高二数学下学期5月月考试题(2)

合集下载

四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题

四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题

【详解】解:∵ A = {x 1 < x < 2}, B = {x 1 £ x £ 2} ,
∴ A Ç B = {x 1 < x < 2} ,
故选:D. 2.C 【分析】由复数运算法则可得 z 代数形式,后可得其虚部.
【详解】
z
=
3 + 2i 1+ i
=
(3 + 2i)(1- i) (1+ i)(1- i)
=
5
2
i
=
5 2
-
1 2
i
,则
z
的虚部是
-
1 2
.
故选:C 3.B
【分析】根据点 P ( x, y) 在椭圆上得
x2 a2
+
y2 b2
= 1,且 -a
£
x
£ a ,再利用两点距离求得
PF1
=
c a
x + a ,从而可确定
PF1
a, c 的最大值与最小值,即可求得 的值,即可得离心率
e
=
c a
的值.
【详解】设椭圆的半焦距为 c ,若椭圆上一点 P ( x,
为圆柱下底面圆
O
的直径,C
是下底面圆周上一点,已知
ÐAOC
=
π 3

OA
=
2
,圆柱的高为
5.若点
D
在圆柱表面上运动,且满足
uuur BC
×
uuur CD
=
0
,则点
D
的轨
迹所围成图形的面积为________.
试卷第31 页,共33 页
16.已知函数 f ( x) = aln2x +1- x (a Î R) 有且仅有一条切线经过点 (0, 0) .若"x Î[1, +¥) , f ( x) + mlnx £ 0 恒成立,则实数 m 的最大值是______.

上海市吴淞中学2022-2023学年高二下学期5月月考数学试题

上海市吴淞中学2022-2023学年高二下学期5月月考数学试题

上海市吴淞中学2022-2023学年高二下学期5月月考数学试题学校:___________姓名:___________班级:___________考号:___________A.2023B.2024C.2025D.202616.项数为(),2k k k *γN 的有限数列{}na 的各项均不小于1-的整数,满足123123122220k k k k k a a a a a ----×+×+×+×××+×+=,其中10a ¹.给出下列四个结论:①若2k =,则22a =;②若3k =,则满足条件的数列{}n a 有4个;③存在11a =的数列{}na ;④所有满足条件的数列{}na 中,首项相同.其中所有正确结论的序号是_________.三、解答题17.如图,正方体1111ABCD A B C D -的棱长为2,点E 为1BB 的中点.(1)求直线1AA 与平面1D AE 所成角的正弦值;(2)求点1A 到平面1D AE 的距离.18.设{}na 是等差数列,{}nb 是各项都为正数的等比数列,且111a b ==,225a b +=,()1,1,0,()1,0,0A ,()0,2,0C ,()1,2,0AC =-uuu r ,()11,0,1AD =-uuuu r ,AE u u 设平面1ACD 的法向量(),,n x y z =r 则1200n AC x y n AD x z ì×=-+=ïí×=-+=ïîuuu v v uuuu v v ,取1y =,得uuu。

河南省洛阳市创新发展联盟2022-2023学年高二下学期5月月考数学试题

河南省洛阳市创新发展联盟2022-2023学年高二下学期5月月考数学试题

河南省洛阳市创新发展联盟2022-2023学年高二下学期5月
月考数学试题
学校:___________姓名:___________班级:___________考号:___________
15.一个装有水的圆柱形水杯水平放在桌面上,在杯中放入一个半径为1cm 的球状物
体后,水面高度为6cm ,如图所示.已知该水杯的底面圆半径为3cm ,若从0t s =时刻开始,该球状物体的半径以1cm/s 的速度变长(在该球状物体膨胀的过程中,该球状物
体不吸水,且始终处于水面下,杯中的水不会溢出),则在2t s =时刻,水面上升的瞬时速度为
__________ cm/s.
16.已知数列{}n
a 满足21122315n n n a a a a a +++===,,,记()()9 n A n a B n ,,,,O 为坐标原点,则OAB V 面积的最大值为_____________.
四、解答题
17.2022年卡塔尔世界杯于北京时间11月20日在卡塔尔正式开赛,该比赛吸引了全世界亿万球迷观看.为了了解喜爱观看世界杯是否与性别有关,某体育台随机抽取200名观众进行统计,得到如下2×2列联表
.。

广西南宁市第二十六中学2023-2024学年高二下学期5月月考数学试题

广西南宁市第二十六中学2023-2024学年高二下学期5月月考数学试题

( -1,4 )

由第一条直线的斜率为
-3
,得到所求直线的斜率为
k
=
1 3

\ 所求直线的方程为:
y
-
4
=
1 3
(
x
+
1)
,即
x
-
3y
+
13
=
0

故选:C 6.B
【分析】利用导数与极值的定义得到关于 a, b 的方程组,从而求得 a,b ,然后再检验 x= - 1 时,函数是否能取得极值,由此得解.
ö ÷ø
D.
æ çè
1 16
,
0
ö ÷ø
2.对两个变量 y 与 x 进行回归分析,分别选择不同的模型,它们的相关系数 r 如下,其中
拟合效果最好的模型是( )
A.模型Ⅰ:相关系数 r 为 -0.96
B.模型Ⅱ:相关系数 r 为 0.81
C.模型Ⅲ:相关系数 r 为 -0.53
D.模型Ⅳ:相关系数 r 为 0.53
试卷第41 页,共33 页
å å åå (参考公式:bˆ =
n
( xi
i=1 n
- x )( yi - y ) ( xi - x )2
=
n
i=1 n
xi yi - nxy xi2 - nx 2
aˆˆ= ,
y - bˆx )
i =1
i =1
17.如图,在三棱锥 P - ABC 中, AB = 2, BC = 2 2, PB = PC, BP, AP, AC, BC 的中点分别
所以
ìa íîb
= =
2 9
,所以
ab
=

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

高二数学(理)下学期第二次月考试题(含答案)

高二数学(理)下学期第二次月考试题(含答案)

上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。

2022-2023学年河南省郑州市高二下学期5月月考数学试题【含答案】

2022-2023学年河南省郑州市高二下学期5月月考数学试题【含答案】

2022-2023学年河南省郑州市高二下学期5月月考数学试题一、单选题1.在某项测试中,测量结果服从正态分布,若,则ξ()()21,0N σσ>()120.3P ξ<<=( )()0P ξ<=A .0.1B .0.2C .0.3D .0.4【答案】B【分析】根据正态分布的性质,利用其概率公式,可得答案.【详解】由题意可知,变量所作的正态曲线关于直线对称,ξ1x =则,,()()1201P P ξξ<<=<<()()02P P ξξ<=>故.()()121200.22P P ξξ-<<<==故选:B.2.已知等差数列的前n 项和为,,,则使取得最大值时n 的值为{}n a n S 1593a a a ++=1111S =-n S ( )A .5B .6C .7D .8【答案】A【分析】利用下标和性质和前n 项和公式可判断的符号,然后可得.56,a a 【详解】设等差数列的公差为d ,{}n a 因为,所以159533a a a a ++==510a =>又,所以11111611()11112a a S a +===-610a =-<所以等差数列的前5项为正数,从第6项开始为负数,{}n a 所以当时,取得最大值.5n =n S 故选:A3.已知的展开式中各项的二项式系数之和为256,则展开式中的常数项为( )()*1N nx n x ⎛⎫+∈ ⎪⎝⎭A .B .C .40D .7070-40-【分析】先由求得n ,再利用的展开式的通项求解常数项.2256n=81x x ⎛⎫+ ⎪⎝⎭【详解】因为的展开式中各项的二项式系数之和为256,()*1N nx n x ⎛⎫+∈ ⎪⎝⎭所以,解得,822562n ==8n =则的展开式的通项为,81x x ⎛⎫+ ⎪⎝⎭()()8821881C C rr r r rr T x x x --+⎛⎫== ⎪⎝⎭令,解得,820r -=4r =所以展开式中的常数项为,48C 70=故选:D.4.函数的单调递增区间是( )()ln f x x x =-A .B .C .D .(,e)-∞-1,e ⎛⎫-∞ ⎪⎝⎭10,e ⎛⎫⎪⎝⎭(0,e)【答案】C【分析】求出函数的定义域与导函数,再解关于导函数的不等式,即可求出函数的单调递增区间.【详解】函数的定义域为,()ln f x x x =-()0,∞+又,令,即,即,所以,()ln 1f x x '=--()0f x '>ln 10x -->ln 1x <-10e x <<所以的单调递增区间为.()f x 10,e ⎛⎫ ⎪⎝⎭故选:C5.某同学参加篮球测试,老师规定每个同学罚篮次,每罚进一球记分,不进记分,已知该1051-同学的罚球命中率为,并且各次罚球互不影响,则该同学得分的数学期望为( )60%A .B .C .D .30362026【答案】D【分析】根据二项分布数学期望公式可求得该同学罚球命中次数的数学期望,结合罚球得分的规则可计算得到结果.【详解】记该同学罚球命中的次数为,则,,X ()10,0.6X B ()100.66E X ∴=⨯=该同学得分的数学期望为.∴()()65106130426⨯+-⨯-=-=6.在数列中,已知且,则其前项和的值为( ){}n a 11a =12n n a a n ++=2929S A .B .C .D .56365421666【答案】C 【分析】将展开,根据题中递推公式进行分组求和,再利用等差数列前n 项和公式计算求解即29S 可.【详解】291234272829S a a a a a a a =++++⋅⋅⋅+++()()()()1234526272829a a a a a a a a a =+++++⋅⋅⋅++++12224226228=+⨯+⨯+⋅⋅⋅+⨯+⨯.()122462628421=+++⋅⋅⋅++=故选:C7.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列是一个“2023积数列”,且,则当其前n 项的乘积取最小值时n 的值为{}n a 101a <<( )A .1011B .1012C .2022D .2023【答案】A【分析】根据“m 积数列”判断出的单调性,再根据具体数据找出满足的最后一项,即可{}n a 1n a <得到选项.【详解】根据“2023积数列”性质可知,1234202220232023a a a a a a a ⨯⨯⨯⨯⋅⋅⋅⨯⨯=即,123420221a a a a a ⨯⨯⨯⨯⋅⋅⋅⨯=根据等比中项性质可知:,120222202132020101110121a a a a a a a a ===⋅⋅⋅==因为,且,101a <<0q >所以前1011项都是小于1的,从第1012项开始往后的都是大于1的,即为递增的等比数列,且,{}n a 101110121,1a a <>则当其前n 项的乘积取最小值时n 的值为1011.故选:A.8.设,,,则( )141e 5a =14b =5ln 4c =A .B .a b c >>a c b >>C .D .b a c >>c a b>>【答案】A【分析】利用作商法,结合对数函数的单调性,可得答案.【详解】由题意可得:,,441e e 5625a ==44114256b ==由,则;44256256e 2.7 1.11625625a b =≈⨯≈>a b >,令,,141ln e ln e 4b ==14e x =54y =由,则,即;44256e 1.11625x y =≈>y x >b c >综上可得:.a b c >>故选:A.二、多选题9.已知是两个随机事件,,下列命题正确的是( ),A B 0()1P A <<A .若相互独立,B .若事件,则,A B ()()P B A P B =A B ⊆()1P B A =C .若是对立事件,则D .若是互斥事件,则,A B ()1P B A =,A B ()0P B A =【答案】ABD【分析】利用条件概率、相互独立事件判断A ;利用条件概率的定义判断B ;利用条件概率及对立、互斥事件的意义判断C ,D 作答.【详解】对于A ,随机事件相互独立,则,,A 正,A B ()()()P AB P A P B =()(|)()()P AB P B A P B P A ==确;对于B ,事件,,,B 正确;A B ⊆()()P AB P A =()(|)1()P AB P B A P A ==对于C ,因是对立事件,则,,C 不正确;,A B ()0P AB =()(|)0()P AB P B A P A ==对于D ,因是互斥事件,则,,D 正确.,A B ()0P AB =()(|)0()P AB P B A P A ==故选:ABD10.对任意实数,有.则下列结论成立x ()()()()()823801238231111x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-的是( )A .B .01a =-2112a =-C .D .01281a a a a +++⋅⋅⋅+=8012383a a a a a -+-+⋅⋅⋅+=【答案】CD 【分析】求得的值判断选项A ;求得的值判断选项B ;求得的值判断选项0a 2a 0128a a a a +++⋅⋅⋅+C ;求得的值判断选项D.01238a a a a a -+-+⋅⋅⋅+【详解】由,()()()()()823801238231111x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-可得,()()8823121x x -=-+-⎡⎤⎣⎦当时,,则,A 选项错误;1x =()823a -=01a =由二项式定理可得,,B 选项错误;()822228C 12112a -=-=当时,,2x =()8012843a a a a -=+++⋅⋅⋅+即,C 选项正确;01281a a a a +++⋅⋅⋅+=当时,,0x =()8012383a a a a a -=-+-+⋅⋅⋅+即,D 选项正确.8012383a a a a a -+-+⋅⋅⋅+=故选:CD11.现将把椅子排成一排,位同学随机就座,则下列说法中正确的是( )84A .个空位全都相邻的坐法有种4120B .个空位中只有个相邻的坐法有种43240C .个空位均不相邻的坐法有种4120D .4个空位中至多有个相邻的坐法有种2840【答案】AC【分析】对于A ,利用捆绑法结合排列数;对于B ,利用插空法结合排列数;对于C ,利用插空法结合排列组合;对于D ,根据分类加法原理结合插空法,可得答案.【详解】对于A ,将四个空位当成一个整体,全部的坐法:种,故A 对;55A 120=对于B ,先排4个学生,然后将三个相邻的空位当成一个整体,和另一个空位插入由4个学生44A 形成的5个空档中有种方法,所以一共有种,故B 错;25A 4245480A A =对于C ,先排4个学生,4个空位是一样的,然后将4个空位插入由4个学生形成的个空档中44A 5有种,所以一共有种,故C 对;45C 4445A C 120=对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有120种,空位两个两个相邻的有,空位只有两个相邻的有,4245A C 240=412454A C C 720=所以一共有种,故D 错;1202407201080++=故选:AC.12.甲、乙、丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,下列说法正确的是( )A .2次传球后球在丙手上的概率是14B .3次传球后球在乙手上的概率是13C .3次传球后球在甲手上的概率是14D .n 次传球后球在甲手上的概率是111132n -⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【答案】ACD【分析】列举出经2次、3次传球后的所有可能,再利用古典概率公式计算作答可判断ABC ,n 次传球后球在甲手上的事件即为,则有,利用全概率公式可得,nA 111n n n n n A A A A A +++=+11(1)2n n p p +=-再构造等比数列求解即可判断D.【详解】第一次甲将球传出后,2次传球后的所有结果为:甲乙甲,甲乙丙,甲丙甲,甲丙乙,共4个结果,它们等可能,2次传球后球在丙手中的事件有:甲乙丙, 1个结果,所以概率是,故14A 正确;第一次甲将球传出后,3次传球后的所有结果为:甲乙甲乙,甲乙甲丙,甲乙丙甲,甲乙丙乙,甲丙甲乙,甲丙甲丙,甲丙乙甲,甲丙乙丙,共8个结果,它们等可能,3次传球后球在乙手中的事件有:甲乙甲乙,甲乙丙乙,甲丙甲乙,3个结果,所以概率为,故B 错误;383次传球后球在甲手上的事件为:甲乙丙甲,甲丙乙甲,2个结果,所以概率为,故C 正确;2184=n 次传球后球在甲手上的事件记为,则有,nA 111n n n n n A A A A A +++=+令,则于是得()n n p P A =111(|)0,(|),2n n n n P A A P A A ++==,1111()()(|)()(|0(1)2n n n n n n n n n P A P A P A A P A P A A p p +++=+=⋅+-故,则,而第一次由甲传球后,球不可能在甲手中,即,11(1)2n n p p +=-1111()323n n p p +-=--10p =则有,数列是以为首项,为公比的等比数列,所以11133p -=-1{}3n p -13-12-即,故D 正确.1111(),332n n p --=--1111(32n n p -⎡⎤=--⎢⎥⎣⎦故选:ACD三、填空题13.在等比数列中,,是函数的极值点,则=__________.{}n a 3a 7a ()3214413f x x x x =++-5a 【答案】2-【分析】根据极值点的必要条件,可得,是函数的零点,结合零点的定义以3a 7a ()284f x x x '=++及二次方程根的性质,利用等比数列中等比中项的性质,可得答案.【详解】由函数,则其导数,()3214413f x x x x =++-()284f x x x '=++由,是函数的极值点,3a 7a ()3214413f x x x x =++-则,是函数的零点,3a 7a ()284f x x x '=++即,是方程的两个解,故,3a 7a 2840x x ++=374a a =378a a +=-在等比数列中,,且同号,即,故.{}n a 25374a a a ==357,,a a a 50a <52a =-故答案为:.2-14.接种流感疫苗能有效降低流行感冒的感染率,某学校的学生接种了流感疫苗,已知在流感高25发时期,未接种疫苗的感染率为,而接种了疫苗的感染率为.现有一名学生确诊了流感,则该14110名学生未接种疫苗的概率为___________【答案】1519【分析】根据条件概率公式求解即可.【详解】设事件“感染流行感冒”,事件“未接种疫苗”,A =B =则,,()31211954510100P A =⨯+⨯=()3135420P AB =⨯=故.()()()15|19P AB P B A P A ==故答案为:.151915.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,……,6,用表示小球落入格子的号码,则下面结论中正确的序号是___________.X① ;()()11664P X P X ====② ;()()52532P X P X ====③ ;()()53416P X P X ====④.()52E X =【答案】② ③【分析】根据题意可知小球每次碰到小木钉后落下都是独立重复实验,根据独立重复实验概率计算规则计算即可.【详解】由题意可知,的所有取值为,X 1,2,3,4,5,6则,由对称性可知,()5111232P X ⎛⎫=== ⎪⎝⎭()()16132P X P X ====,()()41511525C 2232P X P X ⎛⎫====⨯⨯=⎪⎝⎭,()()322511534C 2216P X P X ⎛⎫⎛⎫====⨯⨯=⎪ ⎪⎝⎭⎝⎭所以.1557()(16)(25)(34)3232162E X =+⨯++⨯++⨯=故答案为:② ③16.已知e 是自然对数的底数.若,成立,则实数m 的最小值是()0,x ∀∈+∞eln mxm x ≥________.【答案】/1e 1e-【分析】根据给定的不等式,两边同乘x ,利用同构的思想构造函数,借助函数单调性求得恒成立的不等式,再分离参数构造函数,求出函数最大值作答.【详解】由得,即,eln mxm x ≥e ln mx mx x x ≥ln e e ln mx x mx x ≥⋅令,求导得,则在上单调递增,()e ,0xf x x x =>()(1)0x f x x e '=+>()f x ()0,∞+显然,当时,恒有,即恒成立,0m >01x <≤ln e e ln 00,mxx mx x >⋅≤ln e e ln mx x mx x ≥⋅于是当时,,有,1x >ln 0x >()()ln f mx f x ≥从而对恒成立,即对恒成立,ln mx x ≥()1,x ∀∈+∞ln xm x ≥()1,x ∀∈+∞令,求导得,则当时,;当时,,()ln x g x x =()21ln xg x x -'=()1,e x ∈()0g x '>()e,x ∈+∞()0g x '<因此函数在上单调递增,在上单调递减,,则,()g x (1,e)(e,)+∞max 1()e g x =1e m ≥所以实数m 的最小值是.1e 故答案为:1e【点睛】思路点睛:涉及函数不等式恒成立问题,将不等式等价转化,利用同构思想,构造新函数,借助函数的单调性分析求解.四、解答题17.彭老师要从10篇课文中随机抽3篇不同的课文让同学背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的7篇,求:(1)抽到他能背诵的课文的数量的分布列;X(2)他能及格的概率.【答案】(1)分布列见解析(2)4960【分析】(1)根据已知条件求出随机变量的取值,求出对应的概率,即可得出随机变量的分布列;(2)根据已知条件及随机变量的分布列的性质即可求解.【详解】(1)由题意可知,的可能取值为,则X 0,1,2,3,()3037310C C 10C 120P X ===,()2137310C C 71C 40P X ===()1237310C C 212C 40P X ===.()0337310C C 353C 120P X ===所以的分布列为X X123P1120740214035120(2)该同学能及格,表示他能背诵篇或篇,23由(1)知,该同学能及格的概率为.()()()2135492234012060P X P X P X ≥==+==+=18.已知数列是公差为2的等差数列,且满足,,成等比数列.{}n a 1a 2a 5a (1)求数列的通项公式;{}n a (2)求数列的前n 项和.11n n a a+⎧⎫⎨⎬⎩⎭n T 【答案】(1)21n a n =-(2)=21n nT n +【分析】(1)由成等比数列得首项,从而得到通项公式;125,,a a a (2)利用裂项相消求和可得答案.【详解】(1)设数列的公差为,{}n a d ∵成等比数列,∴,125,,a a a 1225a a a =即,2111()(4)a d a a d +=+∴,由题意222111124a a d d a a d ++=+2d =故,得,221111448a a a a ++=+11a =12121n a n n ∴=+-=-()即.21n a n =-(2),111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭∴1111111...23352121⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦n T n n .11122121n n n ⎛⎫=-= ⎪++⎝⎭19.已知函数.()()ln 1R f x x ax a =-+∈(1)讨论函数的单调性;()f x (2)若对任意的,恒成立,求实数的取值范围;0x >()0f x ≤a 【答案】(1)答案见解析(2)1a ≥【分析】(1)求导可得,分和进行讨论即可得解;()()10f x a x x '=->0a ≤0a >(2)根据题意参变分离可得恒成立,令,求出的最大值即可得解.ln 1x a x +≥()ln 1x g x x +=()g x 【详解】(1)依题意,,()()10f x a x x '=->当时,显然,所以在上单调递增;0a ≤()0f x ¢>()f x ()0,∞+当时,令,得;令,;0a >()0f x ¢>10x a <<()0f x '<1x a >即在上单调递增,在上单调递减.()f x 10a ⎛⎫⎪⎝⎭,1,a⎛⎫+∞ ⎪⎝⎭(2)由题意得恒成立,等价于恒成立,()()ln 100f x x ax x =-+≤>()ln 10x a x x +≥>令,即时成立.()()ln 10x g x x x +=>()maxa g x ≥则,当时,,当时,,()2ln xg x x '=-()0,1x ∈()0g x '>()1,+∈∞x ()0g x '<那么在上单调递增,在上单调递增减,所以,()g x ()0,1()1,+∞()()max =11g x g =所以.1a ≥20.已知等差数列的前项和为,,.正项等比数列中,,{}n a n n S 12a =4=26S {}n b 12b =.2312b b +=(1)求与的通项公式;{}n a {}n b (2)求数列的前项和.{}n n a b n nT【答案】(1),31n a n =-2nn b =(2)()13428n n T n +=-+【分析】(1)根据等差数列和等比数列的通项公式即可求的通项公式.(2)利用错位相减法整理化简即可求得前项和.n n T 【详解】(1)等差数列的前项和为,,,设公差为{}n a n n S 12a =4=26S d 所以,解得4342262d ⨯⨯+=3d =所以()()1123131n a a n d n n =+-=+-=-正项等比数列中,,,设公比为{}n b 12b =2312b b +=q 所以,所以()2212q q +=260q q +-=解得,或(舍去)2q ==3q -所以2nn b =(2)由(1)知:()312nn n a b n =-所以()122252312nn T n =⨯+⨯++- ()()23122252342312n n n T n n +=⨯+⨯+-+- 两式相减得:()123122323232312n n n T n +-=⨯+⨯+⨯++⨯--()()()211113212=22312=432812n n n n n -++⨯⨯-⨯+-----()13428n n T n +=-+21.第届亚运会将于年月日至月日在我国杭州举行,这是我国继北京后第二次举222023923108办亚运会.为迎接这场体育盛会,浙江某市决定举办一次亚运会知识竞赛,该市社区举办了一场A 选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表社区参加市亚运A 知识竞赛.已知社区甲、乙、丙位选手都参加了初赛且通过初赛的概率依次为、、,通A 3121213过初赛后再通过决赛的概率均为,假设他们之间通过与否互不影响.13(1)求这人中至多有人通过初赛的概率;32(2)求这人中至少有人参加市知识竞赛的概率;31(3)某品牌商赞助了社区的这次知识竞赛,给参加选拔赛的选手提供了两种奖励方案:A 方案一:参加了选拔赛的选手都可参与抽奖,每人抽奖次,每次中奖的概率均为,且每次抽奖112互不影响,中奖一次奖励元;600方案二:只参加了初赛的选手奖励元,参加了决赛的选手奖励元.200500若品牌商希望给予选手更多的奖励,试从三人奖金总额的数学期望的角度分析,品牌商选择哪种方案更好.【答案】(1)1112(2)3181(3)方案二更好,理由见解析【分析】(1)计算出人全通过初赛的概率,再利用对立事件的概率公式可求得所求事件的概率;3(2)计算出人各自参加市知识竞赛的概率,再利用独立事件和对立事件的概率公式可求得所求3事件的概率;(3)利用二项分布及期望的性质求出方案一奖金总额的期望,对方案二,列出奖金总额为随机变量的所有可能取值,并求出对应的概率,求出其期望,比较大小作答.【详解】(1)解:人全通过初赛的概率为,321112312⎛⎫⨯=⎪⎝⎭所以,这人中至多有人通过初赛的概率为.3211111212-=(2)解:甲参加市知识竞赛的概率为,乙参加市知识竞赛的概率为,111236⨯=111236⨯=丙参加市知识竞赛的概率为,131139⨯=所以,这人中至少有人参加市知识竞赛的概率为.31211311116981⎛⎫⎛⎫--⨯-=⎪ ⎪⎝⎭⎝⎭(3)解:方案一:设三人中奖人数为,所获奖金总额为元,则,且,X Y 600Y X =13,2X B ⎛⎫ ⎪⎝⎭ 所以元,()()160060039002E Y E X ==⨯⨯=方案二:记甲、乙、丙三人获得奖金之和为元,则的所有可能取值为、Z Z 600、、,90012001500则,()211160011236P Z ⎛⎫⎛⎫==-⨯-=⎪ ⎪⎝⎭⎝⎭,()212111115900C 1112233212P Z ⎛⎫⎛⎫⎛⎫==⋅--+-=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,()21211111112001C 1232233P Z ⎛⎫⎛⎫⎛⎫==⨯-+⋅-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()211115002312P Z ⎛⎫==⋅=⎪⎝⎭所以,.()1511600900120015001000612312E Z =⨯+⨯+⨯+⨯=所以,,()()E Y E Z <所以从三人奖金总额的数学期望的角度分析,品牌商选择方案二更好.22.已知函数.2()ln 3f x x ax x =+-(1)若函数的图象在点处的切线方程为,求函数的极小值;()f x ()()1,1f =2y -()f x (2)若,对于任意,当时,不等式恒成立,求实数1a =[]12,1,2x x ∈12x x <()()()211212m x x f x f x x x -->的取值范围.m 【答案】(1)2-(2)(],6∞--【分析】(1)利用求得,然后结合的单调性求得的极小值.()'10f =a ()f x ()f x (2)将不等式转化为,通过构造函数法,结合导()()()211212m x x f x f x x x -->1212()()m mf x f x x x ->-数来求得的取值范围.m 【详解】(1)因为的定义域为,2()ln 3f x x ax x =+-()0,∞+所以.()'123f x ax x =+-由函数f (x )的图象在点(1,f (1))处的切线方程为y =-2,得,解得a =1.()'11230f a =+-=此时.()'1(21)(1)23x x f x x x x --=+-=当和时,;10,2x ⎛⎫∈ ⎪⎝⎭()1,+∞()'0f x >当时,.1,12x ⎛⎫∈ ⎪⎝⎭()'0f x <所以函数f (x )在和上单调递增,在上单调递减,10,2⎛⎫ ⎪⎝⎭()1,+∞1,12⎛⎫ ⎪⎝⎭所以当x =1时,函数f (x )取得极小值.()1ln1132f =+-=-(2)由a =1得.()2ln 3f x x x x=+-因为对于任意,当时,恒成立,[]12,1,2x x ∈12x x <()()()211212m x x f x f x x x -->所以对于任意,当时,恒成立,[]12,1,2x x ∈12x x <1212()()m m f x f x x x ->-所以函数在上单调递减.()my f x x =-[]1,2令,,2()()ln 3m m h x f x x x x x x =-=+--[]1,2x ∈所以在[1,2]上恒成立,()'21230m h x x x x =+-+≤则在[1,2]上恒成立.3223m x x x ≤-+-设,()()322312F x x x x x =-+-≤≤则.()2'211661622F x x x x ⎛⎫=-+-=--+⎪⎝⎭当时,,所以函数F (x )在上单调递减,[]1,2x ∈()'0F x <[]1,2所以,()()26F x F ≥=-所以,故实数m 的取值范围为.6m ≤-(],6∞--【点睛】求解不等式恒成立问题,可考虑采用分离常数法,分离常数后,通过构造函数法,结合导数来求得参数的取值范围.。

四川省仁寿县文宫中学2022-2023学年高二下学期5月月考(文科)数学试题

四川省仁寿县文宫中学2022-2023学年高二下学期5月月考(文科)数学试题

四川省仁寿县文宫中学2022-2023学年高二下学期5月月考(文科)数学试题学校:___________姓名:___________班级:___________考号:___________.32B .89.已知函数()2sin f x x x =-,(1,1)x Î-,如的取值范围为( ).(0,1)B .(2,1)-10.已知函数()24ln f x ax ax x =--,则(f x 是( ).1,6a æöÎ-¥ç÷èø.1,2a æöÎ+¥ç÷èø11.已知()22ln f x x x ax =+-在()0,¥+上单调A .[]1010,1010-B .[)1010,+¥C .(],1010-¥-D .(][),10101010,-¥-+¥U三、解答题17.函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )上点P (1,f (1))处的切线方程为y =3x +1(1)若y =f (x )在x =﹣2时有极值,求函数y =f (x )在[﹣3,1]上的最大值;(2)若函数y =f (x )在区间[﹣2,1]上单调递增,求b 的取值范围.18.为了迎接北京冬奥会,某学校团委组织了一次“奥运会”知识讲座活动,活动结束后随机抽取100名学生对讲座情况进行调查,其中男生与女生的人数之比为2:3,抽取的学生中男生有20名对讲座活动满意,女生中有20名对讲座活动不满意.(1)完成22´列联表,并回答能否有90%的把握认为“对讲座活动是否满意与性别有关”;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段[120,130)内的概率. 21.已知函数()()2=+++,ln21f x x ax a x(1)当1x=处的切线方程;a=时,求()y f x=曲线在1(2)讨论()f x的单调性.22.某公司为研究某种图书每册的成本费y(单位:元)与印刷数量x(单位:千册)的关系,.收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值新函数m(x),利用基本不等式求出m(x)的最大值,令b大于等于m(x)的最大值即可.【详解】解:(1)由f(x)=x3+ax2+bx+c,求导数得f′(x)=3x2+2ax+b,过y=f(x)上点P(1,f(1))的切线方程为:y﹣f(1)=f′(1)(x﹣1)即y﹣(a+b+c+1)=(3+2a+b)(x﹣1)故32321a ba b c++=ìí++-=î,即203a ba b c+=ìí++=î,∵有y=f(x)在x=﹣2时有极值,故f′(﹣2)=0,∴﹣4a+b=﹣12,则203412a ba b ca b+=ìï++=íï-+=-î,解得a=2,b=﹣4,c=5,f(x)=x3+2x2﹣4x+5.f′(x)=3x2+2ax+b=3x2+4x﹣4=(3x﹣2)(x+2)男生2名,女生4名,列出所有的基本事件,再利用古典概型公式即可求出结果.【详解】(1)补全2×2列联表如表所示.。

山西省太原市第五中学2023-2024学年高二下学期5月月考数学试题(含解析)

山西省太原市第五中学2023-2024学年高二下学期5月月考数学试题(含解析)

太原五中2023—2024学年度第二学期月考高二数学时间:2024年5月一、单选题(本大题共8小题,每小题5分,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的4盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有( )A.B.C.D.2.十进制计数法简单易懂,方便人们进行计算.也可以用其他进制表示数,如十进制下,,用七进制表示68这个数就是125,个位数为5,那么用七进制表示十进制的,其个位数是( )A.1B.2C.5D.63.五人相约到电影院观看电影《第二十条》,恰好买到了五张连号的电影票.若甲、乙两人必须坐在丙的同一侧,则不同的坐法种数为( )A.60B.80C.100D.1204.用5种不同颜色的粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的粉笔,则该板报共有多少种不同的书写方案?()A.240B.480C.120D.2005.有一枚质地均匀点数为1到4的特制骰子,投掷时得到每种点数的概率均等,现在进行三次独立投掷,记X 为得到最大点数与最小点数之差,则X 的数学期望( )A.B. C. D.6.如图所示,已知一质点在外力的作用下,从原点出发,每次向左移动的概率为,向右移动的概率为.若该质点每次移动一个单位长度,设经过5次移动后,该质点位于的位置,则( )47C 48C 49C 49A 26817275=⨯+⨯+116()E X =21163274158O 2313X (0)P X >=A.B. C. D.7.身高各不同的六位同学、、、、、站成一排照相,说法不正确的是( )A.、、三位同学从左到右按照由高到矮的顺序站,共有120种站法B.与同学不相邻,共有种站法C.、、三位同学必须站在一起,且只能在与的中间,共144种站法D.不在排头,不在排尾,共有504种站法8.概率论起源于博弈游戏17世纪,曾有一个“赌金分配”的问题:博弈水平相当的甲、乙两人进行博弈游戏每局比赛都能分出胜负,没有平局.双方约定,各出赌金150枚金币,先赢3局者可获得全部赎金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.向这300枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率”的知识,合理地给出了赌金分配方案.该分配方案是( )A.甲150枚,乙150枚B.甲225枚,乙75枚C.甲200枚,乙100枚D.甲240枚,乙60枚二、多选题(本大题共3小题,每小题6分,共18.0分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列说法中,正确的是( )A.用简单随机抽样的方法从含有50个个体的总体中抽取一个容量为5的样本,则个体被抽到的概率是0.1B.一组数据的第75百分位数为17C.若样本数据的方差为8,则数据的方差为2D.将总体划分为2层,通过分层抽样,得到两层的样本平均数和样本方差分别为和,若,则总体方差10.某工厂生产的200个零件中,有198件合格品,2件不合格品,从这200个零件中任意抽出3件,则抽出的3个零件中()A.至多有1件不合格品的抽法种数为B.都是合格品的抽法种数为C.至少有1件不合格品的抽法种数为D.至少有1件不合格品的抽法种数为11.甲乙两人参加三局两胜制比赛(谁先赢满两局则获得最终胜利).已知在每局比赛中,甲赢的概率为0.6,乙赢的概率为0.4,且每局比赛的输赢相互独立.若用M 表示事件“甲最终获胜”,N 表示事件“比赛共进行了两局且有人获得了最终胜利”,Q 为“甲赢下第三局时获得了最终胜利”.则下列说法正确的有5024352243291781A B C D E F A C D A C 5424A A ⋅A C D A C D A B m 10,11,11,12,13,14,16,18,20,22121021,21,...,21x x x ++⋯+1210,,,x x x ⋯12,x x 2212,s s 12x x =()2221212s s s =+122198C C 3200C 122121982198C C C C +33200198C C -( )A. B. C.N 与Q 互斥 D.N 与Q 独立三、填空题(本题共3小题,每小题5分,共15.0分)12.某智能手机的开机密码是六位数字,现甲准备将六位数202403中的6个数字打乱顺序设为开机密码,若要求两个2不相邻,两个0相邻,则不同的开机密码总个数为___________.(答案用数字表示)13.已知多项式展开式中所有项的系数之和为32,则该展开式中的常数项为___________.14.中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱.假设空间站要安排甲、乙等6名航天员开展实验,三个实验舱每个至少一人至多三人,则不同的安排方法有___________种.四、解答题(本大题共5小题,共77.0分.解答应写出文字说明,证明过程或演算步骤)15.(本小题13.0分)某运动队为评估短跑运动员在接力赛中的作用,对运动员进行数据分析.运动员甲在接力赛中跑第一棒、第二棒、第三棒、第四棒四个位置,统计以往多场比赛,其出场率与出场时比赛获胜率如下表所示.比赛位置第一棒第二棒第三棒第四棒出场率0.30.20.2.0.3比赛胜率0.60.80.70.7(1)当甲出场比赛时,求该运动队获胜的概率.(2)当甲出场比赛时,在该运动队获胜的条件下,求甲跑第一棒的概率.16.(本小题15.0分)已知关于的二项式的二项式系数之和为32,其中.(1)若,求展开式中二项式系数最大的项;(2)若,求展开式中系数最大的项;(3)若展开式中含项系数为40,求展开式中所有有理项的系数之和.17.(本小题15.0分)某高校对参加军训的4000名学生进行射击、体能、伤病自救等项目的综合测试,现随机抽取200名军训学生,对其测试成绩(满分:100分)进行统计,得到样本频率分布直方图,如图.()913P M N =()1P N Q =12nx x ⎛⎫-+ ⎪⎝⎭x nx ⎛⎝0m >1m =2m =2x(1)根据频率分布直方图,求出的值并估计这200名学生测试成绩的平均数(单位:分).(2)现该高校为了激励学生,举行了一场军训比赛,共有三个比赛项目,依次为“10千米拉练”“实弹射击”“伤病救援”,规则如下:三个环节均参与,三个项目通过各奖励200元、300元、500元,不通过则不奖励.学生甲在每个环节中通过的概率依次为,,,假设学生甲在各环节中是否通过是相互独立的.记学生甲在这次比赛中累计所获奖励的金额为随机变量,求的分布列和数学期望.(3)若该高校军训学生的综合成绩近似服从正态分布,其中近似为样本平均数,规定军训成绩不低于98分的为“优秀标兵”,据此估计该高校军训学生中优秀标兵的人数(结果取整数).参考数据:若,则,,.18.(本小题17.0分)长跑可提高呼吸系统和心血管系统机能,较长时间有节奏的深长呼吸,能使人体呼吸大量的氧气,吸收氧气量若超过平时的7—8倍,就可以抑制人体癌细胞的生长和繁殖.其次长跑锻炼还改善了心肌供氧状态,加快了心肌代谢,同时还使心肌肌纤维变粗,心收缩力增强,从而提高了心脏工作能力.某学校对男、女学生是否喜欢长跑进行了调查,调查男、女生人数均为200,统计得到以下列联表:喜欢不喜欢合计男生12080200女生100100200合计220180400(1)试根据小概率值的独立性检验,能否认为学生对长跑的喜欢情况与性别有关联?(2)为弄清学生不喜欢长跑的原因,从调查的不喜欢长跑的学生中按性别采用分层抽样的方法随机抽取9人,再从这9人中抽取3人进行面对面交流,记随机变量X 表示抽到的3人中女生的人数,求X 的分布列以及数学期望;(3)将频率视为概率,用样本估计总体,从该校全体学生中随机抽取12人,记其中喜欢长跑的人数为Y ,求Y 的数学期望.附:,其中.0.1000.0500.0250.0100.0012.7063.8415.0246.63510.82819.(本小题17.0分)台州是全国三大电动车生产基地之一,拥有完整的产业链和突出的设计优势.某电动车公司为了抢占更多的a 231225ξξ()E ξX (),100N μμ()2,X Nμσ~()0.6827P X μσμσ-≤≤+≈()220.9545P X μσμσ-≤≤+≈()330.9973P X μσμσ-≤≤+≈22⨯0.050α=22()()()()()n ad bc a b c d a c b d χ-=++++n a b c d =+++αx α市场份额,计划加大广告投入、该公司近5年的年广告费(单位:百万元)和年销售量(单位:百万辆)关系如图所示:令,数据经过初步处理得:44 4.81040.3 1.61219.58.06现有①和②两种方案作为年销售量y 关于年广告费x 的回归分析模型,其中a ,b ,m ,n 均为常数.(1)请从相关系数的角度,分析哪一个模型拟合程度更好?(2)根据(1)的分析选取拟合程度更好的回归分析模型及表中数据,求出y 关于x 的回归方程,并预测年广告费为6(百万元)时,产品的年销售量是多少?(3)该公司生产的电动车毛利润为每辆200元(不含广告费、研发经费).该公司在加大广告投入的同时也加大研发经费的投入,年研发经费为年广告费的199倍.电动车的年净利润受年广告费和年研发经费影响外还受随机变量影响,设随机变量服从正态分布,且满足.在(2)的条件下,求该公司年净利润的最大值大于1000(百万元)的概率.(年净利润=毛利润×年销售量-年广告费-年研发经费-随机变量).附:①相关系数,回归直线中公式分别为,;②,,.i x i y ()ln 1,2,,5i i v x i ==⋅⋅⋅51ii y =∑51ii v =∑()521ii x x =-∑()521ii y y =-∑()521ii v v =-∑()()51iii x x y y =--∑()()51iii y y v v =--∑y bx a =+ln y n x m =+ξξ()2600,N σ()8000.3P ξ>=r =y abx =+ ()()()121ˆniii ni i x x y y b x x ==--=-∑∑ ay bx =- 8.06=20.1≈ln 5 1.6≈ln 6 1.8≈太原五中2023—2024学年度第二学期月考高二数学答案1.A【分析】从插空的角度考虑,有8盏灯亮着,4盏灯熄灭,4盏熄灭的灯不相邻插空且不能在两端.【详解】先将8盏灯排成一排,由于两端的灯不能熄灭,则有7个符合条件的空位,进而在7个空位中任取4个插入熄灭的4盏灯,则有种方法,故选:A.2.D【分析】由题意将题目转化成除以7的余数问题,用二项式知识求解即可.【详解】由题意知个位数应为除以的余数,因为,除以的余数为.故选:D.3.B【分析】先求得五人的全排列数,再由定序排列法代入计算,即可得到结果.【详解】由题意,五人全排列共有种不同的排法,其中甲乙丙三人全排列共有种不同的排法,其中甲乙在丙的同侧有:甲乙丙,乙甲丙,丙甲乙,丙乙甲共4种排法,所以甲、乙两人必须坐在丙的同一侧,则不同的坐法种数为.故选:B 4.A【分析】利用分步乘法计数原理与排列的知识即可得解.【详解】根据题意,“英语角”、“语文学苑”和“理综世界”两两相邻,有种方案,而“数学天地”只和“理综世界”相邻,只要和“理综世界”的颜色不同即可,故有4种方案,总共有种方法.故选:A 5.D【分析】由题意得的所有可能取值为,用古典概型算出相应的概率,进而即可求解.【详解】的所有可能取值为,记三次得到的数组成数组,满足的数组有:47C 1161167()()()()111101111111101011116717C 71C 711=-=+⋅⋅-+⋅⋅⋅+⋅⋅-+-7655A 120=33A 6=4120806⨯=35A 54360=⨯⨯=604240⨯=X 0,1,2,3X 0,1,2,3(),,a b c 0X =,共4个,所以,满足的数组有:,,共18个,所以,满足的数组有:,,,,共24个,所以,满足的数组有:,,,,,,共18个,所以,所以X 的数学期望.故选:D.6.D【分析】由题意当时,的可能取值为1,3,5,且,根据二项分布的概率公式计算即可求解.()()()()1,1,1,2,2,2,3,3,3,4,4,4()3410416P X ===1X =()()()()()()()()()1,1,2,1,2,1,2,1,1,2,2,3,2,3,2,3,2,2,3,3,4,3,4,3,4,3,3()()()()()()()()()2,2,1,2,1,2,1,2,2,3,3,2,3,2,3,2,3,3,4,4,3,4,3,4,3,4,4()31891432P X ===2X =()()()()()()1,1,3,1,3,1,3,1,1,2,2,4,2,4,2,4,2,2()()()()()()3,3,1,3,1,3,1,3,3,4,4,2,4,2,4,2,4,4()()()()()()1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1()()()()()()4,2,3,4,3,2,2,4,3,2,3,4,3,4,2,3,2,4()3243248P X ===3X =()()()1,2,4,1,3,4,1,4,4()()()1,4,1,1,4,2,1,4,3()()()1,1,4,2,1,4,3,1,4()()()4,1,1,4,2,1,4,3,1()()()4,1,2,4,1,3,4,1,4()()()2,4,1,3,4,1,4,4,1()31893432P X ===()193915012316328328E X =⨯+⨯+⨯+⨯=0X >X 2(5,3X B【详解】依题意,当时,的可能取值为1,3,5,且,所以.故选:D.7.C【分析】利用全排列和定序可判断A ;利用插空法可判断B ;利用捆绑法可判断C ;利用间接法可判断D.【详解】对于A ,6个人的全排列共有种方法,、、全排列有种方法,所以、、三位同学从左到右按照由高到矮的排列有种方法,故A 正确;对于B ,先排其余4个人,有种方法,4个人有5个空,利用插空法将、插入5个空中,有种方法,则共有种站法,故B 正确;对于C ,、、三位同学必须站在一起,且只能在与的中间的排法共有2种,将这3人捆绑在一起,与其余3人进行全排列,共有种方法,则共有种方法,故C 错误;对于D ,6个人全排列共有种方法,当在排头时,共有种方法,当在排尾时,共有种方法,当在排头且在排尾时,共有种方法,则不在排头,不在排尾的情况共有种方法,故D 正确,故选:C.8.B【分析】列举出若游戏继续进行到结束的所有情况,计算出甲乙各自胜出的概率,从而决定他们各自赌金的份额.【详解】由题可知,对单独每一局游戏,甲乙获胜的概率均为.0X >X 2(5,)3X B ()()()()0531P X P X P X P X >==+=+=5432125511212C C 33333⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1781=66A A C D 33A A C D 6633A 120A =44A A C 25A 4245A A A C D A C D 44A 442A 48=66A A 55A B 55A A B 44A A B 654654A 2A A 504-+=12若游戏继续进行,最多再进行2局即可分出胜负:①第四局甲赢,比赛结束,甲胜出,概率为;②第四局乙赢,第五局甲赢,比赛结束,甲胜出,概率为;③第四局乙赢,第五局乙赢,比赛结束,乙胜出,概率为;则甲胜出的概率为+=,则甲应该分得赌金的,即300×=225枚,乙分得赌金75枚.故选:B.9.AC 【分析】根据简单随机抽样中每个个体被抽到的可能性是一样的,可判断A ;根据百分位数的求法可判断B ;根据一组数据加上或乘以同一个数后的平均数以及方差的性质可判断C ;根据分层抽样中的平均数以及方差的性质,可判断D.【详解】选项A :由题意知个体被抽到的概率为,故A 正确;选项B :数据从小到大排列为:,由于,找第8个数据18,即第75百分位数为18,故B 错误;选项C :设数据的平均数为,方差为,则数据的平均数为,方差为,12111224⨯=111224⨯=1214343434m 50.150=10,11,11,12,13,14,16,18,20,221075%7.5⨯=1210,,,x x x ⋯121010x x x x +++=()()()22221210110s x x x x x x ⎡⎤=-+-++-⎣⎦ 121021,21,,21x x x ++⋯⋯+()()()()12101210212121210211010x x x x x x x x ++++++++++===+ 222211210121212110s x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''=+-++-+++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()()()()()22222212101210142222221010x x x x x x x x x x x x ⎡⎤⎡⎤=-+-++-=-+-++-⎢⎥⎢⎥⎣⎦⎣⎦ 248s ==所以,故C 正确;选项D :设第一层数据为,第二层数据为,则,所以,,总体平均数,总体方差因为,则,所以,,故D 错误.故选:AC.10.CD【分析】对于A :分只有1件不合格品,没有不合格品两种情况解答;对于B :都是合格品相当于从198件合格品抽取3件合格品;对于C :分只有1件不合格品,有2件不合格品两种情况解答;对于D :利用间接法从反面解答.【详解】对于A :至多有1件不合格品分两种,一种是只有1件不合格品,一种是没有不合格品,故抽法种数为,A 错误;对于B :都是合格品的抽法种数为,B 错误;对于C :至少有1件不合格品分两种,一种是只有1件不合格品,一种是有2件不合格品,故抽法种数为,C 正确;对于D :至少有1件不合格品的抽法种数为,D 正确.故选:CD.22s =12,,,n x x x ⋯12,,,m y y y ⋯211122,n mx x x y y y x n x m++++++== 112212,n n x x x n x y y y m x +++=⋅+++=⋅ ()()()()()()2111222222221121222211,n m s x x x x x x s y x y x y x n m ⎡⎤⎡⎤=-+-++-=-+-++-⎢⎥⎢⎥⎣⎦⎣⎦11n mx x y y x n m+++++=+ ()()()()22222111n m s x x x x y x y x n m ⎡⎤=-++-+-++-⎢⎥⎣⎦+ 12x x =()111n m x x y y n m x +++++=+⋅ ()11112n m n m x x x y y x x x n m n m++++++====++ ()()()()222221122111n m s x x x x y x y x n m ⎡⎤=-++-+-++-⎢⎥⎣⎦+ 22121ns ms n m⎡⎤=+⎣⎦+1219818329C C C +3198C 122121982198C C C C +33200198C C -11.ABC【分析】对于AB :用条件概率计算;对于C :利用互斥的概念来判断;对于D :利用相互独立的条件来判断.【详解】对于A :,则,A 正确;对于B :,则,B 正确;对于C :N 与Q 不可能同时发生,故N 与Q 互斥,C 正确;对于D :,,,故,故D 错误.故选:ABC.12.【分析】将两个0捆绑,与3,4混排,再将两个2插入,即可求得开机密码总个数,得到答案.【详解】由题意,将两个0捆绑,视为1个元素,再与3,4混排,有种不同的排法,再将两个2插入,有种排法,所以不同的开机密码总个数为.故答案为:.13.【分析】先用展开式中所有项的系数之和为32求出,再将化为进行求解.【详解】由题意可得,解得,则,故该展开式中的常数项为.故答案为:14.450【分析】依据分类加法计数原理和平均及不平均分组问题处理方法求解即可.【详解】若6名航天员三个实验舱,三个实验舱每个至少一人至多三人,若每组人数分别为,共有种,()()2220.60.36,0.60.40.52P MN P N ===+=()()()0.3690.5213P MN P M N P N ===()()1122C 0.60.40.6,C 0.60.40.6P NQ P Q =⨯⨯⨯=⨯⨯⨯()()()1P NQ P N Q P Q ==()0.52P N =()12C 0.60.40.6P Q =⨯⨯⨯()0P NQ =()()()P N P Q P NQ ≠3633A 24C 3234A C N =36=3668-5n =12n x x ⎛⎫-+ ⎪⎝⎭512x x ⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦232n =5n =5540155555111122C 2C 2C n x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+=-+=-+-+⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()1233155545252C C 2C C 12C 68+⋅-+=-68-1,2,312336533C C C A 360⋅=若每组人数分别为,共有种,综上所有不同的安排方法共有.故答案为:45015.(1)(2)【分析】(1)根据全概率公式即可得出答案.(2)根据条件概率的计算公式即可求解.【详解】(1)记“甲跑第一棒”为事件,“甲跑第二棒”为事件,“甲跑第三棒”为事件,“甲跑第四棒”为事件,“运动队获胜”为事件,则,所以当甲出场比赛时,求该运动队获胜的概率为;(2),所以当甲出场比赛时,在该运动队获胜的条件下,甲跑第一棒的概率为.16.(1)和(2)和(3)12117.(1),(2)分布列见解析,(3)人【分析】(1)借助概率和为可得,借助平均数定义可得平均数;(2)得出的所有可能取值及其对应概率,即可得分布列,借助期望定义即可得其期望;(3)借助正态分布的性质可得军训成绩不低于98分的概率,即可估计该高校军训学生中优秀标兵的人数.【详解】(1)有图可得,解得,;2,2,22223642333C C C A 90A ⋅=36090450+=0.696231A 2A 3A 4A B ()()()()()()()()()11223344P B P A P B A P A P B A P A P B A P A P B A =+++0.30.60.20.80.20.70.30.70.69=⨯+⨯+⨯+⨯=0.69()()()()()()11110.30.660.6923P A P B A P A B P A B P B P B ⨯====623210x 180x -0.015a =78x =()14503E ξ=911a ξ()100.0100.0250.0351a a ++++=0.015a =()0.010550.015650.025750.035850.015951078x =⨯+⨯+⨯+⨯+⨯⨯=(2)的可能取值为、、、、、、,,,,,,,,则其分布列为:;(3),,则,又,故,,故可估计该高校军训学生中优秀标兵的人数为人.18.(1)可以认为学生对长跑的喜欢情况与性别有关联.(2)分布列见解析,(3)ξ02003005007008001000()2121111325001P ξ⎛⎫⎛⎫⎛⎫=---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭=()2121113255200P ξ⎛⎫⎛⎫=⋅--= ⎪⎪⎝⎭⎝⎭=()21211132500013P ξ⎛⎫⎛⎫=-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭=()212212411132505325105P ξ⎛⎫⎛⎫⎛⎫=--⨯+⨯⨯-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭=()2122132515700P ξ⎛⎫=⨯-⨯= =⎪⎝⎭()2121138002515P ξ⎛⎫=-⨯⨯= ⎪⎝⎭=()2122325151000P ξ=⨯⨯==ξ02003005007008001000P 11015110415215115215()111421214500200300500700800100010510151515153E ξ=⨯+⨯+⨯+⨯+⨯+⨯+⨯=78x μ==10σ==()()982P X P X μσ≥=≥+()220.9545P X μσμσ-≤≤+≈()10.9545980.022752P X -≥≈=40000.0227591⨯=9153335【分析】(1)根据列联表中的数据,求得,结合附表,即可求解;(2)求得男生的人数为人,女生的人数为人,根据题意,得到的可能取值为,求得相应的概率,列出分布列;(2)根据题意,求得任抽1人喜欢长跑的概率为,结合服从二项分布,即可求解.【详解】(1)解:零假设学生对长跑的喜欢情况与性别无关联,根据题意,由列联表中的数据,可得,所以在的独立性检验中,可以推断不成立,即认为学生对长跑的喜欢情况与性别有关联.(2)从调查的不喜欢长跑的学生中按性别采用分层抽样的方法随机抽取9人,其中男生的人数为人,女生的人数为人,从9人中随机抽取3人,所以随机变量的可能取值为,可得,,则随机变量的分布列为:0123(3)解:由题意知,任抽1人喜欢长跑的概率为,所以随机变量服从二项分布,即,所以.22⨯240099χ=45X 0,1,2,31120p =Y 0:H 22⨯22400(12010080100)400 4.040 3.84120020022018099χ⨯⨯-⨯==≈>⨯⨯⨯0.050α=0H 809480100⨯=+1009580100⨯=+X 0,1,2,32134543399C C C 15(0),(0)C 21C 14P X P X ======1234553399C C C 105(2),(3)C 21C 42P X P X ======X XP 12151410215425()3E X =1120p =Y 11(12,)20Y B ()113312205E Y =⨯=19.(1)模型②的拟合程度更好(2),当年广告费为6(百万元)时,产品的销售量大概是13(百万辆)(3)0.3【分析】(1)分别求得模型①和②的相关系数,,然后比较得出结论;(2)利用最小二乘法求解;(3)由净利润为,求解.【详解】(1)解:设模型①和②的相关系数分别为,.由题意可得:,.所以,由相关系数的相关性质可得,模型②的拟合程度更好.(2)因为,又由,,得,所以,即回归方程为.当时,,因此当年广告费为6(百万元)时,产品的销售量大概是13(百万辆).(3)净利润为,,令,所以.5ln 4y x =+1r 2r ()2005ln 4200x x ξ⨯+--()0x >1r 2r 5119.50.9720.1x y r ===≈528.0618.06y v r ====12r r < ()()()1218.0651.612i s i i sii v v y y n v v ==--===-∑∑5110.965i i v v ===∑5118.85i i y y ===∑58.80.9654m y v =-=-⨯=54y v =+5ln 4y x =+6x =5ln 6413y =+≈()2005ln 4200x x ξ⨯+--()0x >()()2005ln 4200g x x x ξ=⨯+--()1000200g x x'=-可得在上为增函数,在上为减函数.所以,由题意得:,即,,即该公司年净利润大于1000(百万元)的概率为0.3.()y g x =()0,5()5,+∞()()()max 52005ln 5451400g x g ξξ==⨯+--≈-14001000ξ->400ξ<()()4008000.3P P ξξ<=>=。

福建省龙岩第一中学2022-2023学年高二下学期第二次月考数学试题

福建省龙岩第一中学2022-2023学年高二下学期第二次月考数学试题

福建省龙岩第一中学2022-2023学年高二下学期第二次月
考数学试题
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.总和生育率有时也简称生育率,是指一个人口群体的各年龄别妇女生育率的总和.
为了了解中国人均GDP x (单位:万元)和总和生育率y 以及女性平均受教育年限z
(单位:年)的关系,采用2012~2022近十年来的数据(),,(1,2,,10)i i i
x y z i =L 绘制了
散点图,并得到回归方程ˆ7.540.33z x =+,ˆ 2.880.41y x =-,对应的相关系数分别为1
r ,2r ,则( )
A .人均
GDP 和女性平均受教育年限正相关
B .女性平均受教育年限和总和生育率负相关
C .22
12
r r <D .未来三年总和生育率将继续降低
10.现有来自两个社区的核酸检验报告表,分装2袋,第一袋有5名男士和5名女士的报告表,第二袋有6名男士和4名女士的报告表.随机选一袋,然后从中随机抽取2
四、解答题
17.某新能源汽车公司对其产品研发投资额x(单位:百万元)与其月销售量y(单位:千辆)的数据进行统计,得到如下统计表和散点图.
征后,计划用()
ln
=+作为月销售量y关于产品研发投资额
y bx a
根据统计表和参考数据,求出y关于x的回归方程;
(2)根据回归方程和参考数据,当投资额为11百万元时,预测。

高二数学下学期第二次5月月考试题 文 试题

高二数学下学期第二次5月月考试题 文 试题

泉港一中2021-2021学年度高二下学期第二次月考单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明数学试题〔文科〕〔考试时间是是:120分钟 总分:150分〕第一卷〔选择题 一共60分〕一.选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 设}2|{->∈=x Q x A ,}2|{<∈=x R x B ,,那么以下结论中正确的选项是 ( )A .A ∈2B .)2,2(-=⋂B AC .R B A =⋃D .B A ⋂∈1 2. a R ∈,那么“1a〞是“11<a〞的 〔 〕 A .充要条件 B .既不充分也不必要条件 C .充分不必要条件 D .必要不充分条件 3.命题02,:>∈∀xR x P ,那么命题p ⌝是〔 〕A .02,00≤∈∃xR x B .02,≤∈∀xR x C .02,0<∈∃xR x D .02,<∈∀xR x 4.假设函数x y a log =的图像经过点〔3,2〕,那么函数1+=x a y 的图像必经过点( ) A.〔2,2〕 B.〔2,3〕 C. 〔3,3〕 D.〔2,4〕 5. 以下函数中,在(0)+∞,上单调递增又是偶函数的是 〔 〕A.3y x =B. y ln x =C.21y x=D.1-=x y 6. 以下命题中,假命题是 ( ) A .命题“面积相等的三角形全等〞的否命题B.,s i n x R x ∃∈C .假设xy=0,那么|x|+|y|=0〞的逆命题D .),,0(+∞∈∀x 23xx< 7.设0.3113211l o g2,l o g ,32a b c ⎛⎫=== ⎪⎝⎭,那么 ( )A 、a b c << B 、 b a c << C 、b c a << D 、a c b << 8. 方程4=+x e x的解所在的区间是 〔 〕 A .()1,0- B . ()0,1 C .()1,2 D .()2,39.函数y =|x|axx(a>1)的图像的大致形状是 ()10. 定义在R 上的函数⎩⎨⎧>---≤-=0)2()1(0)1(log )(2x x f x f x x x f ,那么)2018(f 的值是〔 〕 A .-11.假设函数()y f x =〔R x ∈〕满足()()1f x f x +=-,且[]1,1x ∈-时,()21f xx =-,函数()lg ,01,0x x g x x x>⎧⎪=⎨-<⎪⎩,那么函数()()()h x f x g x =-在区间[-4,5]内的零点的个数为 A .7 B .8 C .9 D .1012. 函数,log )31()(2xx x f -=实数c b a ,,满足)0(0)()()(c b a c f b f a f<<<<⋅⋅假设实数0x 为方程0)(=x f 的一个解,那么以下不等式中,不可能...成立的是 〔 〕 A .0x a < B . 0x b > C .0x c < D .0x c >第二卷〔非选择题 一共90分〕二.填空题:一共4小题,每一小题5分,一共20分,将答案写在答题纸的相应位置. 13二次函数4)(2++=mx x x f ,假设)1(+x f 是偶函数,那么实数m = . 14. 3log 1552245log 2log 2+++______.15.函数()()()()3141l o g 1a a x a x f x x x -+≤⎧⎪=⎨>⎪⎩是R 上的单调递减函数,那么a 的取值范围是________.16.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,假设对任意[],x a b ∈,都有 |()()|1f x g x -≤成立,那么称()f x 和()g x 在[],a b 上是“亲密函数〞,区间[],a b 称为“亲密区间〞.假设2()34f x x x =-+与()23g x x =-在[],a b 上是“亲密函数〞,那么其“亲密区间〞可以是_________.①[1.5,2] ②[2,2.5] ③[3,4] ④ [2,3]三.解答题:本大题有6小题,一共70分,解容许写出文字说明,证明过程或者演算步骤. 17.(本小题满分是10分)a >0,a ≠1,设p :函数2+=x a y 在(0,+∞)上单调递增,q :函数y =x 2+(2a -3)x +1的图像与x 轴交于不同的两点.假如p ∧q 真,务实数a 的取值范围.18.(本小题满分是12分)函数)1(log )(2-=x x f 的定义域为A ,函数)32(12)(≤≤-=x x x g 的值域为B.(I )求B A ⋂;(II )假设}12|{-≤≤=a x a x C ,且B C ⊆,务实数a 的取值范围.19.〔本小题满分是12分〕 幂函数)()(*322N m xx f m m ∈=--的图象关于y 轴对称,且在〔0,+∞〕上是减函数. 〔1〕求m 的值和函数f 〔x 〕的解析式 〔2〕解关于x 的不等式)21()2(x f x f -<+20.〔本小题满分是12分〕某公司对营销人员有如下规定(1)年销售额x 在8 万元以下,没有奖金,(2) 年销售额x (万元), ]64,8[∈x ,奖金y 万元, x y y a log ],6,3[=∈,且年销售额x 越大,奖金越多,(3) 年销售额超过64万元,按年销售额x 的10%发奖金. (1) 确定a 的值,并求奖金y 关于x 的函数解析式.(2) 某营销人员争取年奖金]10,4[∈y (万元),年销售额x 在什么范围内?21.〔本小题满分是12分〕函数 2()21(0)g x a x a x b a =-++>在区间[2,3]上有最大值4和最小值1。

广东省湛江市第二中学2022-2023学年高二下学期第二次月考数学试题

广东省湛江市第二中学2022-2023学年高二下学期第二次月考数学试题

广东省湛江市第二中学2022-2023学年高二下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知随机变量X的分布列为二、多选题9.关于()7-的展开式,下列判断正确的是()7xA.展开式共有8项B.展开式的各二项式系数的和为128C.展开式的第7项的二项式系数为49D.展开式的各项系数的和为76三、填空题中点,将ADEV沿AE翻折,使点D与点P重合,如图2.(1)证明:PB⊥AE;(2)当二面角P AE B--等于90°时,求P A与平面PEC所成角的正弦值.20.2023年春节期间,电影院有多部新片上映,某传媒公司调查了消费者的购票途径,数据显示超八成用户选择线上购买电影票,已知有A,B,C,D,E,F,G,H这8个线上购票平台,现随机抽取了200名线上消费者并统计他们在这8个平台上购买春节档电影票的人数(假设每个消费者只选用一个购票平台购买春节档电影票)以及曾经使用过这8个平台购买电影票的人数(每个消费者可用多个平台购买电影票),得到如下表格:当1a =时,()010f a =-=,函数()f x 有一个零点.(2)由(1)知:当1a <时,()010f a =-<,则函数()f x 无零点,当1a =时,()010f a =-=,函数()f x 有一个零点.当1a >时,()010f a =->, ()e 0a f a --=-<,()2e a f a a =-,()2e a f a ¢=-,当ln 2a <时,()0f a ¢>,()f a 在 (),ln 2-¥上递增;当 ln 2a >时,()0f a ¢<,()f a 在()ln 2,+¥上递减;所以()()maxln 22ln 220f a f ==-<,则 ()0f a <,所以()f x 在(),0¥-, ()0,¥+上各有一个零点;则1a >,且120a x x a -<<<<,要证1220x x +<,则证212x x <-,因为()f x 在(),0¥-上递减,所以只需证()()212f x f x >-,又()()210f x f x ==,只需证()()112f x f x >-,令()()()2g x x f x f =--,则()()()22e 2e 3e e x x x x g x x x x a a --=-+---+=-+,则()23e -2e x x g x -=-¢,设()23e -2e x x h x -=-,则()()20e +4e 0x x h x h -¢=->¢=,。

湖北省宜昌英杰学校2022-2023学年高二下学期5月月考数学试题 - 副本

湖北省宜昌英杰学校2022-2023学年高二下学期5月月考数学试题 - 副本

宜昌英杰学校2022至2023学年度第二学期五月测试高二年级数学学科测试卷一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 等差数列{a n}的前n项和为S n,若a13=S13=13,则a1= ( )A. −14B. −13C. −12D. −112. 数列{a n}中,a n+1=a n1+3a n,a1=2,则a4为( )A. 87B. 85C. 219D. 1653. 由数字0,1,2,3,4可组成多少个无重复数字的四位数奇数( )A. 18B. 36C. 54D. 724. 如图,一圆形信号灯分成A,B,C,D四块灯带区域,现有3种不同的颜色供灯带使用,要求在每块灯带里选择1种颜色,且相邻的2块灯带选择不同的颜色,则不同的信号总数为( )A. 18B. 24C. 30D. 425. (1+1x +1x2)(1+x)6展开式中x2的系数为( )A. 15B. 20C. 30D. 506. 已知随机变量ξ满足P(ξ=0)=1−p,P(ξ=1)=p,且0<p<12.令随机变量η=|ξ−E(ξ)|,则( )A. E(η)<E(ξ)B. E(η)>E(ξ)C. E(η)=E(ξ)D. E(η)和E(ξ)大小不确定7. 已知a=e0.02,b=1.02,,则( )A. c>a>bB. a>b>cC. a>c>bD. b>a>c8. 函数f(x)=e|x|3x 的部分图象大致为( )A. B. C. D.二、多选题(本大题共4小题,共20.0分。

在每小题有多项符合题目要求)9. 甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传这四个项目,每人限报其中—项,记事件A为“四名同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则下列结论中正确的有( )A. P(AB)=3128B. P(B)=38C. P(A|B)=29D. P(A|B)=11610. 下列说法正确的是( )A. 若事件M,N互斥,P(M)=0.2,P(N)=0.6,则P(M∪N)=0.8B. 若P(M)=0.4,P(N|M)=0.15,则P(MN)=0.06C. 若P(MN)=0.4,P(MN)=0.5,则P(N)=0.9D. 若P(N|M)=0.2,P(N)=0.2,则事件M,N相互独立11. 已知(2x+1)4=a0+a1(x+1)+a2(x+1)2+a3(x+1)3+a4(x+1)4,则( )A. a0=1B. a1+a2+a3+a4=1C. a3=−32D. a4=1612. 已知数列{a n}的首项为4,且满足2(n+1)a n−na n+1=0(n∈N∗),则( )A. {a nn}为等差数列 B. {a n}为递增数列C. {a n}的前n项和S n=(n−1)2n+1+4D. {a n2n+1}的前n项和Tn=n2+n2三、填空题(本大题共4小题,共20.0分)13. 已知某离散型随机变量X服从的分布列如图,则随机变量2X的方差D(2X)等于.X01P m2m14. 有甲,乙,丙三个箱子,甲箱中有3个红球、2个白球,乙箱中有2个红球、3个白球,丙箱中有4个红球.现从三个箱子中任选一箱,从中任意摸出一球,则摸到红球的概率是.15. 某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课,要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是___________.16. 已知742020+a能够被15整除,其中a∈(0,15),则a=________.四、解答题(本大题共6小题,共70.0分。

2024学年宁夏省重点中学高三下学期第二次月考(5月)数学试题试卷

2024学年宁夏省重点中学高三下学期第二次月考(5月)数学试题试卷

2024学年宁夏省重点中学高三下学期第二次月考(5月)数学试题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设ln3a =,则lg3b =,则( )A .a b a b ab +>->B .a b ab a b +>>-C .a b a b ab ->+>D .a b ab a b ->>+2.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34C .53D .743.已知函数()cos sin 2f x x x =,下列结论不正确的是( ) A .()y f x =的图像关于点(),0π中心对称 B .()y f x =既是奇函数,又是周期函数C .()y f x =的图像关于直线2x π=对称D .()y f x =的最大值是324.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .835.过抛物线22(0)y px p =>的焦点作直线交抛物线于A B ,两点,若线段AB 中点的横坐标为3,且8AB =,则抛物线的方程是( ) A .22y x =B .24y x =C .28y x =D .210y x =6.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( ) A .12种B .24种C .36种D .48种7.已知抛物线22(0)y px p =>,F 为抛物线的焦点且MN 为过焦点的弦,若||1OF =,||8MN =,则OMN 的面积为( ) A .22B .32C .42D .3228.设1F ,2F 分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,过点1F 作圆222x y b += 的切线与双曲线的左支交于点P ,若212PF PF =,则双曲线的离心率为( ) A .2B .3C .5D .69.若集合{|2020}A x N x =∈=,22a =,则下列结论正确的是( )A .{}a A ⊆B .a A ⊆C .{}a A ∈D .a A ∉10.双曲线的离心率为,则其渐近线方程为 A .B .C .D .11.设复数z 满足|3|2z -=,z 在复平面内对应的点为(,)M a b ,则M 不可能为( ) A .3)B .(3,2)C .(5,0)D .(4,1)12.i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是( ) A .-15B .-3C .3D .15二、填空题:本题共4小题,每小题5分,共20分。

陕西省西安市西咸新区及2022-2023学年高二下学期5月月考数学(理)试题及参考答案

陕西省西安市西咸新区及2022-2023学年高二下学期5月月考数学(理)试题及参考答案

陕西省西安市西咸新区2022-2023学年高二下学期5月月考理科数学试题(时间:100分钟满分:100分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(共12小题,每题3分,共36分)1.设X 是一个离散型随机变量,其分布列为则q 等于()A .1B .12C.12-D.12.已知363434C C xx -=,则x =()A .3或10B .3C .17D .3或173.如图,一条电路从A 处到B 处接通时,可构成线路的条数为()A .8条B .6条C .5条D .3条4.某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A .12B .36C .24D .725.200件产品中有3件次品,任意抽取5件,其中至少有2件次品的抽法有()A .C 32197·C 23B .C 33C 2197+C 23C 3197C .C 5200-C 5197D .C 5200-C 13C 4197X1-01P1212q-2q6.6211(1)x x ⎛⎫-+ ⎪⎝⎭展开式中3x 的系数为()A .25B .20C .14D .287.在622x x ⎛⎫- ⎪⎝⎭的展开式中,第四项为()A .160B .160-C .3160x D .3160x -8.把6个相同的小球放入4个不同的箱子中,每个箱子都不空,共有多少种放法()A .10种B .24种C .36种D .60种9.将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数为()A .720种B .420种C .120种D .15种10.如图,要给①、②、③、④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同的涂色方案种数为()A .96B .160C .180D .6011.已知()727012752x a a x a x a x -=++++ ,则0127a a a a ++++= ()A .128B .2187C .78125D .82354312.下列等式不正确的是()A .111m mn n m C C n ++=+B .12111m m m n n n A A n A +-+--=C .11m m n n A nA --=D .()11k k kn n nnC k C kC +=++二、填空题(共4小题,每题4分,共16分)13.二项式841⎫⎝的展开式中含x 项的系数为__________.14.从一批含有13件正品、2件次品的产品中,不放回地任取3件,设取得的次品数为X ,则(1)P X <=________.15.4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为______16.由海军、空军、陆军各3名士兵组成一个有不同编号的33⨯的小方阵,要求同一军种不在同一行,也不在同一列,有_____种排法。

江苏省苏州南航苏附2023-2024学年高二下学期5月月考数学试题

江苏省苏州南航苏附2023-2024学年高二下学期5月月考数学试题

江苏省苏州南航苏附2023-2024学年高二下学期5月月考数学试题一、单选题1.不等式的22150x x --≤解集是A ,函数()ln 24xy =-的定义域是B ,则A B =I ( )A .(]2,3B .[]2,5C .()2,5D .(]2,52.已知()440,0a b ab a b +=>>,则4a b +的最小值等于( ) A .6 B .8C .4D .53.“2112x x -≤+”是“1522x -≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.已知随机变量(1,4)X N :且(2)0.72P X <=,则(12)P X <<=( ). A .0.36B .0.16C .0.22D .0.285.下列命题中,真命题的是( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若22ac bc ≥,则a b ≥D .若22a b +=,则244a b +≥6.已知函数()()1e xf x x a =+-,若函数()f x 有两个零点,则实数a 的取值范围是( )A .21,0e ⎛⎫- ⎪⎝⎭B .210,e ⎛⎤⎥⎝⎦C .21,e ⎛⎫-+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭7.设*n ∈N ,()2n a b +展开式中二项式系数的最大值为x ,()21n a b ++展开式中二项式系数的最大值为y ,若116x y =,则n =( ) A .2B .3C .4D .58.函数()f x 满足()()f x f x -=,当[)12,0,x x ∈+∞时都有()()12120f x f x x x ->-,且对任意的1,12x ⎡⎤∈⎢⎥⎣⎦,不等式()()12f ax f x +≤-恒成立.则实数a 的取值范围是( ) A .[]5,1-B .[]5,0-C .[]2,0-D .[]2,1-二、多选题9.已知函数()2(0)f x x mx n m =++>有且只有一个零点,则下列结论正确的是( )A .224m n -≤B .2104m n<+< C .不等式20x mx n ++<的解集为∅D .若不等式24x mx n ++<的解集为()12,x x ,则124x x -=10.为弘扬我国古代“六艺”文化,某研学旅行夏令营主办单位计划在暑假开设“礼、乐、射、御、书、数”六门体验课程,若甲乙丙三名同学各只能体验其中一门课程.则( )A .甲乙丙三人选择课程方案有120种方法B .甲乙丙三人选择同样课程有6种方案C .恰有三门课程没有被三名同学选中的选课方案有120种D .若有,,,,A B C DE 五名教师教这6门课程,每名老师至少教一门,且A 老师不教“数”,则有1440种排课方式.11.已知函数()2()e ,x f x x ax a a =⋅-+∈R ,下列说法正确的是( )A .若2a =,则()f x 在R 上单调递增B .若0x =为()f x 的极大值点,则2a >C .()f x 的图象经过一个定点D .若e a >,则方程()e 0f x -=有三个不相等的实数根三、填空题12.()6312xx ⎛- ⎝的展开式中的常数项为.13.已知实数x ,y 满足3x >,且2312xy x y +-=,则x y +的最小值为. 14.已知()0.5P A =,()0.6P B =,()0.8P B A =,则()P AB =,()P A B ⋃=.四、解答题15.设函数2()2f x mx mx =--(1)若对于一切实数()0f x <恒成立,求m 的取值范围;(2)若对于[1,3],()2(1)x f x m x ∈>-+-恒成立,求m 的取值范围. 16.已知()()65234560123456121x x a a x a x a x a x a x a x +--=++++++. (1)求2a 的值;(2)求12345a a a a a ++++的值; (3)求12345623456a a a a a a -+-+-的值.17.2024年2月10日至17日(正月初一至初八),“2024•内江市中区新春极光焰火草地狂欢节”在川南大草原举行,共举行了8场精彩的烟花秀节目.前5场的观众人数(单位:万人)与场次的统计数据如表所示:(1)已知可用线性回归模型拟合y 与x 的关系,请建立y 关于x 的线性回归方程;(2)若该烟花秀节目分A 、B 、C 三个等次的票价,某机构随机调查了该烟花秀节目现场200位观众的性别与购票情况,得到的部分数据如表所示,请将22⨯列联表补充完整,并判断能否有90%的把握认为该烟花秀节目的观众是否购买A 等票与性别有关.参考公式及参考数据:回归方程ˆˆˆybx a =+中斜率与截距的最小二乘法估计公式分别为()()()22121()ˆˆˆ,,()()()()niii nii x x y y n ad bc bay bx Ka b c d a c b d x x ==---==-=++++-∑∑,其中n a b c d =+++.18.某学校组织游戏活动,规则是学生从盒子中有放回的摸球且每次只能摸取1个球,每次摸球结果相互独立,盒中有1分和2分的球若干,摸到1分球的概率为23,摸到2分球的概率为13.(1)学生甲和乙各摸一次球,求两人得分相等的概率;(2)若学生甲摸球2次,其总得分记为X ,求随机变量X 的分布列与期望;(3)学生甲、乙各摸5次球,最终得分若相同,则都不获得奖励;若不同,则得分多者获得奖励.已知甲前3次摸球得了6分,求乙获得奖励的概率. 19.已知函数()2ln f x ax x =-. (1)当1a =时,求函数()f x 的最小值; (2)试讨论函数()f x 的单调性;(3)当1x >时,不等式()(2)ln 21f x x x x a <-++-恒成立,求整数a 的最大值.。

广东省广州市执信中学2022-2023学年高二下学期5月月考数学试题

广东省广州市执信中学2022-2023学年高二下学期5月月考数学试题

广东省广州市执信中学2022-2023学年高二下学期5月月
考数学试题
学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.某质量指标的测量结果服从正态分布()2
80,
N s,则在一次测量中()A.该质量指标大于80的概率为0.5
B.s越大,该质量指标落在()
70,90的概率越大
C.该质量指标小于60与大于100的概率相等
因为BNË平面PAD,ADÌ平面PAD,
所以//
BN平面PAD,
因为M,N分别为,
PC CD的中点,
所以//
MN PD,
因为MNË平面PAD,PDÌ平面PAD,
所以//
MN平面PAD,
又因为,
Ç=,
BN MNÌ平面BMN,BN MN N
所以平面PAD//平面BMN,
因为BMÌ平面BMN,
所以//
BM平面PAD
(2)取AD中点O,作//
OQ AB交BC于Q,连接PO,
因为PA PD
=,所以OP OA
^,
因为CD^平面PAD,,
OP OAÌ平面PAD,
所以,
⊥⊥,
CD OP CD OA
因为////
OQ AB CD,
所以,
⊥⊥,
OQ OA OQ OP
以O为坐标原点,{}
-,
,,
OA OQ OP为正交基底建立如下图所示的空间直角坐标系O xyz。

2022-2023学年湖北省十堰市四校联考高二年级下册学期5月联考数学试题【含答案】

2022-2023学年湖北省十堰市四校联考高二年级下册学期5月联考数学试题【含答案】

高二下学期五月联考高二数学试卷命题学校:考试时间:2023年5月11日下午试卷满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某次数学竞赛获奖的6名同学上台领奖,若其中的甲、乙、丙三人上台的先后顺序已确定,则不同的上台顺序种数为()A.20B.120C.360D.7202.在各项均为正数的等比数列{}n a 中,2651116a a a a +=,则48a a 的最大值是()A.4B.8C.16D.323.近期襄阳三中在举行新团员竞选活动,已知襄阳三中优秀学生的概率约为10%,在全体学生中有20%是团员,团员中优秀学生概率约为40%,则非团员中优秀学生的概率约为()A.2.5%B.3.2%C.4.8%D.2%4.襄阳一桥全称“襄阳江汉大桥”,于1970年正式通车,在和襄阳城长达53年的相处里,于襄阳人来说一桥早已无可替代.江汉大桥由主桥架、上下水平纵向联结系、桥门架和中间横撑架以及桥面系组成,下面是一桥模型的一段,它是由一个正方体和一个直三棱柱构成.其中AB =BH ,那么直线AH 与直线IG 所成角的余弦值为()A.32-B.32C.12-D.125.衣柜里有灰色,白色,黑色,蓝色四双不同颜色的袜子,从中随机选4只,已知取出两只是同一双,则取出另外两只不是同一双的概率为()A.25B.45C.89D.8156.已知函数()33f x x x =-,若函数()f x 在区间()2,8m m-上有最大值,则实数m 的取值范围为()A.(3,6⎤--⎦B.()3,1-- C.()7,1- D.[)2,1-7.已知P 为椭圆()22114x y y +=≠-上任一点,过P 作圆22:(2)1C x y ++=的两条切线,PM PN ,切点分别为M ,N ,则CM CN ⋅的最小值为()A.0B.34-C.79-D.1114-8.已知函数()()22ln ,1f x a x g x ax =+=+,若存在两条不同的直线与函数()y f x =和()y g x =图像均相切,则实数a 的取值范围为()A.()2,0,1ln2∞∞⎛⎫-⋃+⎪+⎝⎭B.1,ln2∞⎛⎫- ⎪⎝⎭C.2,1ln2∞⎛⎫+⎪+⎝⎭D.12,,ln21ln2∞∞⎛⎤⎛⎫-⋃+ ⎪⎥+⎝⎦⎝⎭二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错得0分.9.下列说法中正确的是()A.已知随机变量X 服从二项分布14,3B ⎛⎫ ⎪⎝⎭,则()89E X =B.“A 与B 是互斥事件”是“A 与B 互为对立事件”的必要不充分条件C.已知随机变量X 的方差为()D X ,则()()2323D X D X -=-D.已知随机变量X 服从正态分布()24,N σ且()60.85P X ≤=,则(24)0.35P X <≤=10.已知O 为坐标原点,M 为抛物线2:4C y x =上一点,直线:3l x my =+与C 交于,A B 两点,过,A B 作C的切线交于点P ,则下列结论正确的是()A.3OA OB ⋅=-B.若点M 为()9,6-,且直线AM 与BM 倾斜角互补,则3m =或1m =-C.点P 在定直线3x =-上D.设Q 点为()3,0,则MQ 的最小值为311.已知正四面体A BCD -的棱长为2,点,M N 分别为ABC 和ABD 的重心,P 为线段CN 上一点,则下列结论正确的是()A.直线MN ∥平面ACDB.若3CP PN =,则DP ⊥平面ABCC.直线MN 到平面ACD 的距离为269D.若AP BP +取得最小值,则CP PN=12.已知12,x x 是函数()()e exxf x x a -=-⋅+的零点,34,x x 是函数()1ln g x x x a x ⎛⎫=-⋅+ ⎪⎝⎭的零点,且1234,x x x x <<下列说法正确的是()(参考数据:ln3 1.099≈)A.0a ≤B.若3a <-.则34103x x +>C.存在实数a ,使得23x x =,且124,,x x x 成等差数列D.存在实数a ,使得234,,x x x 成等比数列三、填空题:本题共4小题,每小题5分,共20分.13.已知9290129(32)x a a x a x a x -=++++ ,则91229333a a a +++= __________.14.已知(),,0,1abc ∈,且222232ln 1e,2ln 2e ,2ln 3e a a b b c c -+=-+=-+=,其中e 是自然对数的底数,则实数,,a b c 的大小关系是__________.(用“<”连接)15.如图,唐金筐宝钿团花纹金杯出土于西安,这件金杯整体造型具有玲珑剔透之美,充分体现唐代金银器制作的高超技艺,是唐代金银细工的典范之作.该杯主体部分的轴截面可以近似看作双曲线E 的一部分,设该双曲线E 的方程为22221(0,0)x y a b a b-=>>,右焦点为F ,过点F 的直线l 与双曲线E 的右支交于,B C 两点,且3CF FB =,点B 关于原点O 的对称点为点A ,若0AF BF ⋅=,则双曲线E 的离心率为__________.16.有n 个编号分别为1,2,...,n 的盒子,第1个盒子中有2个白球1个黑球,其余盒子中均为1个白球1个黑球,现从第1个盒子中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是__________,从第n 个盒子中取到白球的概率是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.快到采摘季节了,某农民发现自家果园里的某种果实每颗的重量有一定的差别,故随机采摘了100颗,分别称出它们的重量(单位:克),并以每10克为一组进行分组,发现它们分布在区间[]5,15,(]15,25,(]25,35,(]35,45,并据此画得频率分布直方图如下:(1)求a 的值,并据此估计这批果实的第70百分位数;(2)若重量在[]5,15(单位:克)的果实不为此次采摘对象,则从果园里随机选择3颗果实,其中不是此次采摘对象的颗数为X ,求X 的分布列和数学期望.注意:把频率分布直方图中的频率视为概率.18.记数列{}n a 的前n 项和为n T ,且()111,2n n a a T n -==≥.(1)求数列{}n a 的通项公式;(2)对任意*n ∈N ,求数列n n a ⎧⎫⎨⎬⎩⎭的前项和n S .19.如图,S 为圆锥的顶点,O 是圆锥底面的圆心,ABC 内接于32,,2O AC BC AC BC ⊥==,2,3,AM MS AS PQ ==为O 的一条弦,且SB ∥平面PMQ.(1)求PQ 的最小值;(2)若SA PQ ⊥,求直线PQ 与平面BCM 所成角的正弦值.20.某公司在一次年终总结会上举行抽奖活动,在一个不透明的箱子中放入3个红球和3个白球(球的形状和大小都相同),抽奖规则有以下两种方案可供选择:方案一:选取一名员工在袋中随机摸出一个球,若是红球,则放回袋中;若是白球,则不放回,再在袋中补充一个红球,这样反复进行3次,若最后袋中红球个数为X ,则每位员工颁发奖金X 万元;方案二:从袋中一次性摸出3个球,把白球换成红球再全部放回袋中,设袋中红球个数为Y ,则每位员工颁发奖金Y 万元.(1)若用方案一,求X 的分布列与数学期望;(2)比较方案一与方案二,求采用哪种方案,员工获得奖金数额的数学期望值更高?请说明理由;(3)若企业有1000名员工,他们为企业贡献的利润近似服从正态分布()2,N μσ,μ为各位员工贡献利润数额的均值,计算结果为100万元,2σ为数据的方差,计算结果为225万元,若规定奖金只有贡献利润大于115万元的员工可以获得,若按方案一与方案二两种抽奖方式获得奖金的数学期望值的最大值计算,求获奖员工的人数及每人可以获得奖金的平均数值(保留到整数)参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<≤+≈21.已知过点(1,0)P 的直线l 与抛物线2:2(0)C x py p =>相交于A ,B 两点,当直线l 过抛物线C 的焦点时,||8AB =.(1)求抛物线C 的方程;(2)若点(0,2)Q -,连接QA ,QB 分别交抛物线C 于点E ,F ,且QAB 与QEF △的面积之比为1:2,求直线AB 的方程.22.设定义在R 上的函数()()e xf x ax a =-∈R .(1)若存在[)01,x ∈+∞,使得()0e f x a <-成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足s r t r -≤-,那么称s 比t 更接近r .对于(1)中的a 及1x ≥,问:ex和1e x a -+哪个更接近ln x ?并说明理由.答案123456789101112B BADCADABDACABCBD13.51114.c b a<<15.10216.59;111232n⎛⎫⨯+ ⎪⎝⎭17.(1)解:因为频率分布直方图的组距为10,所以,落在区间[]5,15,(]15,25,(]35,45上的频率分别为0.20,0.32,0.18,所以,10.180.320.200.03010a ---==.因为落在区间[]5,25上的频率为0.200.320.52+=,而落在区间[]5,35上的频率为0.200.320.300.82++=,所以第70百分位数落在区间[]25,35之间,设为x ,则()0.52250.030.70x +-⨯=,解得31x =,所以估计第70百分位数为31.(2)解:由(1)知,重量落在[]5,15的频率为0.2,由样本估计总体得其概率为0.2,因为X 可取0,1,2,3,且13,5X B ⎛⎫ ⎪⎝⎭:,则()3034640C 5125P X ⎛⎫=== ⎪⎝⎭,()21314481C 55125P X ⎛⎫==⨯⨯= ⎪⎝⎭,()22314122C 55125P X ⎛⎫==⨯⨯= ⎪⎝⎭,()333113C 5125P X ⎛⎫==⨯= ⎪⎝⎭,所以X 的分布列为:X0123P6412548125121251125所以X 的数学期望为()48243301251251255E X =+++=(或直接由()13355E X =⨯=).18.(1)因为()111,2n n a a T n -==≥,所以211a a ==,当2n ≥时,112n n n n a T a a +-=+=,所以{}n a 从第2项起为以2为公比的等比数列,所以22n n a -=,所以数列{}n a 的通项公式21,12,2n n n a n -=⎧=⎨≥⎩;(2)由(1)知21,1,22n n n n n a n -=⎧⎪=⎨≥⎪⎩,则013223112222n n n n n S ---=+++++ ①,122111*********n n n n nS ---=+++++ ②,①-②得2122111111511152212222222212n n n n n n n S ----⎛⎫- ⎪⎛⎫⎝⎭=++++-=+- ⎪⎝⎭- ,化简得2272n n n S -+=-.19.(1)过点M 作MH SB ∥交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ∥平面PMQ ,由平面几何知识易知,222PQ r d =-,当弦心距d 最大时,d OH =,弦长最短,即PQ 取得最小值,因为2,3AM MS AS ==,所以2AH HB =,因为32,2AC BC AC BC ⊥==,由勾股定理得32232AB =⋅=,故2,1AH HB ==,连接OQ ,则32OQ =,由勾股定理得2291244HQ OQ OH =-=-=,所以222PQ HQ ==;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA PQ ⊥,OS SA S ⋂=,所以PQ ⊥平面AOS ,即有PQ AB ⊥.以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则113312,,0,2,,0,0,,0,,0,0,0,,322222P Q B C M ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,设平面BCM 的法向量为(),,m x y z = ,则()()()3333,,,,002222,,0,2,3230m CB x y z x y m MB x y z y z ⎧⎛⎫⋅=⋅-=-+= ⎪⎪⎝⎭⎨⎪⋅=⋅-=-=⎩,令1x =,则231,3y z ==,故231,1,3m ⎛⎫= ⎪ ⎪⎝⎭,设直线PQ 与平面BCM 所成角的大小为θ,则()2322,0,01,1,330sin cos ,10422113PQ m PQ m PQ mθ⎛⎫⋅ ⎪⋅⎝⎭====⋅⨯++.故直线PQ 与平面BCM 所成角的正弦值为3010.20.(1)对于方案一,由条件可知X 有可能取值为3,4,5,6,()111132228P X ==⨯⨯=,()12211211137423322322272P X ==⨯⨯+⨯⨯+⨯⨯=,()115121111152362332233P X ==⨯⨯+⨯⨯+⨯⨯=,()1111623636P X ==⨯⨯=,∴X 的分布列为:X3456P183********期望值()13711307345687233672E X =⨯+⨯+⨯+⨯=.(2)对于方案二,由条件可得Y 值为3,4,5,6,()3336C 13C 20P Y ===,()123336C C 94C 20P Y ===,()123336C C 95C 20P Y ===,()3336C 16C 20P Y ===,∴Y 的期望值()199193456202020202E Y =⨯+⨯+⨯+⨯=∵()()E Y E X >所以方案二员工获得奖金数额的数学期望值会更高.(3)由(1)(2)可知,平均每位员工获得奖金的数学期望的最大值为() 4.5E Y =,则给员工颁发奖金的总数为4.510004500⨯=(万元),设每位职工为企业的贡献的数额为ξ,所以获得奖金的职工数约为()()()10001100011510002P P P μσξμσξξμσ--<≤+⎡⎤⎣⎦>=>+=.()100010.6826158.71592-≈=≈(人)则获奖员工可以获得奖金的平均数值为450028159≈(万元).21.(1)设()()1122,,,A x y B x y ,因为抛物线C 的焦点为0,2p ⎛⎫ ⎪⎝⎭,所以当直线l 过C 的焦点时,直线AB 的方程为(1)2py x =--,由()2122p y x x py⎧=--⎪⎨⎪=⎩得2220x p x p +-=.则221212,x x p x x p +=-=-,()()()22224221122214||1114844442p p p p p AB x x x x x x p p +⎛⎫=+-=++=++=⎭-=⎪⎝,整理得()32416(2)280p p p p p +-=-++=,所以2p =,故抛物线C 的方程为24x y =.(2)易知直线AB 的斜率在且不为零,设直线AB 的方程为(1)(0)y k x k =-≠,由2(1)4y k x x y=-⎧⎨=⎩得2440x kx k -+=,则216160k k ∆=->,即1k >或0k <,124x x k =.易知直线AQ 的方程为1122y y x x +=-,由112224y y x x x y+⎧=-⎪⎨⎪=⎩得()1214280y x x x +-+=,设()33,E x y ,则133188,x x x x ==,设()44,F x y ,同理可得428x x =,则12341||||sin 22||||21||||22||||sin 2QAB QEFQA QB AQBS y y QA QB S QE QF y y QE QF AQB ⋅∠++⋅===⋅⋅++⋅∠△△()()2222121222342212111228844161111112216164488x x x x x x x x ⎛⎫⎛⎫++++ ⎪⎪⎝⎭⎝⎭==⎛⎫⎛⎫⎛⎫⎛⎫+++⋅+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭222212161646442x x k k ====,得22,2k k ==±,故直线AB 的方程为2(1)y x =±-.22.(1)因为存在[)01,x ∈+∞,使得()0e f x a <-成立,即()min e f x a <-由题设知,()e xf x a '=-,①当0a ≤时,()0f x ¢>恒成立,()f x 在R 上单调递增;即()f x 在[)1,+∞单调递增,()min (1)e f x f a ==-,不满足()min e f x a <-,所以0a ≤舍去.②当0a >时,令()0f x '=,得ln x a =,当(),ln x a ∈-∞时()0f x '<,()f x 单调递减,当()ln ,x a ∈+∞时()0f x ¢>,()f x 单调递增;当e a ≤时,()f x 在[)1,+∞单调递增,()min (1)e f x f a ==-,不满足()min e f x a <-,所以e a ≤,舍去.当e a >时,ln 1a >,()f x 在()1,ln a 单调递减,在()ln ,a +∞单调递增,所以()min (ln )(1)e f x f a f a =<=-成立,故当e a >时成立.综上:实数a 的取值范围e a >.(2)令()eln p x x x=-,1x ≥()2e 10p x x x'=--<,()p x 在[)1,+∞单调递减.因为()e 0p =故当1e x ≤≤时,()()e 0p x p ≥=;当e x >时,()0p x <;令()1e ln x q x a x -=+-,1x ≥()11e x q x x -'=-,令()11e x h x x -=-,()121e 0x h x x-=+>',()h x 在[)1,+∞单调递增,故()()10h x h ≥=,所以()()0q x h x '=>,则()q x 在[)1,+∞单调递增,所以()()11q x q a ≥=+,由(1)知e a >,()()110q x q a ≥=+>;①当1e x ≤≤时,()0p x ≥,()0q x >,令()()()()()1e e x m x p x q x p x q x a x-=-=-=--,所以()12e e 0x m x x -'=--<,故()m x 在[]1,e 单调递减,所以()()1e 1m x m a ≤=--,由(1)知e a >,所以()()1e 10m x m a ≤=--<,即()()()0m x p x q x =-<,故()()p x q x <,所以e x比1e x a -+更接近ln x ;②当e x >时,()0p x <,()0q x >,令()()()()()1e (ln )(eln )x n x p x q x p x q x x a x x -=-=--=---+-1e 2ln e x x a x -=-+--,()12e 2e x n x x x -'=+-,令()12e 2e x p x x x -=+-,()3122e 20e x p x x x -'=---<,()p x 在(e,+)∞上单调递减,所以()e 13(e)e 0e p x p -<=-<,()()0n x p x '=<,()n x 在(e,)+∞单调递减,所以()()e 1e 1e n x n a -≤=--,由(1)知e a >,所以()()e 1e 1e 0n x n a -<=--<,即()()()0n x p x q x =-<,故()()p x q x <,所以e x 比1e x a -+更接近ln x ;综上:当e a >及1x ≥,e x 比1e x a -+更接近ln x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下学期高二数学5月月考试题02
第Ⅰ卷(选择题,共60分)
一、选题择(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。


1.集合,,则( ) A. B. C. D.
2.下列命题中,真命题是( ) A. B.
C.a+b=0的充要条件是=-1
D.a>1,b>1是ab>1的充分条件
3.已知命题p :x 1,x 2R ,(f (x 2)f (x 1))(x 2x 1)≥0,则p 是( )
A. x 1,x 2R ,(f (x 2)f (x 1))(x 2x 1)≤0
B. x 1,x 2R ,(f (x 2)f (x 1))(x 2x 1)≤0
C. x 1,x 2R ,(f (x 2)f (x 1))(x 2x 1)<0
D. x 1,x 2R ,(f (x 2)f (x 1))(x 2x 1)<0
4.已知
是定义在R 上的偶函数,且以2为周期,则“为上的增函数”是“为上的减函数”的( ) A.既不充分也不必要的条件 B.充分而不必要的条件
C.必要而不充分的条件
D.充要条件
5.已知x=ln π,y=log 52,,则( )
A.x <y <z
B.z <x <y
C.z <y <x
D.y <z <x
6.设函数则下列结论错误的是( )
A. D (x )的值域为{0,1}
B. D (x )是偶函数
C. D (x )不是周期函数
D. D (x )不是单调函数
7.已知函数f (x )=⎩⎪⎨⎪⎧ -+,2a x 是(-∞,+∞)上的减函数,则a 的取值
范围是( )
A .(0,3)
B .(0,3]
C .(0,2)
D .(0,2]
8. 函数的图象可能是( )
9.已知关于x 的函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是( )
A .(0,1)
B .(1,2)
C .(0,2)
D .[2,+∞)
10.设函数f (x )、g (x )的定义域分别为F 、G 。

若对任意的x ∈F ,都有g (x )=f (x ),则称g (x )为f (x )在G 上的一个“延拓函数”.已知函数f (x )=2x
(x ≤0),若g (x )为f (x )在R 上的一个延拓函数,且g (x )是偶函数,则函数g (x )的解析式是( )
11.定义在R 上的函数f (x )满足f (x +2)=3f (x ),当x ∈[0,2]时,f (x )=x 2-2x ,则当x ∈[-4,-2]时,f (x )的最小值是( )
A .-19
B .-13 C.19
D .-1 12.已知α、β是三次函数f (x )=13x 3+12
ax 2+2bx 的两个极值点,且α∈(0,1),β∈(1,2),则b -2a -1
的取值范围是( ) A .
B .
C .
D . 第Ⅱ卷(非选择题,共90分)
二、填空题:(本大题共4个小题,每小题5分,共20分。


13.已知是奇函数,且,若,则 . 14.如果不等式的解集为,且,那么实数a 的取值范
围是.
15. 定义在R 上的偶函数在[0,)上是增函数,则方程的所有实数根的和为.
16.设是定义在上的偶函数,对任意的
,都有,且当
时,,若关于的方程。

相关文档
最新文档