LVM名词解释及相应日志
RAID技术浅析
RAID技术浅析RAID前面我们介绍了磁盘的基本原理,我们知道一块磁盘的容量和速度是有限的,对于一些应用来说,可能需要几个TB的大小的来存放数据,我们必须要制造更大单盘容量的磁盘吗?实际上,可以使用多块磁盘并行起来解决这个问题,这就是RAID技术。
RAID:独立的磁盘组成具有冗余特性的阵列。
Redundant Array of IndependentDisks七种RAIDRAID 0实现RAID 0 有两种方式,一种是非条带化的模式,一种是条带化的模式。
对于非条带化的模式:RAID 0 :一块磁盘写满了,就往另一块上写,一次IO只用到一块磁盘,对整个系统来说容量增大了。
因为写满一块物理盘以后再写另一块盘。
对写IO没有任何优化,但是对读IO能提高一定的并发IO读几率。
我们希望可以这样,同时向两块磁盘进行写。
我们可以把要写的IO块进行编号,1、2、3……100等,然后在$t_1$时刻,磁盘A和磁盘B同时写入1、3两块,然后$t_2$时刻,同时写入2、4块,依次类推。
这样就可以实现并发写IO呢。
接下来就是如何来进行块的划分的问题了。
其实磁盘已经经过低级格式化了,也就是划分为若干的扇区,但是扇区只有512B大小,这么小的粒度太消耗性能。
所以我们要重新划分磁盘,而且又不能抛弃原有的扇区。
最直接的想法就是若干个扇区组成一个Data block,比如由4个扇区组成一个块(block)•data Block:N倍个扇区大小的容量,Block只有在一个Segment中是物理连续的,逻辑连续就需要跨物理磁盘。
下图是引入了分割思想以后的硬盘,•不同磁盘的相同偏移处的块组成成了Stripe,也就是条带,Stripee•Segment:一个Stripee所占用的单块磁盘上的区域。
那么条带深度和条带长度指的就是•每个Segment包含的块或者扇区的数量称为条带深度•条带长度:一Stripee横跨过的扇区或者块的个数或者字节容量。
vgreduce --removemissing详解
vgreduce --removemissing详解vgreduce removemissing 是LVM (Logical Volume Manager,逻辑卷管理器)命令中的一种,用于删除一个失踪的PV (Physical Volume,物理卷)。
在某些情况下,物理卷可能会从卷组中消失(如磁盘故障、操作失误等),而此时仍会保留在卷组的元数据中。
在这种情况下,使用vgreduce 命令可以将失踪的卷从卷组中移除,以保持整个系统的稳定性和安全性。
使用vgreduce removemissing 命令的前提条件是需要查看当前的卷组。
可以使用vgs 命令查看当前系统中的卷组及其状态,如下所示:# vgsVG #PV #LV #SN Attr VSize VFreevg01 1 2 0 wzn- 100.00g 50.00g查看命令的输出可以看到系统中只有一个卷组"vg01" ,有一块物理卷,“#PV”为1。
其中,“#LV”表示卷组所包含的逻辑卷数,“#SN”表示卷组所包含的快照数,“Attr”列代表卷组的属性,“VSize”代表卷组的实际大小,“VFree”代表卷组的可用空间。
如果系统中的物理卷在某些情况下消失了,那么使用"vgs" 命令仍然可以看到该物理卷,但在属性中显示为"missing" ,如下所示:# vgsVG #PV #LV #SN Attr VSize VFreevg01 2 2 0 wzn- 200.00g 100.00gvg01_pv01 0 0 0 wzn- 0 0vg01_pv02 1 2 0 wzn- 100.00g 50.00gvg01_pv03 1 0 0 wzn- 100.00g 50.00g [missing]查看上面的命令输出可以发现,“vg01”卷组中原本有三块物理卷,但是之前已经损坏的一块卷已经被从卷组中删除,现在只有两块物理卷了。
关于ubuntu LVM
关于ubuntu LVM一、什么是LVMLVM是Logical Volume Manager的缩写,即逻辑卷管理器。
LVM是逻辑盘卷管理(Logical Volume Manager)的简称,它是Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬盘和分区之上的一个逻辑层,来提高磁盘分区管理的灵活性。
通过LVM系统管理员可以轻松管理磁盘分区,如:将若干个磁盘分区连接为一个整块的卷组(volume group),形成一个存储池。
管理员可以在卷组上随意创建逻辑卷组(logical volumes),并进一步在逻辑卷组上创建文件系统。
管理员通过LVM可以方便的调整存储卷组的大小,并且可以对磁盘存储按照组的方式进行命名、管理和分配,例如按照使用用途进行定义:“development”和“sales”,而不是使用物理磁盘名“sda”和“sdb”。
而且当系统添加了新的磁盘,通过LVM管理员就不必将磁盘的文件移动到新的磁盘上以充分利用新的存储空间,而是直接扩展文件系统跨越磁盘即可。
LVM基本术语前面谈到,LVM是在磁盘分区和文件系统之间添加的一个逻辑层,来为文件系统屏蔽下层磁盘分区布局,提供一个抽象的盘卷,在盘卷上建立文件系统。
首先我们讨论以下几个LVM术语:* 物理存储介质(The physical media)这里指系统的存储设备:硬盘,如:/dev/hda、/dev/sda等等,是存储系统最低层的存储单元。
* 物理卷(physical volume)物理卷就是指硬盘分区或从逻辑上与磁盘分区具有同样功能的设备(如RAID),是LVM 的基本存储逻辑块,但和基本的物理存储介质(如分区、磁盘等)比较,却包含有与LVM 相关的管理参数。
* 卷组(Volume Group)LVM卷组类似于非LVM系统中的物理硬盘,其由物理卷组成。
可以在卷组上创建一个或多个“LVM分区”(逻辑卷),LVM卷组由一个或多个物理卷组成。
lvm参数
lvm参数LVM(逻辑卷管理器)是一种在Linux操作系统上用于管理磁盘存储的技术。
通过LVM,我们可以将多个物理磁盘分区合并成一个逻辑卷,并对逻辑卷进行动态调整和管理,而无需停机或影响正在运行的系统。
在使用LVM时,我们可以使用不同的参数来控制和配置逻辑卷。
这些参数可以通过命令行工具或配置文件进行设置。
下面是一些常用的LVM参数及其相关参考内容:1. PVCreate命令参数:- -v:显示详细的输出,包括操作的进程和结果。
- -ff:强制格式化物理卷,忽略潜在的数据损失风险。
- -M2:使用LVM2元数据格式,取代默认的LVM1格式。
- /dev/sdX:指定要创建物理卷的磁盘分区。
2. VGCreate命令参数:- -s:指定PE(物理区块)大小,默认为4MB。
- -c:指定最大PE数量,默认为无限制。
- --metadatacopies:指定元数据副本数量,默认为2。
- -p:指定VG名称。
3. LVCreate命令参数:- -L:指定逻辑卷的大小。
- -n:指定逻辑卷的名称。
- -C y:在创建逻辑卷之前需要确认。
4. LVExtend命令参数:- -L:指定逻辑卷的新大小。
- -l:指定逻辑卷的新大小,以PE数量为单位,例如“+10”表示增加10个PE。
- -r:同时调整文件系统大小。
- -n:指定逻辑卷的名称。
5. LVReduce命令参数:- -L:指定逻辑卷的新大小。
- -l:指定逻辑卷的新大小,以PE数量为单位,例如“-10”表示减少10个PE。
- -r:同时调整文件系统大小。
- -n:指定逻辑卷的名称。
6. PVResize命令参数:- -s:指定要改变的物理卷大小,默认为缩小卷。
- -n:指定物理卷的名称。
7. PVMove命令参数:- -n:指定要移动的物理卷名称。
- -v:显示详细的输出。
8. PVRemove命令参数:- -v:显示详细的输出。
- -ff:强制删除物理卷,忽略潜在的数据损失风险。
proxmox ve逻辑卷管理lvm详解
proxmox ve逻辑卷管理lvm详解Proxmox VE (Virtual Environment) 是一种开源的虚拟化解决方案,它基于Linux操作系统和KVM虚拟化技术,提供了集成的虚拟化管理工具。
在Proxmox VE中,逻辑卷管理(LVM)是一种磁盘管理工具,用于管理存储设备并提供高级功能如快照、动态分区和数据复制。
下面是有关Proxmox VE逻辑卷管理(LVM)的一些详解:1. 物理卷(Physical Volume):物理卷是硬盘、磁盘分区或RAID卷等存储设备的逻辑组件。
在Proxmox VE中,物理卷指的是用于创建逻辑卷的存储设备。
2. 卷组(Volume Group):卷组由一个或多个物理卷组成,它是逻辑卷的容器。
在Proxmox VE中,卷组通常用于将多个物理卷组合为一个更大的逻辑存储池。
3. 逻辑卷(Logical Volume):逻辑卷是从卷组中划分出的逻辑存储单元。
逻辑卷可以被格式化为文件系统,并作为虚拟机的硬盘或存储设备使用。
4. 快照(Snapshot):快照是逻辑卷的一种副本,它记录了特定时刻的逻辑卷状态。
通过创建快照,您可以方便地恢复逻辑卷到之前的状态。
5. 迁移(Migration):逻辑卷可以通过迁移的方式从一个Proxmox VE节点移动到另一个节点,以实现虚拟机的高可用性和负载均衡。
6. 增加容量(Capacity Expansion):使用逻辑卷管理,您可以动态地增加逻辑卷的容量,而无需停机或重新分区。
总结来说,Proxmox VE的逻辑卷管理(LVM)提供了一种灵活和可靠的方式来管理存储设备,并增加虚拟机的灵活性和可用性。
它允许您创建、调整和移动逻辑卷,并提供了快照和迁移等高级功能。
lvextend参数
lvextend参数lvextend是LVM(Logical Volume Manager)命令中的一个重要工具,用于扩展逻辑卷(Logical Volume)的大小。
LVM是一个逻辑卷管理器,允许用户在物理磁盘上创建、删除和管理逻辑卷,从而提供更灵活的磁盘存储管理。
使用lvextend命令可以将现有的逻辑卷扩展到更大的大小,以满足不断增长的存储需求。
lvextend命令需要指定要扩展的逻辑卷名称以及要扩展到的新大小。
``````下面是一些常用的lvextend参数的解释:1.`-v`:启用详细模式,显示详细的操作信息。
2.`-L`:指定逻辑卷的新大小,可以使用单位(例如MB、GB)来指定大小。
例如`-L+10G`表示在原有的大小上增加10GB。
例如`-L50G`表示将逻辑卷的大小设置为50GB。
3. `-l`:指定逻辑卷的新大小,使用PE(Physical Extents)单位来指定大小。
例如`-l+100%FREE`表示使用剩余的所有空间来扩展逻辑卷。
例如`-l+10`表示在原有的大小上增加10个PE。
例如`-l 100%VG`表示将逻辑卷的大小设置为卷组(Volume Group)中所有空闲空间的大小。
4.`-r`:自动调整逻辑卷上的文件系统大小,以使其与逻辑卷的新大小匹配。
使用lvextend命令的示例:```# 将逻辑卷lv_data扩展到100GB#在原有大小的基础上增加10GB#扩展逻辑卷到卷组中所有空闲空间的大小#扩展逻辑卷的文件系统大小```需要注意的是,扩展逻辑卷的操作通常需要在文件系统未挂载的情况下进行,以避免数据丢失的风险。
如果逻辑卷上有文件系统,可以使用文件系统工具(如resize2fs、xfs_growfs等)来调整文件系统的大小,以使其与扩展后的逻辑卷匹配。
综上所述,lvextend是一个非常有用的命令,可以帮助我们轻松地扩展逻辑卷的大小,以满足不断增长的存储需求。
39 LVM基础 2TB
LVM阶段性总结一.基本概念:LVM------LVM是逻辑盘卷管理.它是Unix/Linux环境下对磁盘分区进行管理的一种机制;LVM是在磁盘分区和文件系统之间添加的一个逻辑层,来为文件系统屏蔽下层磁盘分区布局,提供一个抽象的盘卷,在盘卷上建立文件系统。
二.基本术语:PV-------Physical Volimes 物理卷物理卷就是指硬盘分区或从逻辑上与磁盘分区具有同样功能的设备(如RAID) VG------Volume Group 卷组LVM卷组类似于非LVM系统中的物理硬盘,其由物理卷组成,可以是一个或者多个;LV-------logical Volumes 逻辑卷LVM的逻辑卷类似于非LVM系统中的硬盘分区,在逻辑卷之上可以建立文件系统(比如/home或者/usr等);PE-------Physical Extent物理卷的基本单元,具有唯一编号的PE是可以被LVM寻址的最小单元,PE的大小是可配置的,默认为4MB;LE-------Logical Extent逻辑卷可被寻址的基本单位,在同一个卷组中,LE的大小和PE是相同的,并且一一对应;三.创建.对PV的操作及其结果...创建PVpvcreate /dev/rdisk/diskX-------------此时盘里面多了VGRA/PVRA盘头信息.此步操作一些常用的参数:-B 制作启动盘.写入BDRA盘头信息.-s 要创建物理卷的大小.单位KB-f 强制创建物理卷.不管磁盘里面是否有其他的文件系统.创建VGmkdir /dev/vg01 创建一个VG使用的目录mknod /dev/vg01/group c 64 0x010000 创建vgcreate -p 255 -s 32 /dev/disk/disk1 /dev/disk/disk2vgcreate常用参数:-p 该卷组中包含的最大的物理卷的数量,为了以后维护,建议大点的数值.默认16。
lvm基本概念
lvm基本概念全文共四篇示例,供读者参考第一篇示例:LVM(Logical Volume Manager)是一种Linux系统中用来管理磁盘空间的一种技术。
它将物理磁盘的空间抽象为逻辑卷,使用户可以更加灵活地管理磁盘空间,提高数据的安全性和可用性。
在本文中,我们将介绍LVM的基本概念,包括物理卷、卷组、逻辑卷等,帮助读者了解和使用LVM技术。
一、物理卷(Physical Volume)物理卷是LVM管理的基本单元,它是一个独立的硬盘分区或整个硬盘。
在LVM中,用户可以将一块硬盘或者硬盘的一个分区作为物理卷加入到LVM中进行管理。
通过物理卷,LVM可以管理硬盘的存储空间,动态地添加或删除硬盘空间。
二、卷组(Volume Group)卷组是由一个或多个物理卷组成的逻辑单元,它是LVM的第二层次。
卷组将多个物理卷整合成一个逻辑存储单元,用户可以在卷组中创建逻辑卷。
通过卷组,LVM可以管理多个硬盘的存储空间,提供灵活的存储管理方案。
三、逻辑卷(Logical Volume)逻辑卷是由卷组分配的一个逻辑卷的存储空间,它与传统的分区概念相对应。
逻辑卷可以动态调整大小,添加或删除存储空间,提高灵活性和可用性。
用户可以在逻辑卷上创建文件系统,存储数据,并管理数据。
四、扩展卷(Physical Extent)扩展卷是LVM的最小单位,它是物理卷和逻辑卷之间的桥梁。
在LVM中,物理卷会被划分成多个扩展卷,用来分配给逻辑卷。
通过扩展卷,LVM可以在不同的物理卷之间平衡存储负载,提高数据的可用性。
五、快照(Snapshot)快照是LVM技术提供的一个重要功能,它可以复制一个逻辑卷的快照,用于备份、恢复或测试。
快照可以在不中断服务的情况下创建,并且可以随时删除。
通过快照,用户可以保护数据的完整性和可用性。
第二篇示例:LVM(Logical Volume Manager)是一种用于管理磁盘存储空间的工具,它允许管理员在不关机的情况下扩充、缩小、合并和移动存储卷。
UNIX中的VG、LV解释
LVM(Logicl Volume Manager),逻辑卷管理器,通过使用逻辑卷管理器对硬盘存储设备进行管理,可以实现硬盘空间的动态划分和调整。
一、基本概念1、物理卷-----PV(Physical V olume)物理卷在逻辑卷管理中处于最底层,它可以是实际物理硬盘上的分区,也可以是整个物理硬盘。
2、卷组--------VG(V olumne Group)卷组建立在物理卷之上,一个卷组中至少要包括一个物理卷,在卷组建立之后可动态添加物理卷到卷组中。
一个逻辑卷管理系统工程中可以只有一个卷组,也可以拥有多个卷组。
3、逻辑卷-----LV(Logical V olume)逻辑卷建立在卷组之上,卷组中的未分配空间可以用于建立新的逻辑卷,逻辑卷建立后可以动态地扩展和缩小空间。
系统中的多个逻辑卷要以属于同一个卷组,也可以属于不同的多个卷组。
4、物理区域--PE(Physical Extent)物理区域是物理卷中可用于分配的最小存储单元,物理区域的大小可根据实际情况在建立物理卷时指定。
物理区域大小一旦确定将不能更改,同一卷组中的所有物理卷的物理区域大小需要一致。
5、逻辑区域—LE(Logical Extent)逻辑区域是逻辑卷中可用于分配的最小存储单元,逻辑区域的大小取决于逻辑卷所在卷组中的物理区域的大小。
6、卷组描述区域-----(V olume Group Descriptor Area)卷组描述区域存在于每个物理卷中,用于描述物理卷本身、物理卷所属卷组、卷组中的逻辑卷及逻辑卷中物理区域的分配等所有信息,卷组描述区域是在使用pvcreate建立物理卷时建立的。
二、 LVM的一般操作过程1、在磁盘分区上建立物理卷#fdisk /dev/hdb#pvdisplay /dev/hdb1 //在已经建立好的分区或硬盘上建立物理卷#pvcreate /dev/hdb12、使用物理卷建立卷组#vgcreate myVG /dev/hdb1 //建立卷组,日后可以根据需要添加新的物理卷到已有卷组中3、在卷组中建立逻辑卷#lvcreate –L 10M –n myLV1 myVG //从已有卷组建立逻辑卷,通常只分配部分空间给该逻//辑卷4、在逻辑卷上建立文件系统5、将文件系统挂载到Linux系统的目录树中6、在卷组中添加新的物理卷当卷组中没有足够的空间分配给逻辑卷时,可以使用vgextend命令添加新的物理卷到该卷组中,来扩充卷组容量。
lvm 和标准分区
lvm 和标准分区LVM(Logical Volume Manager)和标准分区是在Linux系统中进行磁盘管理时经常遇到的两种方式。
它们各有优势和劣势,对于不同的需求和场景有着不同的适用性。
本文将对LVM和标准分区进行比较和分析,帮助读者更好地理解它们的特点和适用范围。
首先,我们来看看标准分区。
在Linux系统中,标准分区是一种传统的磁盘管理方式。
它将整个硬盘分成若干个分区,每个分区都使用不同的文件系统进行格式化,比如ext4、xfs等。
标准分区的优势在于稳定性和成熟度,它经过了长时间的发展和优化,可以满足大部分用户的需求。
此外,标准分区的管理和操作相对简单,适合初学者和小型系统的部署。
然而,标准分区也存在一些局限性。
首先,分区的大小是固定的,一旦分配好后就无法动态调整,这在一些场景下会带来不便。
其次,标准分区的管理需要对磁盘空间有较为准确的预估,如果分配不当可能会导致空间浪费或者不足。
因此,在一些对磁盘空间需求变化较大的场景下,标准分区可能无法很好地满足需求。
接下来,我们来看看LVM。
LVM是一种先进的磁盘管理方式,它将物理磁盘抽象成逻辑卷,可以动态地调整逻辑卷的大小和数量。
这使得LVM在磁盘管理的灵活性和可扩展性方面具有明显的优势。
对于一些对磁盘空间需求变化较大的场景,比如数据库服务器、虚拟化平台等,LVM能够更好地满足需求。
然而,LVM也并非没有局限性。
首先,LVM的管理和操作相对复杂,需要一定的学习和实践成本。
其次,LVM的稳定性相对标准分区来说可能会稍逊一筹,尤其是在一些较老的系统或者特殊的硬件环境下。
综上所述,LVM和标准分区各有优势和劣势,适用于不同的场景和需求。
在选择磁盘管理方式时,需要根据实际情况进行综合考虑,权衡各方面的因素,选择最适合自己的方式。
希望本文能够帮助读者更好地理解LVM和标准分区,并在实际应用中做出明智的选择。
linux分区 标准 lvm
linux分区标准 lvm在Linux系统中,分区是管理磁盘空间的重要方式,而逻辑卷管理(LVM)则是一种高级的分区管理方式,它可以提供更灵活、更可靠的磁盘空间管理。
本文将介绍如何在Linux系统中使用标准分区和LVM来管理磁盘空间。
1. 标准分区。
在Linux系统中,标准分区是最基本的磁盘分区方式。
标准分区将磁盘划分为不同的区域,每个区域可以挂载不同的文件系统。
通常情况下,一个硬盘可以划分为主分区和扩展分区。
主分区可以包含一个文件系统,而扩展分区可以包含多个逻辑分区。
要创建标准分区,可以使用fdisk命令或者parted命令。
首先,使用fdisk命令选择要分区的硬盘,然后使用n命令创建新分区。
接着,选择分区类型(主分区或逻辑分区)并设置分区大小。
最后,使用w命令保存并退出。
2. LVM。
LVM是一种高级的磁盘管理方式,它将物理磁盘抽象为逻辑卷,从而提供了更灵活的磁盘空间管理方式。
使用LVM可以动态地调整逻辑卷的大小,而不需要重新分区或者格式化。
要使用LVM,首先需要创建物理卷(PV)、卷组(VG)和逻辑卷(LV)。
物理卷是实际的磁盘分区,可以使用pvcreate命令来创建。
卷组是由一个或多个物理卷组成的逻辑单元,可以使用vgcreate命令来创建。
逻辑卷是从卷组中分配的逻辑存储单元,可以使用lvcreate命令来创建。
3. Linux分区+LVM。
在Linux系统中,可以将标准分区和LVM结合起来使用。
首先,创建标准分区并格式化为文件系统。
然后,将标准分区的挂载点设置为LVM的物理卷,并将其加入到LVM的卷组中。
最后,可以从LVM的卷组中创建逻辑卷,并将其挂载到需要的目录下。
通过结合使用标准分区和LVM,可以充分发挥它们各自的优势。
标准分区可以提供较为简单的磁盘管理方式,而LVM则可以提供更加灵活的磁盘空间管理方式。
这种组合方式可以满足不同场景下的需求,既方便管理又能够充分利用磁盘空间。
总结。
LVM原理及PV、VG、LV、PE、LE关系图
LVM原理及PV、VG、LV、PE、LE关系图VM(逻辑分区管理)中的⼏个概念:PV(physical volume):物理卷在逻辑卷管理系统最底层,可为整个物理硬盘或实际物理硬盘上的分区。
VG(volume group):卷组建⽴在物理卷上,⼀卷组中⾄少要包括⼀物理卷,卷组建⽴后可动态的添加卷到卷组中,⼀个逻辑卷管理系统⼯程中可有多个卷组。
LV(logical volume):逻辑卷建⽴在卷组基础上,卷组中未分配空间可⽤于建⽴新的逻辑卷,逻辑卷建⽴后可以动态扩展和缩⼩空间。
PE(physical extent):物理区域是物理卷中可⽤于分配的最⼩存储单元,物理区域⼤⼩在建⽴卷组时指定,⼀旦确定不能更改,同⼀卷组所有物理卷的物理区域⼤⼩需⼀致,新的pv加⼊到vg后,pe的⼤⼩⾃动更改为vg中定义的pe⼤⼩。
LE(logical extent):逻辑区域是逻辑卷中可⽤于分配的最⼩存储单元,逻辑区域的⼤⼩取决于逻辑卷所在卷组中的物理区域的⼤⼩。
卷组描述区域:卷组描述区域存在于每个物理卷中,⽤于描述物理卷本⾝、物理卷所属卷组、卷组中逻辑卷、逻辑卷中物理区域的分配等所有信息,它是在使⽤pvcreate建⽴物理卷时建⽴的。
步骤:1.准备物理分区(Physical Partions)⾸先,我们需要选择⽤于 LVM 的物理存储器。
这些通常是标准分区,但也可以是已创建的 Linux Software RAID 卷。
这⾥我利⽤fdisk命令,将sdb、sdc两块磁盘分了两个区sdb1、sdc1,通过fdisk的t指令指定分区为8e类型(Linux LVM) 。
如图1所⽰。
图1 准备物理分区的指令执⾏界⾯2.创建物理卷PV(Physical Volumes)物理卷(Physical Volumes)简称PV,是在磁盘的物理分区或与磁盘分区具有同样功能的设备(如RAID)上创建⽽来。
它只是在物理分区中划出了⼀个特殊的区域,⽤于记载与LVM相关的管理参数。
LVM(逻辑卷管理器)总结
逻辑卷管理(LVM)指系统将物理卷管理抽象到更高的层次,常常会形成更简单的管理模式。
通过使用LVM,所有物理磁盘和分区,无论它们的大小和分布方式如何,都被抽象为单一存储(single storage)源。
例如,在图 1 所示的物理到逻辑映射布局中,最大的磁盘是80GB 的,那么用户如何创建更大(比如150GB)的文件系统呢?图 1. 物理到逻辑的映射LVM 可以将分区和磁盘聚合成一个虚拟磁盘(virtual disk),从而用小的存储空间组成一个统一的大空间。
这个虚拟磁盘在LVM 术语中称为卷组(volume group)。
建立比最大的磁盘还大的文件系统并不是这种高级存储管理方法的惟一用途。
还可以使用LVM 完成以下任务:∙在磁盘池中添加磁盘和分区,对现有的文件系统进行在线扩展∙用一个160GB 磁盘替换两个80GB 磁盘,而不需要让系统离线,也不需要在磁盘之间手工转移数据∙当存储空间超过所需的空间量时,从池中去除磁盘,从而缩小文件系统∙使用快照(snapshot)执行一致的备份(本文后面会进一步讨论)LVM2是一个新的用户空间工具集,它为Linux 提供逻辑卷管理功能。
它完全向后兼容原来的LVM 工具集。
在本文中,将介绍LVM2 最有用的特性以及几种简化系统管理任务的方法。
(随便说一句,如果您正在寻找关于LVM 的基本指南,那么可以看看参考资料中列出的LVM HowTo。
)我们来看看LVM 的结构是什么样子的。
LVM 的结构LVM 被组织为三种元素:∙卷(Volume):物理和逻辑卷和卷组∙区段(Extent):物理和逻辑区段∙设备映射器(Device mapper):Linux 内核模块卷Linux LVM 组织为物理卷(PV)、卷组(VG)和逻辑卷(LV)。
物理卷是物理磁盘或物理磁盘分区(比如/dev/hda 或/dev/hdb1)。
卷组是物理卷的集合。
卷组可以在逻辑上划分成多个逻辑卷。
图2 显示一个三个磁盘构成的布局。
存储基础(VG、LV、LP、PV、PP)资料讲解
存储基础(V G、L V、L P、P V、P P)传统UNIX磁盘存储存在的问题● 分区大小固定● 不能随意扩展分区● 文件系统和文件的大小受限制● 分区时需要大量的时间去计划传统UNIX的一个磁盘分区需要连续的磁盘空间,这样一个分区一但划定后如果发现其太小也不能在扩充了.如图如果发现分区1的空间不够尽管硬盘还有剩余空间但由于两部分不连续,这样分区1的大小不能该变了.由于分区需要占有连续的磁盘空间那么分区的空间大小受到系统硬盘空间的大小的限制,分区不能跨越硬盘存在.这样系统中的文件系统大小和文件大小除了受本身算法限制还要受硬盘大小的限制.在安装操作系统时系统管理员应该首先对系统硬盘进行分区,但分区划定后就不能改变其大小了这样需要系统管理员花时间和精力去很好的规划每个分区的大小.LVM(Logical Volume Manager)是由一组系统命令,系统调用和其它工具组成,用户使用它可以建立和控制系统的逻辑存储. 它通过逻辑视图存储空间数据和真实的物理硬盘的数据之间的对应关系管理磁盘资源.LVM在传统的磁盘驱动程序上加了一层逻辑卷设备驱动程序用于映射逻辑视图与物理硬盘间的数据.LVM由两部分组成:LVDD(Logical Volume Device Driver)和操作命令集.LVDD 负责管理和执行所有的I/O.它将逻辑地址转换成物理地址并将请求发送给相应的磁盘驱动程序.操作命令集包括一组系统调用和高级命令用于操纵LVM.这些高级命令一般以shell script形式出现,如lsvg表示列出系统的卷组.在这些script文件中包含许多LVM的基本命令,这些基本命令对应这一些系统调用.这些调用的API存放在liblvm.a中Physical partition(PP):硬盘存储的最小分配单位.当硬盘加入卷组中时系统安装卷组定义的PP大小对硬盘进行划分.PP的大小在创建VG时定义,以后就不能改变了.它的取值范围是1-1024M,以2的整数次幂变化.一个硬盘缺省时最多可以被划分成1016个PP.Physical Volume(PV):系统的物理硬盘,如果一个硬盘如果参与系统的存储分配,则需要将该硬盘加入的系统的卷组(VG)中或自己创建一个卷组.一个硬盘同时只能属于一个VG.图中的hdisk1,hdisk2,hdisk3为PV.Logical partition(LP):LP与PP相对应.一个LP一般对应一个PP,LP的大小与PP的大小相同.Logical Volume(LV):由同在一个卷组的一个或多个LP组成,它不需要占用连续的PV空间,它可以跨越硬盘存在可以动态的扩充容量.应用程序访问磁盘一般访问到LV这一层.LV中可以包括日志文件系统,Paging Space,日志log,BLV系统启动逻辑卷等.一般情况一个LV最大为64G,一个VG中最多包含256个LV.Volume Group(VG):AIX存储分配的最大单位,它包括一个或多个PV.一般情况下最多包括32个PV,一个系统最多有255个VG.VG从逻辑的角度来看还包含多个LV.在系统安装时系统会自动创建一个卷组rootvg.● 灵活的LV由于LV是由一个或多个LP组成,LP与PP相对应,这种对应关系被LVDD管理.LV可以不占用连续的物理硬盘空间这样LV在一个VG中可以跨硬盘存在,它的大小可以被动态增加,可以很容易的加镜像,可以很容易的被删除.● 高可靠性LVM通过镜像来提高数据的可靠性,被镜像的LV在系统中可以有2到3份拷贝.当一份数据被毁坏后系统可以用该数据的镜像.● 高性能LVM通过strping来提高系统访问数据的速度.strping技术将LV的数据分布到不同PV上访问这些数据时可以进行并行的读写.我们在创建LV时可以指定LV 在PV上的分布位置,我们将经常被访问的LV放在PV的热点位置可以提高访问速度.● 写校验LVM可以通过写校验对每次的磁盘写操作都被校验,提供数据的稳定性.● 动态管理我们可以在系统正常运行期间对系统的LV进行各种操作,操作后不需要重新启动机器.这些操作大部分对用户是透明的.● 容易使用我们课通过使用高级命令来管理系统存储也可以通过smit来管理系统存储.AIX的物理存储包括一些几个部分● VGAIX存储分配的最大单位,它包括一个或多个PV.一般情况下最多包括32个PV,一个系统最多有255个VG.VG从逻辑的角度来看还包含多个LV.在系统安装时系统会自动创建一个卷组rootvg.在一个VG中分配空间时是以PP为单位分配,VG中的所有PV作为一个整体进行使用.一个VG的PP大小在创建VG时定义,这个值以后不能在被改变.一个VG可以直接的从一个系统迁移到另一个系统中.● PV系统的物理硬盘,如果一个硬盘如果参与系统的存储分配,则需要将该硬盘加入的系统的卷组(VG)中或自己创建一个卷组.一个硬盘同时只能属于一个VG.当一个PV被加入到系统中在系统的/dev目录下创建hdiskn的设备文件与其对应.● PP硬盘存储的最小分配单位.当硬盘加入卷组中时系统安装卷组定义的PP大小对硬盘进行划分.PP的大小在创建VG时定义,以后就不能改变了.它的取值范围是1-1024M,以2的整数次幂变化.一个硬盘缺省时最多可以被划分成1016个PP.用户可以给rootvg(在安装系统是自动创建)中加硬盘,也可以创建新的卷组我们为什么创建新的卷组● 将用户数据与系统数据分开我们在系统升级后重新安装操作系统时只对系统的rootvg进行操作,如果用户数据集中在rootvg上那么在重新安装系统时有可能毁坏用户数据(安装方式决定是否会毁坏用户数据).系统的崩溃一般也发生在rootvg上.这样我们将用户数据放在其他VG中可以提供用户数据的稳定性.● 灾难恢复系统提供的备份方式中有一种是卷组备份,如果我们对系统的每个卷组都进行了这样的备份,当发生故障时可以很快的恢复系统和用户数据.● 数据维护当我们希望用户数据不被用户访问而系统还需要正常运行,如果这些数据被放在一个独立的卷组中我们可以使用varyoffvg的命令时这个卷组暂时不被激活.● 数据移动我们在系统间移动数据时,不能以硬盘为单位移动只能以vg为单位移动.●VGDAVGDA(Volume Group Descriptor Area)是包含在卷组中硬盘上的一个区域.卷组中的每一个硬盘至少有一个VGDA区,同一个卷组中所有硬盘的VGDA内容是一样的.VGDA中存放的是关于卷组的管理信息如卷组的ID号,包含的硬盘ID,逻辑卷ID还存放PP与LP的对应关系.●Quroum当VG被激活时系统会对该卷组中的VGDA进行表决以决定是否可以激活该卷组.VGAD的表决数用于确保卷组的管理数据的完整性,这个数是该卷组的VGDA 数量的51%或51%以上.如图包含两块硬盘的VG有3个VGDA,其表决数为2.如果只包含一个VGDA的硬盘坏了该卷组还可以被激活,反之则不能被激活.由于卷组中的每个硬盘都包含至少一个VGDA,如果硬盘过多VGDA的管理不太容易所有一般来讲每个卷组最好只包含3到4块硬盘即可.LVM菜单被用于管理许多的系统存储●Volume Group 用于管理VG●Logical Volume 用于管理LV.由于LV包括paging space,文件系统,他们都有相应的管理菜单,这里只提供一些地层的管理菜单.●Physical Volume 用于管理PV●Paging Space 用于管理系统页面交换空间.我们使用smit vg的命令可以得到卷组管理菜单镜像卷组可以将卷组中的所有逻辑卷进行镜像使用的命令是mirrorvg.●列出所有的卷组lsvg命令列出系统中所有已经定义的卷组(无论是否被激活)lsvg -o 列出现在处于激活状态的卷组●列出一个卷组的内容我们使用lsvg vgname的命令可以得到该卷组的状态和该卷组的内容.PP SIZE 表示卷组中PP的大小.State表示卷组的状态.LVs表示该卷组中逻辑卷的个数,TOTAL PPs表示卷组中PP的个数,FREE PPs表示当前卷组中未分配的PP个数,QUORUM表示卷组的表决数.VG DESCRIPTORS表示卷组的VGDA数量.●列出卷组中硬盘lsvg -p 卷组名可以列出该卷组所包含的硬盘名称,状态,每个硬盘的中PP个数,未分配PP的个数,未分配的PP在拼音的位置.●列出卷组中逻辑卷用lsvg -l 卷组名可以列出该卷组中所有定义的逻辑卷的名称,类型,LV包含的LP的个数和PP的个数,LV跨越硬盘的个数,LV的状态,如果LV是被用于文件系统的列出它的mount点.LV的类型用paging,日志log,启动LV和日志文件系统.LV的状态表示该卷组是否可以被访问,open表示可以被使用,closed表示是不能被访问(如果LV的类型是文件系统closed表示该文件系统没有被mount).syncd表示LV的内容是同步的(LV做镜像时有用,如果不同步则表示为staled状态).●增加卷组在这个smit对话框中我们必须选择的是新卷组包含的硬盘名称,该硬盘已经不能属于其他卷组.我们可以根据硬盘的大小指定卷组的PP大小缺省为4M,卷组名称如果没有声明则以vgnn命名nn表示为数字,卷组主设备号,是否创建为并行卷组,在并在模式下自动被激活这三个选项用于HACMP中.创建卷组的命令是mkvg.●删除卷组当卷组中最后一块硬盘被删除该卷组会被自动删除.●给卷组中增加一个硬盘我们用 extendvg -f Volumegroup hdiskn 的命令可以个卷组中增加一块硬盘,当一块yp被加入到某个卷组时系统会安装该卷组的PP大小对硬盘进行划分该硬盘中所有内容将会被清除.-f选项表示自动确认将将硬盘加入到卷组当中.●从卷组中删除一个硬盘用reducevg [-d] Volumegroup hdiskn可以从卷组中删除一块硬盘,删除前需要先将该硬盘的内容清除或移动到别的硬盘上.-d选择表示可以不做清除或移动工作而将性删除.一个卷组创建后我们可以修改卷组的部分属性如卷组在下一次系统启动时是否自动被激活,卷组被激活后是否还需要vgda表决数如果需要则卷组中硬盘的失效影响导致好的VGDA数量不足表决数则卷组自动变成不可使用状态.我们创建逻辑卷时可以指定该逻辑卷在硬盘的位置,如果创建时指定位置已经被使用则系统会自动分配其他位置给该逻辑卷.系统使用一段时间后管理员发现指定位置已经被释放我们可以利用reorgvg的命令来重新安装lv的位置定义调整卷组中lv的位置.reorgvg volumegroup [lvname].如#reorgvg vg3 lv04 lv07 可以调整lv04和lv07在vg3上的位置.安装lv名字在命令中出现的次序依次调整.这种调整对用户是透明的.●激活一个卷组varyonvg [-s] Volumegroup如果系统启动时我们发现一些卷组没有被自动激活我们可以使用#varyonvg datavg的命令将datavg激活.-s选项可以将vg激活到维护模式,这时只能对其使用管理命令,其他操作不允许.●使一个卷组处于非激活状态varyoffvg [-s] Volunegroup可以将一个处于激活状态的卷组变为非激活状态.使用该命令时卷组中的所有lv必须处于closed状态.-s表示将该卷组变为维护模式.我们有时需要将一个卷组从一个系统A移动到另一个系统B并希望保留该卷组上的所有数据,这时我们可以在A系统上使用exportvg的命令将卷组从A系统中删除,在B系统安装识别好该卷组中的硬盘后使用importvg的命令将该卷组引入到B系统上.使用exportvg时需要该卷组处于非激活状态.这些命令常用在HACMP中和系统升级后导入以前的非rootvg卷组的内容.Logical partition(LP):LP与PP相对应.一个LP一般对应一个PP,LP的大小与PP的大小相同.Logical Volume(LV):由同在一个卷组的一个或多个LP组成,它不需要占用连续的PV空间,它可以跨越硬盘存在可以动态的扩充容量.应用程序访问磁盘一般访问到LV这一层.LV中可以包括日志文件系统,Paging Space,日志log,BLV系统启动逻辑卷等.一般情况一个LV最大为64G,一个VG中最多包含256个LV.●镜像是一个LP在同一个卷组中对应1块以上的PP.即该LP的内容在系统中用1份以上的拷贝.当我们创建逻辑卷时我们可以声明对该lv中的lv做镜像,我们也称为该lv做镜像.通常lv的每一份拷贝都应该放在不同的不同的物理硬盘上.我们可以给lv加镜像也可以删除其镜像.● 镜像的读写策略● 并行策略并行的写是指系统在对该lv进行写操作时,几块拷贝同时写当最后一份拷贝写完后将控制权交给用户.读策略表示系统读取lv内容时哪一个拷贝近就读那一块.● 串行策略串行写表示系统在对该lv进行写操作时先写第一份拷贝,写完后在写第二份.当最后一份写完后将控制权交给用户.读策略表示系统读取lv内容时先读第一份拷贝如果读不出则在读第二份拷贝.● 正常lv的数据块分布正常的率数据块时连续分布到不同的硬盘上,这样在读写数据时总是不能达到并行读写.● stripe lv的数据块分布strping技术将LV的数据分布到不同PV上访问这些数据时可以进行并行的读写.如图在读写数据时1,2,3块数据由于分布在不同的硬盘上可以同时进行操作.一个striped的lv不能做镜像,而且使用stripe时至少需要两块硬盘而且每一块硬盘必须有其独立的读写器.striped lv的数据块单位不使用lp而使用stripe的块单位.● intra-pv 分布策略当我们创建逻辑卷时或修改逻辑卷时我们可以指定lv在硬盘的分布方式,intra 分布方式指的是lv在硬盘上的位置,系统如图将硬盘分为5个部分边缘,中部,中心,内中部,内边缘.其中中心部分访问速度最快,中部其次,边缘最慢.我们可以将经常使用的逻辑卷放在硬盘的中心部分.● inter-pv 分布策略inter分布方式指的是lv跨越硬盘的个数,其有两个选项minimum分布到最少数量的硬盘,maximum分布到最多数量的硬盘.我们可以使用smit lv的得到的smit菜单管理逻辑卷●列出系统中所有的lv●显示lv的属性COPIES表示lv是否有镜像,如果该值为1表示没有镜像.LPs表示LV包含的LP 的个数.Mirror Write Consistency表示如果镜像是否做镜像写校验,SCHED POLICY表示如果有镜像镜像的策略是什么.●列出lv在硬盘上的映射列出该lv在硬盘上的分布情况,COPIES表示该lv的不同拷贝在硬盘上的PP数量.以:为分隔符第一个域为第一拷贝,第二个域为第二拷贝,第三个域为第三拷贝.IN BAND表示满足分布策略的PP的百分比.●列出lv的lp在硬盘上的分布显示该逻辑卷上的LP给个拷贝与硬盘上的PP的映射关系.我们使用mklv可以创建一个新的逻辑卷.在smit对话框中我们必须填写的是卷组名,lv的lp个数.我们也可以指定lv所有的硬盘,指定lv的分布策略,也可以修改Munber of COPIES of each logical Partition的值来创建带有镜像的lv.如果没有指定lv的名称系统自动分配名称为lvnn,nn表示数字.我们可以用rmlv命令删除定义好的逻辑卷,删除前该逻辑卷需要处于closed状态.不要用rmlv命令删除日志文件系统和paging space.我们可以使用chlv命令修改lv的部分属性如分布策略,镜像策略和读写权限.使用chlv -n的命令可以修改lv的名称使用extendlv命令来扩充lv的大小,lv的大小不能被动态的减小.我们用mklvcopy可以增加一个逻辑卷的拷贝数,一个逻辑卷最多有3个拷贝.拷贝增加后需要对所有拷贝做同步,我们可以在使用mklvcopy命令时加-k选项即可.也可以在加完拷贝后用syncvg的命令进行同步.我们用rmlvcopy删除lv的拷贝.在使用smit方式增加lv拷贝时我们需要注意我们填写的拷贝数是新的总拷贝数.● 列出系统中的所有物理卷可以得到物理卷的名称,物理卷的ID号,物理卷所属的卷组● 列出物理卷的属性VG DESCRIPTORS表示该物理卷中包含的VGDA数量,分配的PP的分布情况,未分配的PP的分布情况● 列出物理卷中的逻辑卷可以显示该物理卷上所有逻辑卷的分布情况● 显示物理卷的PP使用情况●增加一个硬盘增加一个硬盘可以通过smit来增加或通过cfgmgr的命令来配置.●移动一个物理卷的内容我们用migratepv [-l lvname] sourcePV targetPV将一个硬盘上的所有内容或几个逻辑卷的内容迁移到另一个硬盘上.目标盘和源盘必须在同一个卷组之内.我们一般在替换硬盘时使用这个命令.例如#migratepv -l lv02 hdisk0 hdisk6将hdisk0上的lv02的内容迁移到hdisk6上.。
逻辑卷创建过程
7.4 LVM——逻辑卷管理很多Linux用户安装Red Hat Linux操作系统时都会为如何划分各个分区的磁盘空间大小,以满足操作系统未来需要这样一个问题而烦恼。
而当分区划分完成后出现某个分区空间耗尽的情况时,解决的方法往往只能是使用符号链接,或者使用调整分区大小的工具(如parted等),但这些都只是临时的解决办法,没有根本解决问题。
随着LVM(Logical V olume Manager,逻辑盘卷管理的简称)的出现,这些问题都迎刃而解。
7.4.1 LVM简介LVM是Linux操作系统对磁盘分区进行管理的一种机制。
其是建立在磁盘和分区之上的一个逻辑层,以提高磁盘分区管理的灵活性。
通过它,系统管理员可以轻松地管理磁盘分区。
在LVM中每个磁盘分区就是一个物理卷(physical volume,PV),若干个物理卷可以组成为一个卷组(volume group,VG),形成一个存储池。
系统管理员可以在卷组上创建逻辑卷(logical volumes,LV),并在逻辑卷组上创建文件系统。
系统管理员通过LVM可以方便地调整存储卷组的大小,并且可以对磁盘存储按照组的方式进行命名、管理和分配。
例如按照使用用途进行定义:“oracle_data”和“apache_data”,而不是使用分区设备文件名hda1和hdb2。
而且当系统添加了新的磁盘后,系统管理员通过LVM可以把它作为一个新的物理卷加入到卷组中来扩展卷组中文件系统的容量,而不必手工将磁盘的文件移动到新的磁盘上以充分利用新的存储空间。
PV、VG和LV的关系如图7.2所示。
图7.2 LVM关系图7.4.2 物理卷管理物理卷是卷组的组成部分,一个物理卷就是一个磁盘分区或在逻辑上与磁盘分区等价的设备(如RAID中的LUN)。
每一个物理卷被划分成若干个被称为PE(Physical Extents)的基本单元,具有唯一编号的PE是可以被LVM寻址的最小单元。
lvm基本概念
lvm基本概念
LVM,即Logical Volume Manager(逻辑卷管理),是Linux环境下对磁盘分区进行管理的一种机制。
LVM的最大特点是对磁盘进行动态管理,用户可以在不重启系统的情况下对逻辑卷进行扩展和缩小空间大小。
LVM包含以下基本概念:
1. 物理卷(Physical Volume,简称PV):物理卷是LVM的基本存储单元,可以是实际物理硬盘上的分区,也可以是整个物理硬盘,甚至是一个磁盘阵列(RAID)。
物理卷在逻辑卷管理中处于最底层。
2. 卷组(Volume Group,简称VG):卷组建立在物理卷之上,一个卷组中至少要包括一个物理卷,也可以包含多个物理卷。
卷组是LVM中的一个重要概念,它使得多个物理卷可以像一个整体一样被管理。
3. 逻辑卷(Logical Volume,简称LV):逻辑卷建立在卷组之上,卷组中的未分配空间可以用于建立新的逻辑卷。
逻辑卷建立后可以动态地扩展和缩小空间,这使得用户可以灵活地调整存储空间大小。
一个系统中的多个逻辑卷可以属于同一个卷组,也可以属于不同的多个卷组。
综上所述,LVM通过物理卷、卷组和逻辑卷的概念,实现了对存储空间的灵活管理和动态调整,提高了存储空间的利用率和管理效率。
LVMsnapshot快照原理及实验
LVMsnapshot快照原理及实验RHEL6 snapshot快照原理及实验LVM对lv提供了快照“snapshot”备份功能,这种功能也只对LVM 有效。
snapshot有多种实现方法,这里只谈谈“写时复制COW”,不是奶牛哦,是“Copy-On-Write”当一个 snapshot创建的时候,仅拷贝原始卷里的源数据,这不是物理上的数据拷贝,因此snapshot的创建特别快,当原始卷里的数据有写入时,备份卷开始记录原始卷哪些数据发生了变化,然后在原始卷新数据覆盖旧数据时,将旧数据拷贝到snapshot的预留空间里,起到备份数据的作用,就保证了所有数据和创建备份卷之前的数据一致性。
而对于snapshot的读操作,如果是读取数据块是没有修改过的,那么会将读操作直接重定向到原始卷上,如果是要读取已经修改过的块,那么就读取拷贝到snapshot中的块。
所以当原始卷破坏了之后还能用snapshot备份的数据还原。
参考一份51CTO 【asram先生】的解释吧:【镜像分离,是为了让镜像卷保持拆分一瞬间的状态,而不再继续被写入数据。
而拆分之后,主卷所做的所有写IO动作,会以bitmap的方式记录下来。
bitmap 就是一份位图文件,文件中每个位都表示卷上的一个块(扇区,或者由多个扇区组成的逻辑块),如果这个块在镜像分离之后,被写入了数据,则程序就将 bitmap文件中对应的位从0变成1。
待备份完成之后,可以将镜像关系恢复,此时主卷和镜像卷上的数据是不一致的,需要重新做同步。
程序搜索 bitmap中所有为1的位,对应到卷上的块,然后将这些块上的数据,同步到镜像卷,从而恢复实时镜像关系。
改变块(changed block)快照创建成功后,源和快照共享同一份物理数据拷贝,直到数据发生写操作,此时源上老数据或者新增数据将被写向新的存储空间。
为了记录和追踪块的变化和复制信息,需要一个位图(bitmap),它用于确定实际拷贝数据的位置,以及确定从源还是目标来获取数据。
LVM架构
一. LVM 架构1.基本概念介绍:∙PP,物理分区(Physical Partition),如硬盘的分区,或 RAID 分区。
∙PV,物理卷(Physical Volume),是 PP 的 LVM 抽象,它维护了 PP 的结构信息,是组成 VG 的基本逻辑单元,一般一个 PV 对应一个 PP。
∙PE,物理扩展单元(Physical Extends),每个 PV 都会以 PE 为基本单元划分。
∙VG,卷组(Volume Group),即 LVM 卷组,它可由一个或数个 PV 组成,相当于 LVM 的存储池。
∙LE,逻辑扩展单元(Logical Extends),组成 LV 的基本单元,一个 LE 对应一个 PE。
∙LV,逻辑卷(Logical Volume),它建立在 VG 之上,文件系统之下,由若干个LE 组成。
2. LVM 原理分析LVM 在每个物理卷(PV)头部都维护了一个MetaData,叫做卷组描述域(VGDA,Volume Group Description Area),每个VGDA中都包含了整个VG(Volume Group)的信息,包括每个VG的布局配置、PV 的编号、LV的编号,以及每个PE 到LE的映射关系。
同一个VG中的每个PV头部的信息是相同的,这样有利于发生故障时进行数据恢复。
LVM 对上层文件系统提供 LV 层,隐藏了操作细节。
对文件系统而言,对LV 的操作与原先对 Partition 的操作没有差别。
当对 LV 进行写入操作时,LVM 定位相应的 LE,通过 PV 头部的映射表,将数据写入到相应的 PE 上。
LVM 实现的关键在于在PE 和LE间建立映射关系,不同的映射规则决定了不同的LVM存储模型。
LVM 支持多个PV的Stripe和Mirror,这点和软RAID 的实现十分相似。
LVM 对上层文件系统提供抽象层,隐藏了操作细节,对文件系统而言,对LV的操作与原先对分区( Partition)的操作没有差别。
lvm 读写策略
lvm 读写策略LVM 读写策略LVM(Logical Volume Manager)是一种在Linux系统中用于管理磁盘存储的工具。
它提供了一种灵活的方式来管理硬盘分区,使得管理员可以根据需求动态地调整磁盘空间的分配。
在LVM中,读写策略是非常重要的,它决定了数据在逻辑卷和物理卷之间的传输方式和优先级,从而影响系统的性能和可靠性。
LVM的读写策略主要包括三个方面:数据位置选择、数据传输方式和数据写入确认。
数据位置选择是指决定数据在逻辑卷中的具体位置。
LVM可以根据不同的需求选择将数据存储在不同的物理卷上,例如将频繁访问的数据存储在性能较好的磁盘上,将非频繁访问的数据存储在性价比较高的磁盘上。
这样可以充分利用各种硬盘的特点,提高系统的性能和效率。
数据传输方式是指数据在逻辑卷和物理卷之间的传输方式。
LVM提供了多种数据传输方式,包括线性传输、条带传输和镜像传输等。
线性传输是最简单的方式,将数据按顺序写入物理卷。
条带传输将数据分成固定大小的块,依次写入不同的物理卷,可以提高系统的读写性能。
镜像传输将数据同时写入多个物理卷,提供了数据冗余和容错能力,增加了数据的可靠性。
数据写入确认是指在数据写入物理卷后,LVM如何确认数据已经成功写入。
LVM提供了两种数据写入确认方式:同步写入和异步写入。
同步写入是指在数据写入物理卷后,要等待所有物理卷都确认数据已经成功写入后才返回写操作完成的信息。
这种方式可以保证数据的一致性,但会增加写操作的延迟。
异步写入是指在数据写入物理卷后,不等待确认信息就返回写操作完成的信息。
这种方式可以提高写操作的速度,但可能会导致数据的不一致性。
LVM的读写策略对系统的性能和可靠性有着重要影响。
管理员需要根据实际情况选择合适的策略来平衡性能和可靠性的需求。
在数据位置选择方面,需要根据数据的访问频率和性能要求来合理分配存储空间。
在数据传输方式方面,需要根据系统的读写需求和存储介质的特点来选择合适的传输方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10. VGSA
Volume Group Status Area
11. MCR
Mirror Consistency Record
12. PVRA
Physical Volume Reserved Area
PV Name /dev/dsk/c4t2d0
PV Status available
Total PE 8681
Free PE 1
PV Status available
Total PE 8681
Free PE 1
Autoswitch On
5. PE
Physical Extent
6. LE
Logical Extent
7. FS
File System
8. VGRA
Volume Group Reserved Area
9. VGDA
Current LE 13020
Allocated PE 26040
Used PV 6
பைடு நூலகம்
LV Name /dev/vg01/lvdata
--- Physical volume groups ---
PVG Name PVG1
PV Name /dev/dsk/c4t0d0
Max PV 16
Cur PV 6
Act PV 6
Max PE per PV 8683
LVM文件系统管理中要用到以下缩写:
1. VG
Volume Group
2. LV
Logical Volume
3. PV
Physical Volume
4. PVG
Physical Volume Group
PV Name /dev/dsk/c4t3d0
PV Name /dev/dsk/c4t4d0
PV Name /dev/dsk/c4t5d0
VG Status available
Max LV 255
Cur LV 2
Open LV 2
Free PE 6
Total PVG 2
Total Spare PVs 0
Total Spare PVs in use 0
PV Status unavailable
Total PE 8681
Free PE 1
Autoswitch On
VGDA 12
PE Size (Mbytes) 4
Total PE 52086
Alloc PE 52080
Autoswitch On
PV Name /dev/dsk/c4t3d0
PV Status available
Total PE 8681
13. BDRA
Boot Data Reserved Area
附vgdisplay -v日志:
[/]#vgdisplay -v vg01
--- Volume groups ---
VG Name /dev/vg01
VG Write Access read/write
PV Name /dev/dsk/c4t1d0
PV Name /dev/dsk/c4t2d0
PVG Name PVG2
Used PV 6
--- Physical volumes ---
PV Name /dev/dsk/c4t0d0
PV Status available
--- Logical volumes ---
LV Name /dev/vg01/lvgdbm
LV Status available/stale
LV Size (Mbytes) 52080
Total PE 8681
Free PE 1
Autoswitch On
PV Name /dev/dsk/c4t1d0
LV Status available/stale
LV Size (Mbytes) 52080
Current LE 13020
Allocated PE 26040
Total PE 8681
Free PE 1
Autoswitch On
PV Name /dev/dsk/c4t5d0
Free PE 1
Autoswitch On
PV Name /dev/dsk/c4t4d0
PV Status available