2019届高考数学专题08平面向量

合集下载

2019高考数学真题汇编平面向量

2019高考数学真题汇编平面向量

考点1 平面向量的概念及其线性运算1.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C . 1D .22. 在下列向量组中,能够把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)考点2 平面向量基本定理及向量坐标运算3.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 D.1524.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.考点3 平面向量的数量积及应用5.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=___.6.设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=___.7.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.8.若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=______.9.设向量a ,b 满足|a +b |=10,|a -b |=6,则=______.10.在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______. 考点4 单元综合11.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD→|=1,则|OA →+OB →+OD →|的最大值是________.练习:1.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .2.设向量,a b 满足||10a b +=,||6a b -=,则=∙b a(A )1 (B )2 (C )3 (D )53. 设20πθ<<,向量()()1cos cos 2sin ,,,θθθb a =,若b a //,则=θtan _______. 4.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.5.若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )6.设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ=________.7.在平面直角坐标系中,O 为原点,(1,0),(3,0),A B C -动点D满足||1,CD OA OB OD =++则||的最大值是 8.如图在平行四边形ABCD 中,已知8,5AB AD ==, 3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 。

2019数学(理科)高考题分类(高考真题+模拟题) 平面向量

2019数学(理科)高考题分类(高考真题+模拟题) 平面向量

F 单元 平面向量F1 平面向量的概念及其线性运算17.F1,F2[2019·浙江卷] 已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 . 17.0 2√5 [解析] 以A 为原点,AB 为x 轴,AD 为y 轴建立平面直角坐标系(图略),则A (0,0),B (1,0),C (1,1),D (0,1),∴AB⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗ =(0,1),CD ⃗⃗⃗⃗⃗ =(-1,0),DA ⃗⃗⃗⃗⃗ =(0,-1),AC ⃗⃗⃗⃗ =(1,1),BD ⃗⃗⃗⃗⃗ =(-1,1), ∴λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6), ∴|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗ |=√(λ1-λ3+λ5-λ6)2+(λ2-λ4+λ5+λ6)2. ∵λi ∈{-1,1},i=1,2,3,4,5,6,∴|λ1-λ3+λ5-λ6|=0或2或4,|λ2-λ4+λ5+λ6|=0或2或4. ①当λ1=λ3=λ4=λ5=λ6=-λ2时取到最小值0. ②当|λ1-λ3+λ5-λ6|=4时,λ1,-λ3,λ5,-λ6同号,当|λ2-λ4+λ5+λ6|=4时,λ2,-λ4,λ5,λ6同号, 显然λ5,λ6同号与λ5,-λ6同号不能同时成立,∴√(λ1-λ3+λ5-λ6)2+(λ2-λ4+λ5+λ6)2≤√42+22=2√5,当λ1=λ2=λ5=-λ3=-λ4=-λ6时取到最大值2√5.F2 平面向量基本定理及向量坐标运算3.F2,F3[2019·全国卷Ⅱ] 已知AB ⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗ = ( ) A .-3 B .-2 C .2 D .33.C [解析] BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ =(3,t )-(2,3)=(1,t-3),所以|BC ⃗⃗⃗⃗ |=√12+(t -3)2=1,解得t=3,所以BC ⃗⃗⃗⃗ =(1,0),所以AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗ =(2,3)·(1,0)=2.17.F1,F2[2019·浙江卷] 已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 . 17.0 2√5 [解析] 以A 为原点,AB 为x 轴,AD 为y 轴建立平面直角坐标系(图略),则A (0,0),B (1,0),C (1,1),D (0,1),∴AB ⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗ =(0,1),CD ⃗⃗⃗⃗⃗ =(-1,0),DA ⃗⃗⃗⃗⃗ =(0,-1),AC ⃗⃗⃗⃗ =(1,1),BD ⃗⃗⃗⃗⃗ =(-1,1), ∴λ1AB⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6), ∴|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗ |=√(λ1-λ3+λ5-λ6)2+(λ2-λ4+λ5+λ6)2. ∵λi ∈{-1,1},i=1,2,3,4,5,6,∴|λ1-λ3+λ5-λ6|=0或2或4,|λ2-λ4+λ5+λ6|=0或2或4. ①当λ1=λ3=λ4=λ5=λ6=-λ2时取到最小值0. ②当|λ1-λ3+λ5-λ6|=4时,λ1,-λ3,λ5,-λ6同号,当|λ2-λ4+λ5+λ6|=4时,λ2,-λ4,λ5,λ6同号, 显然λ5,λ6同号与λ5,-λ6同号不能同时成立,∴√(λ1-λ3+λ5-λ6)2+(λ2-λ4+λ5+λ6)2≤√42+22=2√5,当λ1=λ2=λ5=-λ3=-λ4=-λ6时取到最大值2√5.F3 平面向量的数量积及应用7.F3[2019·全国卷Ⅰ] 已知非零向量a ,b 满足|a|=2|b|,且(a-b )⊥b ,则a 与b 的夹角为 ( ) A .π6 B .π3 C .2π3 D .5π67.B [解析] 因为(a-b )⊥b ,所以(a-b )·b=a ·b-b 2=|a||b|cos <a ,b>-|b|2=0,得|a|cos <a ,b>=|b|,又|a|=2|b|,所以cos <a ,b>=12,所以a 与b 的夹角为π3.3.F2,F3[2019·全国卷Ⅱ] 已知AB ⃗⃗⃗⃗⃗ =(2,3),AC ⃗⃗⃗⃗ =(3,t ),|BC ⃗⃗⃗⃗ |=1,则AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗ = ( ) A .-3 B .-2 C .2 D .33.C [解析] BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ =(3,t )-(2,3)=(1,t-3),所以|BC ⃗⃗⃗⃗ |=√12+(t -3)2=1,解得t=3,所以BC ⃗⃗⃗⃗ =(1,0),所以AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗ =(2,3)·(1,0)=2.13.F3[2019·全国卷Ⅲ] 已知a ,b 为单位向量,且a ·b=0,若c=2a-√5b ,则cos <a ,c>= . 13.23 [解析] 因为|c|=√(2a -√5b)2=√4a 2+5b 2=√4+5=3,a ·c=a ·(2a-√5b )=2a 2-√5a ·b=2,所以cos <a ,c>=a ·c |a||c|=23.7.A2,F3[2019·北京卷] 设点A ,B ,C 不共线,则“AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗ 的夹角为锐角”是“|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗ |”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.C [解析] 设AB⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗ 的夹角为α.因为A ,B ,C 不共线,所以以AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗ 为邻边作平行四边形ABDC ,由向量的平行四边形法则,可得AD⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ , 故AD ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )2=AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗ 2+2|AB ⃗⃗⃗⃗⃗ |·|AC ⃗⃗⃗⃗ |cos α. 在△ABC 中,可得BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ , 故BC ⃗⃗⃗⃗ 2=(AC⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ )2=AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗ 2-2AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗ 2-2|AB ⃗⃗⃗⃗⃗ |·|AC ⃗⃗⃗⃗ |cos α. 若α为锐角,则cos α>0,则AD ⃗⃗⃗⃗⃗ 2>BC ⃗⃗⃗⃗ 2,即|AD ⃗⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗ |,所以|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗ |;若|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗ |,则|AD ⃗⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗ |,即cos α>0,所以α为锐角.所以“AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗ 的夹角为锐角”是“|AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ |>|BC ⃗⃗⃗⃗ |”的充分必要条件.12.F3[2019·江苏卷] 如图1-3,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O.若AB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ ,则ABAC的值是 .图1-312.√3 [解析] 如图所示,过D 作DF ∥CE ,交AB 于点F.因为D 是BC 的中点,所以F 是BE 的中点.又BE=2EA ,所以EF=EA ,所以AO=OD ,所以AO ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =14(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ). 又EC⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AE ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -13AB ⃗⃗⃗⃗⃗ , 所以AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ =6×14(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ -13AB ⃗⃗⃗⃗⃗ )=32AC ⃗⃗⃗⃗⃗ 2-12AB ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗ , 即AB ⃗⃗⃗⃗⃗ 2=3AC ⃗⃗⃗⃗ 2,所以ABAC=√3.14.C8,F3[2019·天津卷] 在四边形ABCD 中,AD ∥BC ,AB=2√3,AD=5,∠A=30°,点E 在线段CB 的延长线上,且AE=BE ,则BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗ = .14.-1 [解析] 如图所示,因为AD ∥BC ,所以∠EBA=∠BAD=30°,又AE=BE ,所以△ABE 是底角为30°的等腰三角形.过点E 作EH ⊥AB ,交AB 于点H ,则AH=12AB=√3,故EH=1,AE=BE=2,且∠AEB=120°.过点B 作BF ∥AE ,交AD 于点F ,则BF=AE=2,AF=BE=2,所以FD=3.在△ABD 中,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD cos 30°=12+25-2×2√3×5×√32=7,所以BD=√7.在△BFD中,由余弦定理得cos ∠DBF=BD 2+BF 2-DF 22BD ·BF=7+4-92×7×2=√714,所以BD⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗ =-BD ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =-√7×2×√714=-1.F4 单元综合7.[2019·长沙长郡中学月考(四)] 在△ABC 中,D 为AB 的中点,点E 满足EB ⃗⃗⃗⃗⃗ =4EC ⃗⃗⃗⃗ ,则ED ⃗⃗⃗⃗⃗ =( )A .56AB ⃗⃗⃗⃗⃗ -43AC⃗⃗⃗⃗⃗ B .43AB ⃗⃗⃗⃗⃗ -56AC ⃗⃗⃗⃗⃗ C .56AB⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ D .43AB ⃗⃗⃗⃗⃗ +56AC ⃗⃗⃗⃗⃗ 7.A [解析] ∵D 为AB的中点,点E 满足EB ⃗⃗⃗⃗⃗ =4EC ⃗⃗⃗⃗ ,∴BD ⃗⃗⃗⃗⃗ =12BA ⃗⃗⃗⃗⃗ ,EB ⃗⃗⃗⃗⃗ =43CB ⃗⃗⃗⃗⃗ ,∴ED ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ =43CB ⃗⃗⃗⃗⃗ -12AB ⃗⃗⃗⃗⃗ =43(AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗ )-12AB ⃗⃗⃗⃗⃗ =56AB ⃗⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗⃗ .故选A .14.[2019·山西联考] 已知向量a=(x ,2),b=(-2,1),若a 与2a-b 共线,则|b||a|= .14.12 [解析] 由a=(x ,2),b=(-2,1),得2a-b=(2x+2,3),因为a 与2a-b 共线,所以3x-2(2x+2)=0,解得x=-4,所以a=2b ,|b||a|=12.24.[2019·日照一模] 已知正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且AE ⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗ =2,则(AE ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )2的最小值为 ( ) A .232B .12C .252D .1324.C[解析]以A为原点,分别以AB,AD所在的直线为x轴、y轴,建立平面直角坐标系,如图所示,设E(x,y),则AC⃗⃗⃗⃗ =(2,2),AE⃗⃗⃗⃗ =(x,y).∵AE⃗⃗⃗⃗ ·AC⃗⃗⃗⃗ =2,∴2x+2y=2,即x+y=1(0<x<2,0<y<2),则(AE⃗⃗⃗⃗ +AC⃗⃗⃗⃗ )2=(x+2)2+(y+2)2.易知(AE⃗⃗⃗⃗ +AC⃗⃗⃗⃗ )2的最小值的几何意义是在线段x+y=1(0<x<2,0<y<2)上取一点,使其到点M(-2,-2)的距离的平方最小,而点M(-2,-2)到线段x+y=1(0<x<2,0<y<2)的距离d=√2=√2,故所求的最小值为252.。

平面向量的数量积-

平面向量的数量积-

平面向量数量积的性质
设a , b 是两个非零向量, e 是单位向量,于是
有:① eaaeacos② abab0
③当a与 b同向时,ab a b ;
当a与 b反向时,ab a b,
特别地,aa
a2

2
a

(4)cos a b
a b
⑤ ab a b
平面向量数量积的运算律
①交换律成立:abba
②对实数的结合律成立:
a b a b a b R
③分配律成立:
a b c a c b ccab
特别注意:
(1)结合律不成立:a b ca bc;
当且仅当反方向时θ =1800,同时0 与其它任何
非零向量之间不谈夹角这一问题。
(2)a与 b垂直;如果 a , b 的夹角为900,则称垂直, 记作a b 。
(3)a与 b 的数量积:两个非零向量 a , b ,它们
的夹角为θ ,则 a b cos叫做称 a与 b 的
(4)数量积(或内积),记a作 b ,
(2)消去律不成立 abac不能得到 b c
(3)a b =0不能得到 a = 0 或 b = 0
④但是乘法公式成立:
2 2 2 2
a b a b a b a b;
a b 2 a 2 2 a b b 2a2
2
2abb

平面向量数量积的坐标表示:
2019届高考数学复习 强化双基系列课件
《平面向量的数量积》
1、知识精讲:
(1)平面向量的数量积的定义
①向量a , b 的夹角:已知两个非零向量 a , b ,

考点19 平面向量的概念及其线性运算、平面向量的基本定理及向量坐标运算 【2019年高考数学真题分类】

考点19 平面向量的概念及其线性运算、平面向量的基本定理及向量坐标运算   【2019年高考数学真题分类】

温馨提示:此题库为Word 版, 请按住Ctrl, 滑动鼠标滚轴, 调节合适的观看比例, 关闭Word 文档返回原板块。

考点19 平面向量的概念及其线性运算、平面向量的基本定理及向量坐标运算一、选择题1.(2019·全国卷Ⅰ理科·T7同2019·全国卷Ⅰ文科·T8)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A. B. C. D.π6π32π35π6【命题意图】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归的思想,以及数学运算等数学素养.【解题指南】先由(a -b )⊥b 得出向量a ,b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【解析】选B .设夹角为θ,因为(a -b )⊥b ,所以(a-b )·b=a ·b-b 2=0,所以a ·b=b 2,所以cos θ===,又θ∈[0,π],所以a a ·b |a |·|b ||b |22|b |212与b 的夹角为,故选B .π3【题后反思】对向量夹角的计算,先计算出向量的数量积及各个向量的模,再利用向量夹角公式求出夹角的余弦值,最后求出夹角,注意向量夹角范围为[0,π].2.(2019·全国卷Ⅱ理科·T3)已知=(2,3),=(3,t ),||=1,则·= ( ) A.-3 B.-2 C.2 D.3【命题意图】考查向量的坐标运算,向量的模,以及向量的数量积运算.【解析】选C .因为=-=(1,t -3),又因为||=1,即12+(t -3)2=12,解得t =3,所以=(1,0),故·=2. 3.(2019·全国卷Ⅱ文科·T3)已知向量a =(2,3),b =(3,2),则|a-b |= ( )A. B.2 C.5 D.5022【命题意图】考查向量的坐标运算以及向量的模,属于容易题.【解析】选A .由向量a =(2,3),b =(3,2),可得a -b =(-1,1),所以|a -b |==.12+122。

2019年高考数学试题分项版—平面向量(原卷版)

2019年高考数学试题分项版—平面向量(原卷版)

2019年高考数学试题分项版——平面向量(原卷版)一、选择题1.(2019·全国Ⅰ文,8)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.2.(2019·全国Ⅱ文,3)已知向量a=(2,3),b=(3,2),则|a-b|等于()A.B.2 C.5D.503.(2019·全国Ⅰ理,7)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.4.(2019·全国Ⅱ理,3)已知=(2,3),=(3,t),||=1,则·等于() A.-3 B.-2 C.2 D.35.(2019·北京理,7)设点A,B,C不共线,则“AB与AC的夹角为锐角”是“||||+>”AB AC BC 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题1.(2019·全国Ⅲ文,13)已知向量a=(2,2),b=(-8,6),则cos〈a,b〉=________. 2.(2019·北京文,9)已知向量a=(-4,3),b=(6,m),且a⊥b,则m=________. 3.(2019·浙江,17)已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1+λ2+λ3+λ4+λ5+λ6|的最小值是________,最大值是________.4.(2019·江苏,12)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若·=6·,则的值是_________.5.(2019·全国Ⅲ理,13)已知a,b为单位向量,且a·b=0,若c=2a-b,则cos〈a,c〉=________.6.(2019·天津理,14)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E在线段CB的延长线上,且AE=BE,则·=________.。

2019年高考数学试题分项版—平面向量(解析版)

2019年高考数学试题分项版—平面向量(解析版)

2019年高考数学试题分项版——平面向量(解析版)一、选择题1.(2019·全国Ⅰ文,8)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A.B.C.D.答案 B解析 设a 与b 的夹角为α,∵(a -b )⊥b ,∴(a -b )·b =0,∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |,∴cos α=,∵α∈[0,π],∴α=,故选B.2.(2019·全国Ⅱ文,3)已知向量a =(2,3),b =(3,2),则|a -b |等于( ) A. B .2 C .5 D .50 答案 A解析 ∵a -b =(2,3)-(3,2)=(-1,1), ∴|a -b |= = . 即2x +y -2π+1=0.3.(2019·全国Ⅰ理,7)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( )A.B.C.D.答案 B解析 设a 与b 的夹角为α,∵(a -b )⊥b ,∴(a -b )·b =0,∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |,∴cos α=,∵α∈[0,π],∴α=,故选B.4.(2019·全国Ⅱ理,3)已知 =(2,3), =(3,t ),| |=1,则 · 等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为= - =(1,t -3),所以| |= =1,解得t =3,所以 =(1,0),所以 · =2×1+3×0=2,故选C.5.(2019·北京理,7)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【思路分析】“AB 与AC 的夹角为锐角” ⇒ “||||AB AC BC +>”,“ ||||AB AC BC +>” ⇒ “AB 与AC 的夹角为锐角”,由此能求出结果. 【解析】:点A ,B ,C 不共线,“AB 与AC 的夹角为锐角” ⇒ “||||AB AC BC +>”, “||||AB AC BC +>” ⇒ “AB 与AC 的夹角为锐角”,∴设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的充分必要条件. 故选:C .【归纳与总结】本题考查充分条件、必要条件、充要条件的判断,考查向量等基础知识,考查推理能力与计算能力,属于基础题. 二、填空题1.(2019·全国Ⅲ文,13)已知向量a =(2,2),b =(-8,6),则cos 〈a ,b 〉=________. 答案 -解析 ∵a =(2,2),b =(-8,6), ∴a ·b =2×(-8)+2×6=-4,|a |= =2 ,|b |= =10. ∴cos 〈a ,b 〉===-. 2.(2019·北京文,9)已知向量a =(-4,3),b =(6,m ),且a ⊥b ,则m =________. 答案 8解析 ∵a ⊥b ,∴a ·b =0. 又∵a =(-4,3),b =(6,m ), ∴-4×6+3m =0,解得m =8.3.(2019·浙江,17)已知正方形ABCD 的边长为1.当每个λi (i =1,2,3,4,5,6)取遍±1时,|λ1 +λ2 +λ3 +λ4 +λ5 +λ6 |的最小值是________,最大值是________. 答案 0 2解析 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图,则A (0,0),B (1,0),C (1,1),D (0,1),所以λ1 +λ2 +λ3 +λ4 +λ5 +λ6 =(λ1-λ3+λ5-λ6,λ2-λ4+λ5+λ6),所以当 时,可取λ1=λ3=1,λ5=λ6=1,λ2=-1,λ4=1,此时|λ1 +λ2 +λ3 +λ4 +λ5 +λ6 |取得最小值0;取λ1=1,λ3=-1,λ5=λ6=1,λ2=1,λ4=-1,则|λ1 +λ2 +λ3 +λ4 +λ5 +λ6|取得最大值=2.4.(2019·江苏,12)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若·=6·,则的值是_________.答案解析方法一以点D为坐标原点,BC所在的直线为x轴,BC的垂直平分线为y轴建立平面直角坐标系(图略),不妨设B(-a,0),C(a,0),A(b,c),a>0,c>0,由BE=2EA得E,则直线OA:y=x,直线CE:(b-2a)y=c(x-a),联立可得O,则·=(-a-b,-c)·(a-b,-c)=b2+c2-a2,·=·=,由·=6·得b2+c2-a2=2(b2+c2-2ab),化简得4ab=b2+c2+a2,则===.方法二由A,O,D三点共线,可设=λ,则=(+),由E,O,C三点共线可设=μ,则-=μ(-),则=(1-μ)+μ=(1-μ)+μ,由平面向量基本定理可得解得μ=,λ=,则=(+),=-=-,则6·=6×(+)·==·,化简得32=2,则=.5.(2019·全国Ⅲ理,13)已知a,b为单位向量,且a·b=0,若c=2a-b,则cos〈a,c〉=________.答案解析设a=(1,0),b=(0,1),则c=(2,-),所以cos〈a,c〉==. 6.(2019·天津理,14)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E 在线段CB的延长线上,且AE=BE,则·=________.答案-1解析方法一在等腰△ABE中,易得∠BAE=∠ABE=30°,故BE=2,则·=(-)·(+)=·+·-2-·=5×2×cos 30°+5×2×cos 180°-12-2×2×cos 150°=15-10-12+6=-1.方法二在△ABD中,由余弦定理可得BD==,所以cos∠ABD==-,则sin ∠ABD=.设与的夹角为θ,则cos θ=cos(180°-∠ABD+30°)=-cos(∠ABD-30°)=-cos∠ABD·cos 30°-sin∠ABD·sin 30°=-,在△ABE中,易得AE=BE=2,故·=×2×=-1.。

2019年高考数学真题专题08 平面解析几何(解答题)

2019年高考数学真题专题08  平面解析几何(解答题)

专题08 平面解析几何(解答题)1.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.2.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1)31-;(2)4b =,a 的取值范围为[42,)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,13PF c =,于是122(31)a PF PF c =+=+,故C 的离心率是31ce a==-. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故42a ≥.当4b =,42a ≥时,存在满足条件的点P . 所以4b =,a 的取值范围为[42,)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.3.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见解析;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.4.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已知3||2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,由已知有32a b =,又由222a b c =+,消去b 得22232a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,3a c b c ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-.因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭. 由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =. 因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l 相切,得23(4)242314c +-=⎛⎫+ ⎪⎝⎭,可得=2c .所以,椭圆的方程为2211612x y +=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.6.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 2=222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.7.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为312+,此时G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122113222134323424S m S m m m m m m=-=--=+++++⋅+…. 当3m =时,12S S 取得最小值312+,此时G (2,0). 【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.8.【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠. 【答案】(1)y =112x +或112y x =--;(2)见解析. 【解析】(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2). 所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .【名师点睛】本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是直观想象与数学运算.在设直线的方程时,一定要注意所设方程的适用范围,如用点斜式时,要考虑到直线的斜率不存在的情况,以免解答不严密或漏解.(1)求出直线l 与抛物线的交点,利用两点式写出直线BM 的方程;(2)由(1)知,当直线l 与x 轴垂直时,结论显然成立,当直线l 与x 轴不垂直时,设出斜率k ,联立直线l 与C 的方程,求出M ,N 两点坐标之间的关系,再表示出BM 与BN 的斜率,得其和为0,从而说明BM 与BN 两条直线的斜率互为相反数,进而可知两角相等.9.【2018年高考全国Ⅱ卷文数】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1)y =x –1;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k++=. 所以212244(1)(1)k AB AF BF x x k+=+=+++=. 由题设知22448k k+=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【名师点睛】本题主要考查抛物线与直线和圆的综合,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.(1)利用点斜式写出直线l 的方程,代入抛物线方程,得到关于x 的一元二次方程,利用根与系数的关系以及抛物线的定义加以求解;(2)由题意写出线段AB 的垂直平分线所在直线的方程,设出圆心的坐标,由题意列出方程组,解得圆心的坐标,即可求解.10.【2018年高考全国Ⅲ卷文数】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB的中点为(1,)(0)M m m >. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+. 【答案】(1)见解析;(2)见解析.【解析】(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=.由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-.(2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP . 于是222211111||(1)(1)3(1)242x xFA x y x =-+=-+-=-.同理2||=22x FB -. 所以1214()32FA FB x x +=-+=. 故2||=||+||FP FA FB .【名师点睛】本题主要考查椭圆的方程及简单几何性质、直线的斜率公式、直线与椭圆的位置关系、向量的坐标运算与向量的模等,考查运算求解能力、数形结合思想,考查的数学核心素养是数学抽象、数学运算.圆维曲线中与中点弦有关的问题常用点差法,建立弦所在直线的斜率与中点坐标间的关系,也可以通过联立直线方程与圆锥曲线方程,消元,根据根与系数的关系求解.11.【2018年高考北京卷文数】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线P A 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .【答案】(1)2213x y +=;(2)6;(3)1. 【解析】(1)由题意得222c =,所以2c =,又63c e a ==,所以3a =, 所以2221b a c =-=,所以椭圆M 的标准方程为2213x y +=.(2)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则222212121264||1||1()42m AB k x x k x x x x ⨯-=+-=+⋅+-=,易得当20m =时,max ||6AB =,故||AB 的最大值为6. (3)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-,4471(,)44QD x y =+-,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 【名师点睛】本题主要考查椭圆的方程及几何性质、直线与椭圆的位置关系,考查考生的逻辑思维能力、运算求解能力,考查数形结合思想,考查的数学核心素养是直观想象、逻辑推理、数学运算.解决椭圆的方程问题,常用基本量法,同时注意椭圆的几何量的关系;弦长的计算,通常要将直线与椭圆方程联立,利用根与系数的关系求解.12.【2018年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为53,||13AB =. (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.【答案】(1)22194x y +=;(2)12-. 【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(1)设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由22||13AB a b =+=,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(2)设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y ,可得12694x k =+. 由215x x =,可得2945(32)k k +=+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意.所以,k 的值为12-.【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,涉及轨迹方程问题、定值问题、最值问题、参数的取值或取值范围问题等,其中考查较多的圆锥曲线是椭圆与抛物线,解决此类问题要重视化归与转化思想及设而不求法的应用.13.【2018年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.【答案】(1)椭圆C 的方程为2214x y +=,圆O 的方程为223x y +=;(2)①(2,1);②532y x =-+. 【解析】(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -, 可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=,所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此点P 的坐标为(2,1).②因为三角形OAB 的面积为267,所以21 267AB OP ⋅=,从而427AB =.设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =, 因此P 的坐标为102(,)22. 综上,直线l 的方程为532y x =-+.【名师点睛】本题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力. (1)利用椭圆的几何性质求圆的方程和椭圆的方程. (2)①利用直线与圆、椭圆的位置关系建立方程求解; ②结合①,利用弦长公式、三角形的面积公式求解.14.【2018年高考浙江卷】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.PMBAOyx(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.【答案】(1)见解析;(2)1510[62,]4. 【解析】本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.满分15分. (1)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴. (2)由(1)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-, 21200||22(4)y y y x -=-.因此,PAB △的面积3221200132||||(4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是1510[62,]4. 【名师点睛】圆锥曲线问题是高考重点考查内容之一,也是难点之一.椭圆、抛物线是其中常考内容,需要熟练地掌握椭圆和拋物线的定义、基本性质、标准方程等,对于处理有关问题有很大的帮助.同时还要注意运算能力的培养和提高.15.【2017年高考全国Ⅰ卷文数】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【答案】(1)1;(2)7y x =+.【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.(2)由24x y =,得2x y'=.设M (x 3,y 3),由题设知312x =,解得32x =,于是M (2,1). 设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.将y x m =+代入24xy =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,2221x m =±+. 从而12||=2||42(1)AB x x m -=+.由题设知||2||AB MN =,即42(1)2(1)m m +=+,解得7m =. 所以直线AB 的方程为7y x =+.【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用. (1)设A (x 1,y 1),B (x 2,y 2),由两点斜率公式求AB 的斜率;(2)联立直线与抛物线方程,消y ,得12||=2||42(1)AB x x m -=+,解出m 即可.16.【2017年高考全国Ⅱ卷文数】设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 【答案】(1)222x y +=;(2)见解析.【解析】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00(,),(0,)NP x x y NM y =-=,由2NP NM =得0022x x y y ==,. 因为M (00,x y )在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知F (−1,0),设Q (−3,t ),P (m ,n ),则(3,),(1,),33OQ t PF m n OQ PF m tn =-=---⋅=+-, (,),(3,)OP m n PQ m t n ==---.由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=,即O Q P F ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证0OQ PF ⋅=,先设 P (m ,n ),则需证330m tn +-=,即根据条件1OP PQ ⋅=可得2231m m tn n --+-=,而222m n +=,代入即得330m tn +-=.17.【2017年高考全国Ⅲ卷文数】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】(1)不会,理由见解析;(2)见解析 【解析】(1)不能出现AC ⊥BC 的情况,理由如下:设1(,0)A x ,2(,0)B x ,则12x x ,满足220x mx +-=,所以122x x =-. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-, 所以不能出现AC ⊥BC 的情况.(2)BC 的中点坐标为(2122x ,),可得BC 的中垂线方程为221()22x y x x -=-. 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立22(21)22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩,,又22220x mx +-=,可得212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩,,所以过A 、B 、C 三点的圆的圆心坐标为(122m --,),半径292m r +=,故圆在y 轴上截得的弦长为22232m r -=(),即过A 、B 、C 三点的圆在y 轴上截得的弦长为定值. 【名师点睛】解答本题时,设()()12,0,,0A x B x ,由AC ⊥BC 得1210x x +=,由根与系数的关系得122x x =-,矛盾,所以不存在;求出过A ,B ,C 三点的圆的圆心坐标和半径,即可得圆的方程,再利用垂径定理求弦长.直线与圆综合问题的常见类型及解题策略:(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.代数方法:运用根与系数的关系及弦长公式:222121212||1||1()4AB k x x k x x x x =+-=++-; (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 18.【2017年高考北京卷文数】已知椭圆C 的两个顶点分别为A (−2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.【答案】(1)2214x y +=;(2)见解析.【解析】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>.由题意得2,3,2a c a=⎧⎪⎨=⎪⎩解得3c =.所以2221b a c =-=.所以椭圆C 的方程为2214x y +=.(2)设(,)M m n ,则(,0),(,)D m N m n -. 由题设知2m ≠±,且0n ≠.直线AM 的斜率2AM n k m =+,故直线DE 的斜率2DE m k n+=-. 所以直线DE 的方程为2()m y x m n +=--. 直线BN 的方程为(2)2ny x m=--. 联立2(),(2),2m y x m n n y x m +⎧=--⎪⎪⎨⎪=-⎪-⎩解得点E 的纵坐标222(4)4E n m y m n -=--+. 由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5.【名师点睛】本题对考生计算能力要求较高,重点考查了计算能力,以及转化与化归的能力,解答此类题目,主要利用,,,a b c e 的关系,确定椭圆方程是基础,本题易错点是对复杂式子的变形能力不足,导致错漏百出.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题与解决问题的能力等. (1)根据条件可知32,2c a a ==,以及222b a c =-,从而求得椭圆方程;(2)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示出直线BN 的方程,并求得两条直线的交点纵坐标,根据1212E BDEBDNN BD y S S BD y ⋅⋅=⋅⋅△△即可求出面积比值. 19.【2017年高考天津卷文数】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.【答案】(1)12;(2)(ⅰ)34;(ⅱ)2211612x y +=.【解析】(1)设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b a c =-,可得2220c ac a +-=,即2210e e +-=. 又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (2)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(1)知2a c =,可得直线AE 的方程为12x yc c +=,即220x y c +-=, 与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++. 由已知|FQ |=32c ,有222(22)33[]()()222m c c c c m m -++=++,整理得2340m m -=,所以43m =, 故直线FP 的斜率为34.(ii )由2a c =,可得3b c =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22223430,1,43x y c x y c c -+=⎧⎪⎨+=⎪⎩ 消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(,)2c P c ,进而可得2235|()()22|c c FP c c =++=, 所以53||||||22c cFP FQ Q c P -=-==. 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离, 故直线PM 和QN 都垂直于直线FP .因为QN FP ⊥,所以339||||tan 248c c QN FQ QFN =⋅∠=⨯=, 所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.【名师点睛】圆锥曲线问题在历年高考中都是较有难度的压轴题,本题对考生的计算能力要求较高,是一道难题,重点考查了运算求解能力以及转化与化归的能力.求解此类问题时,利用,,,a b c e 的关系,确定椭圆离心率是基础,通过联立直线方程与椭圆(圆锥曲线)的方程,根据根与系数的关系进行解题,但本题需求解交点坐标,在求解过程要善于发现四边形PQNM 中的几何关系,从而易求其面积,进而使问题获解.(1)先根据题意得出21()22b c a c +=,然后结合222b a c =-,即可求得离心率;(2)(ⅰ)首先设直线FP 的方程为x my c =-,再写出直线AE 的方程,两方程联立得到点Q 的坐标,根据32FQ c =求得m 的值,即得直线FP 的斜率;(ⅱ)将直线FP 的方程和椭圆方程联立,可得点P 的坐标,再求,FP FQ ,确定直线PM 和QN 都垂直于直线FP ,根据平面几何关系求面积,从而可求得c 的值,进而得椭圆的方程.20.【2017年高考山东卷文数】在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为22. (1)求椭圆C 的方程;(2)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(1)22142x y +=;(2)EDF ∠的最小值为π3. 【解析】(1)由椭圆的离心率为22,得2222()a a b =-, 又当1y =时,2222a x a b =-,得2222a a b-=,所以224,2a b ==,因此椭圆方程为22142x y +=.(2)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩, 得222(21)4240k x kmx m +++-=, 由0∆>得2242m k <+.(*)且122421kmx x k +=+, 因此122221my y k +=+,所以222(,)2121km mD k k -++, 又(0,)N m -, 所以222222()()2121km m ND m k k =-++++ 整理得2242224(13)(21)m k k ND k ++=+ , 因为NF m =,所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++.令283,3t k t =+≥, 故21214t k ++=, 所以2221616111(1)2NDt t NFt t=+=++++ . 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF≤+=,由(*)得 22m -<< 且0m ≠.故12NF ND ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ的最小值为π6, 从而EDF ∠的最小值为π3,此时直线l 的斜率是0. 综上所述:当0k =,(2,0)(0,2)m ∈-时,EDF ∠取到最小值π3. 【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题; ②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决; ②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解. 解答本题时,(1)由22c a =得2a b =,由椭圆C 截直线y =1所得线段的长度为22,得2222a a b -=,求得椭圆的方程为22142x y +=;(2)由2224x y y kx m⎧+=⎨=+⎩,解得22(21)4k x kmx +++ 2240m -=,确定222(,)2121km m D k k -++,4222||3221m DN k k k =+++,结合22ND NF的单调性求EDF ∠的最小值.21.【2017年高考浙江卷】如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13(,)()22P x y x -<<.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求||||PA PQ ⋅的最大值. 【答案】(1)(1,1)-;(2)2716. 【解析】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分. (1)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-. (2)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩ 解得点Q 的横坐标是22432(1)Q k k x k -++=+. 因为|P A |=211()2k x ++=21(1)k k ++, |PQ |=222(1)(1)1()1Q k k k x x k -++-=-+,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2()(42)(1)f k k k '=--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)由斜率公式可得AP 的斜率为12x -,再由1322x -<<,得直线AP 的斜率的取值范围;(2)联立直线AP 与BQ 的方程,得Q 的横坐标,进而通过表达||PA 与||PQ 的长度,利用函数3()(1)(1)f k k k =--+的单调性求解||||PA PQ ⋅的最大值.22.【2017年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=;(2)4737(,)77.【解析】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,。

2019年高考真题理科数学解析汇编:平面向量word资料6页

2019年高考真题理科数学解析汇编:平面向量word资料6页

第 1 页2019年高考真题理科数学解析汇编:平面向量一、选择题1 .(2019年高考(天津理))已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=A P A Bλ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12B.12CD.32-± 2 .(2019年高考(浙江理))设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |3 .(2019年高考(重庆理))设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则_______=( )ABC.D .104 .(2019年高考(四川理))设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A .a b =-B .//a bC .2a b =D .//a b 且||||a b =5 .(2019年高考(辽宁理))已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b6 .(2019年高考(湖南理))在△ABC 中,AB=2,AC=3,AB BC = 1则___BC =.( )ABC. D 7 .(2019年高考(广东理))对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=a b( )A .12B .1C .32D .528 .(2019年高考(广东理))(向量)若向量()2,3BA =,()4,7CA =,则BC =( )第 2 页A .()2,4--B .()2,4C .()6,10D .()6,10--9 .(2019年高考(大纲理))ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 10.(2019年高考(安徽理))在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ则点Q 的坐标是( )A.(- B.(-C.(2)--D.(2)-二、填空题11.(2019年高考(新课标理))已知向量,a b 夹角为45︒,且1,210a a b =-=;则_____b =[来源:shulihuashulihua]12.(2019年高考(浙江理))在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 13.(2019年高考(上海理))在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .[来源:shulihua]14.(2019年高考(江苏))如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是____.15.(2019年高考(北京理))已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________; DE DC ⋅的最大值为________.16.(2019年高考(安徽理))若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____第 3 页2019年高考真题理科数学解析汇编:平面向量参考答案一、选择题 1. 【答案】A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB -=(1)AC AB λ--,=CP AP AC -=AB AC λ-, [来源:数理化网] 又∵3=2BQ CP ⋅-,且||=||=2AB AC ,0<,>=60AB AC ,0=||||cos 60=2AB AC AB AC ⋅⋅,∴3[(1)]()=2AC AB AB AC λλ----,2223||+(1)+(1)||=2AB AB AC AC λλλλ--⋅-,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ. 2. 【答案】C【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb .如选项A:|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B:若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D:若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 3. 【答案】B【解析】由0240a c a c x x ⊥⇒⋅=⇒-=⇒=,由//422b c y y ⇒-=⇒=-,故||(21)a b +=+=【考点定位】本题主要考查两个向量垂直和平行的坐标表示,模长公式.解决问题的关键在于根据a c ⊥、//b c ,得到,x y 的值,只要记住两个向量垂直,平行和向量的模的坐标形式的充要条件,就不会出错,注意数字的运算.4. [答案]D[解析]若使||||a ba b =成立,则方向相同,与选项中只有D 能保证,故选D. [点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意. 5. 【答案】B【解析一】由|a +b |=|a -b |,平方可得a ⋅b =0, 所以a ⊥b ,故选B【解析二】根据向量加法、减法的几何意义可知|a +b |与|a -b |分别为以向量a ,b 为邻边的平行四边形的两条对角线的长,因为|a +b |=|a -b |,所以该平行四边形为矩形,所以a ⊥b ,故选B【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题.解析一是利用向量的运算来解,解析二是利用了向量运算的几何意义来解. [来源:shulihua]C第 4 页6. 【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.1cos 2B BC ∴=-.又由余弦定理知222cos 2AB BC AC B AB BC +-=⋅,解得BC =.【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC 的夹角为B ∠的外角.7. 【解析】C;因为||cos cos 1||b a b ba a a a θθ⋅==≤<⋅,且a b 和b a 都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,所以12b a =,||12cos ||b a θ=,所以2||cos 2cos 2||a ab b θθ==<,且22cos 1a b θ=>,所以12a b <<,故有32a b =,选 C. 【另解】C;1||cos 2||k a a b b θ==,2||cos 2||k b b a a θ==,两式相乘得212cos 4k k θ=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,12,k k 均为正整数,于是cos 12θ<=<,所以1224k k <<,所以123k k =,而0a b ≥>,所以123,1k k ==,于是32a b =,选C. [来源:数理化网] 8. 解析:A.()2,4BC BA CA =-=--. 9. 答案D【命题意图】本试题主要考查了向量的加减法几何意义的运用,结合运用特殊直角三角形求解点D 的位置的运用. [来源:shulihua]【解析】由0ab ⋅=可得90ACB ∠=︒,故AB =用等面积法求得CD =,所以AD =,故4444()5555AD AB CB CA a b ==-=-,故选答案D 10. 【解析】选A【方法一】设34(10cos ,10sin)cos ,sin 55OP θθθθ=⇒== [来源:数理化网]则33(10cos(),10sin())(44OQ ππθθ=++=- C第 5 页【方法二】将向量(6,8)OP =按逆时针旋转32π后得(8,6)OM =-则)(OQ OP OM =+=- 二、填空题[来源:shulihuashulihua] 11. 【解析】b=12. 【答案】16-【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图,AM =3,BC =10,AB =ACcos∠BAC =3434100823417+-=-⨯.AB AC ⋅=cos 16AB AC BAC ⋅∠=-13. [解析] 如图建系,则A (0,0),B (2,0),D (21,23),C (25,23).t CD BC ==||||∈[0,1],则t BM =||,t CN 2||=, 所以M (2+2t ,23t ),N (25-2t ,23),故AN AM ⋅=(2+2t)(25-2t )+23t ⋅23=)(6)1(5222t f t t t =++-=+--,因为t ∈[0,1],所以f (t )递减,(AN AM ⋅)max = f (0)=5,(AN AM ⋅)min = f (1)=2.[评注] 当然从抢分的战略上,可冒用两个特殊点:M 在B (N 在C )和M 在C (N 在D ),而本案恰是在这两点处取得最值,蒙对了,又省了时间!出题大虾太给蒙派一族面子了!14. .【考点】向量的计算,矩形的性质,三角形外角性质,和的余弦公式,锐角三角函数定义. 【解析】由2AB AF=,得cos ABAF FAB ∠=由矩形的性质,得cos =AF FAB DF ∠.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.15. 【答案】1;1 [来源:shulihuashulihua]【解析】根据平面向量的点乘公式||||cos DE CB DE DA DE DA θ⋅=⋅=⋅,可知||cos ||DE DA θ=,因此2||1DE CB DA ⋅==;||||cos ||cos DE DC DE DC DE αα⋅=⋅=⋅,而||cos DE α就是向量DE 在DC 边上的射影,要想让DE DC ⋅最大,即让射影最大,此时E 点与B 点重合,射影为||DC ,所以长度为1【考点定位】本题是平面向量问题,考查学生对于平面向量点乘知识的理解,其中包含动点问题,考查学生最值的求法. [来源:shulihuashulihua]16. 【解析】a b的最小值是98第 6 页。

2019年新课标全国理数高考试题汇编:平面向量—老师专用

2019年新课标全国理数高考试题汇编:平面向量—老师专用

2019年新课标全国理数高考试题汇编:平面向量1.【2019全国高考新课标II 卷理数·12T 】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小是( )A .2-B .32-C . 43-D .1-【答案】B解等问题,然后利用函数、不等式、方程的相关知识来解决.2.【2019全国高考新课标III 卷理数·12T 】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上。

若AP =λ AB +μAD ,则λ+μ的最大值为A .3B .CD .2【答案】A试题解析:如图所示,建立平面直角坐标系设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 根据等面积公式可得圆的半径r =,即圆C 的方程是()22425x y -+= ,【考点】 平面向量的坐标运算;平面向量基本定理【名师点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则实行向量的加、减或数乘运算。

(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并使用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决。

3.【2019全国高考新课标I 卷理数·13T 】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】试题解析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=a b a a b b ,所以|2|+=a b 秒杀解析:利用如下图形,能够判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【考点】平面向量的运算【名师点睛】平面向量中涉及相关模长的问题时,常用到的通法是将模长实行平方,利用向量数量积的知识实行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时能够使用数形结合的思想,会加快解题速度.(4.【2019全国高考天津卷理数·13T 】在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R ,且4AD AE ⋅=-,则λ的值为___________.【答案】 3115.【2019全国高考浙江卷理数·15T 】已知向量a ,b 满足则的最小值是________,最大值是_______.【答案】4,【解析】试题解析:设向量的夹角为,由余弦定理有:,,令,则,1,2,==a b ++-a b a b ,a bθ212a b-=+21a b +=+=54cos a b a b ++-=+y []21016,20y =+据此可得:,即的最小值是4,最大值是.【考点】平面向量模长运算【名师点睛】本题通过设向量的夹角为,结合模长公式, 可得,再利用三角函数的有界性求出最大、最小值,属中档题,对学生的转化水平和最值处理水平有一定的要求. 6.【2019全国高考江苏卷理数·12T 】如图,在同一个平面内,向量OA ,OB ,OC ,的模分别为1,1OA 与OC 的夹角为α,且tanα=7,OB 与OC 的夹角为45°。

2019年全国版高考数学(文)一轮复习必刷题:第八单元 平面向量

2019年全国版高考数学(文)一轮复习必刷题:第八单元  平面向量

第八单元平面向量考点一平面向量的线性运算1.(2015年全国Ⅱ卷)设向量a,b不平行,向量λa+b与a+2b平行,则实数λ=.【解析】∵λa+b与a+2b平行,∴λa+b=t(a+2b)(t∈R),即λa+b=ta+2tb,∴λ=t,1=2t,解得λ=12,t=12.【答案】122.(2015年全国Ⅰ卷)设D为△ABC所在平面内一点,BC=3CD,则().A.AD=-1AB+4ACB.AD=13AB-43ACC.AD=43AB+13ACD.AD=43AB-13AC【解析】AD=AC+CD=AC+1BC=AC+1(AC-AB)=4AC-1AB=-1AB+4AC.故选A.【答案】A3.(2017年全国Ⅲ卷)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若AP=λAB+μAD,则λ+μ的最大值为().A.3B.22C.5D.2【解析】建立如图所示的平面直角坐标系,则点C的坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD.∵CD=1,BC=2, ∴BD= 2+22= , EC=BC ·CD BD = 5=2 55, 即圆C 的半径为2 55, ∴点P 的轨迹方程为(x-2)2+(y-1)2=45.设P (x 0,y 0),则x 0=2+2 55cos θ,y 0=1+2 55sin θ(θ为参数),而AP =(x 0,y 0),AB =(0,1),AD =(2,0).∵AP =λAB +μAD =λ(0,1)+μ(2,0)=(2μ,λ),∴μ=12x 0=1+ 55cos θ,λ=y 0=1+2 55sin θ.两式相加,得 λ+μ=1+2 5sin θ+1+ 5cos θ=2+sin (θ+φ)≤3其中sin φ=55,cos φ=2 55, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3. 故选A . 【答案】A考点二 向量的数量积运算4.(2016年全国Ⅱ卷)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=().A.-8B.-6C.6D.8【解析】因为a=(1,m),b=(3,-2),所以a+b=(4,m-2).因为(a+b)⊥b,所以(a+b)²b=0,所以12-2(m-2)=0,解得m=8.【答案】D5.(2016年全国Ⅲ卷)已知向量BA=1,3,BC=3,1,则∠ABC=().A.30°B.45°C.60°D.120°【解析】因为BA=12,32,BC=32,12,所以BA²BC=34+34=32.又因为BA²BC=|BA||BC|cos∠ABC=1³1³cos∠ABC,所以cos∠ABC=32.又0°≤∠ABC≤180°,所以∠ABC=30°.故选A.【答案】A6.(2017年天津卷)在△ABC中,∠A=60°,AB=3,AC=2,若BD=2DC,AE=λAC-AB(λ∈R),且AD²AE=-4,则λ的值为.【解析】由题意,知|AB|=3,|AC|=2,AB²AC=3³2³cos60°=3,AD=AB+BD=AB+2BC=AB+2(AC-AB)=1AB+2AC,∴AD²AE=13AB+23AC²(λAC-AB)=λ-2AB²AC-1AB2+2λAC2 =λ-2³3-1³32+2λ³22=11 3λ-5=-4,解得λ=311.【答案】3117.(2017年北京卷)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m²n<0”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【解析】由题意知|m|≠0,|n|≠0. 设m 与n 的夹角为θ. 若存在负数λ,使得m=λn , 则m 与n 反向共线,θ=180°, 所以m ²n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m ²n<0,此时不存在负数λ,使得m=λn. 故“存在负数λ,使得m=λn ”是“m ²n<0”的充分而不必要条件. 故选A . 【答案】A8.(2017年山东卷)已知e 1,e 2是互相垂直的单位向量.若 e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是 .【解析】由题意知|e 1|=|e 2|=1,e 1²e 2=0,| 3e 1-e 2|= ( 3e 1-e 2)2= 3e 12-2 3e 1·e 2+e 22= 3−0+1=2.同理|e 1+λe 2|= 1+λ2. 所以cos60°=31212| 3e -e ||e +λe |=3e 12 31·e 22221+λ=3-21+λ=12,解得λ= 33.【答案】 33考点三 与向量的模有关的运算9.(2017年全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a|=2,|b|=1,则|a+2b|= .【解析】|a+2b|=(a+2b)2=2+4a·b+4b2=22+4×2×1×cos60°+4×12=12=23.【答案】2310.(2016年全国Ⅰ卷)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.【解析】∵|a+b|2=|a|2+|b|2+2a²b=|a|2+|b|2,∴a²b=0.又a=(m,1),b=(1,2),∴m+2=0,∴m=-2.【答案】-211.(2017年浙江卷)已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是,最大值是.【解析】设a,b的夹角为θ.∵|a|=1,|b|=2,∴|a+b|+|a-b|=(a+b)2+(a-b)2=5+4cosθ+5−4cosθ.令y=5+4cosθ+5−4cosθ,则y2=10+225−16cos2θ.∵θ∈[0,π],∴cos2θ∈[0,1],∴y2∈[16,20],∴y∈[4,25],即|a+b|+|a-b|∈[4,25].【答案】425考点四平面向量在平面几何中的应用12.(2017年全国Ⅱ卷)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则PA²(PB+PC)的最小值是().A.-2B.-3C.-4D.-1【解析】如图,PB +PC =2PD (D 为BC 的中点),则PA ²(PB +PC )=2PA ²PD .要使PA ²PD 最小,则PA 与PD 方向相反,即点P 在线段AD 上,则(2PA ²PD )min =-2|PA ||PD |,问题转化为求|PA||PD |的最大值. 又|PA |+|PD |=|AD |=2³ 32= 3,∴|PA ||PD |≤ |PA |+|PD| 2= 32=3,∴[PA ²(PB +PC )]min =(2PA ²PD )min =-2³34=-32.故选B . 【答案】B13.(2017年浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB=BC=AD=2,CD=3,AC 与BD 交于点O ,记I 1=OA ²OB ,I 2=OB ²OC ,I 3=OC ²OD,则( ). A.I 1<I 2<I 3 B.I 1<I 3<I 2 C.I 3<I 1<I 2 D.I 2<I 1<I 3【解析】∵I 1-I 2=OA ²OB -OB ²OC =OB ²(OA -OC )=OB ²CA , 又OB 与CA所成角为钝角, ∴I 1-I 2<0,即I 1<I 2.∵I 1-I 3=OA²OB -OC ²OD =|OA ||OB |cos ∠AOB-|OC ||OD|cos ∠COD=cos∠AOB(|OA||OB|-|OC||OD|),又∠AOB为钝角,OA<OC,OB<OD,∴I1-I3>0,即I1>I3.∴I3<I1<I2.故选C.【答案】C高频考点:向量的坐标运算、向量的线性运算及基本定理、向量的数量积均是高考热点,在历年高考中都有出现.命题特点:1.高考每年都会出现一道小题,考查的内容有向量的坐标运算、向量的线性运算及基本定理、向量的数量积.2.一般以容易题出现,但偶尔会以中档题和难题出现,所以难度要把控好.§8.1平面向量的概念及线性运算一向量的有关概念1.向量:既有大小又有方向的量;向量的大小叫作向量的长度(或模).2.零向量:长度为的向量;其方向是任意的,记作0.3.单位向量:长度等于的向量.非零向量a的单位向量为±a|a|4.平行向量(也称共线向量):方向或的非零向量.(0与任一向量平行或共线)5.相等向量:长度且方向的向量.6.相反向量:长度且方向的向量.二向量的线性运算1.向量的加(减)法法则有法则和法则,向量的加法运算满足和.2.实数λ与向量a的积是一个向量,且|λa|=|λ||a|;当λ0时,λa的方向与a的方向相同;当λ0时,λa的方向与a的方向相反;当λ=0时,λa=0.3.向量a(a≠0)与b共线的充要条件是存在唯一实数λ,使得b=λa.☞左学右考如图,在正方形ABCD中,E为CD的中点,F为BC上靠近点B的一个三等分点,则EF=().A.12AB-13ADB.23AB+12ADC.1AB-1ADD.12AB-23AD下列命题中,正确的个数是().①若|a|=|b|,则a=b;②若a=b,则a∥b;③|AB|=|BA|;④若a∥b,b∥c,则a∥c.A.1B.2C.3D.4已知O是△ABC所在平面内一点,D为BC边的中点,且2OA+OB+OC=0,则().A.AO=ODB.AO=2ODC.AO=3ODD.2AO=OD知识清单一、2.零3.1个单位4.相同相反5.相等相同6.相等相反二、1.平行四边形三角形交换律结合律2.><基础训练1.【解析】EF=EC+CF=12AB-23AD.【答案】D2.【解析】∵a与b的方向不能确定,∴①错误;②③正确;若b为零向量,则a与c的方向不能确定,∴④错误.【答案】B3.【解析】由2OA+OB+OC=0可知,O是底边BC上的中线AD的中点,故AO=OD.【答案】A题型一平面向量的概念辨析【例1】给出下列命题:①若|a|=|b|,则a∥b;②若A,B,C,D是不共线的四点,则“AB∥DC”是“四边形ABCD为平行四边形”的必要不充分条件;③若a=b,b=c,则a=c;④“a=b”的充要条件是“|a|=|b|且a∥b”.其中正确命题的序号是.【解析】①不正确.两个向量的长度相等,但它们的方向不一定共线.②正确.若四边形ABCD为平行四边形,则AB∥DC且|AB|=|DC|.③正确.∵a=b,∴a,b的长度相等且方向相同.又b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c.④不正确.当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,故“|a|=|b|且a∥b”不是“a=b”的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③.【答案】②③.【变式训练1】下列命题中正确的是().A.若a与b共线,b与c共线,则a与c也共线B.|a|=|b|,则a=±bC.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行【解析】由于零向量与任一向量都共线,所以A不正确;模相等的两个向量方向是不确定的,所以B不正确;向量的平行只要求方向相同或相反,与起点是否相同无关,所以D不正确;对于C,由零向量与任一向量都共线,可知C正确,故选C.【答案】C题型二 向量的线性运算【例2】(2017龙岩模拟)如图,下列结论正确的是( ).①PQ =32a+32b ;②PT=32a-b ; ③PS =32a-12b ;④PR =32a+b. A .①② B .③④ C .①③ D .②④【解析】①根据向量的加法法则,得PQ =32a+32b ,故①正确;②根据向量的减法法则,得PT=32a-32b ,故②错误;③PS =PQ +QS =32a+32b-2b=32a-12b ,故③正确;④PR =PQ +QR =32a+32b-b=32a+12b ,故④错误.故选C .【答案】C【变式训练2】如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD =( ).A .a-12bB .12a-bC.a+12bD.12a+b【解析】连接CD,由点C,D是半圆弧的三等分点,得CD∥AB且CD=12AB=12a,所以AD=AC+CD=b+12a.【答案】D题型三共线向量定理及应用【例3】设两个非零向量a与b不共线.(1)若AB=a+2b,BC=3a-5b,CD=-5a+b,求证:A,B,D三点共线.(2)试确定实数k,使ka+b与a+kb共线.【解析】(1)∵AB=a+2b,BC=3a-5b,CD=-5a+b,∴BD=BC+CD=3a-5b-5a+b=-2a-4b=-2(a+2b)=-2AB,∴AB与BD共线.又∵它们有公共点B,∴A,B,D三点共线.(2)∵k a+b与a+kb共线,∴存在实数λ,使ka+b=λ(a+kb),即ka+b=λa+λkb,∴(k-λ)a=(λk-1)b.∵a,b是不共线的两个非零向量,∴k-λ=λk-1=0,∴k2-1=0,∴k=±1.【变式训练3】已知向量a=2e1-3e2,b=2e1+3e2,c=2e1-9e2,其中向量e1,e2不共线,若存在实数λ,μ,使向量d=λa+μb与c共线,求λμ的值.【解析】∵d=λ(2e1-3e2)+μ(2e1+3e2) =(2λ+2μ)e1+(-3λ+3μ)e2,要使d与c共线,则应有实数k,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,∴2λ+2μ=2k,-3λ+3μ=−9k,得λ=-2μ,∴λμ=-2.方法待定系数法在平面向量的线性运算中的应用用两个已知向量来表示另一向量的问题中,找不到问题的切入口,可利用待定系数法求解.例如用a、b表示OA,可设OA=ma+nb,再结合图形,利用向量共线建立方程,用方程的思想求解.方程思想是解决此类题的关键,要注意体会.【突破训练】如图,在△ABO中,OC=14OA,OD=12OB,AD与BC相交于点M,设OA=a,OB=b.试用a和b表示向量OM.【解析】设OM=ma+nb,则AM=OM-OA=ma+nb-a=(m-1)a+nb.AD=OD-OA=12OB-OA=-a+12b.∵A,M,D三点共线,∴AM与AD共线.∴存在实数t,使得AM=t AD,即(m-1)a+nb=t-a+1b .∴(m-1)a+nb=-ta+1tb.∴m -1=-t ,n =t 2,消去t 得,m+2n=1. ①∵CM =OM -OC =ma+nb-1a= m -1a+nb ,CB =OB -OC =b-14a=-14a+b.又∵C ,M ,B 三点共线,∴CM 与CB 共线.∴存在实数t 1,使得CM =t 1CB , ∴ m -14 a+nb=t 1 -14a +b ,∴ m -14=−14t 1,n =t 1,消去t 1得,4m+n=1. ②由①②得m=17,n=37,∴OM =17a+37b.1.(2017湖南二模)设e 0为单位向量,①若a 为平面内的某个向量,则a=|a|e 0;②若a 与e 0平行,则a=|a|e 0;③若a 与e 0平行且|a|=1,则a=e 0.上述命题中,假命题的个数是( ).A .0B .1C .2D .3【解析】向量是既有大小又有方向的量,a 与|a|e 0的模相同,但方向不一定相同,故①是假命题;若a 与e 0平行,则a 与e 0的方向有两种情况:一是同向,二是反向,反向时a=-|a|e 0,故②③也是假命题.【答案】D2.(2017南城中学质检)如图,在正六边形ABCDEF 中,BA +CD +EF =( ).A.0B.BEC.ADD.CF【解析】由图知BA+CD+EF=BA+AF+CB=CB+BF=CF.【答案】D3.(2017运城一中质检)设a,b不共线,AB=2a+pb,BC=a+b,CD=a-2b,若A,B,D三点共线,则实数p的值为().A.-2B.-1C.1D.2【解析】∵BC=a+b,CD=a-2b,∴BD=BC+CD=2a-b.又∵A,B,D三点共线,∴AB,BD共线.设AB=λBD,∴2a+pb=λ(2a-b),∴p=-λ,2=2λ,∴λ=1,p=-1.【答案】B4.(2017四平二中二模)已知向量a,b不共线,c=ka+b(k∈R),d=a-b.如果c∥d,那么().A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向【解析】∵c∥d,∴c=λd,即ka+b=λ(a-b),∴k=λ,λ=−1.【答案】D5.(2017西宁市一模)如图,在△ABC中,点D在边BC上,且CD=2DB,点E在边AD上,且AD=3AE,则用向量AB,AC表示CE为().A.CE=29AB+89ACB.CE=29AB-89ACC.CE=29AB+79ACD.CE=29AB-79AC【解析】CE=CA+AE,AE=13AD,AD=AB+BD,BD=13BC,BC=BA+AC,∴BD=13(BA+AC),∴AD=AB+BD=AB+13BA+13AC,∴AE=13 AB+13BA+13AC,∴CE=CA+13AB+19BA+19AC=1AB+1BA+CA+1AC=2AB+8CA.又∵8CA=-8AC,∴CE=2AB-8AC.【答案】B6.(2017四川质检)向量e1,e2不共线,AB=3(e1+e2),CB=e2-e1,CD=2e1+e2,给出下列结论:①A,B,C三点共线;②A,B,D 三点共线;③B,C,D三点共线;④A,C,D三点共线.其中所有正确结论的序号为.【解析】由AC=AB-CB=4e1+2e2=2CD,且AB与CB不共线,可得A,C,D三点共线,且点B不在此直线上.【答案】④7.(2017河北三模)如图,在△ABC中,已知D是AB边上一点,若AD=2DB,CD=13CA+λCB,则λ=.【解析】由题图知CD=CA+AD,①CD=CB+BD,②且AD+2BD=0.由①+②³2,得3CD=CA+2CB,∴CD=13CA+23CB,∴λ=23.【答案】238.(2017唐山一模)已知向量a,b是两个非零向量,则在下列三个条件中,能使a,b共线的条件是.(将所有正确的序号填在横线上)。

2019年高考数学解密题(含解析)之平面向量

2019年高考数学解密题(含解析)之平面向量

平面向量考点1 平面向量的概念及线性运算题组一 平面向量的概念调研1 设0a 为单位向量,①若a 为平面内的某个向量,则0=a a a ;②若a 与0a 平行,则0=a a a ;③若a 与0a 平行且1=a ,则0=a a .上述命题中,假命题的个数是 A .0 B .1 C .2D .3【答案】D【解析】向量是既有大小又有方向的量,a 与0a a 的模相等,但方向不一定相同,故①是假命题;若a 与0a 平行,则a 与0a 的方向有两种情况:一是同向,二是反向,反向时0=-a a a ,0=-a a ,故②③也是假命题.综上所述,假命题的个数是3.故答案为D.【名师点睛】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的方向和模长,是基础题目.☆技巧点拨☆对于向量的概念问题:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件,要特别注意零向量的特殊性.具体应关注以下六点: (1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关.(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈. (6)非零向量a 与||a a 的关系:||a a 是a 方向上的单位向量. (7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小.题组二 平面向量的线性运算调研2 如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =A .1233AD AB - B .2133AD AB + C .2133AD AB -D .1233AD AB +【答案】C【解析】()11213333ED EA AD AC AD AD AB AD AD AB =+=-+=-++=-.故选C. 【名师点睛】本题考查向量的线性运算,属基础题.利用向量加法法则结合图象特点运算即可.调研3 设点M 是线段BC 的中点,点A 在直线BC 外,216BC =,||||AB AC AB AC +=-,则||AM =________. 【答案】2【解析】由||||AB AC AB AC +=-可知,AB AC ⊥,则AM 为Rt △ABC 斜边BC 上的中线,因此,1||||22AM BC ==. 调研4 已知D 为三角形ABC 的边BC 的中点,点P 满足,PA BP CP AP PD λ++==0,则实数λ的值为________. 【答案】−2【解析】如图所示,由AP PD λ=且PA BP CP ++=0,则P 为以AB ,AC 为邻边的平行四边形的第四个顶点,因此2AP PD =-,则λ=−2.☆技巧点拨☆平面向量的线性运算是高考考查的热点内容,题型以选择题、填空题为主,难度较小,属中、低档题,主要考查向量加法的平行四边形法则与三角形法则及减法的三角形法则或向量相等,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.常见的平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用. (3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果.题组三 共线向量定理及其应用调研5 设向量12,e e 不共线,向量122λ+e e 与124+e e 平行,则实数λ=__________. 【答案】12【解析】∵122λ+e e 与124+e e 平行,向量12,e e 不共线, ∴存在实数k 使得122λ+e e =k (124+e e )=k 1e +4k 2e , ∴1.242k kλλ=⎧⇒=⎨=⎩故答案为:12. 【名师点睛】本题考查了向量共线定理、平面向量基本定理,考查了推理能力与计算能力,属于基础题.向量122λ+e e 与124+e e 平行则存在实数k 使得122λ+e e =k (124+e e )=k 1e +4k 2e ,对应系数相等即可.调研 6 设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且2,2,2D C B D C E E A A F F B ===,则AD BE CF ++与BCA .反向平行B .同向平行C .互相垂直D .既不平行也不垂直【答案】A☆技巧点拨☆共线向量定理的主要应用:(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. 【注】对于向量共线定理及其等价定理,关键要理解向量a 与b 共线是指a 与b 所在的直线平行或重合.向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个. (2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线.【注】证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.对于三点共线有以下结论:对于平面上的任一点O ,,OA OB 不共线,满足OP xOA yOB=+(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.考点2 平面向量的基本定理及坐标表示题组一 平面向量基本定理的应用调研1 如图,在平行四边形ABCD 中,,AC BD 相交于点O ,E 为线段AO 的中点,若(),BE BA BD λμλμ=+∈R ,则λμ-=A .34B .14-C .14D .34-【答案】C【解析】∵BD =2BO ,BE =λBA +μBD ,∴BE =λBA +2μBO .∵E 为线段AO 的中点,∴BE =12(BA +BO ),根据平面向量基本定理得到对应系数相等,∴λ=12,2μ=12,解得μ=14,∴λ−μ=14.故选C.【名师点睛】本题主要考查了平面向量基本定理的应用,根据平行四边形的图象特点得到BE =λBA +2μBO ,又因为BE =12(BA +BO ),根据平面向量基本定理得到对应系数相等得到结果.调研2 在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB AM AN λμ=+,则λ+μ=________.【答案】45【解析】解法一:连接AC ,由AB AM ANλμ=+,得11()()22AB AD AC AC AB λμ=⋅++⋅+,即(1)2AB μ-+()222AD AC λλμ++=0,即1(1)()()22222AB AD AD AB μλλμ-++++=0, 即3(1)44AB λμ+-+()2AD μλ+=0. 又因为AB ,AD 不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.解法二:(回路法)连接MN 并延长交AB 的延长线于T ,由已知易得AB =45AT , ∴45AT AB AM AN λμ==+,∵T ,M ,N 三点共线,∴λ+μ=45.☆技巧点拨☆1.对平面向量基本定理的理解(1)平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.(2)平面向量的一组基底是两个不共线向量,平面向量基底可以有无穷多组. (3)用平面向量基本定理可将平面中任一向量分解成形如a =λ1e 1+λ2e 2的形式,是向量线性运算知识的延伸.2.应用平面向量基本定理表示向量的实质应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.3.应用平面向量基本定理的关键点(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.4.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.题组二 平面向量的坐标运算调研3 已知向量a =(2,1),b =(1,−2).若m a +n b =(9,−8)(m ,n ∈R ),则m −n 的值为________. 【答案】−3【解析】【解析】由a =(2,1),b =(1,−2),可得m a +n b =(2m ,m )+(n ,−2n )=(2m +n ,m −2n ),由已知可得⎩⎪⎨⎪⎧ 2m +n =9m -2n =-8,解得⎩⎪⎨⎪⎧m =2n =5,从而m −n =−3.调研4 在△ABC 中,点P 在BC 上,且2BP PC =,点Q 是AC 的中点,若PA =(4,3),PQ =(1,5),则BC 等于A .(−6,21)B .(−2,7)C .(6,−21)D .(2,−7)【答案】A【解析】22()(6,4),33()(6,21)AC AQ PQ PA BC PC AC AP ==-=-==-=-,故选A .☆技巧点拨☆平面向量坐标运算的技巧1.向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.2.解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.【注】(1)要注意点的坐标和向量的坐标之间的关系,向量的终点坐标减去起点坐标就是向量坐标,当向量的起点是原点时,其终点坐标就是向量坐标.(2)向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.题组三 平面向量共线的坐标表示及运算调研5 已知向量()2,1=-a ,()1,3=-b ,则下列向量与2+a b 平行的是 A .22,3⎛⎫ ⎪⎝⎭B .()1,3-C .()1,2-D .()0,2【答案】A【解析】因为()2,1=-a ,()1,3=-b ,所以2(3,1),+=a b 由(3,1)=322,23⎛⎫⨯ ⎪⎝⎭可知2+a b 与向量22,3⎛⎫ ⎪⎝⎭平行,故选A.【名师点睛】本题主要考查了向量的线性运算,向量共线的基本定理,属于中档题.根据向量的线性运算,计算2(3,1),+=a b 根据向量平行的基本定理即可判定.调研6 已知梯形ABCD 中,AB ∥CD ,且DC =2AB ,若三个顶点分别为A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 【答案】(2,4)【解析】∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴2DC AB =.设点D 的坐标为(x ,y ),则DC =(4−x ,2−y ),AB =(1,−1),∴(4−x ,2−y )=2(1,−1),即(4−x ,2−y )=(2,−2),∴4222x y -=⎧⎨-=-⎩,解得24x y =⎧⎨=⎩,故点D 的坐标为(2,4).调研7 已知向量()3cos 2α=-,a 与向量()34sin α=-,b 平行,则锐角α等于A .5π12 B .π3 C .π4D .π6【答案】C【解析】∵向量()3c o s 2α=-,a 与向量()34s i n α=-,b 平行,∴()()3cos 4sin 23αα-⨯-=⨯,∴12sin cos 6sin26ααα==,∴sin21α=.又α为锐角,∴02πα<<,∴π22α=,∴π4α=. 故选C .【名师点睛】根据向量的共线及倍角公式得到sin21α=,然后根据α的范围得到所求的角的大小.解答本题的关键有两个:一是根据向量共线的充要条件得到关于角α的三角函数关系式;二是在已知三角函数值求角时,要注意讨论角的范围,这是解题中容易出现错误的地方. 调研8 设OA =(1,−2),OB =(a ,−1),OC =(−b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +2b 的最小值是A .2B .4C .6D .8【答案】D解法二:k AB =-1+2a -1,k AC =2-b -1,∵A ,B ,C 三点共线,所以k AB =k AC ,即-1+2a -1=2-b -1,∴2a +b =1,所以1a +2b =2a +b a +4a +2b b =4+b a +4ab≥4+2b a ·4a b =8(当且仅当b a =4ab,即11,42a b ==时,取“=”号),∴1a +2b 的最小值是8.故选D .☆技巧点拨☆平面向量共线的坐标表示是高考的常考内容,多以选择题或填空题的形式呈现,难度一般不大,属中低档题,且常见题型及求解策略如下:1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(,)x y =a ,22(,)x y =b ,则∥a b 的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB 与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.考点3 平面向量的数量积及向量的应用题组一 平面向量数量积的运算调研1 设x ∈R ,向量a =(1,x ),b =(2,−4),且a ∥b ,则a ·b = A .−6 B .10 C . 5 D .10【答案】D【解析】∵a =(1,x ),b =(2,−4),且a ∥b ,∴−4−2x =0,x =−2,∴a =(1,−2),a ·b =10,故选D .调研2 在直角ABC △中,π2C ∠=,4AB =,2AC =,若32A D AB =,则CD CB ⋅=A .18-B .-C .18D .【答案】C【解析】在直角ABC △中,π2C ∠=,4AB =,2AC =,1cos 2AC CAB AB ∠==,若32AD AB =,则2C D C B A⋅=-⋅()() 223322AB AB AC AC AB AC =-⋅-⋅+3511642418222=⨯-⨯⨯⨯+=.故选C.【名师点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.在直角ABC △中,求得1cos 2AC CAB AB ∠==,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.☆技巧点拨☆平面向量数量积的类型及求法:1.平面向量数量积有两种计算公式:一是夹角公式⋅=a b ||||cos θa b ;二是坐标公式⋅=a b 1212x x y y +.2.求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.【注】(1)在平面向量数量积的运算中,不能从a ·b =0推出a =0或b =0成立.实际上由a ·b =0可推出以下四种结论:①a =0,b =0;②a =0,b ≠0;③a ≠0,b =0;④a ≠0,b ≠0,a ⊥b . (2)实数运算满足消去律:若bc =ca ,c ≠0,则有b =a .在向量数量积的运算中,若a ·b =a ·c (a ≠0),则不一定有b =c .(3)实数运算满足乘法结合律,但平面向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.题组二 平面向量数量积的应用调研3 已知非零向量()(,0,t ==-a b ,若4⋅=-a b ,则2+a b 与b 的夹角为A .π3 B .π2 C .π6D .2π3【答案】A【解析】∵4t ⋅=-=-a b ,∴t =4,∴()4,0=a ,又(=-b ,∴(22,+=a b . 设2+a b 与b 的夹角为θ,则(2)261cos 2242θ+⋅-+===+⋅⨯a b b a b b ,∴π=3θ.故答案为A .【名师点睛】本题主要考查向量的模及平面向量数量积公式的应用,属于中档题.根据条件容易求出t =4,从而得出()4,0=a ,从而得出(22,+=a b ,可设2+a b 与b 的夹角为θ,这样根据(2)cos 2θ+⋅=+⋅a b ba b b即可求出cos θ,进而得出θ的值.调研4 设向量(),4x =-a ,()1,x =-b ,向量a 与b 的夹角为锐角,则x 的取值范围为A .(22)-,B .()0,+∞C .()()0,22+∞,D .[22]-,【答案】C【解析】由向量(),4x =-a ,()1,x =-b ,因为向量a 与b 的夹角为锐角,则()()140x x ⨯+-⨯->且41x x-≠-,解得0x >且2x ≠,即x 的取值范围为()()0,22+∞,. 故选C.【名师点睛】本题主要考查了平面向量的坐标运算及向量的共线定理的应用,其中解答中熟记平面向量的坐标运算法则和平面向量的共线定理,列出相应的关系式是解得关键,着重考查了推理与运算能力,属于基础题.由题意,根据向量a 与b 的夹角为锐角,可得()()140x x ⨯+-⨯->且41x x-≠-,即可求解.☆技巧点拨☆平面向量数量积主要有两个应用:(1)求夹角的大小:若a ,b 为非零向量,则由平面向量的数量积公式得cos θ=||||⋅a ba b (夹角公式),所以平面向量的数量积可以用来解决有关角度的问题.(2)确定夹角的范围:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角. 【注】在求ABC △的三边所对应向量的夹角时,要注意是三角形的内角还是外角.如在等边三角形ABC 中,AB 与BC 的夹角应为120°而不是60°.题组三 平面向量的模及其应用调研5 已知向量()2,1,10,=⋅=+=a a b a b ,则=bA B C .2D .5【答案】D【解析】∵|a +b ,∴222+⋅+a a b b =50, ∵2a =5,∴5+20+2b =50,解得2b =25,∴|b |=5. 故选D .【名师点睛】本题考查了平面向量的数量积运算,属于基础题.对|a +b 两边平方即可得出2b ,进而得出|b |.调研6 设e 1,e 2为单位向量,它们的夹角为π3,a =x e 1+y e 2,b =x e 1−y e 2(x ,y ∈R ),若|a |=3,则|b |的最小值为________. 【答案】1【解析】∵单位向量e 1,e 2的夹角为π3,∴e 1·e 2=12,由|a |=3,得(x e 1+y e 2)2=3,即x 2+y 2+xy =3,①则|b |2=(x e 1−y e 2)2=x 2+y 2−xy ,② ①+②得x 2+y 2=|b |2+32,①−②得xy =3-|b |22.又x 2+y 2≥2xy ,当且仅当x =y 时“=”成立,∴|b |2+32≥2·3-|b |22,解得|b |2≥1,因此,|b |的最小值为1.☆技巧点拨☆利用平面向量数量积求模及范围、求参数的取值或范围问题是高考考查数量积的一个重要考向,常以选择题、填空题的形式呈现,具有一定的综合性,且平面向量的模及其应用的常见类型与解题策略如下:(1)求向量的模.解决此类问题应注意模的计算公式||=a ,或坐标公式||=a 的应用,另外也可以运用向量数量积的运算公式列方程求解.(2)求模的最值或取值范围.解决此类问题通常有以下两种方法:①几何法:利用向量加减法的平行四边形法则或三角形法则,结合模的几何意义求模的最值或取值范围;②代数法:利用向量的数量积及运算法则转化为不等式或函数求模的最值或取值范围.(3)由向量的模求夹角.此类问题的求解其实质是求向量模方法的逆运用.题组四 平面向量的应用调研7 已知D 是ABC △所在平面内一点,且满足()()0BC CA BD AD -⋅-=,则ABC △是A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形【答案】A【解析】设,,BC a AC b AB c ===,则由()()()0BC CA BD AD BC CA BA -⋅-=-⋅=,得BC BA CA BA ⋅=⋅,所以ac cos B =bc cos A ,即a cos B =b cos A ,利用余弦定理化简得a 2=b 2,即a =b ,所以ABC △是等腰三角形.(此题也可用正弦定理化简a cos B =b cos A 得sin()0A B -=,即A B =可得)调研8 已知正三角形ABC 的边长为G ,P 是线段AC 上一点,则GP AP ⋅的最小值为A .14- B .-2 C .34-D .-1【答案】C【解析】如图,过点G 作GD AC ⊥,垂足为D , 当点P 位于线段AD 上时,0GP AP ⋅<; 当点P 位于线段DC 上时,0GP AP ⋅>,故当G PA ⋅取得最小值时,点P 在线段AD 上,所以()··3G P A P A PD P A P A P ⋅=-=--,当3AP =时,取得最小值34-,故选C .【名师点睛】求最值问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图象法、函数单调性法求解,本题主要是通过向量的数量积运算得到关于某线段长的二次函数,确定其定义域求最值即可.过点G 作GD AC ⊥,垂足为D ,分析可知当G PA P ⋅取得最小值时,点P 在线段AD 上,从而得()||3GP AP AP AP ⋅=-⋅-,利用二次函数的性质可得最值.调研9 已知向量a =⎝⎛⎭⎫cos 3x 2,sin 3x 2,b =⎝⎛⎭⎫-sin x 2,-cos x 2,其中x ∈⎣⎡⎦⎤π2,π.令函数f (x )=a ·b ,若c >f (x )恒成立,则实数c 的取值范围为 A .(1,+∞) B .(0,+∞) C .(−1,+∞) D .(2,+∞)【答案】A【解析】因为f (x )=a ·b =−cos 3x 2sin x 2−sin 3x 2cos x2=−sin2x ,又π≤2x ≤2π,所以−1≤sin2x ≤0,所以f (x )max =1.又c >f (x )恒成立,所以c >f (x )max ,即c >1.所以实数c 的取值范围为(1,+∞).故选A .☆技巧点拨☆1.向量的坐标运算将向量与代数有机结合起来,这就为向量与函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法. 3.向量的两个作用:(1)载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;(2)工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.4.向量中有关最值问题的求解思路:一是“形化”,利用向量的几何意义将问题转化为平面几何中的最值或范围问题; 二是“数化”,利用平面向量的坐标运算,把问题转化为代数中的函数最值、不等式的解集、方程有解等问题. 【注】常见的向量表示形式:(1)重心.若点G 是ABC △的重心,则GA GB GC ++=0或1()3PG PA PB PC ++=(其中P 为平面内任意一点).反之,若GA GB GC ++=0,则点G 是ABC △的重心. (2)垂心.若H 是ABC △的垂心,则HA HB HB HC HC HA ⋅=⋅=⋅.反之,若HA HB HB HC ⋅=⋅=HC HA ⋅,则点H 是ABC △的垂心.(3)内心.若点I 是ABC △的内心,则||||||BC IA CA IB AB IC ⋅+⋅+⋅=0.反之,若||||BC IA CA ⋅+⋅||IB AB IC +⋅=0,则点I 是ABC △的内心.(4)外心.若点O 是ABC △的外心,则()()()0OA OB BA OB OC CB OC OA AC +⋅=+⋅=+⋅=或||||||OA OB OC ==.反之,若||||||OA OB OC ==,则点O 是ABC △的外心.1.(湖北省武汉市部分市级示范高中2019届高三十月联考数学试题)已知P (6,8),将向量OP 绕点O 按逆时针方向旋转3π2后得向量OQ ,则点Q 的坐标是 A .(8,−6) B .(−8, −6) C .(−6, 8)D .(−6, −8)2.(山东省师大附中2019届高三上学期第二次模拟考试数学试题)设,a b 是非零向量,则2=a b 是=a ba b成立的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件3.(广东省珠海市2019届高三9月摸底考试数学试题)如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =A .1324AB AD -+ B .1223AB AD + C .1132AB AD -D .1324AB AD -4.(山东省青岛市2019届高三9月期初调研检测数学试题)已知向量()()1,1,3,,m =-=a b (),=m +若∥则a a bA .2-B .2C .2-D .−35.(甘肃省师大附中2018−2019学年上学期高三期中模拟数学试卷)已知1=a ,=b ,且()⊥-a a b ,则向量a 与向量b 的夹角为A .π6 B .π4 C .π3D .2π36.(吉林省吉林市2019届高三上学期第一次调研测试)已知等边ABC △的边长为2,则23AB BC CA ++=A .B .C .D .127.(湖南省岳阳市第一中学2019届高三上学期第二次质检数学试题)已知P 是ABC △所在平面内一点,2PB PC PA ++=0,现将一粒黄豆随机撒在ABC △内,则黄豆落在PBC △内的概率是A .23 B .12C .13D .148.(四川省攀枝花市2019届高三第一次统一考试数学试题)在四边形ABCD 中,已知M 是AB 边上的点,且1MA MB MC MD ====,120CMD ∠=,若点N 在线段CD (端点,C D 除外)上运动,则NA NB ⋅的取值范围是 A .[)1,0-B .[)1,1- C .3,04⎡⎫-⎪⎢⎣⎭D .1,12⎡⎫-⎪⎢⎣⎭9.(广西百色市高三年级2019届摸底调研考试数学试卷)已知4=a ,2⋅=-a b ,则向量b 在a 的方向上的投影为_______.10.(2018-2019学年第一学期安徽省高三第二次联考数学(文科)试题)若向量()23AB =,,()4BC m =-,,且A ,B ,C 三点共线,则AB BC ⋅=_______.11.(福建省泉州市永春二中、永春五中联考2019届高三上学期期中数学试题)已知向量2=a ,1=b ,a ,b 的夹角为60,如果()λ⊥+a a b ,则λ=______.12.(江苏省扬州市2019届高三上学期期中调研考试数学试题)在△ABC 中,AH 是边BC 上的高,点G 是△ABC 的重心,若△ABC 的面积为1,AC =,tan C =2,则()()AH BC GB GC +⋅+=_______.13.(盐城市2019届高三年级第一学期期中模拟考试数学试题)如图,给定两个长度为1的平面向量OA 和OB ,它的夹角为120,点C 在以O 为圆心的圆弧AB 上变动,若OC xOA yOB =+,其中x y ∈R ,,求x y +的最大值.14.(湖南省岳阳市第一中学2019届高三上学期第二次质检数学试题)在锐角ABC △中,已知2AB AC BA BC CA CB ⋅+⋅=⋅. (1)求tan tan tan tan C CA B+的值; (2)求cos C 的取值范围.15.(安徽省江南十校2019届高三第二次联考数学试题)在ABC △中,三内角A B C ,,的对边分别为a b c ,,,已知向量()2s i n cos 2x x =,m ,)1x =,n ,函数()f x =⋅m n 且()1f B =.(1)求角B 的值;(2)若23BA BC +=a b c ,,成等差数列,求b .1.(2018年高考新课标Ⅰ卷理科)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +2.(2018新课标全国Ⅱ理科)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .03.(2016新课标全国Ⅱ理科)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =A .−8B .−6C .6D .84.(2017新课标全国Ⅲ理科)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为A .3B .CD .25.(2017新课标全国Ⅱ理科)已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是 A .2-B .32-C .43-D .1-6.(2016新课标全国Ⅲ理科)已知向量1(2BA =uu r ,1),2BC =uu u r 则ABC ∠= A .30° B .45° C .60°D .120°7.(2018新课标全国Ⅲ理科)已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.8.(2017新课标全国Ⅰ理科)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b|=___________.9.(2016新课标全国Ⅰ理科)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=___________.。

2019年高考理科数学分类汇编:平面向量(解析版)

2019年高考理科数学分类汇编:平面向量(解析版)
∴ =-2 m2+8> 0,解得 2 x 2 ,
设 A(x1 ,y1 ), B( x2, y2),则 x1+x2=- m, x1x2
m2 1

2
y1y2=( x1+m)( x2+m) =x1x2+m( x1 +x2)+m2, AO =( -x1, -y1), AB =( x2-x1, y2-y1),
专题 07 平面向量
1.【 2019 年高考全国 I 卷理数】已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b,则 a 与 b 的夹角为
π
A.
6 2π
C.
3
【答案】 B
π
B.
3 5π
D.
6
【解析】因为 (a b)
b,所以 ( a b) b a b b2 =0,所以 a b b2 ,所以 cos = a b ab
为坐标原点,若 AO AB
3
,则实数 m=
2
A. 1
3
B.
2
y=x+m 和圆 x2+y2=1 交于 A、 B 两点, O
2
C.
2
1
D.
2
【答案】 C
【解析】联立
y x2
x y2
m 1
,得 2x2+2mx+m2- 1=0,
7
∵直线 y=x+m 和圆 x2+y2=1 交于 A、 B 两点, O 为坐标原点,
6 AO EC 3 AD AC AE
3
1
AB AC AC AB
2
3
3 AB AC AC AE ,
2
3

2019高考数学平面向量

2019高考数学平面向量

考点一
平面向量的概念及线性运算
[悟通——方法结论]
如图,A,B,C 是平面内三个点,且 A 与 B 不重合,P 是平面内任意一点,若 点 C 在直线 AB 上,则存在实数 λ,使 → → → 得PC=λPA+(1-λ)PB. 该结论比较典型,由此可知:若 A,B,C 三点在直线 l 上,点 → → → P 不在直线 l 上, 则存在 λ∈R, 使得PC=λPA+(1-λ)PB.注意: → → 这里PA,PB的系数之和等于 1.
3.(2018· 西安三模)已知 O 是平面上的一定点,A,B,C 是平面 → → → → → 设 BC 的中点为 D,则由OP=OA+λ(AB+AC),可得AP= → → → → 上不共线的三个点,动点 P 满足OP=OA+λ(AB+AC),λ∈[0, → → → λ(AB+AC)=2λAD, 所以点 P 在△ABC 的中线 AD 所在的射 +∞),则动点 P 的轨迹一定经过△ABC 的( C ) 线上,所以动点 P 的轨迹一定经过△ABC 的重心.故选 C. A.外心 B.内心 C.重心 D.垂心
3→ 1→ = AB- AC. 4 4 故选 A.
考点一 考点二 考点三 课后训练 提升能力 首页 上页 下页 尾页
考点一
平面向量的概念及线性运算
[全练——快速解答]
→ 1→ → → → 2.如图,在直角梯形 ABCD 中,DC= AB,BE=2EC,且AE= → → →4 → 2 → → 2 根据图形,由题意可得 AE = AB + BE = AB + BC = AB + 3 3 → → rAB+sAD,则 2r+3s=( C ) 1→ 2 → → 1→ 2 → 1→ → → → (BA+AD+DC)= AB+ (AD+DC)= AB+ (AD+ AB)= 3 3 3 3 4

2019年高考真题文科数学汇编7:平面向量

2019年高考真题文科数学汇编7:平面向量

2019年⾼考真题⽂科数学汇编7:平⾯向量2019⾼考⽂科试题解析分类汇编:平⾯向量⼀、选择题1.【2019⾼考全国⽂9】ABC ?中,AB 边的⾼为CD ,若CB a =,CA b =,0a b ?=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - 【答案】D【命题意图】本试题主要考查了正四棱柱的性质的运⽤,以及点到⾯的距离的求解。

体现了转换与化归的思想的运⽤,以及线⾯平⾏的距离,转化为点到⾯的距离即可。

【解析】因为底⾯的边长为2,⾼为,AC BD ,得到交点为O ,连接EO ,1//EO AC ,则点1C 到平⾯BDE 的距离等于C 到平⾯BDE 的距离,过点C 作CH OE ⊥,则CH 即为所求,在三⾓形OCE 中,利⽤等⾯积法,可得1CH =,故选答案D 。

2.【2019⾼考重庆⽂6】设x R ∈,向量(,1), (1,2),a x b ==-且a b ⊥,则||a b +=(A (B (C )(D )10 【答案】B3.【2019⾼考浙江⽂7】设a ,b 是两个⾮零向量。

A.若|a+b|=|a|-|b|,则a ⊥b B.若a ⊥b ,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λ aD.若存在实数λ,使得b=λa ,则|a+b|=|a|-|b| 【答案】C【命题意图】本题考查的是平⾯向量,主要考查向量加法运算,向量的共线含义,向量的垂直关系。

【解析】利⽤排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正⽅形得|a +b |=|a |-|b |不成⽴;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成⽴.4.【2019⾼考四川⽂7】设a 、b 都是⾮零向量,下列四个条件中,使||||a ba b =成⽴的充分条件是()A 、||||a b =且//a bB 、a b =-C 、//a bD 、2a b = 【答案】D [解析]若使||||a ba b =成⽴,则⽅向相同,与选项中只有D 能保证,故选D. [点评]本题考查的是向量相等条件?模相等且⽅向相同.学习向量知识时需注意易考易错零向量,其模为0且⽅向任意.5.【2019⾼考陕西⽂7】设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于()A2 B 12C .0 D.-1 【答案】C.【解析】∵向量a 与b 垂直,∴0a b ?=,即()11cos 2cos 0θθ?-+?=,∴22cos 1θ=.∴2cos 22cos 10θθ=-=.故选C .6.【2019⾼考辽宁⽂1】已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x = (A) —1 (B) —12 (C) 12(D)1 【答案】D【命题意图】本题主要考查向量的数量积,属于容易题。

2019年高考数学(理)考试大纲解读:专题08 平面向量-含解析

2019年高考数学(理)考试大纲解读:专题08 平面向量-含解析

2019年考试大纲解读08 平面向量(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.平面向量是每年高考的必考知识点,一般以“一小”的形式呈现,多为容易或中档题.预计在2019年的高考中,仍将以“一小”的形式进行考查,命题的热点有如下四部分内容:一是给出三角形或四边形的背景,考查平面向量基本定理,难度为容易或中档;二是考查平面向量的共线或垂直的坐标表示,多是求参数的值的问题,难度为容易或中档;三是考查平面向量的数量积或夹角,难度多为中档;四是考查求平面向量的模或求模的最值,难度为中档或高档.虽然近五年在小题中较少考查平面向量与其他知识相交汇的内容,但有关平面向量与三角函数、解析几何、基本不等式、概率等知识相交汇的内容也需给予关注,在2019年高考中有可能成为新的命题点.考向一平面向量的线性运算样题1 如图所示,在正方形ABCD中,E为BC的中点,F为AE的中点,则DFA.B.C.D.【答案】D故选D.【名师点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力.利用向量的三角形法则和向量共线定理可得:,1=2AF AE,,1=2BE BC,=BC AD,即可得出答案.向量的运算有两种方法:样题5(2017新课标全国Ⅲ理科)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若,则λμ+的最大值为A .3B .CD .2【答案】A【解析】如图所示,建立平面直角坐标系.设, 易得圆的半径r =,即圆C 的方程是,,若满足,则21x y μλ=⎧⎨-=-⎩ ,,所以, 设,即,点(),P x y 在圆上,所以圆心(20),到直线的距离d r ≤,即,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.考向四 向量与其他知识的综合样题6 (2017江苏)如图,在同一个平面内,向量OA,OB,OC的模分别为1,1OA与OCm n∈R,则的夹角为α,且tanα=7,OB与OC的夹角为45°.若(,)+=.学-科网m n【答案】3【名师点睛】(1)向量的坐标运算将向量与代数有机结合起来,这就为向量和函数、方程、不等式的结合提供了前提,运用向量的有关知识可以解决某些函数、方程、不等式问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,可将原问题转化为解不等式或求函数值域的问题,是此类问题的一般方法.(3)向量的两个作用:①载体作用,关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用,利用向量可解决一些垂直、平行、夹角与距离问题.。

2019高考数学文科总复习第8单元【平面向量】测试A卷及答案解析

2019高考数学文科总复习第8单元【平面向量】测试A卷及答案解析

sin x 2cos x 0 , tanx 2 ,
2
sin

x
4

2 sin x cos x
2 tan x 1
2 2 1 3 2 ,故答案为 3 2 .
sin x cos x sin x cos x
tan x 1
2 1
据此可知: 2m n 62 82 10 .
15.【答案】


3 5
,
4 5

【解析】 AB
1,5 4,1
3,4 ,
AB

5

与向量
AB
方向相同的单位向量为


3 5
,
4 5


16.【答案】 8, 15
A.平行四边形
B.菱形
C.矩形
D.正方形
11.已知向量 a ,b 的夹角为120 ,且 a 2 , b 3 ,则向量 2a 3b 在向量 2a b 方向上的投影为( )
A.
83 13
B.
6 13 13
C. 5 6 6
D.
19 13 13
12.在锐角 △ABC
中, B 60 ,
【解析】a a b ,所以, a a b 0 ,即 a a a b | a |2 a b cos a, b 0 ,
所以 cos
a,b
| a |2 ab

2 2
,又
a, b
0,

,故
a

b
的夹角为
3 4
,故选
C.
7.【答案】A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高2016级高中数学二轮复习高考数学专题八 平面向量1.代数法例1:已知向量a ,b 满足=3a,b ,且()⊥+a a b ,则b 在a 方向上的投影为( ) A .3 B .3- C. D【答案】C【解析】考虑b 在a 上的投影为⋅a bb,所以只需求出a ,b 即可. 由()⊥+a a b 可得:()20⋅+=+⋅=a a b a a b ,所以9⋅=-a b.进而⋅==a b b .故选C .2.几何法例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______.【答案】【解析】可知a ,b ,+a b 为平行四边形的一组邻边和一条对角线, 由2==+=a b a b 可知满足条件的只能是底角为60o ,边长2a =的菱形,=3.建立直角坐标系例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ⋅=uuu v uu u v__________.【答案】14AD BE ⋅=-uuu v uu u v【解析】上周是用合适的基底表示所求向量,从而解决问题,本周仍以此题为例,从另一个角度解题,观察到本题图形为等边三角形,所以考虑利用建系解决数量积问题,如图建系:A ⎛ ⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,下面求E 坐标:令(),E x y ,∴1,2CE x y ⎛⎫=- ⎪⎝⎭uu u v,12CA ⎛=- ⎝⎭uu v , 由3CA CE =uu v uu u v 可得:11132233x x y y ⎧⎛⎫⎧-=-= ⎪⎪⎪⎪⎪⎝⎭⇒⎨⎨⎪⎪==⎪⎪⎩⎩,∴13E ⎛ ⎝⎭,∴0,AD ⎛= ⎝⎭uuu v,56BE ⎛= ⎝⎭uu u v ,∴14AD BE ⋅=-uuu v uu u v .一、单选题1.已知向量a ,b 满足1=a ,2=b ,且向量a ,b 的夹角为4π,若λ-a b 与b 垂直,则实数λ的值为( ) A .12-B .12C. D【答案】D【解析】因为12cos4π⨯⨯=⋅=a b 所以()40λλλ-⋅=⋅=⇒=a b b 故选D . 2.已知向量a ,b 满足1=a ,2=b,+=a b 则⋅=a b ( ) A .1 BCD .2【答案】A对点增分集训【解析】由题意可得:22221427+=++⋅=++⋅=a b a b a b a b ,则1⋅=a b .故选A . 3.如图,平行四边形ABCD 中,2AB =,1AD =,60A ∠=o ,点M 在AB 边上,且13AM AB =, 则DM DB ⋅=uuu u v uu u v( )A .1-B .1C .D 【答案】B【解析】因为13AM AB =,所以DB AB AD =-uu u v uu u v uuu v ,13DM AM AD AB AD =-=-u u uu v u u u v u u u v u u u v u u u v ,则()22114333DB BM AB AD AB AD AB AB AD AD ⎛⎫⋅=-⋅-=-⋅+ ⎪⎝⎭uu u v uuu v uu u v uuu v uu u v uuu v uu u v uu u v uuu v uuu v14142111332=⨯-⨯⨯⨯+=.故选B . 4.如图,在ABC △中,BE 是边AC 的中线,O 是BE 边的中点,若AB =uu u v a ,AC =uuu vb ,则AO =uuu v( )A .1122+a bB .1124+a bC .1142+a bD .1144+a b【答案】B【解析】由题意,在ABC △中,BE 是边AC 的中线,所以12AE AC =uu u vuuuv , 又因为O 是BE 边的中点,所以()12AO AB AE =+u u u v u u u v u u u v,所以()1111122224AO AB AE AB AE =+=+=+u u u v u u u v u u u v u u u v u u u v a b ,故选B .5.在梯形ABCD 中,AB CD ∥,1CD =,2AB BC ==,120BCD ∠=o ,动点P 和Q 分别在线段BC 和CD 上,且BP BC λ=uu v uu u v ,18DQ DC λ=uuuv uuu v ,则AP BQ ⋅u u u v u u u v 的最大值为( )A .2-B .32-C .34 D .98【答案】D【解析】因为AB CD ∥,1CD =,2AB BC ==,120BCD ∠=o ,所以ABCD 是直角梯形,且CM =30BCM ∠=︒,以AB 所在直线为x 轴,以AD 所在直线为y 轴,建立如图所示的平面直角坐标系:因为BP BC λ=uu v uu u v ,18DQ DC λ=uuuv uuu v ,动点P 和Q 分别在线段BC 和CD 上,则(]01λ∈,,()20B ,,()2P λ-,18Q λ⎛ ⎝,所以()1112254848AP BQ λλλλ⎛⋅=-⋅-=+-- ⎝uu u v uu u v , 令()115448f λλλ=+--且(]01λ∈,,由基本不等式可知,当1λ=时可取得最大值, 则()()max 119154488f f λ==+--=.故选D . 6.已知ABC △中,2AB =,4AC =,60BAC ∠=︒,P 为线段AC 上任意一点,则PB PC ⋅uu v uu u v的范围是( ) A .[]14,B .[]04,C .944⎡⎤-⎢⎥⎣⎦, D .[]24-,【答案】C【解析】根据题意,ABC △中,2AB =,4AC =,60BAC ∠=︒,则根据余弦定理可得2416224cos6012BC =+-⨯⨯⨯︒=,即BC =∴ABC △为直角三角形以B 为原点,BC 为x 轴,BA 为y 轴建立坐标系,则()02A ,,()C ,则线段AC 12y+=,(0x ≤≤.设(),P x y ,则()()222443PB PC x y x y x y x ⋅=---=+-=-+uu v uu u v ,,.∵0x ≤≤∴944PB PC -≤⋅≤uu v uu uv .故选C .7.已知非零向量a ,b ,满足=a 且()()320+⋅-=a b a b ,则a 与b 的夹角为( ) A .4π B .2π C .34π D .π【答案】A【解析】非零向量a ,b ,满足=a 且()()320+⋅-=ab a b ,则()()320+⋅-=a b a b , ∴22320+⋅-=a a b b ,∴223cos 20θ+⨯⨯-=a a b b ,∴2213cos 202θ⨯⨯⨯-=b b b ,∴cos θ=,4θπ=,∴a 与b 的夹角为4π,故选A .8.在Rt ABC △中斜边BC a =,以A 为中点的线段2PQ a =,则BP CQ ⋅u u v u u u v的最大值为( )A .2-B .0C .2D .【答案】B【解析】∵在Rt ABC △中斜边BC a =,∴BA CA ⊥, ∵A 为线段PQ 中点,且2PQ a =,∴原式()22222cos a BA AQ AQ CA a AQ BA CA a AQ CB a a θ=-+⋅-⋅=-+-=-+⋅=-+uu v uuu v uuu v uu v uuu v uu v uu v uuu v uu v , 当cos 1θ=时,有最大值,0BP CQ ⋅=uu v uu u v.故选B .9.设向量a ,b ,c ,满足1==a b ,12⋅=-a b ,6,0--=oa b c c ,则c 的最大值等于( )A .1BCD .2【答案】D【解析】设OA =uu v a ,OB =uu u v b ,OC =uuu v c ,因为12⋅=-a b ,6,0--=oa b c c ,所以120AOB ∠=︒,60ACB ∠=︒,所以O ,A ,B ,C 四点共圆,因为AB =-uu u v b a ,()222223AB =-=+-⋅=uu u v b a b a a b ,所以AB =由正弦定理知22sin120ABR ==︒,即过O ,A ,B ,C 四点的圆的直径为2,所以c 的最大值等于直径2,故选D .10.已知a 与b 为单位向量,且⊥a b ,向量c 满足2--=c a b ,则c 的取值范围为( )A .1,1⎡⎣B .2⎡-+⎣C .D .3⎡-+⎣【答案】B【解析】由a ,b 是单位向量,0⋅=a b ,可设()1,0=a ,()0,1=b ,(),x y =c , 由向量c 满足2--=c a b ,∴()1,12x y --=,2,即()()22141x y +-=-,其圆心()1,1C ,半径2r =,∴OC =∴22≤≤c B .11.平行四边形ABCD 中,AC uuu v ,BD uuu v 在AB uu u v 上投影的数量分别为3,1-,则BD uuu v 在BC uu uv 上的投影的取值范围是( ) A .()1,-+∞ B .()1,3-C .()0,+∞D .()0,3【答案】A【解析】建立如图所示的直角坐标系:设(),0B a ,则()3,C b ,()1,D a b -,则()31a a --=,解得2a =.所以()1,D b ,()3,C b .BD uuu v 在BC uu u v 上的摄影cos BM BD θθ==uu u v ,当0b →时,cos 1→-,得到:1BM →-,当b →+∞时,0θ→,BM →+∞,故选A .12.如图,在等腰直角三角形ABC 中,AB AC ==D ,E 是线段BC 上的点,且13DE BC =,则AD AE ⋅uuu v uu u v的取值范围是( )A .84,93⎡⎤⎢⎥⎣⎦B .48,33⎡⎤⎢⎥⎣⎦C .88,93⎡⎤⎢⎥⎣⎦D .4,3⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】如图所示,以BC 所在直线为x 轴,以BC 的中垂线为y 轴建立平面直角坐标系,则()0,1A ,()1,0B -,()1,0C ,设(),0D x ,则2,03E x ⎛⎫+ ⎪⎝⎭,113x ⎛⎫-≤≤ ⎪⎝⎭.据此有(),1AD x =-u u u v ,2,13AE x ⎛⎫=+- ⎪⎝⎭uu u v , 则222181339AD AE x x x ⎛⎫⋅=++=++ ⎪⎝⎭uuu v uu u v .据此可知,当13x =-时,AD AE ⋅uuu v uu u v取得最小值89;当1x =-或13x =时,AD AE ⋅uuu v uu u v取得最大值43; AD AE ⋅uuu v uu u v的取值范围是84,93⎡⎤⎢⎥⎣⎦.故选A .二、填空题13.已知向量()1,2=a ,()2,2=-b ,()1,λ=c ,若()2+∥c a b ,则λ=________. 【答案】12.【解析】因为()1,2=a ,()2,2=-b ,所以()24,2+=a b , 又()1,λ=c ,且()2+∥c a b ,则42λ=,即12λ=.14.若向量a ,b 满足1=a ,b 且()⊥+a a b ,则a 与b 的夹角为__________. 【答案】34π【解析】由()⊥+a a b 得,()0⋅+=a a b ,即20+⋅=a a b ,据此可得2cos ,⋅=⋅⋅=-a b a b a b a ,∴cos ,==a b 又a 与b 的夹角的取值范围为[]0,π,故a 与b 的夹角为34π.15.已知正方形ABCD 的边长为2,E 是CD 上的一个动点,则求AE BD ⋅uuu v uuu v的最大值为________. 【答案】4【解析】设DE DC AB λλ==u u u v u u u v u u u v ,则AE AD DE AD AB λ=+=+u u u v u u u v u u u v u u u v u u u v,又BD AD AB =-uu u v uuu v uu u v ,∴()()()22144AE BD AD AB AD AB AD AB AB AD λλλλ⋅=+⋅-=-+-⋅=-uu u v uu u v uuu v uu u v uuu v uu u v uuu v uu u v uu u v uuu v,∵01λ≤<,∴当0λ=时,AE BD ⋅uu u v uu u v取得最大值4,故答案为4.16.在ABC △中,90C ∠=︒,30B ∠=︒,2AC =,P 为线段AB 上一点,则PB PC +uu v uu u v的取值范围为____.【答案】【解析】以C 为坐标原点,CB ,CA 所在直线为x ,y 轴建立直角坐标系,可得()0,0C ,()0,2A ,()B ,则直线AB 12y+=,设(),P x y ,则2y =-,0x ≤≤(),PB x y =-uu v ,(),PC x y =--u u u v ,则|()()22222PB PC xy +=+uu v uu u v2222441244212x y x ⎛=+-+=+-+ ⎝22161628333x x ⎛=-+=+ ⎝⎭,由x ⎡=⎣,可得PB PC +uuv uuu v 的最小值为 ,时,则PB PC +uu v uu u v的最大值为即PB PC +uu v uu u v的取值范围为.故答案为.。

相关文档
最新文档