中最高身高与最矮身高的差。

一家公司成员中最高收入与最低收入的差。

知识点4:平均差的定义在一组数据x1,x2,…,x n中各数据与它们的平均数的差的绝对值的平均数即T=叫做这组数据的“平均差”。

“平均差”能刻画一组数据的离散程度,“平均差”越大,说明数据的离散程度越大。

知识点5:方差的定义在一组数据x1,x2,…,x n中,各数据与它们的平均数差的平方,它们的平均数,即S2=来描述这组数据的离散程度,并把S2叫做这组数据的方差。

知识点6:标准差方差的算术平方根,即用S=来描述这一组数据的离散程度,并把它叫做这组数据的标准差。

知识点7:方差与平均数的性质若x1,x2,…x n的方差是S2,平均数是,则有①x1+b,x2+b…x n+b的方差为S2,平均数是+b②ax1,ax2,…ax n的方差为a2s2,平均数是a③ax1+b,ax2+b,…ax n+b的方差为a2s2,平均数是a+b同步练习:1为了从甲、乙两名学生中选拔一人参加电脑知识竞赛,在相同条件下对他的电脑知识进行了10次测试,成绩如下:(单位:分)甲的成绩76849086818786828583乙的成绩82848589798091897479回答下列问题:(1)甲学生成绩的众数是分,乙学生成绩的中位数是分。

(2)若甲学生成绩的平均数为,乙学生成绩的平均数为,则与的大小关系是。

(3)经计算知=13.2,=26.36,这说明。

集中趋势和离散趋势课件

集中趋势和离散趋势课件

03
实时数据分析
在实时数据分析中,快速准确地计算集中趋势和离散趋势对于及时做出
决策具有重要意义。研究者们正在研究如何利用新的计算方法提高实时
数据分析的效率和准确性。
对决策的影响研究
决策支持
集中趋势和离散趋势的计算结果可以为决策提供重要支持,如市场预测、风险 评估等。研究者们正在研究如何更好地利用这些结果为决策提供依据。
新的计算方法
随着统计学的发展,新的计算方 法不断涌现,如机器学习算法、 人工智能技术等,这些方法可以 更快速、准确地计算集中趋势和
离散趋势。
算法优化
针对现有计算方法的不足,研究 者们正在不断优化算法,提高计 算效率和准确性,以满足日益增
长的数据处理需求。
可解释性研究
为了更好地理解计算结果,研究 者们正在研究如何提高计算方法 的可解释性,使非专业人士也能
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
集中趋势和离散趋势的 应用
在数据分析中的应用
描述数据分布情况
通过计算数据的集中趋势和离散 趋势,可以了解数据的分布情况 ,从而更好地理解数据的特点和
规律。
识别异常值
通过离散趋势分析,可以识别出数 据中的异常值,这些异常值可能对 数据分析结果产生重大影响,需要 特别关注。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
集中趋势和离散趋势 课件
目录
CONTENTS

• 集中趋势 • 离散趋势 • 集中趋势和离散趋势的应用 • 集中趋势和离散趋势的比较 • 集中趋势和离散趋势的未来发展
REPORT

第20章数据的集中趋势和离散程度复习总结

第20章数据的集中趋势和离散程度复习总结
在增长,粮
习题:
(1)计算八·二班学生有多少件作品获奖? (2)求出八·二班获奖作品的平均成绩。 (3)求出获奖作品成绩的众数和中位数。
极差:
1、极差的意义 2、极差的计算方法:
方差:
1、方差的意义 2、方差的计算方法
标准差:
1、标准差的意义 2、标准差的计算方法
方差的运算性质:
预习检测:
数据的离散程度是数据分布的另一个重要 特征,它所反映的是各个数据远离其中心 值的程度,可利用极差、方差、标准差 等刻 画一组数据的离散程度。
平均数:
1、平均数的意义 2、平均数的计算方法:
中位数:
1、中位数的意义 2、中位数的计算方法
众数:
1、众数的意义 2、众数的计算方法
平均数、中位数、众数的异同点:
相同点有哪些? 不同点有哪些?
梳理:
1.若数据 x1,x2,,xn,则平均数=

2.若n个数据中x1出现f1次,x2出现f2次,…xn出现
x1fn次,则平均数=。3.一般地,个数据按大小顺序排列,处于 的
一个数据(或
)叫做这组数据的中位数.
4.一般地,一组数据中出现次数
数据的集中趋势和 离散程度
单元整理和复习
复习回顾:
集中 趋势
平均数 中位数 众数
离散 程度
极差 方差 标准差

样本平均数

估计

总体平均数


样本方差

估计

总体方差
复习提纲:
1、数据的集中趋势的三个特征数 2、数据的离散程度的三个特征数 3、用样本估计总体
预习检测:
数据的代表是指利用平均数、中位数、众数等 刻画一组数据的集中趋势。所谓集中趋势 是指一组数据向某一中心值靠拢的倾向, 测量集中趋势就是寻找数据一般水平的代 表值或中心值。

集中趋势和离散趋势

集中趋势和离散趋势
3. 不同类型的数据用不同的集中趋势测度值 4. 低层次数据的测度值适用于高层次的测量数据,但高 层次数据的测度值并不适用于低层次的测量数据
众数
(mode)
1. 2. 3.
出现次数最多的变量值
不受极端值的影响
一组数据可能没有众数或有几个众数
4.
主要用于分类数据,也可用于顺序数据 和数值型数据
The Mode 众数
1.
排序后处于中间位置上的值
50%
Me
50%
2. 不受极端值的影响 3. 主要用于顺序数据,也可用数值型数据,但不能 用于分类数据
顺序数据的中位数
(例题分析)
甲城市家庭对住房状况评价的频数分布 回答类别
非常不满意 不满意 一般 满意 非常满意 甲城市
户数 (户)
24 108 93 45 30
累计频数
1
2
3
4
5
6
7
8
9

位置 n 1 2 9 1 2 5
中位数 1080
数值型数据的中位数
(10个数据的算例)


【例】:10个家庭的人均月收入数据
排 位 序: 置: 660 750 780 850 960 1080 1250 1500 1630 2000
1 2
3
4
5
6
7
8
9
10
22 18 12 18 100
在所调查的50人中,购 买可口可乐的人数最多, 为15人,占总被调查人数 的30%,因此众数为“可 口可乐”这一品牌,即 Mo=可口可乐
顺序数据的众数
(例题分析)
甲城市家庭对住房状况评价的频数分布 回答类别 非常不满意 不满意 一般 满意 非常满意 甲城市 户数 (户) 24 108 93 45 30 百分比 (%) 8 36 31 15 10

练习题解答:第五章集中趋势与离散趋势

练习题解答:第五章集中趋势与离散趋势

第五章 集中趋势与离散趋势练习题:1. 17名体重超重者参加了一项减肥计划,项目结束后,体重下降的重量分别为: (单位:千克)12 10 15 8 2 6 14 12 10 12 10 10 11 10 5 10 16 (1)计算体重下降重量的中位数、众数和均值。

(2)计算体重下降重量的全距和四分位差。

(3)计算体重下降重量的方差和标准差。

解:(1)○1中位数:对上面的数据进行从小到大的排序:M d 的位置=2=9,数列中从左到右第9个是10,即M d =10。

○2众数:绘制各个数的频数分布表:“10”的频数是6,大于其他数据的频数,因此众数M O =“10” ○3均值:18.1016521=+⋯++==∑=nnxX ni i(2)○1全距:R =max(x i )-min(x i )=16-2=14 ○2四分位差:根据题意,首先求出Q 1和Q 3的位置: Q 1的位置=41+n =4117+=,则Q 1=8+×(10-8)=9 Q 3的位置=4)1(3+n =4)117(3+⨯=,则Q 3=12+×(12-12)=12Q= Q 3- Q 1=12-9=3(3)○1方差:221222()1(210.18)(510.18)(1610.18) 171=12.404nii x x S n =-=--+--=-∑+?+○2标准差: 3.52S ==2.下表是武汉市一家公司60名员工的省(市)籍的频数分布:省(市)籍频数(个)湖北 28 河南 12 湖南 6 四川 6 浙江 5 安徽3(1)根据上表找出众值。

(2)根据上表计算出异众比率。

解: (1)“湖北”的频数是28,大于其他省(市)籍的频数,因此众数M O =“湖北” (2)异众比率的计算公式为: mor n f V n-=( n 代表总频数,mo f 代表众数的频数) 其中n=60,mo f =28,则: 60280.5360r V -==3.某个高校男生体重的平均值为58千克,标准差为6千克,女生体重的平均值 为48千克,标准差为5千克。

数据的集中趋势和离散程度知识点

数据的集中趋势和离散程度知识点

数据的集中趋势和离散程度知识点文章一:《啥是数据的集中趋势?》朋友们,咱今天来聊聊数据的集中趋势。

比如说,咱班这次考试的成绩。

要是大部分同学都考了 80 分左右,那 80 分就可能是这个成绩数据的集中趋势。

再比如,咱去菜市场买菜。

一堆苹果,大多数都在半斤左右,那半斤就是这堆苹果重量数据的集中趋势。

像平均数、中位数和众数,都是能帮咱找到数据集中趋势的好帮手。

就拿平均数来说,一家人一个月的水电费,把所有费用加起来除以天数,得到的那个数就是平均数,能大概反映出这家人每天用水电的平均情况。

数据的集中趋势能让咱一下子就明白一堆数据的中心在哪儿,是不是挺有用?文章二:《走进数据的集中趋势》亲爱的小伙伴们,今天咱们来探索一下数据的集中趋势。

想象一下,学校运动会上,大家跑步的时间。

如果很多同学都在2 分钟左右跑完,那 2 分钟差不多就是跑步时间这个数据的集中趋势啦。

还有,大家一起收集树叶,看看树叶的大小。

要是多数树叶的面积都差不多,那这个差不多的大小就是树叶面积数据的集中趋势。

咱举个例子哈,一个班级同学的身高,把所有人的身高加起来除以人数,得到的那个数就是平均身高。

这个平均身高就能让咱知道这个班同学大概的身高水平。

再比如说,一组数字 3、5、5、7、8,这里面 5 出现的次数最多,那 5 就是众数,也是这组数据的集中趋势之一。

所以说,了解数据的集中趋势能帮咱快速抓住重点,是不是很有意思?文章三:《数据的集中趋势,你懂了吗?》朋友们好呀!今天咱们要说的数据的集中趋势,其实不难理解。

比如说,咱们去超市买零食,看各种零食的价格。

要是大部分零食都在 5 块钱左右,那 5 块钱就是这些价格数据的集中趋势。

再比如,咱们统计一个月里每天的气温。

如果有好多天的气温都在 25 度上下,那 25 度就可能是这个气温数据的集中趋势。

就拿咱班同学的零花钱来说吧,把大家的零花钱都加起来,再除以人数,算出来的那个数就是平均零花钱。

通过这个平均零花钱,咱能大概知道同学们零花钱的一般情况。

集中趋势与离散趋势之间的关系是

集中趋势与离散趋势之间的关系是

集中趋势与离散趋势之间的关系是
集中趋势和离散趋势是描述数据分布的两个主要方面。

集中趋势是指数据的中心位置,常用的指标有平均值、中位数和众数。

它反映了数据的平均水平或典型值。

离散趋势是指数据的分散程度或变异程度,常用的指标有方差、标准差和极差。

它反映了数据的离散程度或散布情况。

集中趋势和离散趋势是相互关联的。

通常情况下,如果数据的集中趋势较大,即数据的平均值或中位数较高,那么离散趋势也会相对较大,即数据的方差或标准差较大。

反之亦然,如果数据的集中趋势较小,那么离散趋势也相对较小。

然而,集中趋势和离散趋势之间的关系也可以有例外。

比如,在极端值存在的情况下,数据的集中趋势可能比较偏离真实的数据中心,但是离散趋势可能相对较小。

此外,也可以有数据分布形状不同但集中趋势相同的情况,如正态分布和双峰分布都可以具有相同的平均值。

因此,对于数据的全面描述和分析,需要同时考虑集中趋势和离散趋势。

[5]第五章 集中与离散趋势测定指标.

[5]第五章  集中与离散趋势测定指标.
[范例5.3] 某单位职工月收人分组资料如表5-3所 示,求该单位平均每个职工月收人。
表5-3
月收入(元)
3000~3500 3500~4000 4000~4500 4500~5000 5000~5500 5500~6000 6000~6500

某单位职工月收入分组表
组中值(元)
xi
3250 3750 4250 4750 5250 5750 6250
第一,平均指标在时间上的差异的对比分析作用。 平均指标可以反映同一总体现象在不同时期的一般发 展变化水平,揭示现象的变动趋势和规律性。如:由 于不同时期同一研究总体的农民家庭人口结构会发生 变动,若要考察农民纯收人变化,只能用农民平均纯
收人指标来反映。
第二,平均指标在空间上的差异的对比分析作用。 利用平均指标比较在某一时期同类现象在不同地区、 不同单位的一般水平,用以评价总体各单位的工作质 量和效果。如:由于城乡每一户居民人口规模不同, 要用人均居住面积而不能用城乡每户居住总面积来考 察城乡居民居住状况的差异。
n
xi fi
x

i 1 n
fi
i 1
式中:xi 表示分布数列中第i
值;
组的变量值或组中
fi 表示分布数列中第i 组的单位个数。
上式还可以变形为:
x
n
xi
fi
n
Hale Waihona Puke i1fii 1
式中:fi 称为分布数列中第i 组的频数或权数;
fi
n
称为分布数列中第i 组的频率或权数
系数。
fi
1.简单算术平均数(Simple arithmetic mean)
简单算术平均数适用于未分组的分布数列,它是 将总体各单位同类标志值直接汇总,然后与总体单位 总数相除所求得。简单算术平均数的计算公式为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解】:Md 的位置= n 1 =5.5,数列中第 5 个是 960,第 6 个是 1080,中位数 Md= 2
960 1080 1020 元。 2
第一节 集中趋势分析
• 二、定序变量:中位数
例 5:一项关于城市住房满意度调查结果如下表, 表 5-3 城市家庭对住房状况的评价
满意度
频数(f) 累积频数( cf )
非常不满意
24
24
不太满意
108
132
一般
95
227
比较满意
43
270
非常满意
30
300
合计
300
解:由表数据可知,
Md 位置= n 1 300 1 150.5
2
2
从表中累积频次中可看出,这个位置在“一般”这个等级内,因此 Md=“一般”。
第一节 集中趋势分析
• 二、定序变量:中位数
• 2.用分组资料求中位数
Md 的位置= n 1 =5,数列中从左到右第 5 个是 1080,即 Md=1080 元。 2
我们再来看看数据个数为偶数时怎样计算中位数。 假设我们在例 4 中多抽取 1 个家庭,10 个家庭,每个家庭的人均月收入数据排序后为:
660,750,780,850,960,1080,1250,1500,1630 ,2000; 计算 10 个家庭人均月收入的中位数。
• U=中位数所在组的真正上限值; • n=全部个案数;
• cf(m-1)=低于中位值所在组真实下限的累积频次; • fm=中位数所在组的次数;
第一节 集中趋势分析
• 二、定序变量:中位数
例 6:下面以表 5-4 中的数据为例,说明如何从分组资料中求中位数。 表 5-4 某公司员工的收入分布
收入
频数(f)
该组的组中值 2249.5[ (2000 2499) 2 ]即为众数。即 MO=2249.5。
第一节 集中趋势分析
• 二、定序变量:中位数 • 中位数(Median)是指一组数据按值的大小顺序排列后,处于中央位置的变量值,用
Md表示,又称中位值。
1.根据原始资料求中位数 根据原始资料计算中位数时,要先对数据进行排序,然后确定中位数的位置,其公式 为:
第一节 集中趋势分析
一、定类变量:众数
例 2:根据表 5-2 的数据求该公司员工收入的众值。
表 5-2 某公司员工的收入分布
收入
员工数
组中值
1000-1499
10
1250
1500-1999
10
1750
2000-2499
40
2250
2500-3000
20
2750
合计
80
【解】:从表中数据显示可知,频数最多的收入组别为“2000-2499”,对应的频数为 40 人,
上网类型
频数
百分比
浏览信息
300
33.3
收发邮件
200
22.2
聊天
150
16.7
玩游戏
100
11.1
查找资料
50
5.6
其它
100
11.1
合计
900
100.0
【解】:这里的变量是“上网类型”,属于定类层次的变量。
表 5-1 中数据显示,在所调查的 900 人中,选择“浏览信息”的最多,有 300 人,占 总数的 33.3%,因此众数为“浏览信息”这一类别,即 MO=浏览信息。
Md

L
n 2
cf(m1) fm
(U

L) =1999.5
80 20 2 (2499.5 1999.5) 2250
社会统计学与SPSS应用
第五章 集中趋势与离散趋势
第五章 集中趋势与离散趋势
• 第一节 集中趋势分析 • 第二节 离散趋势分析 • 第三节 单变量描述分析的SPSS应用
第一节 集中趋势分析
• 集中趋势(central tendency)是指一组数据向某一中心值靠 拢的倾向,集中趋势分析就是寻找一个代表数据一般水平的代表 值或中心值。
累积频次(cf↑)
1000-1499
10
10
1500-1999
10
20
2000-2499
40
60
2500-3000
20
80
合计
80
【解】:Md 的位置= n 1 80 1 40.5 ,Md 位于“2000—2499”组,
2
2
L=1999.5;U=2499.5;cf(m-1)=20;fm=40;n=80;代入公式得
例 3:下面是男女两组成绩的定序数据,求男女生各自成绩的中位数。 男:优、良、差、良、优、中、中、中、良; 女:优、优、良、中、良、良、优、优; 【解】:先将成绩排序: 男:优、优、良、良、良、中、中、中、差; 女:优、优、优、优、良、良、良、中;
男生 Md 的位置= n 1 =5,位于序列的第 5 位,对应成绩是良,因此,Md=良; 2
• 一、定类变量:众数 • 众数(Mode)是一组数据中出现次数最多(即频数最高)的
变量量 的值 集, 中一 趋般 势用。MO表示,又称众值。它主要用来测量定类层次变
第一节 集中趋势分析
• 一、定类变量:众数
例 1:表 5-1 的数据是甲校学生上网类型的统计数据,请根据表中的数据,计算众数。
表 5-1 上网类型的频数分布表
Md 的位置= n 1 ,其中,n 为数据的个数。 2
当 n 为奇数时,中位数 Md 就直接等于 n 1 位置上对应的变量值;当 n 为偶数时,中 2
位数 Md 等于位于最中央的两个变量值的均值(如果是定序变量,中位数取值就是将两个变 量取值结合起来表示)。
第一节 集中趋势分析
• 二、定序变量:中位数
女生 Md 的位置= n 1 =4.5,位于序列第四和第五位之间,对应的成绩是优和良,因 2
此,女生的 Md=“良和优之间”。
第一节 集中趋势分析
• 二、定序变量:中位数
例 4:在某个城市随机抽取 9 个家庭,调查得到每个家庭的人均月收入数据如下(单 位:元),计算人均月收入的中位数。
1500,750,780,1080,850,960,2000,1250,1630; 【解】:先将上面的数据排序:750,780,850,960,1080,1250,1500,1630 ,2000;
• 由分组资料求中位数时,与前面的情况有所不同。在确定了中位值所在组的组别后,还要对“组
距”进行分解,以确定中位值的位置。具体方法是先列出累积频次,然后按上例同样的方法确定中位
数所在的组,最后利用下述公式计算出中位数:

Md
其中,L=中位数所在组的真正下限值;
L
n 2

cf (m1)
fmΒιβλιοθήκη (U L)
相关文档
最新文档