2011年福州市高中毕业班质量检查(2011届数学理科试卷110312) (成稿 发中心组)
福建省2011届高三普通高中毕业班质量检查试题word版
福建省2011届高三考前质量检测数学试卷理科1第Ⅰ卷(选择题 共50分)一.选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是正确的, 将正确答案填写在答题卷相应位置.) 1. 已知集合M = {1,2},N = {2a −1|a ∈M },则M ∪N 等于A .{1,2,3}B .{1,2}C .{1}D .∅ 2.复数121i,2i z b z =+=-+,若12z z 的对应点位于直线x +y =0上,则实数b 的值为A .-3B .3C .-13 D . 133.已知实数等比数列{}n a 中,S n 是它的前n 项和.若2312a a a ⋅=,且a 4与2a 7的等差中项为54,则S 5等于A .35 B.33 C.31 D.29 4. 函数f (x )=ln x +x -2的零点位于区间 ( )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 5. a 的值由右边程序框图算出,则二项式9)(xax -展开式的常数 项为A. 59567C T ⨯-=B. 39347C T ⨯= C. 39347C T ⨯-= D. 49457C T ⨯=6. 函数)32sin()(π-=x x f 的图象为C ,给出以下结论:①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称;③函数)(x f 在区间)125,12(ππ-内是增函数;④由x y 2sin =的图象向右平移3π个单位长度可以得到图象C .其中正确的是A. ①②④B. ①③④C. ①②③D. ②③④7. 若圆x 2+y 2=2在点(1,1)处的切线与双曲线22221x y a b-=的一条渐近线垂直,则双曲线的离心率等于8. 下列四个命题中,错误的是A.已知函数f (x )=()x x x e e dx -+⎰,则f (x )是奇函数B.设回归直线方程为x y5.22ˆ-=,当变量x 增加一个单位时,y 平均减少2.5个单位 C.已知ξ服从正态分布 N (0,σ 2),且(20)0.4P ξ-≤≤=,则(2)0.1P ξ>=D.对于命题p :“∃x ∈R ,210x x ++<”,则⌝ p :“∀x ∈R ,210x x ++>”9. 如图,动点P 在正方体1AC 的对角线1BD 上.过点P 作垂直于平面D D B B 11的直线, 与正方体表面相交于M 、N ,设x BP =,y MN =,则)(x f y =的图象大致是10.已知函数f (x )满足:①当0≤x ≤2时,f (x )=(x -1)2,②∀ x ∈[0,8],f (x -12)= f (x +32) . 若方程 f (x )=M log 2x 在[0,8]上有偶数个根,则正数M 的取值范围是 A. M <≤103 B. M <≤103或M =1或2 C. M <≤103或M =1或12 D. M <≤103或M =1或12或log 62第Ⅱ卷(非选择题 共100分)二.填空题(本大题共5小题,每小题4分,共20分,将正确答案填写在答题卷相应位置.)11. 非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为______________.12. 一个空间几何体的三视图如右图,则该几何体的体积为 .13. 若在区域34000x y x y +-≤⎧⎪≥⎨⎪≥⎩内任取一点P ,则点 P 落在单位圆221x y +=内的概率为 .14. 某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过60km/h 的汽车数量为 辆.15.设集合I={1,2,3,……,n } (n ∈N ,n ≥2),构造 I 的两个非空子集A ,B ,使得B 中最小的数大于A 中最大的数,则这样的构造方法共有__________种.三、解答题(本大题共6小题,共80分,解答应写在答题卷相应位置,要写出文字说明、证明过程或演算过程.)16.(本题满分13分)在锐角ABC ∆中,三个内角A B C 、、所对的边依次为c b a 、、.设(cos ,sin )m A A =,(cos ,sin )n A A =- ,a =,12m n ⋅=- 且.(Ⅰ)若b =,求ABC ∆的面积;(Ⅱ)求b +c 的最大值.17. (本小题满分13分)对某班级50名同学一年来参加社会实践的次数进行的调查统计,得根据上表信息解答以下问题:(Ⅰ)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数1)(2--=x x x f η在区间(4,6)内有零点”的事件为A ,求A 发生的概率P ;(Ⅱ)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.18.(本题满分13分)如图,菱形ABCD 中,∠ABC =60o, AE ⊥平面ABCD ,CF ⊥平面ABCD ,AB = AE =2,CF =3.(Ⅰ)求证EF ⊥平面BDE ;(Ⅱ)求锐二面角E —BD —F 的大小.19. (本题满分13分)已知椭圆2222:1x y C a b +=经过点(0),离心率为12,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为点D 、K 、E .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 交y 轴于点M ,且,MA AF MB BF λμ==,当直线l 的倾斜角变化时,探求λμ+ 的值是否为定值?若是,求出λμ+的值,否则,说明理由;(Ⅲ)连接AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.20.(本小题满分14分)已知函数f (x )=ae x,g (x )= ln a -ln(x +1)(其中a 为常数,e 为自然对数底),函数y =f (x )在A (0,a )处的切线与y =g (x )在B (0,ln a )处的切线互相垂直. (Ⅰ) 求f (x ) ,g (x )的解析式;(Ⅱ) 求证:对任意n ∈N *, f (n )+g (n )>2n ;(Ⅲ) 设y =g (x -1)的图象为C 1,h (x )=-x 2+bx 的图象为C 2,若C 1与C 2相交于P 、Q ,过PQ 中点垂直于x 轴的直线分别交C 1、C 2于M 、N ,问是否存在实数b ,使得C 1在M 处的切线与C 2在N 处的切线平行?说明你的理由.21. 本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。
2011年福州市质量检查数学理科试卷
2011年福州市高中毕业班质量检查数学理科试卷(满分150分,考试时间120分钟)参考公式:样本数据x 1,x 2,… ,x n 的标准差锥体体积公式V=31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积、体积公式V=Sh24S R =π,343V R =π其中S 为底面面积,h 为高其中R 为球的半径一.选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是是正确的, 将正确答案填写在答题卷相应位置.) 1.如果复数z =(a 2-3a +2)+(a -1)i 为纯虚数,则实数a 的值 ( ).A.等于1或2B.等于1C.等于2D.不存在 2.曲线f (x )=x 3+x -2在0P 点处的切线平行于直线y =4x -1,则P 0点的坐标为( )A.(1,0)或(-1,-4)B.(0,1)C.(1,0)D.(-1,-4)3. 已知数列{}n a 为等差数列,且1713212,tan()a a a a a π++=+则的值为( )B. C. D. 4. 给定下列四个命题:①分别与两条异面直线都相交的两条直线一定是异面直线; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A. ①和②B. ②和③C. ③和④D. ②和④ 5.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( )俯视图左视图主视图A.y =2x -2B.y =(12)xC.y =log 2xD.y =12(x 2-1)6.设22)1(,3005,y x x y x y x y x ++⎪⎩⎪⎨⎧≤≥+≥+-则满足约束条件的最大值为( )A. 80B. C.25 D.1727. 已知12,a a 均为单位向量,那么1122a ⎛⎫= ⎪ ⎪⎝⎭是)12a a +=的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.某程序框图如图所示,则该程序运行后输出的S 的值为( ) A.1 B.12C.14D.189.已知F 1、F 2为椭圆2212516x y +=的左、右焦点,若M 为椭圆上 一点,且△MF 1F 2的内切圆的周长等于3π,则满足条件的点M 有( )个.A.0B.1C.2D.410.已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式1212()[()()]0x x f x f x --<恒成立,则不等式f (1-x )<0的解集为( ).A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)二.填空题(本大题共5小题,每小题4分,共20分,将正确答案填写在答题卷相应位置.)11.二项式10112x ⎛⎫- ⎪⎝⎭的展开式中第六项的系数等于__________(用数字作答)12. 在等比数列{}n a 中,首项=1a 32,()44112a x dx =+⎰,则公比q为 .13.四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如右图所示,根据图中的信息,在四棱锥P ABCD -的任两个顶点的连线中,互相垂直的异面直线对数为 .(第8题)DABEFC14.在区间[π,π]-内随机取两个数分别记为,a b ,则使得函数222()2f x x ax b π=+-+有零点的概率为 .15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0—1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行. 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1 …… ……………………………………三、解答题(本大题共6小题,共80分,解答应写在答题卷相应位置,要写出文字说明、证明过程或演算过程.)16.(本小题满分13分) 已知函数1()cos 2f x x x ππ=+, x R ∈. (Ⅰ)求函数()f x 的最大值和最小值;(Ⅱ)设函数()f x 在[1,1]-上的图象与x 轴的交点从左到右分别为M 、N ,图象的最高点为P,求PM 与PN的夹角的余弦.17.(本小题满分13分)“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的. (Ⅰ)求出在1次游戏中玩家甲胜玩家乙的概率;(Ⅱ)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列及其期望.18.(本小题满分13分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE //CF ,BC ⊥CF ,AD =EF =2,BE =3,CF =4. (Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A-EF-C 的大小为60°. 19.(本小题满分13分)已知点M(k,l )、P (m,n ),(klmn ≠0)是曲线C 上的两点,点M 、N 关于x 轴对称,直线MP 、NP 分别交x 轴于点E(x E ,0)和点F (x F ,0),(Ⅰ)用k 、l 、m 、n 分别表示E x 和F x ;(Ⅱ)当曲线C 的方程分别为:222(0)x y R R +=> 、22221(0)x y a b a b+=>>时,探究E F x x ⋅的值是否与点M 、N 、P 的位置相关;(Ⅲ)类比(Ⅱ)的探究过程,当曲线C 的方程为22(0)y px p =>时,探究E x 与F x 经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).20.(本小题满分14分)设函数f (x )=e x +sinx,g (x )=ax,F (x )=f (x )-g (x ). (Ⅰ)若x =0是F (x )的极值点,求a 的值;(Ⅱ)当 a =1时,设P (x 1,f (x 1)), Q (x 2, g (x 2))(x 1>0,x 2>0), 且PQ //x 轴,求P 、Q 两点间的最短距离; (Ⅲ):若x ≥0时,函数y =F (x )的图象恒在y =F (-x )的图象上方,求实数a 的取值范围. 21.(本小题满分14分)本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换已知二阶矩阵M 有特征值3λ=及对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e ,并且矩阵M 对应的变换将点(1,2)-变换成(9,15). 求矩阵M .(2)(本小题满分7分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,已知曲线C 的参数方程是22sin ,2cos x y αα=+⎧⎨=⎩(α是参数).现以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,写出曲线C 的极坐标方程. (3)(本小题满分7分)选修4-5:不等式选讲 解不等式2142x x +-->.2011年福州市高中毕业班质量检查数学理科试卷参考答案和评分标准一.选择题 1.C 2.A 3.B 4.D 5.D 6.A 7.B 8.C 9.C 10.C 二.填空题 11.638- 12.3 13.6 14.1-4π 15.21n- 三.解答题16.解:(Ⅰ)∵1()cos 2f x x x ππ=+=sin()6x ππ+.-----------------------------2分∵x R ∈ ∴1sin()16x ππ-≤+≤,∴函数()f x 的最大值和最小值分别为1,—1.---------------4分(Ⅱ)解法1:令()sin()06f x x ππ=+=得,6x k k Z πππ+=∈,∵[1,1]x ∈- ∴16x =-或56x = ∴15(,0),(,0),66M N - -----------------------6分由sin()16x ππ+=,且[1,1]x ∈-得13x = ∴ 1(,1),3P -----------------------------8分∴11(,1),(,1),22PM PN =--=- ------------------------------------------10分∴cos ,||||PM PN PM PN PM PN ⋅<>=⋅35= .---------------------------------------13分 解法2:过点P 作PA x ⊥轴于A ,则||1,PA = 由三角函数的性质知1||12MN T ==, ---------------6分||||2PM PN ===,-----------------------------------------------------------8分由余弦定理得222||||||cos ,2||||PM PN MN PM PN PM PN +-<>=⋅ ---------------------------10分=521345524⨯-=⨯.---13分解法3:过点P 作PA x ⊥轴于A ,则||1,PA =由三角函数的性质知1||12MN T ==,----------------------6分||||PM PN ===----------------------------------------8分在Rt PAM ∆中,||cos ||PA MPA PM ∠===分 ∵PA 平分MPN ∠ ∴2cos cos 22cos 1MPN MPA MPA ∠=∠=∠-232(155=⨯-=.------------------------------------------------------13分 17.解:(Ⅰ)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头,石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件,--------------------3分玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.所以,在1次游戏中玩家甲胜玩家乙的概率3193P ==.--------------------6分 (Ⅱ)X 的可能取值分别为0,1,2,3.()303280327P X C ⎛⎫==⋅= ⎪⎝⎭,()1213121213327P X C ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()212312623327P X C ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()333113327P X C ⎛⎫==⋅= ⎪⎝⎭.--------------------10分X 的分布列如下:-------------------11分0123127272727EX =⨯+⨯+⨯+⨯=(或:1~(3,)3X B ,1313EX np ==⨯=).------------------13分18.解:方法一:(Ⅰ)证明:在△BCE 中,BC ⊥CF ,BC=AD =3,BE =3,∴EC=∵在△FCE 中,CF 2=EF 2+CE 2,∴EF ⊥CE ………………3分 由已知条件知,DC ⊥平面EFCB ,∴DC ⊥EF ,又DC 与EC相交于C ,……………………………………5分∴EF ⊥平面DCE ……………………6分(Ⅱ)过点B 作BH ⊥EF 交FE 的延长线于H ,连结AH .由平面ABCD ⊥平面BEFC ,平面ABCD ∩平面BEFC=BC,AB ⊥BC ,得AB ⊥平面BEFC ,从而AH ⊥EF .所以∠AHB 为二面角A-EF-C 的平面角.……8分 在R t △CEF 中,因为EF =2,CF =4.EC =∴∠CEF =60°,由CE ∥BH ,得∠BHE =60°, 又在Rt △BHE 中,BE =3, ∴sin BH BE BEH =⋅∠=…………10分 由二面角A-EF-C 的平面角∠AHB=60°, 在Rt △AHB 中,解得9tan 2AB BH AHB =⋅∠=, 所以当92AB =时,二面角A-EF-C 的大小为60°……………………13分 方法二:(Ⅰ)同解法一(Ⅱ)如图,以点C 为坐标原点,以CB ,CF 和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系A B EFCHDC-xyz .……………………7分设AB=a (a >0),则C (0,0,0),Aa ),B0,0),E3,0),F (0,4,0).从而((0,3,),EF AE a ==-………………9分设平面AEF 的法向量为(,,)n x y z = ,由0,0EF n AE n ⋅=⋅=得,30y y az ⎧+=⎪⎨-=⎪⎩,取x =1,则y z ==,即n = ,…………………………11分 不妨设平面EFCB 的法向量为(0,0,)BA a =,由条件,得1|cos ,|2||||n BA n BA n BA ⋅<>===解得92a =.所以当92AB =时,二面角A-EF-C 的大小为60°.………………13分 19.解:(Ⅰ)依题意N (k,-l ),且∵klmn ≠0及MP 、NP 与x 轴有交点知:……2分M 、P 、N 为不同点,直线PM 的方程为()n ly x m n m k-=-+-,……3分 则E nk mlx n l-=-, 同理可得F nk mlx n l+=+.……5分(Ⅱ)∵M,P 在圆C :x 2+y 2=R 2上,222222m R n k R l⎧=-∴⎨=-⎩,222222222222222()()E F n k m l n R l R n l x x R n l n l ----⋅===--(定值). ∴E F x x ⋅的值是与点M 、N 、P 位置无关. ……8分同理∵M,P 在椭圆C :22221(0)x y a b a b+=>>上,2222222222a n m a b a lk a b ⎧=-⎪⎪∴⎨⎪=-⎪⎩,2222222222222222222()()E F a l a n n a a l n k m l b b x x a n l n l ----⋅===--(定值). ∴E F x x ⋅的值是与点M 、N 、P 位置无关. ………11分(Ⅲ)一个探究结论是:0E F x x +=. ………13分 证明如下:依题意, E nk mlx n l-=-,F nk ml x n l +=+.∵M,P 在抛物线C :y 2=2px (p >0)上,∴n 2=2pm,l 2=2pk.2222222()2(22)0E F n k ml pmk pmk x x n l n l--+===--. ∴E F x x +为定值.20.解:(Ⅰ)F (x )= e x +sinx -ax,'()cos xF x e x a =+-.因为x =0是F (x )的极值点,所以'(0)110,2F a a =+-==.………2分又当a =2时,若x <0, '()cos 0x F x e x a =+-<;若 x >0, '()cos 0xF x e x a =+->. ∴x =0是F (x )的极小值点, ∴a=2符合题意. ………4分(Ⅱ) ∵a =1, 且PQ //x 轴,由f (x 1)=g (x 2)得:121sin xx e x =+,所以12111sin xx x e x x -=+-. 令()sin ,'()cos 10xxh x e x x h x e x =+-=+->当x >0时恒成立. ∴x ∈[0,+∞)时,h (x )的最小值为h (0)=1.∴|PQ|mi n =1. ………9分 (Ⅲ)令()()()2sin 2.xxx F x F x e e x ax ϕ-=--=-+-则'()2cos 2.xxx e ex a ϕ-=++-()''()2sin x x S x x e e x ϕ-==--.因为'()2cos 0x xS x e e x -=+-≥当x ≥0时恒成立, ………11分所以函数S (x )在[0,)+∞上单调递增, ………12分 ∴S (x )≥S (0)=0当x ∈[0,+∞)时恒成立;因此函数'()x ϕ在[0,)+∞上单调递增, '()'(0)42x a ϕϕ≥=-当x ∈[0,+∞)时恒成立. 当a ≤2时,'()0x ϕ≥,()x ϕ在[0,+∞)单调递增,即()(0)0x ϕϕ≥=. 故a ≤2时F (x )≥F(-x )恒成立. ………13分[)[)[)[)(]00002'()0,'()0,(0,),0'()0.()0,(0)0(0,)()0(14)()00,2.a x x x x x x x x x x F x F x x a a ϕϕϕϕϕϕ><+∞∴∈+∞<=∴∈<--≥∈+∞⋯∴>∞⋯⋯ 当时,又在单调递增,总存在使得在区间,上导致在递减,而,当时,,这与对恒成立不符,不合题意.综上取值范围是-,2分21.(1)解:设M =a b c d ⎡⎤⎢⎥⎣⎦,则a b c d ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=311⎡⎤⎢⎥⎣⎦=33⎡⎤⎢⎥⎣⎦,故3,3.a b c d +=⎧⎨+=⎩……………3分a b c d ⎡⎤⎢⎥⎣⎦12-⎡⎤⎢⎥⎣⎦=915⎡⎤⎢⎥⎣⎦,故29,215.a b c d -+=⎧⎨-+=⎩……………5分 联立以上两方程组解得a =1-,b =4,c =3-,d =6,故M =1436-⎡⎤⎢⎥-⎣⎦. ………7分 (2)解:曲线C 的直角坐标方程是22(2)4x y -+=,……3分因为222x y ρ+=,cos y ρθ=,…5分故曲线C 的极坐标方程为24cos 0ρρθ-=,即4cos ρθ=.……7分 (3)解:令214y x x =+--,则1521334254x x y x x x x ⎧---⎪⎪⎪=--<<⎨⎪⎪+⎪⎩, ,, ,, .≤≥ .......3分作出函数214y x x =+--的图象,它与直线2y =的交点为(72)-,和523⎛⎫ ⎪⎝⎭,........6分 所以2142x x +-->的解集为5(7)3x x ⎛⎫--+ ⎪⎝⎭,,........7分。
福州市2011届第一学期高三期末质量检查数学(理科)试卷
福州市2010—2011学年第一学期期末高三质量检查数学(理科)试卷参考答案及评分标准一、选择题(每小题5分,满分60分)1. D2. A3. B4. A5. A6. D7. A8. C9. C 10. C 11. B 12. B二、填空题(每小题4分,满分16分)13. 1 14. -∞,-2)∪(0,2)三、解答题(本大题共6小题,共74分.解答写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分) 17.解:(Ⅰ)依题意:2(1)1n a n n =+-=+ ····························································2分(1)212n n n S n -=+⨯=2322n n + ······································································· 4分 (Ⅱ)由(Ⅰ)知 4211==a b ·········································································· 5分{}111222n n a a n n nb b b +-+===∴是首项为4,公比为2的等比数列 ·········· 7分 11422n n n b -+∴=⨯= ····················································································· 9分24(12)2412n n n T +-==-- ················································································ 12分18.(本小题满分12分)18.解:(Ⅰ)()1cos 2cos f x x x x ωωω=-+1c o s 23s i n 2x x ωω=-+ ··································································· 2分2cos 21x x ωω=-+2sin(2)16x πω=-+ ······························· 5分 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. ··························································································7分 (Ⅱ)由(Ⅰ)得1)62sin(2)(+-=πx x f因为2π03x ≤≤,所以ππ7π2666x --≤≤, ····················································· 9分所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤,因此31)62sin(20≤+-≤πx , 即()f x 的取值范围为]3,0[. ···················································································· 12分 19.(本小题满分12分)19.解:(Ⅰ)设袋中黑球的个数为n ,由条件知,当取得2个黑球时得0分,概率为:2251(0)6n n C p C ξ+=== ·························································································· 2分化简得:2340n n --=,解得4n =或1n =-(舍去),即袋子中有4个黑球 ·············· 4分(Ⅱ)依题意:ξ=0,1,2,3,411432911(0), (1)63C C p p C ξξ⋅===== ················································································· 5分 2113242911(2)36C C C p C ξ+⋅=== ··························································································· 6分1132291(3)6C C p C ξ⋅=== ······································································································ 7分 22291(4)36C p C ξ=== ········································································································ 8分∴ξ的分布列为:10分936463362311610=⨯+⨯+⨯+⨯+⨯=ξE ···················································· 12分20.(本小题满分12分)20.解:(Ⅰ)由题意,每小时的燃料费用为20.5(050)x x <≤, 从甲地到乙地所用的时间为300x小时, ·············································································· 2分 则从甲地到乙地的运输成本xx x y 3008003005.02⋅+⋅=,(050)x <≤ ···························· 6分 故所求的函数为230030016000.5800150()y x x x x x=⋅+⋅=+,(050)x <≤. ··················· 7分(Ⅱ)解法1:由(Ⅰ)160015015012000y x x ⎛⎫=+≥⨯= ⎪⎝⎭, ············ 9分 当且仅当1600x x=,即40x =时取等号. ········································································ 11分 故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少. ························· 12分 (Ⅱ)解法2:由(Ⅰ))500)(1600(150≤<+=x xx y . ············································ 9分 .12000.80)(,40;)(,0)(',)50,40(;)(,0)(',)40,0(,16001)('),500(1600)(min 2==∴>∈<∈-=≤<+=y x f x x f x f x x f x f x xx f x x x x f 取最小值时单调递增时则单调递减时则令 ……11分故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少. ························· 12分 21.(本小题满分12分) 21.解:(Ⅰ)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系,∵动点P 在曲线C 上运动且保持|P A |+|PB |的值不变.且点Q 在曲线C 上, ∴|P A |+|PB |=|QA |+|QB |=2521222=+>|AB |=4. ∴曲线C 是为以原点为中心,A 、B 为焦点的椭圆设其长半轴为a ,短半轴为b ,半焦距为c ,则2a =25,∴a =5,c =2,b =1.∴曲线C 的方程为52x +y 2=1 ·······················································································5分 (Ⅱ)证法1:设,,M N E 点的坐标分别为11220(,),(,),(0,)M x y N x y E y , 易知B 点的坐标为(2,0).且点B 在椭圆C 内,故过点B 的直线l 必与椭圆C 相交.∵1EM MB λ=,∴110111(,)(2,)x y y x y λ-=--.∴ 11112λλ+=x ,1011λ+=y y . ························································································ 7分 将M 点坐标代入到椭圆方程中得:1)1()12(51210211=+++λλλy ,去分母整理,得0551020121=-++y λλ. ··································································· 10分同理,由2EN NB λ= 可得:0551020222=-++y λλ.∴ 1λ,2λ是方程05510202=-++y x x 的两个根,∴ 1021-=+λλ. ·····································································································12分 (Ⅱ)证法2:设,,M N E 点的坐标分别为11220(,),(,),(0,)M x y N x y E y , 易知B 点的坐标为(2,0).且点B 在椭圆C 内,故过点B 的直线l 必与椭圆C 相交. 显然直线 l 的斜率存在,设直线 l 的斜率为 k ,则直线 l 的方程是 )2(-=x k y . 将直线 l 的方程代入到椭圆 C 的方程中,消去 y 并整理得052020)51(2222=-+-+k x k x k . ················································································ 8分∴ 22215120k k x x +=+,222151520k k x x +-=.又 ∵1EM MB λ=, 则110111(,)(2,)x y y x y λ-=--.∴1112x x -=λ, 同理,由2EN NB λ=,∴2222x x -=λ. ········································································· 10分 ∴10)(242)(22221212121221121-==++--+=-+-=+ x x x x x x x x x x x x λλ. ···································· 12分 22.(本小题满分14分)22.解: (Ⅰ)∵f (x )=-x 3+ax 2+bx+c ,∴()232f x x ax b '=-++. ································· 1分∵f (x )在在(-∞,0)上是减函数,在(0,1)上是增函数,∴当x =0时,f (x )取到极小值, 即()00f '=.∴b =0. ····················································································· 3分 (Ⅱ)由(1)知,f (x )=-x 3+ax 2+c ,∵1是函数f (x )的一个零点,即f (1)=0,∴c =1-a . ····························································· 5分 ∵()2320f x x ax '=-+=的两个根分别为10x =,223ax =. ∵f (x )在(0,1)上是增函数,且函数f (x )在R 上有三个零点,∴2213a x =>,即32a >. ································································································ 7分 ∴()()52841372f a a a =-++-=->-.故f (2)的取值范围为5,2⎛⎫-+∞ ⎪⎝⎭. ··················································································· 9分 (Ⅲ)解法1:由(Ⅱ)知()321f x x ax a =-++-,且32a >.∵1是函数()f x 的一个零点,∴()10f =,∵()1,g x x =-∴(1)0g =,∴点(1,0)是函数()f x 和函数()g x 的图像的一个交点. ·········································· 10分结合函数()f x 和函数()g x 的图像及其增减特征可知,当且仅当函数()f x 和函数()g x 的图像只有一个交点(1,0)时,()()f x g x >的解集为(,1)-∞.即方程组321,1y x y x ax a =-⎧⎨=-++-⎩(1)只有一个解10x y =⎧⎨=⎩. ··········································· 11分 由3211x ax a x -++-=-,得()()()321110x a x x ---+-=.即()()()()()2111110x x x a x x x -++--++-=.即()()()21120x x a x a ⎡⎤-+-+-=⎣⎦.∴1x =或()()2120x a x a +-+-=. ··········································································· 12分由方程()()2120x a x a +-+-=, (2)得()()2214227a a a a ∆=---=+-.∵32a >,当0∆<,即2270a a +-<,解得312a << ···················································· 13分此时方程(2)无实数解,方程组(1)只有一个解10x y =⎧⎨=⎩.所以312a <<时,()()f x g x >的解集为(,1)-∞.············································· 14分 (Ⅲ)解法2:由(Ⅱ)知()321f x x ax a =-++-,且32a >.∵1是函数()f x 的一个零点()2()(1)11f x x x a x a ⎡⎤∴=--+-+-⎣⎦又()()f x g x >的解集为(,1)-∞,()()2()()(1)120f x g x x x a x a ⎡⎤∴-=--+-+->∞⎣⎦解集为-,1··························· 10分 ()2120∴+-+->x a x a 恒成立 ················································································ 11分 ()()214120a a ∴∆=--⨯⨯-< ················································································ 12分 ()2227018a a a ∴+-<∴+<33311222⎛⎫>∴<<∴ ⎪⎝⎭a a a 又的取值范围为 ······································· 14分。
2011年福建高考理科数学试卷与答案
2011年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
参考公式:样本数据1x ,2x ,…,n x 的标准差 锥体体积公式222121()()()]n s x x x x x x n =−+−−[++ 13V Sh = 其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2344,3S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. i 是虚数单位,若集合S ={-1,0,1},则A.i ∈SB. 2i ∈SC. 3i ∈SD.2i∈S 2.若a ∈R ,则a =2是(1)(2)0a a −−=的A.充分而不必要条件 B 必要而不充分条件C.充要条件 C.既不充分又不必要条件 3.若tan α=3,则2sin 2cos αα的值等于 A.2 B.3 C.4 D.64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A.14 B.13 C. 12 D.235.1(2)xex dx +⎰等于A.1B.1e −C.eD.1e +6.5(12)x +的展开式中,2x 的系数等于A.80B.40C.20D.107.设圆锥曲线E 的两个焦点分别为1F ,2F ,若曲线E 上存在点P 满足1||PF :12||F F :2||PF =4:3:2,则曲线E 的离心率等于A.12或32 B.23或2 C. 12或2 D. 23或328.已知O 是坐标原点,点A (-1,1),若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM •的取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-1.2]9.对于函数()f x =sin a x bx c ++(其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算(1)f 和(1)f −,所得出的正确结果一定不可能.....是 A.4和6 B.3和1 C.2和4 D.1和210.已知函数()f x =xe x +,对于曲线y =()f x 上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①ABC ∆一定是钝角三角形②ABC ∆可能是直角三角形 ③ABC ∆可能是等腰三角形 ④ABC ∆不可能是等腰三角形 其中,正确的判断是A.①③B.①④C. ②③D.②④ 注意事项:用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
福建省福州三中2011届高三练习考试数学理
福州三中2011年高中毕业班练习考试数 学 试 题(理)完成练习时间:120分钟;满分:150分参考公式:样本数据nx x x ,,21的标准差锥体体积公式])()()[(122221x x x x x x nS n -++-+-=Sh V 31=其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式球的表面积、体积公式Sh V =3234,4R V R S ππ== 其中S 为底面面积,h 为高 其中R 为球的半径一、选择题(本大题共10小题,每小题5分。
在每小题给出的四个选项中,只有一项是正确的,将正确答案填写在答题卷相应位置。
)1.设,a R ∈⋅且(a-i)2i (i 为虚数单位)为正实数,则a 等于 ( ) A .1 B .0C .—1D .0或-12.设合集U=R ,集合2{|10},{|3},()U A x xx B x x A C B =++≥=≥则=( )A .{|3}x x <B .{|03}x x <≤C .{|0}x x ≤D .{|3}x x >3.若a,b 均为实数,则"0"a b >>是“22a b >的”( )C .充要条件D .既非充分也非必要条件4.函数()22xf x x =--的一个零点所在区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)5.直线2(1)10x a y +++=的倾斜角的取值范围是( )A .[0,]4πB .3,4ππ⎡⎫⎪⎢⎣⎭C .[0,](,)42πππ D .3,,424ππππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭6.如图,四边形ABCD 中,AD//BC ,AD=AB,90BAD ∠=︒,90BDC ∠=︒,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD,则在三棱锥A-BCD 中,下列命题正确的是( ) A .平面ABD ⊥平面ABC B .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC7.右边四个图象中,有一个是函数3221()(1)1(,0)3f x xax a x a R a =++-+∈≠的导函数'()y f x =的图象,则(1)f -等于 ( )A .13B .13-C .73D .1533-或8.已知点G 是ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM xAB =,,xyAN y AC x y=+则的值为 ( )A .3B .13C .2D .129.如果我们把四个面都是直角三角形的四面体称为“三节棍体”,节棍体"的四个顶点的概率是 ( )A .835B .935C .1235D .133510.设等差数列{}n a 的前n 项和为nS ,已知33552007(1)2011(1)1,(1)a a a -+-=-20072011(1)a +-1=-,则下列结论正确的是( )A .2011200752011,S a a =< B .2011200752011,Sa a => C .2011200752011,Sa a =-≤D .2011200752011,Sa a =-≥二、填空题(本小题共5小题,每小题4分,共20分,将正确答案填写在答题卷相应位置)11.已知随机变量X 服从正态分布2(4,1)N ,且(26)0.9544,P X <≤=则P (6)X >等于 。
2011年高考福建省数学试卷-理科(含详细答案)
2011年普通高等学校招生全国统一考试(福建卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则( ). A .i S ∈ B .2i S ∈ C . 3i S ∈ D .2iS ∈ 【解】2i 1S =-∈.故选B .2.若a ∈R ,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 C .既不充分又不必要条件【解】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A .3.若tan 3α=,则2sin 2cos αα的值等于( ). A .2 B .3 C .4 D .6【解】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D . 4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ).A .14 B .13 C .12 D .23【解】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 5.()1e2xx dx +⎰等于( ). A .1 B .e 1- C .e D .e 1+ 【解】()()11200e2e e 1e 0e xx x dx x+=+=+--=⎰.故选C .6.()512x +的展开式中,2x 的系数等于( ).A .80B .40C .20D .10DCBEA【解】15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2P F F F P F =,则曲线Γ的离心率等于( ). A .12或32 B .23或2 C .12或2 D .23或32【解】因为1122::4:3:2PF FF PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩所以12c e a ==.若Γ为双曲线,则12122422,23,PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩所以32c e a ==.故选A .8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域2,1,2x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[]1,0-B .[]0,1C .[]0,2D .[]1,2- 【解】设()()1,1,z OA OM x y x y =⋅=-⋅=-+. 作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C . 9.对于函数()sin f x a x bx c =++(其中,,a b ∈R ,c ∈Z ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ).A .4和6B .3和1C .2和4D .1和2【解】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数. 故选D .10.已知函数()e x f x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:①ΔABC 一定是钝角三角形 ②ΔABC 可能是直角三角形 ③ΔABC 可能是等腰三角形 ④ΔABC 不可能是等腰三角形 其中,正确的判断是( ).A .①,③B .①,④C .②,③D .②,④【解】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b eee+++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ② 如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作B F C P ⊥交CP 于F .因为()()22A C A C D f x f x y y y ++==,2ACB x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确;所以结论①,④正确.故选B.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.运行如图所示的程序,输出的结果是_______.【解】3.123a =+=.所以输出的结果是3. 12.三棱锥P ABC -中,PA ABC ⊥底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______.【解2Δ112333ABC V S PA =⋅=⨯=.13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.【解】35. 所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 14.如图,ΔABC 中,2AB AC ==,BC =点D 在BC 边上,45ADC ∠=︒,则AD 的长度等于______.【解解法1.由余弦定理222cos 22AC BC AB C AC BC +-===⋅⋅, 所以30C =︒.再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD = 解法2.作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC的中点,因为BC =EC.BCAED BCA于是1AE =,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD = 15.设V 是全体平面向量构成的集合,若映射:f V →R 满足:对任意向量()11,a x y V =∈,()22,b x y V =∈,以及任意λ∈R ,均有()()()()()11f a b f a f b +-=+-λλλλ则称映射f 具有性质P .先给出如下映射:① ()()11:,,,f V f m x y m x y V→=-=∈R ;② ()()222:,,,f V f m x y m x y V →=+=∈R ; ③ ()()33:,1,,f V f m x y m x y V →=++=∈R .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号).【解】①,③.设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立, 所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①,③.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若函数()sin(2)(0,0)f x A x A =+><<ϕϕπ在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解】(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =. 又因为函数()f x 在6x π=处取得最大值,则sin 216⎛⎫⨯+= ⎪⎝⎭πϕ,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin 26f x x ⎛⎫=+⎪⎝⎭π. 17.(本小题满分13分)已知直线:l y x m =+,m ∈R .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【解】(Ⅰ)解法1.由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则r MP ===,所以,所求的圆的方程为()2228x y -+=. 解法2.设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:lyx m '=--.设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-.所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =.所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
2011年福建高考理科数学试卷及答案解析(Word)
2011年普通高等学校招生全国统一考试【福建卷】(理科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(每小题5分,共60分)【2011⋅福建理,1】1.i 是虚数单位,若集合=S {1,0,1}-,则( ). A .i S ∈ B .2i S ∈ C .3i S ∈ D .2S i∈ 【答案】B .【解析】2i 1S =-∈.故选B .【2011⋅福建理,2】2.若a R ∈,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件 【答案】A .【解析】 当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A . 【2011⋅福建理,3】3.若tan 3α=,则2sin 2cos aα的值等于( ). A .2 B .3 C .4 D .6 【答案】D . 【解析】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D .【2011⋅福建理,4】4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于( ). A .14 B .13 C .12 D .23【答案】C . 【解析】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 【2011⋅福建理,5】5.1⎰()2xe x dx +等于( ).A .1B .1e -C .eD .1e + 【答案】C . 【解析】()()11200210xxex dx e xe e e +=+=+--=⎰.故选C .【2011⋅福建理,6】6.()312x + 的展开式中,2x 的系数等于( ). A .80 B .40 C .20 D .10 【答案】B .【解析】 15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .【2011⋅福建理,7】7.设圆锥曲线Γ的两个焦点分别为1F ,2F ,若曲线Γ上存在点P 满足1PF :12F F :2PF 4:3:2=,则曲线Γ的离心率等于( ).A .1322或B .223或C .122或 D .2332或 【答案】A .【解析】 因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=. 若Γ为椭圆,则1212242623PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩ , 所以12c e a ==.若Γ为双曲线,则1212242223PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩ , 所以32c e a ==.故选A .【2011⋅福建理,8】8.已知O 是坐标原点,点(1,1)A -若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[-1.0]B .[0.1]C .[0.2]D .[-1.2] 【答案】C .【解析】 设()()1,1,z OA OM x y x y =⋅=-⋅=-+. 作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C . 解析二:【2011⋅福建理,9】9.对于函数()sin f x a x bx c =++(其中,,a b R ∈,c Z ∈),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ). A .4和6 B ..3和1 C .2和4 D .1和2 【答案】D .【解析】 ()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数.故选D .【2011⋅福建理,10】10.已知函数()x f x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是 ( ).A .①③B .①④C .②③D .②④ 【答案】B .【解析】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b eee+++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立, 于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ②如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作BF C P ⊥交CP 于F . 因为()()22A C A C D f x f x y y y ++==,2ACB x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确; 所以结论①,④正确.故选B.第Ⅱ卷(非选择题 共90分)二、填空题:(每小题4分,共16分)【2011⋅福建理,11】11.运行如图所示的程序,输出的结果是 .【答案】 3.【解析】 123a =+=.所以输出的结果是3.【2011⋅福建理,12】12.三棱锥P ABC -中,PA ⊥底面ABC ,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于 .【解析】2Δ112333ABC V S PA =⋅=⨯=D BCA【2011⋅福建理,13】13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于 . 【答案】35. 【解析】所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 【2011⋅福建理,14】14.如图,ABC ∆中,2AB AC ==,BC =D 在BC 边上,ADC ∠=45,则AD 的长度等于 .【解析】解法1:由余弦定理222cos 2AC BC AB C AC BC +-===⋅⋅所以30C =︒. 再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD 解法2:作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC 的中点,因为BC =EC =.于是1AE ==,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD =.【2011⋅福建理,15】15.设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量1122(,),(,),a x y V b x y V =∈=∈以及任意R λ∈,均有((1))()(1)(),f a b f a f b λλλλ=-=+-则称映射f 具有性质P .先给出如下映射:① 1:f V R → ()1f m x y =- (),m x y V =∈;② 2:f V R → ()2f m x y =+ (),m x y V =∈; ③ 3:f V R → ()31f m x y =++ (),m x y V =∈.其中,具有性质P 的映射的序号为 .(写出所有具有性质P 的映射的序号) 【答案】①③.【解析】设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立, 所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①、③.三、解答题:(本大题共6小题,共80分)【2011⋅福建理,16】16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和S 3=133. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解析】本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想.(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.又因为函数()f x 在6x π=处取得最大值,则sin(2)16πϕ⨯+=,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin(2)6f x x π=+.【2011⋅福建理,17】17.(本小题满分13分)已知直线:l y x m =+,m R ∈.(Ⅰ) 若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (Ⅱ) 若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由. 【解析】本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想. (Ⅰ)解法1:由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则r MP ===,所以,所求的圆的方程为()2228x y -+=. 解法2:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--. 设直线l '与抛物线214y x =相切的切点为()00,x y ,由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-. 所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =. 所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.【2011⋅福建理,18】18.(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ) 求a 的值;(Ⅱ) 若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.【解析】本小题主要考查函数、导数等基础知识,考查运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归与转化思想. (Ⅰ)因为5x =时,11y =,由函数式210(6)3ay x x =+-- 得 11102a=+,所以2a =. (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<. 每日销售该商品所获得的利润为()()()222310(6)2103(6)3f x x x x x x ⎡⎤=-+-=+--⎢⎥-⎣⎦,()36x <<.()()()()()()21062363064f x x x x x x ⎡⎤'=-+--=--⎣⎦.于是,当x 变化时,()f x ',()f x 的变化情况如下表:x ()3,44()4,6()f x '+-()f x单调递增极大值42单调递减由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点. 所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【2011⋅福建理,19】19.(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,……,8,其中5X ≥为标准A ,3X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准.(Ⅰ) 已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数字期望16EX =,求,a b 的值;(Ⅱ) 为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望. (Ⅲ) 在(Ⅰ)、(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学; (2)“性价比”大的产品更具可购买性.【解析】本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想.(Ⅰ)因为16EX =,所以50.46780a b ⨯+++⨯=,即67 3.2a b +=,又0.40.11a b +++=,所以0.5a b +=, 解方程组67 3.2,0.5a b a b +=⎧⎨+=⎩解得0.3a =,0.2b =.(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 4 5 6 7 8 f0.30.20.20.10.10.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:2X3 4 5 6 7 8 P0.30.20.20.10.10.1所以230.340.250.260.170.180.1 4.8EX =⨯+⨯+⨯+⨯+⨯+⨯=. (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=, 甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>. 所以,乙厂的产品更具可购买性.【2011⋅福建理,20】20.(本小题满分14分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,四边形ABCD 中,AB AD ⊥,4AB AD +=,CD CDA ∠=45.(Ⅰ) 求证:平面PAB ⊥平面PAD ;=.(Ⅱ) 设AB AP()i若直线PB与平面PCD所成的角为︒30,求线段AB的长;()ii在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.【解析】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.【解析二】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.(Ⅰ)因为PA ABCD ⊥底面,AB ABCD ⊂底面,所以PA AB ⊥.又AB AD ⊥,PA AD A =∩,所以P AB AD ⊥面平,又P AB AB ⊂面平,P PAB AD ⊥面平面平.(Ⅱ)以A 为坐标原点,建立如图乙的空间直角坐 标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ⊥.在Rt ΔCDE中,sin 4512DE CD =︒==. 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =-,()0,4,PD t t =--,(i )设平面PCD 的法向量为(),,n x y z =,由n CD ⊥,n PD ⊥得0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩()0,40,x y t y tz -+=⎧⎨--=⎩取x t =,则y t =,4z t =-.(),,4n t t t =-, 又(),0,PB t t =-,由直线PB 与平面PCD 所成的角为︒30,得21cos 602n PB n PBt ⋅︒===⋅.解得45t =或4t =(因为40,4AD t t =-><,故舍去) 所以45AB =. (ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,设()0,,0G m ,()04m t ≤≤-. 则()1,3,0GC t m =--,()0,4,0GD t m =--,()0,,GP m t =-,则由GC GD =得()()22134t m t m +--=--,即3t m =-,①由GP GD =得()2224t m m t --=+, ②从①,②消去t ,并化简得2340m m -+= ③ 方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.解法2:假设线段AD 上存在一个点G ,使得点G 到 点,,,P B C D 的距离都相等,由GC GD =得45GCD GDC ∠=∠=︒, 从而90CGD ∠=︒,则CG GD ⊥,设AB λ=,则由4AB AD +=,得4AD λ=-,3AG AD GD λ=-=-.在Rt ΔABG 中,1GB ===>与1GB GD ==矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.【2011⋅福建理,21】21.(本小题满分14分)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换设矩阵 00a M b ⎛⎫= ⎪⎝⎭(其中0a >,0b >).(I )若2a =,3b =,求矩阵M 的逆矩阵1M -;(II )若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线C ':2214x y +=,求,a b 的值.【解析】本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)设矩阵M 的逆矩阵11122x y Mx y -⎛⎫= ⎪⎝⎭,则11001MM -⎛⎫= ⎪⎝⎭, 因为2003M ⎛⎫=⎪⎝⎭,所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以121x =,120y =,230x =,231y =,即112x =,10y =,20x =.213y =, 所以1102103M -⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭. (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y '''.则00a x x b y y '⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭,即,ax x by y'=⎧⎨'=⎩, 又点(),P x y '''在曲线22:14x C y '+=上,所以2214x y ''+=, 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =, 又因为0,0a b >>,则2,1a b ==.(2)(本小题满分7分)选修4-4:坐标系与参数方程在直接坐标系xOy 中,直线l 的方程为40x y -+=,曲线C的参数方程为sin x ay a⎧=⎪⎨=⎪⎩.(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π,判断点P 与直线l 的位置关系;(II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解析】本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)点P 的极坐标为(4,)2π,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,因为0440-+=,所以点P 在直线l 上.(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q的坐标可设为,sin )Q αα. 点Q 到直线l 的距离为2cos()4)6d παπα++===++.所以当cos()16πα+=-时,d(3)(本小题满分7分)选修4-5:不等式选讲 设不等式211x -<的解集为M . (I )求集合M ;(II )若,a b M ∈,试比较1ab +与a b +的大小.【解析】本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)由|21|1x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(Ⅱ)因为,a b M ∈,则01a <<,01b <<,(1)()(1)(1)0ab a b a b +-+=-->,所以1ab a b +>+.。
数学_2011年福建省高三质量检查数学试卷(理科)(含答案)
2011年福建省高三质量检查数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分) 1. 复数3+i 2−i等于( )A 1−iB 1+iC −1+iD −1−i2. 设全集U =R ,集合A ={x|x(x −2)<0},B ={x|x <a},若A 与B 的关系如图所示,则实数a 的取值范围是( )A [0, +∞)B (0, +∞)C [2, +∞)D (2, +∞)3. 在各项均为正数的等比数列{a n }中,a 3a 5=4,则数列{log 2a n }的前7项和等于( ) A 7 B 8 C 27 D 284. 已知向量a →与b →的夹角是120∘,且|a →|=1,|b →|=2.若(a →+λb →)⊥a →,则实数λ等于( )A 1B −1C −√33 D √335. 运行如图所示框图的相应程序,若输入a ,b 的值分别为log 23和log 32,则输出M 的值是( )A 0B 1C 2D −16. 设二次函数f(x)=ax 2−2ax +c 在区间[0, 1]上单调递减,且f(m)≤f(0),则实数m 的取值范围是( )A (−∞, 0]B [2, +∞)C (−∞, 0]∪[2, +∞)D [0, 2]7. 设m ,n 是空间两条不同直线,α,β是空间两个不同平面,则下列命题的正确的是( )A 当m ⊂α,n ⊂β时,若m // n ,则α // βB 当m ⊂α,n ⊂β时,若m ⊥n ,则α⊥βC 当m ⊂α,n ⊂α,且m 、n 相交时,若m // β,n // β,则α // βD 当m ⊂α,n ⊂β时,若m ⊥β,则n ⊥α8. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =l ,c =4√2,B =45∘,则sinC 等于( ) A 441 B 45 C 425 D4√41419. 函数f(x)={log3x,x>0cosπx,x<0的图象上关于y轴对称的点共有()A 0对B 1对C 2对D 3对10. 定义在区间[0, a]上的函数f(x)的图象如图所示,记以A(0, f(0)),B (a, f(a)),C(x, f(x))为顶点的三角形的面积为S(x),则函数S(x)的导函数S′(x)的图象大致是()A B C D二、填空题(共5小题,每小题4分,满分20分)11. ∫|4x−2|dx=________.12. 设数列{a n}的前n项和为S n,且a n=sin nπ2,n∈N∗,则S2011=________.13. 若以双曲线x24−y2=1的右顶点为圆心的圆恰与双曲线的渐近线相切,则圆的标准方程是________.14. 已知平面区域D1={(x, y)|{|x|<2|y|<2},D2={(x, y)|kx−y+2<0}.在区域D1内随机选取一点若点M恰好取自区域D2的概率为p,且0<p≤18则A的取值范围是________.15. 某棋赛采用单循环赛(每两名选手均比赛一盘)方式进行,并规定:每盘胜者得1分,负者得0分,平局各得0.5分.今有8名选手参加这项比赛,已知他们的得分互不相等,且按得分从高到低排名后,第二名选手的得分是最后四名选手的得分之和.以下给出五个判断:①第二名选手的得分必不多于6分;②第二名选手的得分必不少于6分;③第二名选手的得分一定是6分;④第二名选手的得分可能是6.5分;⑤第二名选手的得分可能是5.5分.其中正确判断的序号是________(填写所有正确判断的序号).三、解答题(共6小题,满分80分)16. 已知函数f(x)=√3cos2x+sinxcosx−√32,x∈R.(1)设角a的顶点在坐标原点,始边在x轴的负半轴上,终边过点P(12, −√32),求f(a)的值;(2)试讨论函数f(x)的基本性质(直接写出结论).17. 某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A 、B 两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望; (II)根据频率分布直方图填写下面2×2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关. 甲班(A 方式) 乙班(B 方式) 总计总计附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)(此公式也可写成x 2=n(n 11n 22−n 12n 21)2n 1+n 2+n +1n +2)18. 如图,在Rt △ABC 中,AB =BC =4,点£在线段AB 上.过点E 作EF // BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =60∘. (I )求证:EF 丄PB ;(II )试问:当点E 在线段AB 上移动时,二面角P −FC −B 的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.19. 已知函数f(x)=x +2a 2x+alnx .(1)求f(x)的单调递增区间;(2)设a =1,g(x)=f′(x),问是否存在实数k ,使得函数g(x)(均的图象上任意不同两点连线的斜率都不小于k ?若存在,求k 的取值范围;若不存在,说明理由.20.已知椭圆E 的中心在原点,焦点在x 轴上,离心率为√32,且过抛物线C:x 2=4y 的焦点F . (1)求椭圆E 的方程;(2)过坐标平面上的点F ′作拋物线c 的两条切线l 1和l 2,它们分别交拋物线C 的另一条切线l 3于A ,B 两点.(I)若点F′恰好是点F 关于-轴的对称点,且l 3与拋物线c 的切点恰好为拋物线的顶点(如图),求证:△ABF′的外接圆过点F ;(II)试探究:若改变点F′的位置,或切线l 3的位置,或抛物线C 的开口大小,(I)中的结论是否仍然成立?由此给出一个使(I)中的结论成立的命题,并加以证明. 21. (1)选修4−2:矩阵与变换已知矩阵M =(2a2b)的两个特征值分别为λ1=−1和λ2=4.(I )求实数的值;(II )求直线x −2y −3=0在矩阵M 所对应的线性变换作用下的像的方程. (2)选修4−4:坐标系与参数方程在直角坐标平面内,以坐标原点O 为极点x 轴的非负半轴为极轴建立极坐标系.已知曲线C 的参数方程为{x =sinαy =2cos 2α−2,(α为参数),曲线D 的坐标方程为ρsin(θ−π4)=−3√22. (I)将曲线C 的参数方程化为普通方程;(II)判断曲线c 与曲线D 的交点个数,并说明理由. (3)选修4−5:不等式选讲 已知a ,b 为正实数. (I)求证:a 2b +b 2a≥a +b ;(II)利用(I)的结论求函数y =(1−x)2x+x 21−x (0<x <1)的最小值.2011年福建省高三质量检查数学试卷(理科)答案1. B2. C3. A4. A5. C6. D7. C8. B9. D 10. D 11. 4 12. 013. (x −2)2+y 2=45 14. [−1, 0)∪(0, 1] 15. ①②③16. 解:解法一:(1)因为点P(12, −√32)在α终边上, 所以sinα=−√32,cosα=12f(α)=√3cos 2α+sinαcosα−√32=√3×(12)2+(−√32)×12−√32=−√32(2)f(x)=√3cos 2x +sinxcosx −√32=√3×1+cos2x 2+12sin2x −√32=12sin2x +√32cos2x =sin(2x +π3) 函数的基本性质如下:①函数f(x)既不是奇函数也不是偶函数;②函数f(x)单调增区间为[kπ−5π12, kπ+π12],单调减区间为:[kπ+π12,kπ+7π12](k ∈Z); ③函数的最大值我1,最小值为−1; ④函数的周期为:π解法二:f(x)=√3cos 2x +sinxcosx −√32=√3×1+cos2x 2+12sin2x −√32=12sin2x +√32cos2x =sin(2x +π3) (1)因为点P(12, −√32)在α终边上, 所以α=2kπ−π3,k ∈Z所以f(α)=sin[2(2kπ−π3)+π3]=sin(4kπ−π3)=sin(−π3)=−√32(2)同解法一;17. 解:(1)根据频率分步直方图可得成绩优秀的人数是4, ξ的可能取值是0,1,2 P(ξ=0)=C 462C 502=207245,P(ξ=1)=C461C41C502=1841225,P(ξ=2)=C42C502=61225∴ ξ的分布列是∴ Eξ=0×207245+1×1841225+2×61225=425(II)由频率分步直方图知,甲班成绩优秀和成绩不优秀的人数是12,38,乙班成绩优秀和成绩不优秀的人数是4,46根据列联表可知K2=100(12×46−4×38)216×84×50×50=4.762,由于4.762>3.841,∴ 有95%的把握说成绩优秀与教学方式有关.18. 解:(I)证明:在Rt△ABC中,∵ EF // BC∴ EF⊥AB∴ EF⊥EB,EF⊥EP,又由EB∩EP=E∴ EF⊥平面PEB又∵ PB⊂平面PEB∴ EF⊥PB(II)在平面PEB中,过P点作PD⊥BE于D,由(I)知,EF⊥PD∴ PD⊥平面BCFE在平面PEB中过点B作直线BH // PD则BH⊥平面BCFE如图,以B为坐标原点,BC,BE,BH方向分别为X,Y,Z轴正方向建立空间坐标系,设PE=x(0<x<4),又∵ AB=BC=4∴ BE=4−x,EF=x在Rt△PED中,∠PED=60∘∴ PD=√32x,DE=12x∴ BD=4−x−12x=4−32x∴ C(4, 0, 0),F(x, 4−x, 0),P(0, 4−32x, √32x) 从而CF →=(x −4, 4−x, 0),CP →=(−4, 4−32x, √32x) 设n →=(a, b, c)是平面PCF 的一个法向量,则: {a(x −4)+b(4−x)=0−4a +(4−32x)b +√32x =0即{a −b =0√3b −c =0令b =1,则n →=(1, 1, √3)是平面PCF 的一个法向量, 又∵ 平面BCF 的一个法向量为v →=(0, 0, 1) 设二面角P −FC −B 的平面角为θ,则 Cosθ=|n →|⋅|v →|˙=√155∴ 当点E 在线段AB 上移动时,二面角P −FC −B 的平面角的余弦值为定值√15519. 解:(1)函数f(x)的定义域为(0, +∞), ∵ f(x)=x +2a 2x+alnx ,∴ f′(x)=1−2a 2x 2+a x=(x+2a)(x−a)x 2,当a =0时,f′(x)=1>0,所以f(x)的单调递增区间是(0, +∞); 当a >0时,由f′(x)>0,即(x+2a)(x−a)x 2>0,解得x >a ,所以f(x)的单调递增区间是(a, +∞);当a <0时,由f′(x)>0,即(x+2a)(x−a)x 2>0,解得x >−2a ,所以f(x)的单调递增区间是(−2a, +∞).(2)当a =1时,g(x)=1−2x 2+1x ,假设存在实数k ,使得g(x)的图象上任意不同两点连线的斜率都不小于k , 即对任意x 2>x 1>0,都有g(x 2)−g(x 1)x 2−x 1≥k ,亦即g(x 2)−kx 2≥g(x 1)−kx 1,可设函数ℎ(x)=g(x)−kx =1−2x 2+1x−kx(x >0), 故问题等价于ℎ′(x)=4x 3−1x 2−k ≥0,即k ≤4x 3−1x 2对x >0恒成立, 令t =1x ,则F(t)=4t 3−t 2(t >0),所以F′(t)=12t 2−2t , 令F′(t)=0,解得t =0(舍去)或t =16, 当t 变化时,F(t)与F′(t)的变化情况如下表:故知F(t)在(0, 16)内单调递减,在(16, +∞)内单调递增, 所以当t =16时,F(t)取得最小值,且最小值为−1108,∴ 当x >0时,F(1x )=4x 3−1x 2≥−1108,当且仅当x =6时取等号, 故k 的取值范围是(−∞, −1108].20. 解:(1)由已知得F(0, 1),设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则,b =1 椭圆的离心率为√32,可得,ca=√32,又∵ a 2=b 2+c 2,∴ a =2,c =√3∴ 椭圆方程为x 24+y 2=1(2)(I)依题意,点F ′的坐标为(0, −1),过点F ′且与拋物线c 相切的直线斜率存在,设其方程为y =kx −1.代入抛物线方程,消y ,得x2−4kx +4=0,令△=0,得k =±1 则切线l 1和l 2方程分别为y =x −1和y =−x −1,又∵ 且l 3与拋物线c 的切点恰好为拋物线的顶点.∴ l 3的方程为y =0.由{y =x −1y =0,得点A 坐标为(1, 0)由{y =−x −1y =0,得点B 坐标为(−1, 0)设△ABF ′′的外接圆方程为x 2+y 2+Dx +Ey +4F =0,则{1+D +F =01−D +F =01−E +F =0,解得{D =0E =0F =−1∴ 设△ABF ′′的外接圆方程为x 2+y 2=1:△ABF′的外接圆过抛物线的焦点F .(II)使(I)中的结论成立的命题为:设F ′为抛物线外一点,若过点F ′作拋物线c 的两条切线l 1和l 2,分别交拋物线C 的另一条切线l 3于A ,B 两点,则△ABF′的外接圆过抛物线的焦点F . 证明:不妨设拋物线方程为x 2=2py ,l i 分别与抛物线交于点P i (x i , y i )(i =1, 2, 3) 依题意,x 1,x 2,x 3中至少有两个不为0,不妨设x 1≠0,x 2≠0. ∵ y ′=xp 故切线l i 的方程为y −y i =x i p(x −x i ),i =1,2,3由{y −y 1=x 1p (x −x 1)y −y 2=x 2p(x −x 2),得F ′(x 1+x 22, x 1x 22p)由 {y −y 1=x 1p (x −x 1)y −y 3=x 2p(x −x 3)得A(x 1+x 32, x 1x 32p){y −y 2=x1p (x −x 2)y −y 3=x 2p(x −x 3),得B( x 1+x 32, x 1x 32p ) ∴ AF ′的垂直平分线方程为y −x 1x 2+x 1x 34p =−p x 1(x −2x 1+x 2+x 34), BF ′ 的垂直平分线方程为 y −x 1x 2+x 2x 34p=−px 2(x −x 1+2x 2+x 34)它们的交点为M(x 1+x 2+x 34−x 1x 2x 34p 2, x 1x 2+x 2x 3+x 1x 3+p 24p)又∵ F(0, p 2),AF 的中点为N(x 1+x 34, x 1x 3+p 24p )从而 FA →=( x 1+x 32, x 1x 3−p 22p),NM →=( x24−x 1x 2x 34p 2, x 1x 2+x 2x 34p)FA →⋅NM →=x 1+x 32(x 24−x 1x 2x 34p 2)+x 1x 3−p 22p⋅x 1x 2+x 2x 34p=0∴ FA →⊥NM →,∴ AF ′,BF ′AF 的垂直平分线教育一点M 圆上,即△ABF′的外接圆过抛物线的焦点F .21. A :解:(I)矩阵A 的特征多项式为:f(λ)=|λ−2−a −2λ−b |,即f(λ)=λ2−(b +2)λ+2b −2a , 由于λ1=−1和λ2=4是此函数的零点, ∴ {3=b +2−4=2b −2a ⇒{a =3b =1(II )由上知,M =[2321],直线x −2y −3=0上任一点(x, y)在矩阵M 所对应的线性变换作用下的像(x′, y′) 由[x′y′]=[2321][xy]得到:{x =−x′+3y′4y =x′−y′2代入x −2y −3=0化简得到5x′−7y′+12=0.直线x −2y −3=0在矩阵M 所对应的线性变换作用下的像的方程5x −7y +12=0. B :解:(I)∵ 已知曲线C 的参数方程为{x =sinαy =2cos 2α−2,∴ 消去参数α得:x 2=−y2,x ∈[−1, 1].(II)由方程为ρsin(θ−π4)=−3√22.得到:曲线D 的方程为:x −y −3=0.由上述方程消去y 得到:2x 2+x −3=0,此方程有两个不等的实根,∴ 曲线c 与曲线D 的交点个数是2. C :解:(I)(a 2b +b 2a)(b +a)=a 2+a 3b+b 2+b 3a≥a 2+b 2+2ab =(a +b)2;∴ a 2b +b 2a≥a +b ;(II)解:依题意可知y=(1−x)2x +x21−x≥1∴ y=(1−x)2x +x21−x(0<x<1)最小值为1.。
2011年高考理科数学(福建卷)
2011年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
参考公式: 样本数据x 1,x 2,…,x a 的标准差 锥体体积公式])()()[(122221x x x x x x n S n -++-+-=13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高柱体体积公式 球的表面积,体积公式V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈C . 3i S ∈ D .2S i∈ 2.若a ∈R ,则a=2是(a-1)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件C .充要条件C .既不充分又不必要条件3.若tan α=3,则2sin 2cos aα的值等于A .2B .3C .4D .64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C .12D .235.1⎰(e 2+2x )dx 等于A .1B .e-1C .eD .e+1 6.(1+2x )3的展开式中,x 2的系数等于 A .80 B .40C .20D .107.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2 D .2332或 8.已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域21y 2x y x +≥⎧⎪≤⎨⎪≤⎩,上的一个动点,则OA ·OM的取值范围是A .[-1.0]B .[0.1]C .[0.2]D .[-1.2]9.对于函数f (x )=asinx+bx+c (其中,a,b ∈R,c ∈Z ),选取a,b,c 的一组值计算f (1)和f(-1),所得出的正确结果一定不可能.....是 A .4和6 B .3和1 C .2和4 D .1和210.已知函数f (x )=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是 A .①③ B .①④ C . ②③ D .②④第Ⅱ卷(非选择题 共100分)注意事项: 用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
2011年福建高考数学理科试卷(带详解)
2011福建理第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则,则( ) A .i S Î B .2i S Î C . 3i S ÎD .2iS Î 【测量目标】复数的基本概念、集合的含义.【测量目标】复数的基本概念、集合的含义.【考查方式】给出虚数单位和集合,判断它们之间的关系.【考查方式】给出虚数单位和集合,判断它们之间的关系. 【难易程度】容易【难易程度】容易 【参考答案】B【试题解析】22i 1S =-Î.故选B .2.若a ÎR ,则2a =是()()120a a --=的 ( ) A .充分而不必要条件.充分而不必要条件 B .必要而不充分条件.必要而不充分条件C .充要条件.充要条件 C .既不充分又不必要条件.既不充分又不必要条件 【测量目标】充分、必要条件.【测量目标】充分、必要条件.【考查方式】给出两个命题,判断两个命题的关系.【考查方式】给出两个命题,判断两个命题的关系. 【难易程度】容易【难易程度】容易 【参考答案】A【试题解析】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件,但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A .3.若tan 3α=,则2sin 2cos aa的值等于的值等于 ( ) A .2 B .3 C .4D .6 【测量目标】同角三角函数的基本关系、二倍角公式.【测量目标】同角三角函数的基本关系、二倍角公式.【考查方式】给出式子和正切函数值,利用同角三角函数的基本关系和二倍角公式求解. 【难易程度】容易【难易程度】容易 【参考答案】D 【试题解析】22sin 22sin cos 2tan 6cos cos ===aa aa a a.故选D .4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE △内部的概率等于内部的概率等于 ( ) A .14 B .13 C .12D .23第4题图题图【测量目标】几何概型.【测量目标】几何概型.【考查方式】给出图形,利用几何概型求事件的概率.【考查方式】给出图形,利用几何概型求事件的概率. 【难易程度】容易【难易程度】容易 【参考答案】C 【试题解析】因为12ABE ABCD S S =△,则点Q 取自ABE △内部的概率12ABE ABCD S P S ==△.故选C . 5.()1e2xx dx +ò等于等于( ) A .1 B .e 1- C .eD .e 1+ 【测量目标】定积分.【测量目标】定积分.【考查方式】给出定积分,求解.【考查方式】给出定积分,求解. 【难易程度】容易【难易程度】容易 【参考答案】C【试题解析】()()11200e 2e e 1e 0e x x x dx x +=+=+--=ò.故选C . 6.()512x +的展开式中,2x 的系数等于的系数等于 ( ) A .80 B .40 C .20 D .10 【测量目标】二项式定理.【测量目标】二项式定理.【考查方式】给出二项式根据二项展开式的公式特点计算二项式系数.【考查方式】给出二项式根据二项展开式的公式特点计算二项式系数. 【难易程度】容易【难易程度】容易 【参考答案】B 【试题解析】15C 2rrr r Tx +=,令2r =,则2x 的系数等于225C 240=.故选B . 7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2P F F F P F =,则曲线Γ的离心率等于的离心率等于 ( ) A .12或32B .23或2C .12或2D .23或32【测量目标】圆锥曲线的定义.【测量目标】圆锥曲线的定义. 【考查方式】通过给出圆锥曲线上的点与两个交点之间的线段长度比例关系,求圆锥曲线的离心率.离心率.【难易程度】中等【难易程度】中等 【参考答案】A【试题解析】因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λì+==+=ïí==ïî所以12c e a ==.若Γ为双曲线,则12122422,23,PF PF a λλλF F c λì-==-=ïí==ïî所以32c e a ==.故选A . 8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域212x y x y +ìïíïî………上的一个动点,则OA OM的取值范围是的取值范围是( ) A .[]1,0- B .[]0,1 C .[]0,2 D .[]1,2- 【测量目标】判断不等式组表示的平面区域、向量的数量积.【测量目标】判断不等式组表示的平面区域、向量的数量积.【考查方式】给出点的坐标和不等式组,判断两向量数量积的取值范围.【考查方式】给出点的坐标和不等式组,判断两向量数量积的取值范围. 【难易程度】中等【难易程度】中等 【参考答案】C【试题解析】设()()1,1,z OA OM x y x y ==-=-+ .作出可行域,如图,直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM 的取值范围是[]0,2.故选C .第8题图题图9.对于函数()sin f x a x bx c =++(其中,,a b ÎR ,c ÎZ ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是 ( ) A .4和6 B .3和1 C .2和4D .1和2 【测量目标】函数的求值.【测量目标】函数的求值.【考查方式】给出函数式,判断两函数之和的结果.【考查方式】给出函数式,判断两函数之和的结果. 【难易程度】中等【难易程度】中等 【参考答案】D【试题解析】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ÎZ ,则()()11f f +-为偶数,四个选项中,只有D ,123+=不是偶数.不是偶数.10.已知函数()e xf x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:给出以下判断:①ABC △一定是钝角三角形②ABC △可能是直角三角形可能是直角三角形 ③ABC △可能是等腰三角形可能是等腰三角形 ④ABC △不可能是等腰三角形不可能是等腰三角形 其中,正确的判断是其中,正确的判断是( ) A .①.①,,③ B .①.①,,④ C .②.②,,③ D .②.②,,④【测量目标】基本不等式、指数函数的性质、函数的单调性、等差数列的性质、函数图象的应用.应用.【考查方式】给出指数函数,判断其图象横坐标上的三个点所成的形状.【考查方式】给出指数函数,判断其图象横坐标上的三个点所成的形状. 【难易程度】较难【难易程度】较难 【参考答案】B【试题解析】设a b <.首先证明()()22f a f ba b f ++æö>ç÷èø.()()22f a f b a b f ++æö-ç÷èø2eee22a baba ba b +++++=--2e e e2a b ab++=-222e e e e e 0a ba ba bab+++-=-= …,(步骤1)当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是,所以等号不成立,于是 ()()022f a f b a b f ++æö->ç÷èø, ()()22f a f b a b f ++æö>ç÷èø. ① (步骤2) 设点(),A A A x y ,(),B B B x y ,(),C C C C x x y y,且,,A B C x x x 成等差数列,A B C x x x <<.由()f x 是R 上的增函数,则A B C y y y <<, ② (步骤3) 如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ^交BN 于E ,作B F C P ^交CP 于F .因为()()22A C A CD f x f x y y y ++==,2A CB x x y f +æö=ç÷èø, 由①式,D B y y >,(步骤4)D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 内部,(步骤5)因而90DBA DEA °Ð>Ð=,又CB A D B A Ð>Ð,所以ABC △一定是钝角三角形.结论①正确.(步骤6)若ABC △是等腰三角形,因为D 为AC 的中点,则BD AC ^,因而AC x 轴,这是不可能的,所以ABC △不是等腰三角形.结论④正确;不是等腰三角形.结论④正确; 所以结论①,④正确.故选B .(步骤7)第10题图题图二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置. 11.运行如图所示的程序,输出的结果是_______.第11题图题图【测量目标】程序语句.【测量目标】程序语句.【考查方式】给出程序语句,计算求解.【考查方式】给出程序语句,计算求解. 【难易程度】容易【难易程度】容易【参考答案】3【试题解析】123a =+=.所以输出的结果是3.12.三棱锥P ABC -中,PA ABC ^底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______. 【测量目标】三棱锥的体积.【测量目标】三棱锥的体积.【考查方式】给出三棱锥的底边边长和高,求其体积.【考查方式】给出三棱锥的底边边长和高,求其体积. 【难易程度】容易【难易程度】容易 【参考答案】3【试题解析】2113233334ABCV SPA ==´´´=△. 13.盒子装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______. 【测量目标】随机事件与概率.【测量目标】随机事件与概率.【考查方式】给出条件,利用随机概率求解.【考查方式】给出条件,利用随机概率求解. 【难易程度】中等【难易程度】中等 【参考答案】35【试题解析】所取出的2个球颜色不同的概率113225C C 233C 105P ´===. 14.如图,ABC △中,2AB AC ==,23BC =,点D 在BC 边上,45ADC °Ð=,则AD 的长度等于______.第14题图(1)【测量目标】余弦定理、正弦定理.【测量目标】余弦定理、正弦定理.【考查方式】给出三角形边长及角度,利用余弦定理和正弦定理求长度.【考查方式】给出三角形边长及角度,利用余弦定理和正弦定理求长度. 【难易程度】中等【难易程度】中等【参考答案】2【试题解析】解法一:由余弦定理【试题解析】解法一:由余弦定理22241243c o s 222223AC BC AB C AC BC +-+-===´´ ,(步骤1) 所以30C °=.(步骤2) 再由正弦定理再由正弦定理s i n s i n A D A C C A D C =Ð,即2sin 30sin 45AD °°=,所以2AD =.(步骤3) 解法二:作AE BC ^于E ,因为2AB AC ==,所以E 为BC 的中点,因为23BC =,则3EC =.(步骤1)于是221AE AC EC =-=,(步骤2)因为ADE △为有一角为45°的直角三角形.且1AE =,所以2AD =.(步骤3)第14题图(2) 15.设V 是全体平面向量构成的集合,若映射:f V ®R 满足:对任意向量()11,x y V =Îa ,()22,x y V =Îb ,以及任意λÎR ,均有,均有()()()()()11f f f l l l l +-=+-a b a b则称映射f 具有性质P .先给出如下映射:先给出如下映射:① ()()11:,,,f V f x y x y V®=-=ÎR m m ;② ()()222:,,,f V f x y x y V ®=+=ÎR m m ; ③ ()()33:,1,,f V f x y x y V ®=++=ÎR m m .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号). 【测量目标】向量的坐标运算、映射.【测量目标】向量的坐标运算、映射.【考查方式】给出三个映射,利用向量的坐标运算求出与f 具有相同性质的映射.具有相同性质的映射. 【难易程度】较难【难易程度】较难 【参考答案】①,③【参考答案】①,③【试题解析】设()11,x y V =Îa ,()22,x y V =Îb ,则,则()()()()11221,1,x y x y l l l l +-=+-a b()()()12121,1x x y y l l l l =+-+-.(步骤1) 对于①,对于①, ()()()()()()1212111fx x y y l l l l l l +-=+--+-a b()()()11221x y x y =-+--l l ,(步骤2)()()()()()()112211f f x y x y l l l l +-=-+--a b ,所以()()()()()11f f f l l l l +-=+-a b a b 成立,①是具有性质P 的映射;(步骤3)对于②,()()()()()()21212111f x x y y l l l l l l +-=+-++-a b()()()()2121211x x y y =+-++-l l l l()()()22221122121121x y x y x x =++-+-+-l l l l l l ,(步骤4) ()()()()()()22112211f f x y x y l l l l +-=++--a b , 显然,不是对任意λÎR ,()()()()()11ff f l l l l +-=+-a b a b 成立,成立,所以②不是具有性质P 的映射;(步骤5) 对于③,()()()()()()12121111fx x y y l l l l l l +-=+-++-+a b()()()112211x y x y =++-++l l ,(步骤6)()()()()()()11221111f f x y x y l l l l +-=+++-++a b()()()()112211x y x y =++-+++-l l l l ()()()112211x y x y =++-++l l . 所以()()()()()11ff f l l l l +-=+-a b a b 成立,③是具有性质P 的映射.的映射.(步骤7)因此,具有性质P 的映射的序号为①,③.(步骤8)三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 16.已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{{}}n a 的通项公式;的通项公式;(Ⅱ)若函数()sin(2)(0,0π)f x A x A j j =+><<在π6x =处取得最大值,且最大值为3a ,求函数()f x 的解析式.的解析式.【测量目标】等比数列的通项、性质及前n 项和、函数sin()y A x w j =+的图象及性质.的图象及性质. 【考查方式】给出等比数列的公比和前几项的和,给出等比数列的公比和前几项的和,求其通项公式;求其通项公式;求其通项公式;已知函数的最大值为数列已知函数的最大值为数列的一项,求其解析式.的一项,求其解析式. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)由3q =,3133S =Þ()311313133a -=-,解得113a =.(步骤1)所以11211333n n n n a a q---==´=.(步骤2) (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.(步骤3) 又因为函数()f x 在π6x =处取得最大值,处取得最大值, 则πsin 216jæö´+=ç÷èø,因为0πj <<,所以π6j =.(步骤4) 函数()f x 的解析式为π()3sin 26f x x æö=+ç÷èø.(步骤5) 17.已知直线:l y x m =+,m ÎR .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ¢,问直线l ¢与抛物线2:4C x y =是否相切?说明理由.明理由.【测量目标】圆的方程、直线与圆的位置关系、直线与抛物线的位置关系.【测量目标】圆的方程、直线与圆的位置关系、直线与抛物线的位置关系.【考查方式】给出直线方程,根据圆与直线的位置关系求圆的方程;根据圆与直线的位置关系求圆的方程;给出抛物线方程和直线给出抛物线方程和直线的条件,判断两者之间的位置关系.的条件,判断两者之间的位置关系. 【难易程度】较难【难易程度】较难【试题解析】(Ⅰ)解法一:由题意,点P 的坐标为(())0,m .因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ^.01102MP l m k k -==-- ,所以2m =.(步骤1) 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=, 则()()2202208r MP ==-+-=,(步骤2) 所以,所求的圆的方程为()2228x y -+=.(步骤3)第17题图(1)解法二:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224202m r mr ì+=ï-+í=ïî,解得222m r =ìïí=ïî.(步骤1) 所以,所求的圆的方程为()2228x y -+=.(步骤2)(Ⅱ)解法一:因为直线:l y x m =+,且,且直线l ¢与直线l 关于x 轴对称,则:l y x m ¢=--.(步骤4)由24,,x y y x m ì=í=--î得2440x x m ++=, 2Δ4440m =-´=,解得1m =.(步骤5)所以,当1m =时,Δ0=,直线l ¢与抛物线2:4C x y =相切,当1m ¹时,Δ0¹,直线l ¢与抛物线2:4C x y =不相切.(步骤6)解法二:因为直线:l y x m =+,且直线l ¢与直线l 关于x 轴对称,则:l y x m ¢=--.设直线l ¢与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x ¢=,则0112x =-,02x =-, ()022y m m =---=-.(步骤3) 所以切点为()2,2m --,切点在抛物线214y x =上,则21m -=,1m =.(步骤4)所以,当1m =时,直线l ¢与抛物线2:4C x y =相切,当1m ¹时,直线l ¢与抛物线2:4C x y =不相切.(步骤5)第17题图(2)18.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.千克. (Ⅰ)求a 的值;的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.所获得的利润最大.【测量目标】一元二次函数模型,利用倒数求函数的最值.【测量目标】一元二次函数模型,利用倒数求函数的最值.【考查方式】给出函数关系式,根据条件求解,再利用导数求利润最大时的销售价格. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)因为5x =时,11y =,由函数式,由函数式210(6)3ay x x =+--得 11102a =+,所以2a =.(步骤1) (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<.每日销售该商品所获得的利润为每日销售该商品所获得的利润为()()()222310(6)2103(6)3f xx x x x x éù=-+-=+--êú-ëû,()36x <<.(步骤2)()()()()()()21062363064f x x x x x x éù¢=-+--=--ëû.(步骤3) 于是,当x 变化时,()f x ¢,()f x 的变化情况如下表:的变化情况如下表:x()3,44()4,6()f x ¢+-()f x极大值由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点.(步骤4) 所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.(步骤5) 19.某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,,8…,其中5X …为标准A ,3X …为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准行标准(Ⅰ)已知甲厂产品的等级系数1X 的概率分布列如下所示:的概率分布列如下所示:1X 5 6 7 8P0.4 a b0.1且1X 的数字期望16EX =,求,a b 的值;的值;(Ⅱ)为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 53 8 34 3 4 4 75 67 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望.的数学期望. (Ⅲ)在(Ⅰ),(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.“性价比”大的产品更具可购买性. 【测量目标】离散型随机变量的期望和方差.【测量目标】离散型随机变量的期望和方差.【考查方式】给出分布列和期望,求分布列中的未知数;【考查方式】给出分布列和期望,求分布列中的未知数;根据样本数据求期望;给出产品性根据样本数据求期望;给出产品性价比的公式,判断购买性.价比的公式,判断购买性. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)因为16EX =,所以,所以50.46780.16a b ´+++´=,即67 3.2a b +=,(步骤1)又0.40.11a b +++=, 所以0.5a b +=,解方程组67 3.20.5a b a b +=ìí+=î解得0.3a =,0.2b =.(步骤2)(Ⅱ)由样本的数据,样本的频率分布表如下:(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 45 6 7 8 f0.30.20.20.10.10.1(步骤3)用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:列如下表:2X 345 6 7 8P0.3 0.20.2 0.1 0.1 0.1(步骤4) 所以230.340.250.260.170.180.1 4.8EX =´+´+´+´+´+´=.(步骤5) (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=,(步骤6)甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>.所以,乙厂的产品更具可购买性.(步骤7)20.如图甲,四棱锥P ABCD -中,PA ABCD ^底面,四边形ABCD 中,AB AD ^,4AB AD +=,2CD =,45CDA °Ð=.(Ⅰ)求证:PAB ^平面平面P AD ; (Ⅱ)设AB AP =.(i )若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点,,,P B C D 的距离都相等?说明理由.明理由.第20题图题图【测量目标】面面垂直的判定、线面角、立体几何中的探索性问题.【测量目标】面面垂直的判定、线面角、立体几何中的探索性问题.【考查方式】给出四棱锥及其边角关系和条件,证明面面垂直;根据线面角求解线段长度,探索点的存在性.探索点的存在性. 【难易程度】较难【难易程度】较难 【试题解析】(Ⅰ)因为PA ABCD ^底面,AB ABCD Ì底面,所以PA AB ^.(步骤1)又AB AD ^,PA AD A =∩,所以AB ^平面P AD ,又AB Ì平面P AB , PAB ^平面平面P AD .(步骤2)(Ⅱ)以A 为坐标原点,建立如图的空间直角坐标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ^.(步骤3)在Rt CDE △中,2cos 45212DE CD °===.(步骤4) 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =- ,()0,4,PD t t =--,(步骤5)(i )设平面PCD 的法向量为(),,x y z =n ,由CD ^ n ,PD ^ n 得00CDPD ì=ïí=ïîn n , ()040x y t y tz -+=ìí--=î取x t =,则y t =,4z t =-.(),,4n t t t =- ,(步骤6) 又(),0,PB t t =-,由直线PB 与平面PCD 所成的角为30°,得,得22222241cos602(4)2PB t t PBt t t t °-===++- n n .(步骤7) 解得45t =或4t =(因为40,4AD t t =-><,故舍去),故舍去)所以45AB =.(步骤8)第20题图(1)(ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,的距离都相等, 设()0,,0G m ,()04mt -剟.则()1,3,0GC t m =-- ,()0,4,0GD t m =-- ,()0,,GP m t =-,(步骤9)则由GC GD = 得()()22134t m t m +--=--,即3t m =-, ①由GP GD =得()2224t m m t --=+, ②(步骤10)从①,②消去t ,并化简得2340m m -+= ③方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.(步骤11)第20题图(2)解法二:假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,的距离都相等, 由GC GD =得45GCD GDC °Ð=Ð=, 从而90CGD °Ð=,则CG GD ^,(步骤9)设AB λ=,则由4AB AD +=,得4AD λ=-,(步骤10)3AG AD GD λ=-=-.(步骤11) 在Rt ABG △中,()222223932122GB ABAG λλλæö=+=+-=-+>ç÷èø. (步骤12)与1GB GD ==矛盾,矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B CD 的距离都相等.的距离都相等. (步骤13)第20题图(3)21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.号涂黑,并将所选题号填入括号中. (1)选修42-:矩阵与变换:矩阵与变换设矩阵设矩阵 00a Mb æö=ç÷èø(其中0a >, 0b >). (Ⅰ)若2,3a b ==,求矩阵M 的逆矩阵1M -;(Ⅱ)若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线22:14x C y ¢+=,求,a b 的值.的值.【测量目标】矩阵与行列式初步.【测量目标】矩阵与行列式初步.【考查方式】给出矩阵,求其逆矩阵;给出曲线方程及其在矩阵对应的线性变化作用下得到的曲线方程,求未知量.的曲线方程,求未知量. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)设矩阵M 的逆矩阵11122xy Mx y -æö=ç÷èø,则11001MM -æö=ç÷èø,(步骤1) 因为2003M æö=ç÷èø,所以112220100301x y x y æöæöæö=ç÷ç÷ç÷èøèøèø,(步骤2) 所以121x =,120y =,230x =,231y =, 即112x =,10y =,20x =.213y =,(步骤3) 所以1102103M -æöç÷=ç÷ç÷ç÷èø.(步骤4) (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y ¢¢¢.则00a x x b y y ¢æöæöæö=ç÷ç÷ç÷¢èøèøèø,即ax x by y ¢=ìí¢=î,(步骤5) 又点(),P x y ¢¢¢在曲线22:14x C y ¢+=上,所以2214x y ¢¢+=,(步骤6) 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =,(步骤7)又因为0,0a b >>,则2,1a b ==.(步骤8) (2)选修44-:坐标系与参数方程:坐标系与参数方程在直接坐标系x O y 中,直线l 的方程为40x y -+=,曲线C 的参数方程为3c o s s i nx θy θì=ïí=ïî(θ为参数).(Ⅰ)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为π4,2æöç÷èø,判断点P 与直线l 的位置关系;的位置关系; (Ⅱ)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【测量目标】坐标系与参数方程、点与直线的位置关系.【测量目标】坐标系与参数方程、点与直线的位置关系.【考查方式】给出直线方程和点的极坐标,判断点与直线的位置关系;给出曲线的参数方程,求曲线上的动点到直线的最小距离.求曲线上的动点到直线的最小距离. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)点P 的极坐标为π4,2æöç÷èø,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,(步骤1)因为0440-+=,所以点P 在直线l 上.(步骤2)(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q 的坐标可设为()3cos ,sin Q αα.点Q 到直线l 的距离为的距离为π2cos 43cos sin 4π62cos 22622αααdαæö++ç÷-+æöèø===++ç÷èø.(步骤3) 所以当πcos 16αæö+=-ç÷èø时,d 取得最小值2.(步骤4) (3)选修45-:不等式选讲:不等式选讲设不等式211x -<的解集为M . (Ⅰ)求集合M ;(Ⅱ)若,a b M Î,试比较1ab +与a b +的大小.的大小.【测量目标】不等式选讲.【测量目标】不等式选讲.【考查方式】给出不等式,求其解集;给出关于集合两个元素的式子,比较它们的大小. 【难易程度】中等【难易程度】中等【试题解析】(Ⅰ)由211x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(步骤1)(Ⅱ)因为,a b M Î,则01a <<,01b <<,(步骤2)()()()()1110ab a b a b +-+=-->,所以1ab a b +>+.(步骤3)。
2011年高考福建省数学试卷-理科(含详细答案)
2011年普通高等学校招生全国统一考试(福建卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{}1,0,1S =-,则( ).A .i S ∈B .2i S ∈C . 3i S ∈D .2iS ∈ 【解】2i 1S =-∈.故选B .2.若a ∈R ,则2a =是()()120a a --=的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件 C .既不充分又不必要条件【解】当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A . 3.若tan 3α=,则2sin 2cos αα的值等于( ). A .2 B .3 C .4 D .6【解】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D . 4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于( ).A .14B .13C .12D .23 【解】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C . 5.()10e 2x x dx +⎰等于( ).A .1B .e 1-C .eD .e 1+【解】()()112000e 2e e 1e 0e x x x dx x +=+=+--=⎰.故选C . 6.()512x +的展开式中,2x 的系数等于( ).A .80B .40C .20D .10D C BE A【解】15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .7.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::4:3:2PF F F PF =,则曲线Γ的离心率等于( ). A .12或32 B .23或2 C .12或2 D .23或32【解】因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=.若Γ为椭圆,则12122426,23,PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩所以12c e a ==. 若Γ为双曲线,则12122422,23,PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩所以32c e a ==.故选A . 8.已知O 是坐标原点,点()1,1A -,若点(),M x y 为平面区域2,1,2x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( ).A .[]1,0-B .[]0,1C .[]0,2D .[]1,2-【解】设()()1,1,z OA OM x y x y =⋅=-⋅=-+.作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅的取值范围是[]0,2.故选C .9.对于函数()sin f x a x bx c =++(其中,,a b ∈R ,c ∈Z ),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能是( ).A .4和6B .3和1C .2和4D .1和2【解】()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数.故选D .10.已知函数()e x f x x =+,对于曲线()y f x =上横坐标成等差数列的三个点,,A B C ,给出以下判断:①ΔABC 一定是钝角三角形②ΔABC 可能是直角三角形③ΔABC 可能是等腰三角形④ΔABC 不可能是等腰三角形其中,正确的判断是( ).A .①,③B .①,④C .②,③D .②,④【解】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=-- 22a b a be e e ++=-2220a ba b a b e e e +++≥=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立,于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭, ()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ① 设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<.由()f x 是R 上的增函数,则A B C y y y <<, ②如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作B FC P ⊥交CP 于F . 因为()()22A C A CD f x f x y y y ++==,2AC B x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部, 因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确;所以结论①,④正确.故选B.二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.运行如图所示的程序,输出的结果是_______.【解】3.123a =+=.所以输出的结果是3.12.三棱锥P ABC -中,PA ABC ⊥底面,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______.【解2Δ1123334ABC V S PA =⋅=⨯⨯= 13.何种装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.【解】35. 所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 14.如图,ΔABC 中,2AB AC ==,BC =点D 在BC边上,45ADC ∠=︒,则AD 的长度等于______.【解.解法1.由余弦定理222cos 22AC BC AB C AC BC +-===⋅⋅, 所以30C =︒.再由正弦定理s i n s i n A D A C C A D C =∠,即2sin 30sin 45AD =︒︒,所以AD = 解法2.作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC的中点,因为BC =,则EC =.D B C AE D B CA于是1AE ==,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以AD =15.设V 是全体平面向量构成的集合,若映射:f V →R 满足:对任意向量()11,a x y V =∈,()22,b x y V =∈,以及任意λ∈R ,均有()()()()()11f a b f a f b +-=+-λλλλ则称映射f 具有性质P .先给出如下映射:① ()()11:,,,f V f m x y m x y V→=-=∈R ; ② ()()222:,,,f V f m x y m x y V →=+=∈R ;③ ()()33:,1,,f V f m x y m x y V →=++=∈R .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号).【解】①,③.设()11,a x y V =∈,()22,b x y V =∈,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλ. 对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλ()()()11221x y x y =-+--λλ, ()()()()()()112211f a f b x y x y +-=-+--λλλλ,所以()()()()()11f a b f a f b +-=+-λλλλ成立,①是具有性质P 的映射; 对于②, ()()()()()()21212111f a b x x y y +-=+-++-λλλλλλ()()()()2121211x x y y =+-++-λλλλ ()()()22221122121121x y x y x x =++-+-+-λλλλλλ, ()()()()()()22112211f a f b x y x y +-=++--λλλλ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλ成立,所以②不是具有性质P 的映射;对于③, ()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλ()()()112211x y x y =++-++λλ, ()()()()()()11221111f a f b x y x y +-=+++-++λλλλ()()()()112211x y x y =++-+++-λλλλ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλ成立,③是具有性质P 的映射. 因此,具有性质P 的映射的序号为①,③.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若函数()sin(2)(0,0)f x A x A =+><<ϕϕπ在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解】(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =. 所以11211333n n n n a a q ---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.又因为函数()f x 在6x π=处取得最大值, 则sin 216⎛⎫⨯+= ⎪⎝⎭πϕ,因为0<<ϕπ,所以6=πϕ. 函数()f x 的解析式为()3sin 26f x x ⎛⎫=+ ⎪⎝⎭π. 17.(本小题满分13分)已知直线:l y x m =+,m ∈R .(Ⅰ)若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由.【解】(Ⅰ)解法1.由题意,点P 的坐标为()0,m .因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=, 则r MP === 所以,所求的圆的方程为()2228x y -+=.解法2.设圆的方程为()2222x y r -+=, 因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,,m r r ⎧+==解得2,m r =⎧⎪⎨=⎪⎩ 所以,所求的圆的方程为()2228x y -+=. (Ⅱ)解法1.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=,2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2.因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:ly xm '=--.设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-. 所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =. 所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3a y x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。
2011年福建卷(理科数学)
2011年普通高等学校招生全国统一考试理科数学(福建卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合{1,0,1}S =-,则A.i S ∈B.2i S ∈C.3i S ∈D.2S i∈ 2.若a R ∈,则“2a =”是“(1)(2)0a a --=”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.若tan 3α=,则2sin 2cos aα的值等于 A .2 B .3 C .4 D .64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于 A.14 B.13 C.12 D.235.10(2)x e x dx +⎰等于 A .1 B .1e - C .e D .1e +6.5(12)x +的展开式中,2x 的系数等于A .80B .40C .20D .107.设圆锥曲线C 的两个焦点分别为1F ,2F ,若曲线C 上存在点P 满足112::PF F F 2PF 4:3:2=,则曲线C 的离心率等于 A.12或32 B.23或2 C.12或2 D.23或32B8.已知O 是坐标原点,点(1,1)A -,若点(,)M x y 为平面区域21y 2x y x +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA u u u r ·OM u u u u r 的取值范围是A.[1,0]-B.[0,1]C.[0,2]D.[1,2]-9.对于函数()sin f x a x bx c =++(其中a ,b R ∈,c Z ∈),选取a ,b ,c 的一组值计算(1)f 和(1)f -,所得出的正确结果一定不可能.....是 A.4和6 B.3和1 C.2和4 D.1和210.已知函数()x f x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①ABC ∆一定是钝角三角形 ②ABC ∆可能是直角三角形③ABC ∆可能是等腰三角形 ④ABC ∆不可能是等腰三角形 其中,正确的判断是A.①③B.①④C.②③D.②④二、填空题:本大题共5小题,每小题4分,共20分.11.运行如图所示的程序,输出的结果是 .12.三棱锥P ABC -中,PA ⊥底面ABC ,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于 .13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于 .14.如图,ABC ∆中,2AB AC ==,BC =D 在BC 边上,45ADC ∠=o ,则AD 的长度等于 .15.设V 是全体平面向量构成的集合,若映射f :V R →满足:对任意向量a=1 b=2 a=a+b PRINT a END A CB11(,)a x y =rV ∈,22(,)b x y V =∈r ,以及任意R λ∈,均有)()1()())1((b f a f b a f λλλλ-+=-+ 则称映射f 具有性质P .先给出如下映射:(1)1f :V R →,1()f m x y =-,(,)m x y V =∈;(2)2f :V R →,22()f m x y =-,(,)m x y V =∈;(3)3f :V R →,3()1f m x y =++,(,)m x y V =∈;,其中,具有性质P 的映射的序号为 .(写出所有具有性质P 的映射的序号)三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和3133S =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若函数()sin(2)f x A x ϕ=+(0A >,0p ϕπ<<<)在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.17.(本小题满分13分)已知直线l :y x m =+,m R ∈.(Ⅰ)若以点(2,0)M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程;(Ⅱ)若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线C :24x y =是否相切?说明理由.18.(本小题满分13分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3a y x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求a 的值(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.19.(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,3,4,5,6,7,8,其中5X ≥为标准A ,3X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准(Ⅰ)已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数学期望16EX =,求a ,b 的值;(Ⅱ)为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 3 46 3 47 5 3 48 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望.(Ⅲ)在(Ⅰ)、(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学; (2)“性价比”大的产品更具可购买性.20.(本小题满分14分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,四边形ABCD 中,AB AD ⊥,4AB AD +=,CD =45CDA ∠=o .(Ⅰ)求证:平面PAB ⊥平面PAD ;(Ⅱ)设AB AP =.①若直线PB 与平面PCD 所成的角为30o ,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由.21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分.(1)(本小题满分7分)选修4-2:矩阵与变换设矩阵⎪⎪⎭⎫ ⎝⎛=b a M 00(其中0a >,0b >).(Ⅰ)若2a =,3b =,求矩阵M 的逆矩阵1M -; (Ⅱ)若曲线C :221x y +=在矩阵M 所对应的线性变换作用下得到曲线1C :2214x y +=,求a ,b 的值. (2)(本小题满分7分)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为x y sin θθ⎧=⎪⎨=⎪⎩(θ为参数). (Ⅰ)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π,判断点P 与直线l 的位置关系; (Ⅱ)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.(3)(本小题满分7分)选修4-5:不等式选讲 设不等式211x -<的解集为M .(Ⅰ)求集合M ; A B C D P(Ⅱ)若a,b M+的大小.∈,试比较1ab+与a b。
2011年福建省普通高中毕业班质量检查(数学)福州地区分析报告
2011年福建省普通高中毕业班质量检查(数学)分析报告(福州地区)福州教育学院傅晋玖一、试卷特点2011年福建省普通高中毕业班质量检查数学试卷,以《课程标准》及《考试说明》为依据,顺应高考命题改革的方向,延续了近两年省检细腻、稳健、考查全面、注重立意、稳中见新的风格。
在强调基础,体现能力立意,突出核心内容、主干知识、数学思想方法考查的同时,注重从学科的本质、核心价值和总体高度把握试卷,强化层次间的区分,淡化层次内的选拔,突出考查了空间想像能力、运算求解能力、数据处理能力、阅读解构能力、逻辑推理能力和应用创新意识,适量的考查了实验性、应用性、创新性内容,对数学素养、学习潜能、直觉思维、方法迁移也进行了适当的渗透考查。
试题符合科学、公平、规范的原则,选材视角宽而合情、知识交汇新而合理,解题方式多而合法,无偏题、怪题,基本符合我省数学教育教学现实,整卷的选拔功能稍有加强,对高中数学教学的良性发展、对指导、促进、深化数学课程改革大有脾益。
1.三基内容全面考细致到位试卷较为全面地考查了考试说明中要求的内容,对各分支、章节均有所涉猎,并保持合适的比例,大部分试题从选材、组题、呈现方式、解题方式、交汇综合方式均立足基础、强调通法、注重本质与能力考查,自然大方、贴近学生实际,而又不乏新意,可谓细致细腻,有相当的亲和力。
理科试卷第1至8题、第11、12、13、16题及第17、18、20、21题的第一问,文科试卷中第1至11题、第13、14、15、17、19题及第18、21、22题的第一问均为基础题、常规题,从呈现、解法、阅读量、思维量、计算量、均与考生平日所见所思、所做所算相匹配,可谓“似曾相识”,有利于稳定考生情绪,发挥考生水平,在不失学科内含、思想内含和方法内含的同时,想给的给到,要考的考到,不规避、不刻意求新、不人为设障。
好!感觉到一种朴素、清新的美。
2.主干内容突出考注重综合试卷对支撑中学数学学科的八大主干内容(函数、导数、解几、立几、统计概率、数列、不等式、平面向量)的考查占全卷的90%左右,考点突出,布局合理,且进行了不同题型、不同层次、不同难度的综合,进行了自然合理、帖切融洽的交汇。
2011年福建高考理科数学试卷及答案解析(Word)
2011年普通高等学校招生全国统一考试【福建卷】(理科数学)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(每小题5分,共60分)【2011⋅福建理,1】1.i 是虚数单位,若集合=S {1,0,1}-,则( ). A .i S ∈ B .2i S ∈ C .3i S ∈ D .2S i∈ 【答案】B .【解析】2i 1S =-∈.故选B .【2011⋅福建理,2】2.若a R ∈,则2a =是()()120a a --=的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件 【答案】A .【解析】 当2a =时,()()120a a --=,所以2a =是()()120a a --=的充分条件, 但是()()120a a --=时,1a =或2a =,所以2a =不是()()120a a --=的必要条件.故选A . 【2011⋅福建理,3】3.若tan 3α=,则2sin 2cos aα的值等于( ). A .2 B .3 C .4 D .6 【答案】D . 【解析】22sin 22sin cos 2tan 6cos cos ===αααααα.故选D .【2011⋅福建理,4】4.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE ∆内部的概率等于( ).A .14 B .13 C .12 D .23【答案】C . 【解析】因为Δ12ABE ABCD S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABCD S P S ==.故选C .【2011⋅福建理,5】5.1⎰()2xe x dx +等于( ).A .1B .1e -C .eD .1e + 【答案】C . 【解析】()()11200210xxex dx e xe e e +=+=+--=⎰.故选C .【2011⋅福建理,6】6.()312x + 的展开式中,2x 的系数等于( ). A .80 B .40 C .20 D .10 【答案】B .【解析】 15C 2r r r r T x +=,令2r =,则2x 的系数等于225C 240=.故选B .【2011⋅福建理,7】7.设圆锥曲线Γ的两个焦点分别为1F ,2F ,若曲线Γ上存在点P 满足1PF :12F F :2PF 4:3:2=,则曲线Γ的离心率等于( ).A .1322或B .223或C .122或D .2332或 【答案】A .【解析】 因为1122::4:3:2PF F F PF =,所以设14PF λ=,123F F λ=,22PF λ=. 若Γ为椭圆,则1212242623PF PF a λλλF F c λ⎧+==+=⎪⎨==⎪⎩ , 所以12c e a ==.若Γ为双曲线,则1212242223PF PF a λλλF F c λ⎧-==-=⎪⎨==⎪⎩ , 所以32c e a ==.故选A .【2011⋅福建理,8】8.已知O 是坐标原点,点(1,1)A -若点(,)M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅u u u r u u u u r的取值范围是( ).A .[-1.0]B .[0.1]C .[0.2]D .[-1.2] 【答案】C .【解析】 设()()1,1,z OA OM x y x y =⋅=-⋅=-+u u u r u u u u r.作出可行域,如图.直线z x y =-+,即y x z =+经过()1,1B 时,z 最小,min 110z =-+=,y x z =+经过()0,2C 时,z 最大,max 022z =+=,所以OA OM ⋅u u u r u u u u r的取值范围是[]0,2.故选C .解析二:【2011⋅福建理,9】9.对于函数()sin f x a x bx c =++(其中,,a b R ∈,c Z ∈),选取,,a b c 的一组值计算()1f 和()1f -,所得出的正确结果一定不可能.....是( ). A .4和6 B ..3和1 C .2和4 D .1和2 【答案】D .【解析】 ()()()11sin1sin 12f f a b c a b c c +-=+++--+=,因为c ∈Z ,(1,1)(1,2)21BAOy C则()()11f f +-为偶数,四个选项中,只有D,123+=不是偶数.故选D .【2011⋅福建理,10】10.已知函数()xf x e x =+,对于曲线()y f x =上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是 ( ).A .①③B .①④C .②③D .②④ 【答案】B .【解析】设a b <.首先证明()()22f a f b a b f ++⎛⎫> ⎪⎝⎭.()()22f a f b a b f ++⎛⎫- ⎪⎝⎭222a b a b e a e b a b e +++++=--22a ba b e e e ++=-2220a b a b a b a be e eee+++≥⋅-=-=,当且仅当a b =时等号成立,由于a b <,所以等号不成立, 于是()()022f a f b a b f ++⎛⎫-> ⎪⎝⎭,()()22f a f b a b f ++⎛⎫> ⎪⎝⎭. ①设点(),A A A x y ,(),B B B x y ,(),C C C x y ,且,,A B C x x x 成等差数列,A B C x x x <<. 由()f x 是R 上的增函数,则A B C y y y <<, ②如图,D 为AC 的中点,过,,A B C 作x 轴的垂线,垂足依次为,,M N P . 因为2A CB x x x +=,所以D 在直线BN 上,作AE BN ⊥交BN 于E ,作BF CP ⊥交CP 于F . 因为()()22AC A CD f x f x y y y ++==,2AC B x x y f +⎛⎫= ⎪⎝⎭, 由①式,D B y y >,,D A DE y y =-,D B DB y y =-,由②,DE DB >,所以点B 在DE 的内部,因而90DBA DEA ∠>∠=︒,又CBA DBA ∠>∠,所以ABC ∆一定是钝角三角形.结论①正确.若ABC ∆是等腰三角形,因为D 为AC 的中点,则BD AC ⊥,因而//AC x 轴,这是不可能的,所以ABC ∆不是等腰三角形.结论④正确; 所以结论①,④正确.故选B.第Ⅱ卷(非选择题 共90分)二、填空题:(每小题4分,共16分)【2011⋅福建理,11】11.运行如图所示的程序,输出的结果是 .【答案】 3.【解析】 123a =+=.所以输出的结果是3.【2011⋅福建理,12】12.三棱锥P ABC -中,PA ⊥底面ABC ,3PA =,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于 .【解析】2Δ1123334ABC V S PA =⋅=⨯⨯⨯=ED BCA【2011⋅福建理,13】13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于 . 【答案】35. 【解析】所取出的2个球颜色不同的概率113225C C 233C 105P ⨯===. 【2011⋅福建理,14】14.如图,ABC ∆中,2AB AC ==,3BC =D 在BC 边上,ADC ∠=45o ,则AD 的长度等于 .2.【解析】解法1:由余弦定理2223cos 22223AC BC AB C AC BC +-===⋅⋅⨯⨯所以30C =︒. 再由正弦定理sin sin AD AC C ADC =∠,即2sin 30sin 45AD =︒︒,所以2AD = 解法2:作AE BC ⊥于E ,因为2AB AC ==,所以E 为BC 的 中点,因为23BC =3EC =. 于是221AE AC EC -=,因为ΔADE 为有一角为45︒的直角三角形.且1AE =,所以2AD =【2011⋅福建理,15】15.设V 是全体平面向量构成的集合,若映射:f V R →满足:对任意向量1122(,),(,),a x y V b x y V =∈=∈以及任意R λ∈,均有((1))()(1)(),f a b f a f b λλλλ=-=+-则称映射f 具有性质P .先给出如下映射:① 1:f V R → ()1f m x y =- (),m x y V =∈;② 2:f V R → ()2f m x y =+ (),m x y V =∈; ③ 3:f V R → ()31f m x y =++ (),m x y V =∈.其中,具有性质P 的映射的序号为 .(写出所有具有性质P 的映射的序号) 【答案】①③.【解析】设()11,a x y V =∈r,()22,b x y V =∈r ,则()()()()()()()112212121,1,1,1a b x y x y x x y y +-=+-=+-+-λλλλλλλλr r.对于①,()()()()()()1212111f a b x x y y +-=+--+-λλλλλλr r()()()11221x y x y =-+--λλ,()()()()()()112211f a f b x y x y +-=-+--λλλλr r,所以()()()()()11f a b f a f b +-=+-λλλλr r r r成立,①是具有性质P 的映射;对于②,()()()()()()21212111f a b x x y y +-=+-++-λλλλλλr r()()()()2121211x x y y =+-++-λλλλ()()()22221122121121x y x y x x =++-+-+-λλλλλλ,()()()()()()22112211f a f b x y x y +-=++--λλλλr r ,显然,不是对任意λ∈R ,()()()()()11f a b f a f b +-=+-λλλλr r r r成立,所以②不是具有性质P 的映射; 对于③,()()()()()()12121111f a b x x y y +-=+-++-+λλλλλλr r()()()112211x y x y =++-++λλ,()()()()()()11221111f a f b x y x y +-=+++-++λλλλr r()()()()112211x y x y =++-+++-λλλλ()()()112211x y x y =++-++λλ.所以()()()()()11f a b f a f b +-=+-λλλλr r r r成立,③是具有性质P 的映射.因此,具有性质P 的映射的序号为①、③.三、解答题:(本大题共6小题,共80分)【2011⋅福建理,16】16.(本小题满分13分)已知等比数列{}n a 的公比3q =,前3项和S 3=133. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 若函数()sin(2)(0,0)f x A x A p ϕϕπ=+><<<在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.【解析】本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想.(Ⅰ)由3q =,3133S =得()311313133a -=-,解得113a =.所以11211333n n n n a a q---==⨯=. (Ⅱ)由(Ⅰ),32333a -==,所以函数()f x 的最大值为3,于是3A =.又因为函数()f x 在6x π=处取得最大值,则sin(2)16πϕ⨯+=,因为0<<ϕπ,所以6=πϕ.函数()f x 的解析式为()3sin(2)6f x x π=+.【2011⋅福建理,17】17.(本小题满分13分)已知直线:l y x m =+,m R ∈.(Ⅰ) 若以点()2,0M 为圆心的圆与直线l 相切与点P ,且点P 在y 轴上,求该圆的方程; (Ⅱ) 若直线l 关于x 轴对称的直线为l ',问直线l '与抛物线2:4C x y =是否相切?说明理由. 【解析】本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.(Ⅰ)解法1:由题意,点P 的坐标为()0,m . 因为以点()2,0M 为圆心的圆与直线l 相切与点P ,所以MP l ⊥.01102MP l m k k -⋅=⋅=--,所以2m =. 点P 的坐标为()0,2.设圆的方程为()2222x y r -+=,则()()2202208r MP ==-+-=,所以,所求的圆的方程为()2228x y -+=. 解法2:设圆的方程为()2222x y r -+=,因为以点()2,0M 为圆心的圆与直线l 相切与点()0,P m ,所以224,20,2m r m r ⎧+=-+=解得2,2 2.m r =⎧⎪⎨=⎪⎩所以,所求的圆的方程为()2228x y -+=.(Ⅱ)解法1:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--.由24,,x y y x m ⎧=⎨=--⎩得2440x x m ++=, 2Δ4440m =-⨯=,解得1m =.所以,当1m =时,Δ0=,直线l '与抛物线2:4C x y =相切,当1m ≠时,Δ0≠,直线l '与抛物线2:4C x y =不相切.解法2:因为直线:l y x m =+,且直线l '与直线l 关于x 轴对称,则:l y x m '=--. 设直线l '与抛物线214y x =相切的切点为()00,x y , 由214y x =得12y x '=,则0112x =-,02x =-,()022y m m =---=-.所以切点为()2,2m --,窃电在抛物线214y x =上,则21m -=,1m =. 所以,当1m =时,直线l '与抛物线2:4C x y =相切,当1m ≠时,直线l '与抛物线2:4C x y =不相切.【2011⋅福建理,18】18.(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3ay x x =+--,其中36x <<,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ) 求a 的值;(Ⅱ) 若该商品的成品为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.【解析】本小题主要考查函数、导数等基础知识,考查运算求解能力、应用意识,考查函数与方程思想、数形结合思想、化归与转化思想. (Ⅰ)因为5x =时,11y =,由函数式210(6)3ay x x =+-- 得 11102a=+,所以2a =. (Ⅱ)因为2a =,所以该商品每日的销售量为2210(6)3y x x =+--,()36x <<. 每日销售该商品所获得的利润为()()()222310(6)2103(6)3f x x x x x x ⎡⎤=-+-=+--⎢⎥-⎣⎦,()36x <<.()()()()()()21062363064f x x x x x x ⎡⎤'=-+--=--⎣⎦.于是,当x 变化时,()f x ',()f x 的变化情况如下表:x()3,44 ()4,6()f x ' +-()f x单调递增极大值42单调递减由上表可以看出,4x =是函数在区间()3,6内的极大值点,也是最大值点.所以,当4x =时,函数()f x 取得最大值42.因此当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.【2011⋅福建理,19】19.(本小题满分13分)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,……,8,其中5X ≥为标准A ,3X ≥为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准.(Ⅰ) 已知甲厂产品的等级系数1X 的概率分布列如下所示:且1X 的数字期望16EX =,求,a b 的值;(Ⅱ) 为分析乙厂产品的等级系数2X ,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数2X 的数学期望. (Ⅲ) 在(Ⅰ)、(Ⅱ)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.【解析】本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想.(Ⅰ)因为16EX =,所以50.46780.16a b ⨯+++⨯=,即67 3.2a b +=, 又0.40.11a b +++=,所以0.5a b +=,解方程组67 3.2,0.5a b a b +=⎧⎨+=⎩解得0.3a =,0.2b =.(Ⅱ)由样本的数据,样本的频率分布表如下:2X3 4 5 6 7 8 f0.30.20.20.10.10.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数2X 的概率分布列如下表:2X3 4 5 6 7 8P 0.3 0.20.2 0.1 0.1 0.1所以230.340.250.260.170.180.1 4.8EX =⨯+⨯+⨯+⨯+⨯+⨯=. (Ⅲ)甲厂的产品的等级系数的数学期望为6,价格为6元/件,所以性价比为616=, 甲厂的产品的等级系数的数学期望为4.8,价格为4元/件,所以性价比为4.81.214=>. 所以,乙厂的产品更具可购买性.【2011⋅福建理,20】20.(本小题满分14分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,四边形ABCD 中,AB AD ⊥,4AB AD +=,2CD =,CDA ∠=45o .(Ⅰ) 求证:平面PAB ⊥平面PAD ; (Ⅱ) 设AB AP =.()i 若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;()ii在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.【解析】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.【解析二】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想.(Ⅰ)因为PA ABCD ⊥底面,AB ABCD ⊂底面,所以PA AB ⊥.又AB AD ⊥,PA AD A =∩,所以P AB AD ⊥面平,又P AB AB ⊂面平,P PAB AD ⊥面平面平.(Ⅱ)以A 为坐标原点,建立如图乙的空间直角坐 标系A xyz -.在平面ABCD 内,作//CE AB 交AD 于E . 则CE AD ⊥.在Rt ΔCDE 中,2sin 45212DE CD =︒=⋅=. 设AB AP t ==,则(),0,0B t ,()0,0,P t .由4AB AD +=,则4AD t =-,所以()0,3,0E t -,()0,4,0D t -,()1,3,0C t -.()1,1,0CD =-u u u r ,()0,4,PD t t =--u u u r,(i )设平面PCD 的法向量为(),,n x y z =r ,由n CD ⊥u u u r r ,n PD ⊥u u u r r 得0,0,n CD n PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u rr ()0,40,x y t y tz -+=⎧⎨--=⎩取x t =,则y t =,4z t =-.(),,4n t t t =-r, 又(),0,PB t t =-u u u r,由直线PB 与平面PCD 所成的角为︒30,得()22222241cos 60242t t n PB n PB t t t t -⋅︒===⋅++-⋅u u u r r u u u r r . 解得45t =或4t =(因为40,4AD t t =-><,故舍去) 所以45AB =. (ii )假设线段AD 上存在一个点G ,使得点G 到点,,,P B C D 的距离都相等,设()0,,0G m ,()04m t ≤≤-.则()1,3,0GC t m =--u u u r, ()0,4,0GD t m =--u u u r ,()0,,GP m t =-u u u r,则由GC GD =u u u r u u u r 得()()22134t m t m +--=--,即3t m =-,① 由GP GD =u u u r u u u r 得()2224t m m t --=+, ②从①,②消去t ,并化简得2340m m -+= ③ 方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.解法2:假设线段AD 上存在一个点G ,使得点G 到 点,,,P B C D 的距离都相等,由GC GD =得45GCD GDC ∠=∠=︒, 从而90CGD ∠=︒,则CG GD ⊥,设AB λ=,则由4AB AD +=,得4AD λ=-,3AG AD GD λ=-=-.在Rt ΔABG 中,()222223932122GB AB AG λλλ⎛⎫=+=+-=-+> ⎪⎝⎭与1GB GD ==矛盾,所以在线段AD 上不存在一个点G ,使得点G 到点,,,P B C D 的距离都相等.【2011⋅福建理,21】21.(本小题满分14分)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换设矩阵 00a M b ⎛⎫= ⎪⎝⎭(其中0a >,0b >).(I )若2a =,3b =,求矩阵M 的逆矩阵1M -;(II )若曲线22:1C x y +=在矩阵M 所对应的线性变换作用下得到曲线C ':2214x y +=,求,a b 的值.【解析】本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)设矩阵M 的逆矩阵11122x y Mx y -⎛⎫= ⎪⎝⎭,则11001MM -⎛⎫= ⎪⎝⎭, 因为2003M ⎛⎫=⎪⎝⎭,所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以121x =,120y =,230x =,231y =,即112x =,10y =,20x =.213y =, 所以1102103M -⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭. (Ⅱ)设曲线C 上的任意一点为(),P x y ,在矩阵M 所对应的线性变换作用下得到点(),P x y '''.则00a x x b y y '⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭,即,ax x by y'=⎧⎨'=⎩, 又点(),P x y '''在曲线22:14x C y '+=上,所以2214x y ''+=, 即222214a xb y +=为曲线22:1C x y +=的方程,则24a =,21b =, 又因为0,0a b >>,则2,1a b ==.(2)(本小题满分7分)选修4-4:坐标系与参数方程在直接坐标系xOy 中,直线l 的方程为40x y -+=,曲线C的参数方程为sin x ay a⎧=⎪⎨=⎪⎩.(I )已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π,判断点P 与直线l 的位置关系;(II )设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.【解析】本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)点P 的极坐标为(4,)2π,则直角坐标为()0,4,把()0,4P 代入直线l 的方程40x y -+=,因为0440-+=,所以点P 在直线l 上.(Ⅱ)因为点Q 是曲线C 上的一个动点,则点Q的坐标可设为,sin )Q αα. 点Q 到直线l 的距离为2cos()4)6d παπα++===++.所以当cos()16πα+=-时,d.(3)(本小题满分7分)选修4-5:不等式选讲 设不等式211x -<的解集为M . (I )求集合M ;(II )若,a b M ∈,试比较1ab +与a b +的大小.【解析】本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想. (Ⅰ)由|21|1x -<得1211x -<-<,解得01x <<, 所以{}01M x x =<<.(Ⅱ)因为,a b M ∈,则01a <<,01b <<,(1)()(1)(1)0ab a b a b +-+=-->,所以1ab a b +>+.。
2011年福建高考数学答案(理科)
绝密☆启用前2011年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷第3至6 页。
第Ⅱ卷第21题为选考题,其他题为必考题。
满分150分。
注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号,姓名”与考生本人准考证号,姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,考生必须将试题卷和答题卡一并交回。
参考公式: 样本数据x 1,x 2,…,x a 的标准差 锥体体积公式])()()[(122221x x x x x x nS n -++-+-=13V Sh =其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V=Sh 2344,3S R V R ππ==其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈ C . 3i S ∈ D .2S i∈2.若a ∈R ,则a=2是(a-1)(a-2)=0的 A .充分而不必要条件 B .必要而不充分条件C .充要条件 C .既不充分又不必要条件3.若tan α=3,则2sin 2cos aα的值等于 A .2 B .3 C .4 D .64.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C .12D .235.1⎰(e 2+2x )dx 等于A .1B .e-1C .eD .e+1 6.(1+2x )3的展开式中,x 2的系数等于 A .80B .40C .20D .107.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2 D .2332或 8.已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域21y 2x y x +≥⎧⎪≤⎨⎪≤⎩,上的一个动点,则OA ·OM的取值范围是 A .[-1.0] B .[0.1] C .[0.2] D .[-1.2]9.对于函数f (x )=asinx+bx+c (其中,a,b ∈R,c ∈Z ),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能.....是 A .4和6 B .3和1 C .2和4 D .1和210.已知函数f (x )=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是 A .①③ B .①④ C . ②③ D .②④2011年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类)注意事项: 用0.5毫米黑色签字笔在答题卡上书写答案,在试题卷上作答,答案无效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年福州市高中毕业班质量检查
数学理科试卷
(满分150分,考试时间120分钟)
参考公式:
样本数据x 1,x 2,… ,x n 的标准差
锥体体积公式
s=
222
121()()()n x x x x x x n
⎡⎤-+-++-⎣⎦… V=31Sh 其中x 为样本平均数 其中S 为底面面积,h 为高
柱体体积公式 球的表面积、体积公式
V=Sh
24S R =π,3
43
V R =
π 其中S 为底面面积,h 为高
其中R 为球的半径
一.选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是是正确的, 将正确答案填写在答题卷相应位置.) 1.如果复数z =(a 2-3a +2)+(a -1)i 为纯虚数,则实数a 的值 ( ).
A.等于1或2
B.等于1
C.等于2
D.不存在 2.曲线f (x )=x 3+x -2在0P 点处的切线平行于直线y =4x -1,则P 0点的坐标为( )
A.(1,0)或(-1,-4)
B.(0,1)
C.(1,0)
D.(-1,-4)
3. 已知数列{}n a 为等差数列,且1713212,tan()a a a a a π++=+则的值为( )
A.3
B.3-
C.3±
D.3
3
-
4. 给定下列四个命题:
①分别与两条异面直线都相交的两条直线一定是异面直线; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )
A. ①和②
B. ②和③
C. ③和④
D. ②和④ 5.某学校开展研究性学习活动,某同学获得一组实验数据如下表:
x 1.99 3 4 5.1 6.12 y
1.5
4.04
7.5
12
18.01
对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( )
俯视图
左视图
主视图
a
a a
D C
B A
A.y =2x -2
B.y =(12)x
C.y =log 2x
D.y =1
2
(x 2-1)
6.设22)1(,300
5,y x x y x y x y x ++⎪⎩
⎪⎨⎧≤≥+≥+-则满足约束条件的最大值为( )
A. 80
B.45
C.25
D.
172
7. 已知12,a a
均为单位向量,那么131,22a ⎛⎫= ⎪ ⎪⎝⎭
是
()
123,1a a +=
的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.某程序框图如图所示,则该程序运行后输出的S 的值为( ) A.1 B.
12
C.
14
D.
18
9.已知F 1、F 2为椭圆
2
2
12516
x y +=的左、右焦点,若M 为椭圆上 一点,且△MF 1F 2的内切圆的周长等于3π,则满足条件的点M 有( )个.
A.0
B.1
C.2
D.4
10.已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式
1212()[()()]0x x f x f x --<恒成立,则不等式f (1-x )<0的解集为( ).
A.(1,+∞)
B.(0,+∞)
C.(-∞,0)
D.(-∞,1)
二.填空题(本大题共5小题,每小题4分,共20分,将正确答案填写在答题卷相应位置.)
11.二项式10
112x ⎛
⎫- ⎪⎝⎭
的展开式中第六项的系数等于__________(用数字作答)
12. 在等比数列{}n a 中,首项=1a 32,()441
12a x dx =+⎰
,
则公比q 为 .
13.四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如右图所示,根据图中的信息,在四棱锥P ABCD -的任两个顶点的连线中,互相垂直的异面直线对数为 .
S =1,k =1
输出S
开始 否
是
k =k +1
S =2S
结束
k >2010?
S <1?
S =18
S
是 否
(第8题)
14.在区间[π,π]-内随机取两个数分别记为,a b ,则使得函数222()2f x x ax b π=+-+有零点的概率为 .
15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0—1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行. 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1 …… ……………………………………
三、解答题(本大题共6小题,共80分,解答应写在答题卷相应位置,要写出文字说明、证明过程或演算过程.)
16.(本小题满分13分) 已知函数31
()sin cos 22
f x x x ππ=
+, x R ∈. (Ⅰ)求函数()f x 的最大值和最小值;
(Ⅱ)设函数()f x 在[1,1]-上的图象与x 轴的交点从左到右分别为M 、N ,图象的最高
点为P,求PM 与PN
的夹角的余弦.
17.(本小题满分13分)
“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的. (Ⅰ)求出在1次游戏中玩家甲胜玩家乙的概率;
(Ⅱ)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列及其期望.
18.(本小题满分13分)
如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE //CF ,BC ⊥CF ,3AD =,EF =2,BE =3,CF =4.
(Ⅰ)求证:EF ⊥平面DCE ;
(Ⅱ)当AB 的长为何值时,二面角A-EF-C 的大小为60°. 19.(本小题满分13分)
已知点M(k,l )、P (m,n ),(klmn ≠0)是曲线C 上的两点,点M 、N 关于x 轴对称,直线MP 、NP 分别交x 轴于点E(x E ,0)和点F (x F ,0),
(Ⅰ)用k 、l 、m 、n 分别表示E x 和F x ;
(Ⅱ)当曲线C 的方程分别为:2
2
2
(0)x y R R +=> 、22
221(0)x y a b a b
+=>>时,探究
E F x x ⋅的值是否与点M 、N 、P 的位置相关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C 的方程为22(0)y px p =>时,探究E x 与F x 经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).
20.(本小题满分14分)
设函数f (x )=e x +sinx,g (x )=ax,F (x )=f (x )-g (x ). (Ⅰ)若x =0是F (x )的极值点,求a 的值;
(Ⅱ)当 a =1时,设P (x 1,f (x 1)), Q (x 2, g (x 2))(x 1>0,x 2>0), 且PQ //x 轴,求P 、Q 两点间的最短距离; (Ⅲ):若x ≥0时,函数y =F (x )的图象恒在y =F (-x )的图象上方,求实数a 的取值范围. 21.(本小题满分14分)本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4-2:矩阵与变换
已知二阶矩阵M 有特征值3λ=及对应的一个特征向量111⎡⎤
=⎢⎥⎣⎦
e ,并且矩阵M 对应的变
换将点(1,2)-变换成(9,15). 求矩阵M .
(2)(本小题满分7分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,已知曲线C 的参数方程是22sin ,
2cos x y αα
=+⎧⎨
=⎩(α是参数).
现以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,写出曲线C 的极坐标方程. (3)(本小题满分7分)选修4-5:不等式选讲 解不等式2142x x +-->.
D。