武汉市青山区2017-2018学年八年级下期中数学试卷含答案解析模板

合集下载

青山区2017~2018学年度下学期八年级期末测试数学试卷(1)

青山区2017~2018学年度下学期八年级期末测试数学试卷(1)

青山区2017~2018学年度下学期八年级期末测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.若代数式2-x 在实数范围内有意义,则x 的取值范围是( ) A .x ≥-2B .x >-2C .x ≥2D .x ≤22.下列各组数据中能作为直角三角形三边长的是( ) A .1、2、3B .1、1、3C .4、5、6D .1、3、23.下面给出的四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的度数之比,其中能判定四边形ABCD 是平行四边形的条件是( ) A .3∶4∶3∶4B .3∶3∶4∶4C .2∶3∶4∶5D .3∶4∶4∶34.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是s 甲2=0.90,s 乙2=1.22,s 丙2=0.43,s 丁2=1.68.在本次射击测试中,成绩最稳定的是( ) A .甲B .乙C .丙D .丁 5.如果直线y =kx +b 经过一、二、四象限,那么( ) A .k >0,b >0B .k >0,b <0C .k <0,b <0D .k <0,b >06.如图,在□ABCD 中,已知AD =12 cm ,AB =8 cm ,AE 平分∠BAD 交BC 于点E ,则CE 的长等于( ) A .2 cm B .4 cm C .6 cmD .8 cm7.童威周末坚持体育锻炼,某个周末他跑步到离家较远的和平公园打了一会篮球后散步回家,下面能反映当天他离家的距离y 与时间x 的函数关系的大致图形是( )8时间(小时)5 6 7 8 人数1015205 则这50名学生这一周在校的平均体育锻炼时间是( )A .6.2小时B .6.4小时C .6.5小时D .7小时9.设直线y =kx +6和直线y =(k +1)x +6(k 是正整数)及x 轴围成的三角形面积为S k (k =1、2、3、……8),则S 1+S 2+S 3+……+S 8的值是( ) A .227 B .463 C .16 D .1410.如图,矩形ABCD 中,AB =32,BC =6,P 为矩形内一点, 连接P A 、PB 、PC ,则P A +PB +PC 的最小值是( ) A .334+B .212C .632+D .54二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算333-的结果是___________12.直线y =-6x +5可由直线y =-6x 向上平移___________个单位长度得到 13.数据5、5、6、6、6、7、7的众数是___________14.如图,在□ABCD 中,AE ⊥BC 于点E ,F 为DE 的中点,∠B =66°,∠EDC =44°,则∠EAF 的度数为___________15.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长是___ 16.对于点P (a ,b )、Q (c ,d ),如果a -b =c -d ,那么点P 与点Q 就叫做等差点,例如:点P (4,2)、Q (-1,-3),因4-2=-1-(-3)=2,则点P 与点Q 就是等差点.如图,在矩形GHMN 中,点H (2,3)、N (-2,-3),点P 是直线y =x +b 上的任意一点(点P 不在矩形的边上).若矩形GHMN 的边上存在两个点与点P 是等差点,则b 的取值范围为______________ 三、解答题(共8题,共72分) 17.(本题8分)计算:(1) 2818+-(2) 3)64148(÷+18.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,△OAB 是等边三角形 (1) 求证:□ABCD 为矩形 (2) 若AB =4,求□ABCD 的面积19.(本题8分)“大美武汉,畅游江城”,某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1) 求被调查的学生总人数(2) 补全条形统计图,并求扇形统计图中表示“最想去景点D ”的扇形圆心角的度数 (3) 若该校共有1200名学生,请估计“最想去景点B “的学生人数20.(本题8分)如图,直线l 1:b x y +-=211分别与x 轴、y 轴交于点A 、B ,与直线l 2:y 2=x 交于点C (2,2)(1) 若y 1<y 2,请直接写出x 的取值范围 (2) 点P 在直线l 1:b x y +-=211上,且△OPC 的面积为3,求点P 的坐标21.(本题8分)如图,矩形ABCD 中,点E 、F 分别在边AB 与CD 上,点G 、H 在对角线AC 上,AG =CH ,BE =DF(1) 求证:四边形EGFH 是平行四边形 (2) 若EG =EH ,AB =8,BC =4,求AE 的长22.(本题10分)某工厂新开发生产一种机器,每台机器成本y (万元)与生产数量x (台)之间满足一次函数关系(其中10≤x ≤70,且为整数),函数y 与自变量x 的部分对应值如下表:x (单位:台) 10 20 30 y (单位:万元/台)605550(1) 求y 与x 之间的函数关系式(2) 市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系① 该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润(注:利润=售价-成本)② 若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?23.(本题10分)已知,在四边形ABCD中,点E、F分别为AD、BC的中点,连接EF(1) 如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为_________________(2) 如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?(3) 如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE.若AB=2,CD=22,BC=6,则OE=___________24.(本题12分)在平面直角坐标系中,点A、B分别是x轴正半轴与y轴正半轴上一点,OA =m,OB=n,以AB为边在第一象限内作正方形ABCD(1) 若m=4,n=3,直接写出点C与点D的坐标(2) 点C在直线y=kx(k>1且k为常数)上运动①如图1,若k=2,求直线OD的解析式2OA,求k的值②如图2,连接AC、BD交于点E,连接OE.若OE=2。

青山区2017—2018学年下学期八年级期中考试答案

青山区2017—2018学年下学期八年级期中考试答案

D
D C
∴BE=EO=2 在 Rt△OBE 中
由勾股定理得: BE2 + EO2 = OB2
∴BO= 2 2 …………(7 分)
∵AO=BO= 2 2
∴AE= 2 2 -2.…………(8 分)
注:本题其它解法参照评分
22.证明:(1)∵ AP 20 3 , BP 20 , AB 40
∴ AP2 BP2 AB2
2
2
∵∠OBC=∠OCB
∴OB=OC…………(2 分)
∴AC=BD…………(3 分)
∴□ABCD 是矩形…………(4 分)
A
E
O B
(2)∵四边形 ABCD 为矩形 ∴∠ABC=90°…………(5 分) 又∵∠CBE=3∠ABE
∴∠CBE= 3 ∠ABC =67.5° 4
∵BE⊥AC ∴∠OBC=∠OCB=22.5° ∴∠EOB=45°…………(6 分)
A
D
B
E
C
第 18 题图
19.(1)解:∵ a 2n 6 , b 2n 6 ∴ a2 b2 =( 2n 6)2 ( 2n 6)2 …………(2 分) =( 2n 6+ 2n 6)( 2n 6 2n + 6)…………(4 分)
= 2 2n 2 6 8 3n …………(6 分) (2)正整数 n 的最小值为 3 .…………(8 分)
11.2 ; 12. 41 ; 13.120°;14.2 ; 15. 4 5 ; 16. 10 或 26 . 5
三、解答题:(本大题共 8 个小题.共 72 分.解答应写出文字说明、证明过程或演算步骤.)
17.解:①原式= 3 2 4 2+ 2 …………(2 分) = 0 …………(4 分)

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。

2017-2018学年八年级(下)期中数学试卷(有答案和解析)(4)

2017-2018学年八年级(下)期中数学试卷(有答案和解析)(4)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.二次根式中,x的值可以是()A.﹣6B.﹣5C.﹣4D.﹣32.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,233.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>54.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时▱ABCD为矩形B.当AB=AD时▱ABCD为正方形C.当∠ABC=90°时▱ABCD为菱形D.当AC⊥BD时▱ABCD为正方形5.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x 之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)6.如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.7.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)8.如图,已知在正方形ABCD中,连接BD并延长至点E,连接CE,F、G分别为BE,CE的中点,连接FG.若AB=6,则FG的长度为()A.3B.4C.5D.69.某公司准备与汽车租凭公司签订租车合同,以每月用车路程xkm计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司10.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A .a +bB .a ﹣bC .D .二.填空题(共6小题,满分24分,每小题4分)11.如图,平行四边形ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,连接AP ,若S △APH =2,则S 四边形PGCD = .12.无论m 取什么实数,点A (m +1,2m ﹣2)都在直线l 上.若点B (a ,b )是直线l 上的动点,(2a ﹣b ﹣5)2017的值等于 .13.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE +PF = .14.如图,在△ABC 中,AB =AC ,D ,E ,F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ,②四边形ADEF 为菱形,③S △ADF :S △ABC =1:4.其中正确的结论是 .(填写所有正确结论的序号)15.在实数范围内,若有意义,则x 的取值范围是 .16.如图1,点E ,F ,G 分别是等边三角形ABC 三边AB ,BC ,CA 上的动点,且始终保持AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,y 关于x 的函数图象大致为图2所示,则等边三角形ABC 的边长为 .三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)218.解方程:(1)=(2)+1=.19.画出二次函数y=(x﹣1)2的图象.20.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.22.探寻“勾股数”:直角三角形三边长是整数时我们称之为“勾股数”,勾股数有多少?勾股数有规律吗?(1)请你写出两组勾股数.(2)试构造勾股数.构造勾股数就是要寻找3个正整数,使他们满足“两个数的平方和(或差)等于第三数的平方”,即满足以下形式:①2+2=2;或②2﹣2=2③要满足以上①、②的形式,不妨从乘法公式入手.我们已经知道③(x+y)2﹣(x﹣y)2=4xy.如果等式③右边也能写成2的形式,就能符合②的形式.因此不妨设x=m2,y=n2,(m、n为任意正整数,m>n),请你写出含m、n的这三个勾股数并证明它们是勾股数.23.如图,在▱ABCD中,E是AD的中点,延长CB到点F,使BF=,连接BE、AF.(1)完成画图并证明四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.24.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.(1)试判定四边形AEDF的形状,并证明你的结论.(2)若DE=13,EF=10,求AD的长.(3)△ABC满足什么条件时,四边形AEDF是正方形?25.小明在研究正方形的有关问题时发现有这样一道题:“如图①,在正方形ABCD中,点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD.你能够得出什么样的正确的结论?”(1)小明经过研究发现:EF⊥AE.请你对小明所发现的结论加以证明;(2)小明之后又继续对问题进行研究,将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件均不变,认为仍然有“EF⊥AE”.你同意小明的观点吗?若你同意小明的观点,请取图③为例加以证明;若你不同意小明的观点,请说明理由.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.二次根式中,x的值可以是()A.﹣6B.﹣5C.﹣4D.﹣3【分析】根据二次根式有意义的条件可得x的取值范围,据此可得.【解答】解:由二次根式的性质知x+3≥0,则x≥﹣3,在四个选项中只有﹣3符合题意,故选:D.【点评】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式中被开方数不小于0.2.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.3.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).4.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时▱ABCD为矩形B.当AB=AD时▱ABCD为正方形C.当∠ABC=90°时▱ABCD为菱形D.当AC⊥BD时▱ABCD为正方形【分析】直接利用矩形、菱形的判定方法分析得出答案.【解答】解:A、当OA=OB时,可得到▱ABCD为矩形,故此选项正确;B、当AB=AD时▱ABCD为菱形,故此选项错误;C、当∠ABC=90°时▱ABCD为矩形,故此选项错误;D、当AC⊥BD时▱ABCD为菱形,故此选项.故选:A.【点评】此题主要考查了矩形、菱形的判定,正确掌握相关判定方法是解题关键.5.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x 之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)【分析】直接利用长方形面积求法得出答案.【解答】解:∵长方形的周长为16cm,其中一边长为xcm,∴另一边长为:(8﹣x)cm,故y=(8﹣x)x.故选:C.【点评】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.6.如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.【分析】根据题意,ab>0,bc<0,则>0,<0,进而在一次函数y=﹣x+中,有﹣<0,<0,结合一次函数图象的性质,分析可得答案.【解答】解:根据题意,ab>0,bc<0,则>0,<0,∴在一次函数y=﹣x+中,有﹣<0,<0,故其图象过二三四象限,分析可得D符合,故选:D.【点评】本题考查一次函数的图象的性质,应该识记一次函数y=kx+b在k、b符号不同情况下所在的象限.7.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(8,0),点A的纵坐标是2,则点B的坐标是()A.(4,2)B.(4,﹣2)C.(2,﹣6)D.(2,6)【分析】首先连接AB交OC于点D,根据菱形的性质可得AB⊥OC,OD=CD=4,AD=BD=2,即可求得点B的坐标.【解答】解:如图,连接AB,交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(8,0),点A的纵坐标是2,∴OC=8,BD=AD=2,∴OD=4,∴点B的坐标为:(4,﹣2).故选:B.【点评】此题考查了菱形的性质与点与坐标的关系,此题难度不大,注意数形结合思想的应用.8.如图,已知在正方形ABCD中,连接BD并延长至点E,连接CE,F、G分别为BE,CE的中点,连接FG.若AB=6,则FG的长度为()A.3B.4C.5D.6【分析】根据三角形中位线定理可知FG=BC,由此即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=BC=6,∵F、G分别为BE,CE的中点,∴FG=BC=3,故选:A.【点评】本题考查正方形的性质、三角形的中位线定理等知识,几天倒计时灵活运用所学知识解决问题,属于中考常考题型.9.某公司准备与汽车租凭公司签订租车合同,以每月用车路程xkm计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.【点评】此题主要考查了函数图象,解决本题的关键是理解两个函数图象交点的意义.10.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A .a +bB .a ﹣bC .D .【分析】设CD =x ,则DE =a ﹣x ,求得AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,求得CD=,得到BC =DE =a ﹣=,根据勾股定理即可得到结论.【解答】解:设CD =x ,则DE =a ﹣x , ∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x , ∴x =,∴BC =DE =a ﹣=,∴BD 2=BC 2+CD 2=()2+()2=,∴BD =,故选:C .【点评】本题考查了勾股定理,全等三角形的性质,正确的识别图形是解题的关键. 二.填空题(共6小题,满分24分,每小题4分)11.如图,平行四边形ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,连接AP ,若S △APH =2,则S 四边形PGCD = 8 .【分析】根据平行四边形的判定定理得到四边形HPFD 、四边形PGCF 是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可. 【解答】解:∵EF ∥BC ,GH ∥AB ,∴四边形HPFD 、四边形PGCF 是平行四边形,∵S △APH =2,CG =2BG , ∴S △DPH =2S △APH =4,∴平行四边形HPFD 的面积=8,∴平行四边形PGCF 的面积=×平行四边形HPFD 的面积=4, ∴S 四边形PGCD =4+4=8, 故答案为:8.【点评】本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.12.无论m 取什么实数,点A (m +1,2m ﹣2)都在直线l 上.若点B (a ,b )是直线l 上的动点,(2a ﹣b ﹣5)2017的值等于 ﹣1 .【分析】由B 点坐标可找到a 和b 之间的关系,代入可求得2a ﹣b ﹣6的值,可求得答案. 【解答】解:∵令m =0,则B (1,﹣2);再令m =1,则B (2,0),由于m 不论为何值此点均在直线l 上,∴设此直线的解析式为y =kx +b (k ≠0),∴, 解得,∴此直线的解析式为:y =2x ﹣4, ∵B (a ,b )是直线l 上的点, ∴2a ﹣4=b ,即2a ﹣b =4,∴(2a ﹣b ﹣5)2017=(4﹣5)2017=﹣1. 故答案是:﹣1.【点评】本题主要考查函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数关系式是解题的关键.13.如图,矩形ABCD 面积为40,点P 在边CD 上,PE ⊥AC ,PF ⊥BD ,足分别为E ,F .若AC =10,则PE +PF = 4 .【分析】由矩形的性质可得AO =CO =5=BO =DO ,由S △DCO =S △DPO +S △PCO ,可得PE +PF 的值.【解答】解:如图,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形 ∴AO =CO =5=BO =DO ,∴S △DCO =S 矩形ABCD =10, ∵S △DCO =S △DPO +S △PCO ,∴10=+×OC ×PE∴20=5PF +5PE ∴PE +PF =4 故答案为:4【点评】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.14.如图,在△ABC 中,AB =AC ,D ,E ,F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ,②四边形ADEF 为菱形,③S △ADF :S △ABC =1:4.其中正确的结论是 ①②③ .(填写所有正确结论的序号)【分析】①根据三角形的中位线定理可得出AD =FE 、AF =FC 、DF =EC ,进而可证出△ADF ≌△FEC (SSS ),结论①正确;②根据三角形中位线定理可得出EF ∥AB 、EF =AD ,进而可证出四边形ADEF 为平行四边形,由AB =AC 结合D 、F 分别为AB 、AC 的中点可得出AD =AF ,进而可得出四边形ADEF 为菱形,结论②正确;③根据三角形中位线定理可得出DF ∥BC 、DF =BC ,进而可得出△ADF ∽△ABC ,再利用相似三角形的性质可得出=,结论③正确.此题得解.【解答】解:①∵D 、E 、F 分别为AB 、BC 、AC 的中点, ∴DE 、DF 、EF 为△ABC 的中位线,∴AD =AB =FE ,AF =AC =FC ,DF =BC =EC .在△ADF 和△FEC 中,,∴△ADF ≌△FEC (SSS ),结论①正确; ②∵E 、F 分别为BC 、AC 的中点, ∴EF 为△ABC 的中位线,∴EF ∥AB ,EF =AB =AD , ∴四边形ADEF 为平行四边形.∵AB =AC ,D 、F 分别为AB 、AC 的中点, ∴AD =AF ,∴四边形ADEF 为菱形,结论②正确; ③∵D 、F 分别为AB 、AC 的中点, ∴DF 为△ABC 的中位线,∴DF ∥BC ,DF =BC , ∴△ADF ∽△ABC ,∴=()2=,结论③正确.故答案为:①②③.【点评】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.15.在实数范围内,若有意义,则x 的取值范围是 x >﹣1 .【分析】根据负数没有平方根,求出x 的范围即可.【解答】解:在实数范围内,若有意义,则有x +1>0,解得:x >﹣1,故答案为:x>﹣1【点评】此题考查了二次根式有意义的条件,熟练掌握二次根式性质是解本题的关键.16.如图1,点E,F,G分别是等边三角形ABC三边AB,BC,CA上的动点,且始终保持AE=BF =CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象大致为图2所示,则等边三角形ABC的边长为2.【分析】设出等边三角形ABC边长和BE的长,表示等边三角形ABC的面积,讨论最值即可.【解答】解:设等边三角形ABC边长为a,则可知等边三角形ABC的面积为设BE=x,则BF=a﹣xS=△BEF易证△BEF≌△AGE≌△CFGy=﹣3()=当x=时,△EFG的面积为最小.此时,△EFG的边长为1EF等边三角形ABC的中位线,则AC=2故答案为:2【点评】本题是动点函数图象问题,考查了等边三角形的性质及判断.解答时要注意通过设出未知量构造数学模型.三.解答题(共9小题,满分86分)17.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.解方程:(1)=(2)+1=.【分析】(1)先去分母,化分式方程为整式方程,解方程即可,注意:需要验根;(2)先去分母,化分式方程为整式方程,解方程即可,注意:需要验根.【解答】解:(1)由原方程,得2(x+1)=4,2x=4﹣2,x=1,经检验,x=1是原方程的增根,所以原方程无解.(2)由原方程,得x﹣3+x﹣2=﹣3,2x=﹣3+5,x=1,经检验,x=1是原方程的根.【点评】考查了解分式方程.解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19.画出二次函数y=(x﹣1)2的图象.【分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【解答】解:列表得:如图:.【点评】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.20.在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.【分析】根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.【点评】本题考查了平行四边形的性质,矩形的判定,熟练掌握矩形的判定定理是解题关键.21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.【分析】由图中题意可先猜测∠AED=∠C,那么需证明DE∥BC.题中说∠1+∠2=180°,而∠1+∠4=180°所以∠2=∠4,那么可得到BD∥EF,题中有∠3=∠B,所以应根据平行得到∠3与∠ADE之间的关系为相等.就得到了∠B与∠ADE之间的关系为相等,那么DE∥BC.【解答】证明:∵∠1+∠4=180°(邻补角定义)∠1+∠2=180°(已知)∴∠2=∠4(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).【点评】本题是先从结论出发得到需证明的条件,又从所给条件入手,得到需证明的条件.属于典型的从两头往中间证明.22.探寻“勾股数”:直角三角形三边长是整数时我们称之为“勾股数”,勾股数有多少?勾股数有规律吗?(1)请你写出两组勾股数.(2)试构造勾股数.构造勾股数就是要寻找3个正整数,使他们满足“两个数的平方和(或差)等于第三数的平方”,即满足以下形式:①32+42=52;或②62﹣82=1O2③要满足以上①、②的形式,不妨从乘法公式入手.我们已经知道③(x+y)2﹣(x﹣y)2=4xy.如果等式③右边也能写成2的形式,就能符合②的形式.因此不妨设x=m2,y=n2,(m、n为任意正整数,m>n),请你写出含m、n的这三个勾股数并证明它们是勾股数.【分析】根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:(1)勾股数:3,4,5或6,8,10等.(2)(m2+n2)2=m4+2m2n2+n4(m2﹣n2)2=m4﹣2m2n2+n4,(m2+n2)2﹣(m2﹣n2)2=4m2n2=(2mn)2.∴(m2+n2)2﹣(2mn)2=(m2﹣n2)2,∴m2+n2,m2﹣n2,2mn为勾股数.故答案为:.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.23.如图,在▱ABCD中,E是AD的中点,延长CB到点F,使BF=,连接BE、AF.(1)完成画图并证明四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.【分析】(1)根据平行四边形的性质和判定证明即可;(2)过点A作AG⊥BF于G,利用平行四边形的性质和勾股定理解答即可.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又E是AD的中点,,∴AE∥BF,AE=BF,∴四边形AFBE是平行四边形;(2)过点A作AG⊥BF于G,由▱ABCD可知∠ABF=∠C=60°,又AB=6,AD=8,∴BG=3,FG=1,AG=,∴BE=AF=.【点评】本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.24.如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.(1)试判定四边形AEDF的形状,并证明你的结论.(2)若DE=13,EF=10,求AD的长.(3)△ABC满足什么条件时,四边形AEDF是正方形?【分析】(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO =FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)由(1)知菱形AEDF对角线互相垂直平分,故EO=EF=5,根据勾股定理得DO=12,从而得到AD=24;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.【解答】解:(1)四边形AEDF是菱形,∵AD平分∠BAC,∴∠1=∠2,又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中∵,∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形,又EF⊥AD,∴平行四边形AEDF为菱形;(2)∵四边形AEDF是菱形,EF=10,∴∠DOE=90°,OE=EF=5,AD=2OD,在Rt△DOE中,∵DE=13,∴OD===12,∴AD=2OD=24;(3)当△ABC中,∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).【点评】本题主要考查了菱形的判定和正方形的判定,关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.25.小明在研究正方形的有关问题时发现有这样一道题:“如图①,在正方形ABCD中,点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD.你能够得出什么样的正确的结论?”(1)小明经过研究发现:EF⊥AE.请你对小明所发现的结论加以证明;(2)小明之后又继续对问题进行研究,将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件均不变,认为仍然有“EF⊥AE”.你同意小明的观点吗?若你同意小明的观点,请取图③为例加以证明;若你不同意小明的观点,请说明理由.【分析】(1)延长AE交BC的延长线与点M,要证明EF⊥AE,只要证明△AFM是等腰三角形,再证明E是AM的中点就可以证得.(2)同(1),延长AE交BC的延长线与点M,要证明EF⊥AE,只要证明△AFM是等腰三角形,再证明E是AM的中点就可以证得.【解答】(1)证明:如图①,延长AE交BC的延长线与点M.∵在正方形ABCD中,AD∥BC,∠FAE=∠EAD,∴∠DAM=∠M,又∵DE=EC,∠AED=∠MEC,∴△AED≌△MEC,∴AE=EM,∠EAD=∠FAE=∠M,∴AF=FM,∴FE⊥AE.(2)解:EF⊥AE仍然成立.理由如下:如图③,延长AE交BC的延长线与点M,∵在菱形ABCD中,AD∥BC,∠FAE=∠EAD,∴∠DAM=∠M,又∵DE=EC,∠AED=∠MEC,∴△AED≌△MEC,∴AE=EM,∠EAD=∠FAE=∠M,∴AF=FM,∴FE⊥AE.【点评】本题主要考查了等腰三角形的性质:三线合一定理,把证明垂直的问题转化为证明等腰三角形底边上的中线的问题.。

【精品】八年级(下)期中考试数学试题(含答案)【3套】试题

【精品】八年级(下)期中考试数学试题(含答案)【3套】试题

八年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,共20.0分)1.下列根式不是最简二次根式的是()A. B. C. D.2.正方形的面积是4,则它的对角线长是()A. 2B.C.D. 43.能判定四边形ABCD为平行四边形的题设是()A. ,B. ,C. ,D. ,4.下列计算正确的是()A. B.C. D.5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A. B. C. D.6.矩形具有而一般的平行四边形不一定具有的特征()A. 对角相等B. 对角线相等C. 对角线互相平分D. 对边相等7.若=a,=b,则=()A. B. C. D.8.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.9.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A. 34B. 26C.D.10.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A. 7B. 9C. 10D. 11二、填空题(本大题共8小题,共24.0分)11.若有意义,则x的取值范围是______.12.如图,已知OA=OB,那么数轴上点A所表示的数是______.13.如图,▱ABCD中,AB的长为8,∠DAB的角平分线交CD于E,若DE:EC=3:1,则BC的长为______ .14.计算:= ______ .15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为______.16.如图,矩形ABCD的对角线相交于点O,AB=4cm,∠AOB=60°,则AC= ______ cm.17.如图,菱形ABCD的边长是4cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为______cm2.18.观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来______.三、计算题(本大题共2小题,共20.0分)19.计算:(1)(-4)-(3-2)(2).20.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?四、解答题(本大题共4小题,共36.0分)21.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图甲,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图乙所示的分割线,拼出如图丙所示的新的正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的小正方形,排列形式如图丁,请把它们分割后拼接成一个新的正方形.要求:在图丁中画出分割线,并在图戊的正方形网格图(图中的每一个小正方形的边长均为1)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.22.如图,▱ABCD中,点E,F分别在BC,AD上,且AF=CE,求证:AE=CF.23.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠BOC=120°,AC=6,求:(1)AB的长;(2)矩形ABCD的面积.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)答案和解析1.【答案】D【解析】解:=.故选D根据最简二次根式的判断标准即可得到正确的选项.此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.【答案】C【解析】解:设正方形的对角线为x,∵正方形的面积是4,∴边长的平方为4,∴由勾股定理得,x==2.故选C.设正方形的对角线为x,然后根据勾股定理列式计算即可得解.本题考查了勾股定理,正方形的性质,熟记定理和性质是解题的关键.3.【答案】B【解析】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB=CD,AD=BC判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.4.【答案】C【解析】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.此题主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行根式的运算时要先化简再计算可使计算简便.5.【答案】C【解析】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6.【答案】B解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选:B.举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.本题考查了对矩形的性质和平行四边形的性质的理解和掌握,主要检查学生是否能掌握矩形和平行四边形的性质,此题比较典型,但是一道容易出错的题目.7.【答案】C【解析】解:=====,故ABD错误,C正确.故选C.先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.本题考查了二次根式的性质和化简,注意被开方数是小数的要化成分数计算,且保证分母是完全平分数,根据=|a|进行化简..8.【答案】B【解析】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选:B.设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.9.【答案】D【解析】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.10.【答案】D【解析】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.根据勾股定理求出BC的长,根据三角形的中位线定理得到HG=BC=EF,EH=FG=AD,求出EF、HG、EH、FG的长,代入即可求出四边形EFGH的周长.本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解此题的关键.11.【答案】x≥【解析】解:要是有意义,则2x-1≥0,解得x≥.故答案为:x≥.根据二次根式的定义可知被开方数必须为非负数,列不等式求解.本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.12.【答案】-【解析】解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是-.故答案为:-.首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是-.本题主要考查了勾股定理的应用,解题的关键在于熟练运用勾股定理并注意根据点的位置以确定数的符号.13.【答案】6【解析】【分析】利用平行四边形的性质,首先证明△ADE是等腰三角形,求出DE即可解决问题.本题考查平行四边形的性质,等腰三角形的判定、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=8,AD=BC,∴∠DEA=∠EAB,∵∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE,∵DE:EC=3:1,∴DE=6,∴BC=AD=DE=6.故答案为6.14.【答案】【解析】【分析】除以一个数相当于乘以这个数的倒数,按照顺序运算.主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.【解答】解:=××=.故答案为.15.【答案】25解:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.故答案为25.根据题意仔细观察可得到正方形A,B,C,D的面积的和等于最大的正方形的面积,已知最大的正方形的边长则不难求得其面积.此题结合正方形的面积公式以及勾股定理发现各正方形的面积之间的关系.16.【答案】8【解析】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OD=OB,∴OA=OB,∵∠AOB=60°,∴△ABO是等边三角形,∴OA=AB=4cm,∴AC=2OA=8cm,故答案为8.根据等边三角形的性质首先证明△AOB是等边三角形即可解决问题.本题考查矩形的性质、等边三角形的判定等知识,解题的关键是发现△AOB是等边三角形,属于基础题,中考常考题型.17.【答案】8解:∵四边形ABCD是菱形,∴AD=AB=4,∵AE=EB=2,∵DE⊥AB,∴∠AED=90°在Rt△ADE中,DE==2,∴菱形ABCD的面积=AB•DE=4•2=8,故答案为8.利用勾股定理求出DE,根据菱形ABCD的面积=AB•DE计算即可.本题考查菱形的性质,勾股定理,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.18.【答案】【解析】解:=(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.根据所给例子,找到规律,即可解答.本题考查了实数平方根,解决本题的关键是找到规律.19.【答案】解:(1)原式=4--+=3;(2)原式=(2+4)(-2)-(2-2+3)=2(+2)(-2)-(5-2)=2×(2-12)-5+2=-20-5+2=-25+2.【解析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后利用平方差公式和完全平方公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25-x)2,x=10.故:E点应建在距A站10千米处.【解析】关键描述语:产品收购站E,使得C、D两村到E站的距离相等,在Rt△DAE和Rt△CBE中,设出AE的长,可将DE和CE的长表示出来,列出等式进行求解即可.本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.21.【答案】解:如图所示:.【解析】由10个小正方形拼成的一个大正方形面积为10,边长为,由=画分割线.本题考查了作图的运用及设计作图.根据作图前后,图形的面积保持不变,根据矩形及正方形的面积计算公式,设计作图方法.22.【答案】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥CE.又∵AF=CE,∴四边形AECF是平行四边形,∴AE=CF.【解析】由四边形ABCD是平行四边形,可得AF∥CE,又AF=CE,所以四边形AECF是平行四边形.则该平行四边形的对边相等:AE=CF.本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23.【答案】解:(1)∵四边形ABCD是矩形,∴OB=OC,∠ABC=90°,又∵∠BOC=120°,∴∠OBC=∠OCB=30°,∴AB=AC=×6=3;(2)∵AB2+BC2=AC2,∴BC==3,∴矩形ABCD的面积=AB×BC=3×3=9.【解析】(1)根据OB=OC,∠ABC=90°,以及∠BOC=120°,可得出∠OBC=∠OCB=30°,进而得到AB=AC=3;(2)根据勾股定理即可得出BC==3,进而得出矩形ABCD的面积.本题主要考查了矩形的性质以及勾股定理的运用,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.24.【答案】3.5 2【解析】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.人教版八年级(下)期中模拟数学试卷【含答案】一.选择题:(每小题3分,共30分)1.下列式子中,是二次根式的是( )A B D2.要使式子有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤23.下列二次根式中,是最简二次根式的是( )A.xy 2B.2abC.21 D. 4.下列二次根式,不能与12合并的是( ) A.48 B.18 C.311 D.75- 5.下列运算正确的是( )=123= C =2D =6.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8 B.4,8,10 C.6,8,10 D.8,10,127.不能判定四边形ABCD 为平行四边形的条件是( )A. AB ∥CD ,AD=BCB. AB ∥CD ,∠A=∠CC. AD ∥BC ,AD=BCD. ∠A=∠C ,∠B=∠D8. 如下页图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )(A )4 cm (B )5 cm (C )6 cm (D )10 cm9.如下图所示:是一段楼梯,高BC 是3m ,斜边AC 是5m ,如果在楼梯上铺地毯,那么至少需要地毯( ) A.5m B.6m C.7m D.8m10.如下图,在底面周长为12,高为8的圆柱体上有A,B 两点,则AB 之间的最短距离是( )A .10B .8C .5D .4二、填空题(每小题4分,共20分)11.在ABCD 中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.12.如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm13.化简= ;0,0)x y >> = . 14.,则它的斜边长为 cm ,面积为 2cm .15.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为 .三、解答题(共50分)16.计算:(每小题4分,共8分)()1()2-17.(7分)如图,利用尺规,在△ABC 的边AC 上方作∠CAE=∠ACB,在射线AE 上截取AD=BC ,连接CD ,并证明CD ∥AB 。

湖北省武汉市青山区2018-2019学年八年级下学期期中数学试题及解析

湖北省武汉市青山区2018-2019学年八年级下学期期中数学试题及解析

青山区2018-2019学年度第二学期八年级期中测试数学试卷青山区教育局数研室命制一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列二次根式中,属于最简二次根式的是( )A. B. C. D. 【答案】A【解析】【分析】根据最简二次根式的定义,依次作出判断即可.【详解】解:AB . =C 被开方数含有开的尽的因数,故该选项错误;D =,被开方数含有分母,故该选项错误. 故选:A .【点睛】本题考查最简二次根式的判别.最简二次根式必须满足两个条件:①被开方数中不能含有分母;②被开方数不能含有开得尽的因数或因式.2.在实数范围内有意义,则a 的取值范围是( )A. 0a >B. 5a >C. 5a ≥D. 5a ≤ 【答案】D【解析】【分析】根据二次根式有意义被开方数是非负数列出关于a 的不等式,求解即可.在实数范围内有意义,∴50a -≥,即5a ≤.故选:D .【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解决此题的关键.3.在ABCD Y 中,100C ∠=o ,则A ∠的度数为( )A. 100oB. 160oC. 80oD. 60o【答案】A【解析】【分析】可知∠A 和∠C 是ABCD Y 的一组对角,由平行四边形的对角相等即可得出结果.【详解】解:∵四边形ABCD 是平行四边形, ∴∠A=∠C=100°;故选:A . 【点睛】本题考查了平行四边形的性质.熟记平行四边形的对角相等是解决问题的关键.4.下列计算正确的是( )A. 4812+=B. 2332-= C. 2222+=D. 2733= 【答案】D【解析】【分析】 按照二次根式的加、减法和化简二次根式依次对等式左边计算,结果与右边相等的即为正确答案.【详解】解:A .48222+=+,1223=,左边≠右边,故该选项错误;B .23332-=≠,故该选项错误;C .2222+≠,故该选项错误;D .279333=⨯=,故该选项正确. 故选:D . 【点睛】本题考查二次根式的加减法,化简二次根式.二次根式进行加减运算时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并,被开方数不同的二次根式不能合并. 5.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( ) A. AB ∥DC B. AC=BD C. AC ⊥BD D. OA=OC【答案】C【解析】矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.所以选项A ,B ,D 正确,C 错误.故选C.6.下列说法中不能推出ABC V 是直角三角形的是( )A. 222a c b -=B. ::1:2:3A B C ∠∠∠=C. ::1:2:3a b c =D. C A B ∠=∠-∠【答案】C【解析】【分析】A 、C 可借助勾股定理的逆定理判断;B 、D 可分别求出各个角的度数,根据有一个角是90°的三角形是直角三角形进行判断.【详解】解:A .由222a c b -=可得222c b a +=,故能推出△ABC 是直角三角形,不符合题意; B . ∵::1:2:3A B C ∠∠∠=,设,A x ∠=则2,3B x C x ∠=∠=∵180A B C ∠+∠+∠=︒,即23180x x x ++=︒,解得30x =︒,故30,A ∠=︒则60,90B C ∠=︒∠=︒,能推出△ABC 是直角三角形,不符合题意;C .∵::1:2:3a b c =,∴2,3b a c a ==,∴2222245a b a a a +=+=,229c a =,即222a b c +≠,不能推出△ABC 是直角三角形,符合题意;D .∵C A B ∠=∠-∠,180A B C ∠+∠+∠=︒∴180C C ∠+∠=︒,即90C ∠=︒,能推出△ABC 是直角三角形,不符合题意;故选:C .【点睛】本题考查勾股定理的逆定理,三角形内角和定理.已知三角形三边的长,只要利用勾股定理的逆定理即可判断三角形是否为直角三角形;若已知角,则只要有一个角等于90°即可判断三角形是直角三角形.7.下列条件中,能推出ABCD Y 为正方形的是( )A. AB BC =B. AC BD =C. AC 平分BAD ∠D. ,AC BD ⊥且90BAD o ∠=【答案】D【解析】【分析】画出草图,依据正方形的判定定理依次对各个选项进行分析即可;【详解】解:如下图,A .∵AB BC =,∴ABCD Y 为菱形,故该选项不符合题意;B .∵AC BD =,∴ABCD Y 为矩形,故该选项不符合题意;C .∵AC 平分BAD ∠,∴∠DAC=∠BAC ,∵ABCD Y 中AD//BC ,∴∠DAC=∠ACB ,∴∠BAC=∠ACB ,∴AB BC =,∴ABCD Y 为菱形,故该选项不符合题意;D .∵AC BD ⊥,∴ABCD Y 为菱形,∵90BAD ∠=︒,∴菱形ABCD 为正方形,符合题意.故选:D .【点睛】本题考查平行四边形的性质,正方形的判定定理.熟记正方形的判定定理,并能结合题意灵活运用是解题关键.8.如图,若将四根木条钉成的矩形木框变形为ABCD Y 的形状,并使其面积变为矩形面积的一半,则ABCD Y 的最小内角的度数为( )A. 20oB. 30oC. 45oD. 60o【答案】B【解析】【分析】 要使其面积为矩形面积的一半,平行四边形ABCD 的高必须是矩形宽的一半,根据直角三角形中30°的角对的直角边等于斜边的一半,可知这个平行四边形的最小内角等于30°.【详解】解:如图,过点A 作AE ⊥BC 于点E ,∵平行四边形的面积为矩形的一半且同底BC ,∴平行四边形ABCD 的高AE 是矩形宽AB 的一半.在Rt △ABE 中,12AE AB =, ∴∠ABC=30°.故选:B .【点睛】本题考查考查矩形的性质,平行四边形的面积公式和基本性质,含30°角的直角三角形.平行四边形的面积等于底×高.9.如图,四边形ABCD 中,,,,AC a BD b AC BD ==⊥顺次连接四边形ABCD 各边中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D ...如此进行下去,得到四边形.n n n n A B C D 则下列结论正确的个数有( )①四边形1111D C B A 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长为4a b +; ④四边形n n n n A B C D 的面积是12n ab +.A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形A n B n C n D n的面积与四边形ABCD的面积间的数量关系来求其面积.【详解】解:如下图,连接连接A1C1,B1D1,∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形,∵AC丄BD,∴四边形A1B1C1D1是矩形,故①正确;∴B1D1=A1C1(矩形的两条对角线相等);∴A 2D 2=C 2D 2=C 2B 2=B 2A 2(中位线定理),∴四边形A 2B 2C 2D 2是菱形;依次类推,可知当n 为奇数时四边形A n B n C n D n 是矩形,当n 为偶数时四边形A n B n C n D n 是菱形,故②正确; 根据中位线的性质可知,553311553311111111,248248A B A B A B AC B C B C B C BD ======, ∴四边形A 5B 5C 5D 5的周长是12()84a b a b +⨯+=, 故③正确; ∵四边形ABCD 中,AC=a ,BD=b ,且AC 丄BD ,∴S 四边形ABCD =ab÷2; 由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形A n B n C n D n 的面积是12n ab +, 故④正确;综上所述,①②③④正确.故选:A .【点睛】本题考查中点四边形,中位线定理,菱形的性质和判定,矩形的性质和判定.理解三角形的中位线平行于第三边且等于第三边的一半是解题关键.10.如图,在矩形ABCD 中,25,4,BC AB O ==为边AB 的中点,P 为矩形ABCD 外一动点,且90APC ∠=o ,则线段OP 的最大值为( )A. 53+B. 35C. 452D. 231【答案】B【解析】【分析】连接AC ,取AC 的中点E ,根据矩形的性质求出AC ,OE ,再根据直角三角形斜边上的中线等于斜边的一半可得12PE AC =,然后根据三角形的任意两边之和大于第三边可得O 、E 、P 三点共线时OP 最大. 【详解】解:如图,连接AC ,取AC 的中点E ,∵矩形ABCD 中,25, 4BC AB ==,O 为AB 的中点,2216,52AC AB BC OE BC ∴=+=== ∵AP ⊥CP , 116322PE AC ∴==⨯=, 由三角形的三边关系得,O 、E 、P 三点共线时OP 最大,此时 53OP =最大故选:B .【点睛】本题考查了矩形的性质、三角形的三边关系、勾股定理、中位线定理.能正确构造辅助线,并根据三角形三边关系确定OP 最大值是解题关键.二、填空题(每题3分,满分18分,下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置.将答案填在答题纸上)11.()22-= _____________.【答案】2【解析】【分析】根据开平方运算的法则计算即可.【详解】()22-=2.故答案为:2.【点睛】本题考查了实数的运算-开方运算,比较简单,注意符号的变化.12.如图,数轴上点O 对应的数是0,点A 对应的数是3,AB ⊥OA ,垂足为A ,且AB =2,以原点O 为圆心,以OB 为半径画弧,弧与数轴的交点为点C ,则点C 表示的数为_____.【答案】13【解析】【分析】首先利用勾股定理计算出OB 的长,然后再由题意可得BO=CO ,进而可得CO 的长.【详解】∵数轴上点A 对应的数为3,∴AO =3,∵AB ⊥OA 于A ,且AB =2,∴BO =22OA AB +=2223+=13,∵以原点O 为圆心,OB 为半径画弧,交数轴于点C ,∴OC 的长为13,故答案为:13.【点睛】此题主要考查了实数与数轴,勾股定理,关键是利用勾股定理计算出BO 的长.13.如图,在ABCD Y 中,对角线,AC BD 相交于点O ,且,AD CD ≠过点O 作OM AC ⊥交AD 于点,M 连接,CM 若ABCD Y 的周长为16.则DCM △的周长为_______.【答案】8【解析】【分析】由条件可证得OM 为线段AC 的垂直平分线,可求得AM=MC ,由ABCD Y 的周长为16可得AD+DC=8,即可求出DCM △的周长.【详解】解:∵四边形ABCD 为平行四边形,∴AO=OC ,∵OM ⊥AC ,∴MO 垂直平分线段AC ,∴AM=CM ,∵ABCD Y 的周长为16,∴2(AD+CD )=16,即AD+CD=8,∴CM+MD+CD=AM+MD+CD=AD+CD=8,即DCM △的周长为8,故答案为:8.【点睛】本题主要考查平行四边形的性质,垂直平分线的性质和判定.掌握平行四边形的对边相等、对角线互相平分是解题的关键.14.已知n n 的最小值为_______.【答案】13【解析】【分析】先把被开方数分解质因数,只要取的n 的值能全部开出来即可.==∵n∴13n 应该能被开方,即n 的最小值是13,故答案为:13.【点睛】本题考查了二次根式的性质和定义.能熟记二次根式的性质是解此题的关键.15.以正方形ABCD 的边AB 为边作等边三角形ABE,连接,DE 则DEB ∠的度数为______.【答案】45o 或135o【解析】分析】解答本题时要考虑两种情况,E 点在正方形内和外两种情况,由正方形和等边三角形的性质容易得出结果.【详解】解:如下图,当E 点在正方形外部时,∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90°,∵△ABE 是等边三角形,∴AE=AB ,∠BAE=∠BEA=60°,∴AD=AE ,∠DAE=150°,∴∠AED=∠ADE=12(180°-∠DAE )=15°, ∴∠DEB=∠BEA-∠AED=60°-15°=45°;如下图,当E 点在正方形内部时,∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90°,∵△ABE 是等边三角形, ∴AE=AB ,∠BAE=∠BEA=60°,∴AD=AE ,∠DAE=30°,∴∠AED=∠ADE=12(180°-∠DAE )=75°, ∴∠DEB=∠BEA+∠AED=60°+75°=135°.综上所述∠DEB 的度数为45°或135°,故答案为:45°或135°.【点睛】本题考查正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理.熟练掌握正方形和等边三角形的性质,能根据题意画出图形,通过进行分类讨论得出结果是解题的关键. 16.如图,Rt ABC V 中,90,12,16,ACB AC AB ∠=︒==分别以AB AC BC 、、为边在AB 的同侧作正方形ABDE ACFG BCIH 、、,则图中阴影部分的面积之和为_______.【答案】727【解析】【分析】过D作BF的垂线交BF于N,连接DI,通过证明S1+S2+S3+S4=Rt△ABC的面积×3,依此即可求解.【详解】解:过D作BF的垂线交BF于N,连接DI,∵四边形ACFG、四边形ABDE和四边形BCIH为正方形,∴GA=AC=GF,∠G=∠ABD=90°,AE=AB=BD,BC=CI,∠H=∠ICB=90°,∵DN⊥BF,∴∠DNB=90°,∠NDB+∠NBD=90°,又∵∠ABD=∠NBA+∠NBD=90°,∴∠NBA=∠NDB,在△ACB和△BND中∵90 DNB ABDNBA NDBAB BD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACB≌△BND(AAS),∴BC=DN=IC,BN=AC,又∵∠DNB=∠ICB=90°,∴DN∥CI,∴四边形DNCI是平行四边形,且平行四边形DNCI是矩形,∴∠DIC=90°,∴D 、I 、H 三点共线,∵∠ACB=90°,∴∠G=∠ACB=90°,在Rt AGE ∆和Rt ACB ∆中∵AG AC AE AB =⎧⎨=⎩∴Rt AGE ∆≌Rt ACB ∆(HL )∴GE=BC ,同理可证Rt DHB ∆≌Rt ACB ∆,∵∠BDE=∠ICB=90°,∴∠DBM+∠DMB=90°,∠DBM+∠AOB=90°,∴∠DMB=∠AOB ,∴∠EMF=∠DOI ,在△MND 和△BCO 中,∵90DNM BCO DMB AOB DN BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△MND ≌△BCO ,∵DI=BN-BC,EF=GF-GE,∴EF=DI ,在△EFM 和△DIO 中∵90F DIO EMF DOI EF DI ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△EFM ≌△DIO ,∵90,12,16,ACB AC AB ∠=︒==∴BC =∴Rt △ABC 的面积=1122创= ∴S 1+S 2+S 3+S 4=S 1+S 3+(S 2+S 4),=Rt △ABC 的面积+Rt △ABC 的面积+Rt △ABC 的面积=Rt △ABC 的面积×3=3故答案为:【点睛】本题考查以直角三角形三边为边长的图形面积,正方形的性质,全等三角形的性质和判定,勾股定理.熟练掌握相关定理,并能依据定理证明三角形全等,将阴影部分面积转化为Rt △ABC 的面积×3是解题关键. 三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(1(2)(÷【答案】(1(2)22-. 【解析】【分析】 (1)先分别对二次根式进行化简,再合并同类二次根式即可;(2)用括号内两项分别除以,再将结果相减即可.【详解】解:(1)原式=(2)原式==2- 【点睛】本题考查二次根式加减运算,二次根式的除法运算.(1)二次根式进行加减运算时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;(2)多项二次根式除以单项二次根式一般转化为单项二次根式除以单项二次根式进行计算.18.如图,在ABCD Y 中,对角线,AC BD 交于点O ,且OA OB =.(1)求证:ABCD Y 是矩形;(2)点E 在BA 延长线上,且,AE AB =连接,DE 求证:DE AC =.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据对角线相等的平行四边形是矩形即可证明;(2)证明四边形CAED 是平行四边形即可证明.【详解】()1Q 四边形ABCD 是平行四边形,OA OC OB OD ∴==OA OB =QDB AC ∴=ABCD ∴Y 是矩形.()2∵四边形ABCD 是平行四边形,∴CD ∥AB 即CD ∥AE ,CD=AB ,AE AB =Q ,∴AE=CD ,∴四边形CAED 是平行四边形,DE AC ∴=.【点睛】本题考查平行四边形的性质和判定,矩形的判定.熟练掌握相关定理,并能结合题意灵活运用是解决此题的关键.19.喜迎军运会,青山区加大绿化力度,和平公园有一块如图所示的四边形空地,ABCD 现计划在空地上种植草皮,经测量3,AB m BC =4,12,m CD m ==13,90DA m ABC =∠=︒,若每平方米草皮需要200元,求这块地种植草皮需要投入多少元?【答案】这块地种植草皮需要投入7200元.【解析】【分析】在Rt CBA V 中,先根据勾股定理求出AC 的长度,再根据勾股定理的逆定理证明△ACD 为直角三角形,根据四边形面积等于两直角三角形面积和即可计算面积,由面积可计算投入.【详解】解:∵3,AB m BC =4,12,m CD m ==13,90DA m ABC =∠=︒,∴Rt CBA V 中,225AC BC BA m =+=,222169,169CD CA AD +==Q ,222CD CA AD ∴+=,∴DCA ∆为直角三角形,90DCA ∠=o ,DCA CBA S S S =+V V 总115123422=⨯⨯+⨯⨯ 236m =,362007200⨯=(元),故这块地种植草皮需要投入7200元.【点睛】本题考查勾股定理和勾股定理的逆定理.本题中容易忽略利用勾股定理逆定理证明DCA ∆为直角三角形这一步骤,需注意.20.如图,在平面直角坐标系中,点4(0)A ,,点()4,0B -.(1)①画出线段AB 关于y 轴对称的线段AC ,则点C 的坐标为 ;②将线段AB 平移至CD ,其中点A 与点C 对应,画出线段,CD 并写出点D 的坐标;(2)点M 在(1)中四边形ABDC 边DC 上,且2,DM N =是对角线AD 上--动点,则CN MN +的最小值为 .【答案】(1)①()4,0;②画出线段CD 见解析,()0,4D -;(2)6.【解析】【分析】(1)①可知B 和C 是一组对应点,根据关于y 轴对称的点横坐标互为相反数,纵坐标相同即可得出C 点坐标同时画线段AC ;②根据点A 与点C 对应,确定平移方式,由点B 与点D 对应,即可写出D 点坐标同时画出线段CD ;(2)根据B 和C 关于y 轴对称,CN MN +的最小值为线段BM ,根据勾股定理求出BM 即可.【详解】解:(1)①∵线段AB 关于y 轴对称的线段AC ,()4,0B -,∴()4,0C ,线段AC 见图1,故答案为:()4,0;②∵点A 与点C 对应,4(0)A ,,()4,0C , ∴平移方式为向下平移4单位,向右平移4单位,∴()4,0B -的对应点D 点的坐标为()0,4-,平移后的线段CD 见图1:(2)如下图2,在△BCD 中,∵222222224432,4432,864BD CD BC =+==+===,∴222BD CD BC +=,∠BDC=90°,∵B 和C 关于y 轴对称,N 在y 轴上,∴CN MN BN MN +=+,当B 、M 、N 在同一条直线上时,BN MN +最短为BM , 此时222224426BM BD DN =+++=.故答案为:6.【点睛】本题考查坐标与图形变换——平移,坐标与图形变换——轴对称,轴对称的性质,勾股定理及逆定理.(1)中掌握关于坐标轴对称的点坐标之间的关系和点的平移与坐标之间的关系是解题关键;(2)中能利用轴对称的性质,得出CN MN BN MN +=+是解题关键.21.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且ADE BAD ∠=∠,AE AC ⊥.(1)求证:四边形ABDE 是平行四边形.(2)如果DA 平分BDE ∠,5AB =,6AD =,求AC 的长.【答案】(1)证明见解析;(2)485. 【解析】 【详解】解:(1) ∵∠ADE=∠BAD∴AB ∥DEAE AC ⊥Q ,BD AC ⊥AE ∥BD∴四边形ABDE 是平行四边形(2)解: ∵DA 平分∠BDEAED BDA ∴∠=∠BAD BDA ∴∠=∠5BD AB ∴==设BF=x ,则DF=5-x2222AD DF AB BF ∴-=-22226(5)5x x ∴--=-∴x=7522245AF AB BF ∴=-= 4825AC AF ∴==. 【点睛】本题考查了平行四边形的判定和性质,角平分线的性质,勾股定理的应用,解题的关键是利用勾股定理列方程.22.观察、思考、应用:)2221211213=-+=-=-反之,)2223212111-=-=-+=1==(1;(2=请用含,a b 的式子分别表示m 和n .(3)已知菱形ABCD 的边长为1030BCD ∠=︒,,则菱形对角线AC 的长为 .【答案】(1)1=;(2),m a b n ab =+=;(3)AC =.【解析】【分析】(1)将6拆分为5+1,再根据完全平方公式(222()2a b a ab b ±=±+ )和二次根式的性质化简2|,(0)a a a ==≥)即可求解;(2)利用二次根式的性质2|,(0)a a a ==≥)结合完全平方公式(222()2a b a ab b ±=±+ )直接化简得出即可;(3)画出图形,结合图象利用勾股定理求出AC ,利用上述方式化简即可.【详解】(1)1==; (2),m a b n ab =+=.=∴2m +=,即m a b +=++∴,m a b n ab =+=;(3)如下图,四边形ABCD 为菱形,作CE 垂直于AB 的延长线与E ,∵四边形ABCD 为菱形,∴AB ∥CD ,∴∠CBE=∠BCD ,∵1030BC BCD =∠=︒,,∴CE=152BC =, 在Rt △BCE 中根据勾股定理,222210553BE BC CE --=在Rt △ACE 中根据勾股定理,22AC CE AE =+225(1053)=++25100100375=+++2001003=+50(423)=+503231=++250(31)=+5231)=5652=【点睛】本题考查二次根式的性质,完全平方公式,勾股定理,菱形的性质,含30°角的直角三角形.(1)(2)熟记并理解完全平方公式和二次根式的性质是解题关键;(3)能通过题意画出图形,并且构建直角三角形是解题关键.23.已知,正方形ABCD 的边长为6,E 是边CD 上一动点,连接,BE 交AC 于点H ,点G 是线段BE 的垂直平分线与AC 的交点,连接,DG BG ,并延长BG 交边AD 于点F .(1)如图1,若,ABF a ∠=求DGC ∠的度数(用含a 的式子表示);(2)如图2,连接,EF 当E 点运动时,探究DEF V 的周长是否为定值?若是,求其值;若不是,说明理由;(3)若点F 为AD 的中点,则BGH V 的面积为 .【答案】(1)45DGC a ∠=︒+;(2)是,其值为12;(3)152. 【解析】【分析】(1)证明△AGB ≌△AGD ,得出∠ADG=∠ABF=a ,再利用三角形外角的性质即可求DGC ∠的度数;(2)将△BAF 绕B 点旋转90°得△BCK ,证明△EBF ≌△EBK 得出EF=EK ,即△DEF 的周长=DE+DF+FE=DE+DF+EK=AD+DC 即可求得;(3)分别证明△AFG ∽△CBG ,△AGF ∽△BGH 利用相似三角形边之间关系,面积与相似比之间的关系即可求解.【详解】解:(1)∵四边形ABCD 为正方形,∴AB=AD ,∠BAC=∠DAC=45°,又∵AG=AG ,∴△AGB ≌△AGD ,∴∠ADG=∠ABF=a ,∴45DAC D GC G a D A ∠+∠=∠︒+=;(2)∵四边形ABCD 为正方形,∴AB=BC ,∠BAD=∠BCD=∠ADC=90°, 如下图,将△BAF 绕B 点旋转90°得△BCK ,∴CK=AF,∠CBK=∠ABF=a ,∵△AGB ≌△AGD ,∴BG=GD ,∵G 为BE 垂直平分线,∴BG=GE ,∴BG=GD=GE ,∴∠GED=∠GDE=∠ADC-∠ADG=90°-a , ∴∠DGE=180°-2(90°-a )=2a , ∴∠BGE=∠BGD-∠DGE=2(45°-a )-2a=90°,∴∠GBE=∠GEB=45°,∴∠EBK=∠EBC+∠CBK=∠EBC+∠ABF=90°-∠GBE=45°,在△EBF 和△EBK 中∵BF BK FBE EBK BE BE =⎧⎪∠=∠⎨⎪=⎩∴△EBF ≌△EBK (SAS ),∴EF=EK ,∴△DEF 的周长=DE+DF+FE=DE+DF+EK=AD+DC=12.故△DEF 的周长是定值,其长为12.(3)∵F 为AD 的中点, ∴132AF AD ==, ∵四边形ABCD 为正方形,∴AF ∥BC ,AD=BC=6,∠BAF=∠ABC=90°,∴△AFG ∽△CBG,BF ==,AC ==∴12AG GF AF GC BG BC ===,∴AG GC GF BG ====,设△AFG 边AF 上的高为m ,△CBG 边BC 上的高为n ,则m+n=6,12m AF n BC ==, 解得m=2,n=4, 又∵132AFG S AF m ∆=⋅⋅=, ∵∠DAC=∠GBE=45°,∠AGF=∠BGC , ∴△AGF ∽△BGH ,∴222()5AGF BGH S AG S BG ∆∆===, ∴51522BGH AGF S S ∆∆=⋅=, 故答案为:152. 【点睛】本题考查全等三角形的性质和判定,相似三角形的性质和判定,勾股定理,正方形的性质,三角形外角的性质,旋转综合.(1)理解三角形一个外角等于与它不相邻的两个内角和,并能正确识图是解题关键;(2)能利用旋转的性质,正确作图是解题关键;(3)熟练掌握相似三角形的性质和判定定理,并能利用相似三角形的性质求出对应线段的长是解决此题的关键.24.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m2m=AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.(1)求m 的值;(2)若45,APF ∠=︒求证:AHF HFA ∠=∠;(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)【答案】(1)32m =(2)见解析;(3)221186n n ⎛⎫-+ ⎪ ⎪⎝⎭【解析】【分析】(1)根据二次根式有意义被开方数非负和算术平方根的非负性列出两个不等式,求公共解即可求出m 的值;(2)作BM x ⊥轴,FN x ⊥轴,证明BPM FPN ≌V V 可得BP=PF ,再根据直角三角形斜边上的中线等于斜边的一半可得12PA BF PF ==,然后结合等腰三角形的性质,利用三角形的内角和定理分别求出AHF ∠和HFA ∠,可得它们相等;(3)分别表示AF 和AB ,利用勾股定理求得BF 的长,即可求得PF 的长,再表示ON 和PN 的长度,利用平行线分线段成比例即可求得HF .【详解】(1322m m -62= ∴320m -≥,且 622320m m =-≥,32m ∴=()2作BM x ⊥轴,FN x ⊥轴OA OD =Q ,45OAD ∴∠=︒,∵四边形ABCD 为矩形,∴∠EAD=90°,∴==904545EAO EAD OAD ∠∠-∠︒-︒=︒,9045AEO EAO ∠=︒-∠=︒,9045ADO OAD ∠=︒-∠=︒,∴=MEB AEO ADO ∠=∠∠,∵BM x ⊥轴,FN x ⊥轴90BME FND ∠=∠=︒,在BEM △和DFN △中∵=MEB ADO BME FND FD BE ∠∠⎧⎪∠=∠⎨⎪=⎩, ∴BEM △≌DFN △,BM FN ∴=,在BPM △和FPN V 中,∵==90MPB FPN BME FNP BM FN ∠∠⎧⎪∠=∠︒⎨⎪=⎩∴()BPM FPN AAS ≌V V , PB PF ∴=,PM PN =,∵Rt ABF V 中,12PA BF PF ==,45APF ∠=︒Q1804567.52HFA ︒-︒∴∠==︒,18018067.54567.5AHF AFH OAD ∠=︒-∠-∠=︒-︒-︒=︒, ∴AHF HFA ∠=∠;(3)∵F 点的纵坐标为n ,由(2)可知FN=ND=ME=BM=n ,∴DF BE ==,∵m =∴(A , ()D ,∴6AE AD ==,∴ON OD ND n =-=,MN ED ==,12PM PN MN ===,6AB AE BE =+=+,6AF AD DF =-=-,在Rt △ABF 中,根据勾股定理、BF =∴12PF BF ==, ∵FN ⊥x 轴,∴FN ∥OH,∴HF ONPF PN =,=解得:(1HF =-故答案为:(1)6-【点睛】本题考查算术平方根的非负性和二次根式有意义的条件,全等三角形的性质和判定,平行线分线段成比例,勾股定理,等腰三角形的性质,三角形内角和定理等.(1)中理解二次根式有意义被开方数非负和算术平方根的非负性是解题关键;(2)能正确作出辅助线,构造全等三角形是解题关键;(3)中能根据等腰直角三角形的性质和全等三角形的性质表示线段的长度是解题关键.。

武汉市青山区2017-2018学年八年级下期中数学试卷含答案解析模板

武汉市青山区2017-2018学年八年级下期中数学试卷含答案解析模板

2017-2018学年湖北省武汉市武昌区八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥22.下列式子中,属于最简二次根式的是()A.B.C. D.3.下列各式计算正确的是()A.8﹣2=6 B.5+5=10C.4÷2=2D.4×2=84.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D 5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.下列命题中逆命题成立的有()①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.A.1个B.2个C.3个D.4个7.如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是()cm2.A.336 B.144 C.102 D.无法确定8.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16 B.14 C.12 D.109.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第6个图形有()个小圆.A.42 B.44 C.46 D.4810.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10 B.8 C.6 D.5二、填空题(共6小题,每小题3分,满分18分)11.化简:﹣=.12.在△ABC中,∠C=90°,若AC=5,BC=12,则AB=.13.一只蚂蚁沿棱长为2的正方体表面从顶点A爬到顶点B,则它走过的最短路程为.14.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为.15.如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度hcm,则h的取值范围是.16.如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是.三、解答题(共8小题,满分72分)17.(1)×÷(2)+2﹣(﹣)18.如图,在平行四边形ABCD中,E、F分别是边AB、CD的中点,四边形AEFD是平行四边形吗?为什么?19.已知x=+1,y=﹣1,求下列各式的值:(1)x2﹣y2;(2)x2+xy+y2.20.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=;(2)在图②中画一个△ABC,使其三边长分别为3,,.21.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?22.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.23.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.24.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B 运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.2017-2018学年湖北省武汉市武昌区八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【专题】计算题.【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选D.【点评】本题考查了二次根式有意义的条件,此类考题相对比较简单,但从近几年的中考看,几乎是一个必考点.2.下列式子中,属于最简二次根式的是()A.B.C. D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选:A .【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.下列各式计算正确的是( )A .8﹣2=6B .5+5=10C .4÷2=2D .4×2=8【考点】二次根式的加减法;二次根式的乘除法.【分析】根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A 、8﹣2=6,原式计算错误,故A 选项错误;B 、5与5不是同类二次根式,不能直接合并,故B 选项错误;C 、4÷2=2,原式计算错误,故C 选项错误;D 、4×2=8,原式计算正确,故D 选项正确;故选:D .【点评】本题考查了二次根式的加减及乘除运算,属于基础题,解答本题的关键是掌握各部分的运算法则.4.不能判定四边形ABCD 为平行四边形的条件是( )A .AB ∥CD ,AD=BC B .AB ∥CD ,∠A=∠CC .AD ∥BC ,AD=BC D .∠A=∠C ,∠B=∠D【考点】平行四边形的判定.【分析】根据平行四边形的判定定理进行判断.【解答】解:A 、“AB ∥CD ,AD=BC ”是四边形ABCD 的一组对边平行,另一组对边相等,该四边形可以是等腰梯形,不可以判定四边形ABCD 是平行四边形.故本选项符合题意;B 、根据“AB ∥CD ,∠A=∠C ”可以判定AD ∥BC ,由“两组对边相互平行的四边形为平行四边形”可以判定四边形ABCD 为平行四边形.故本选项不符合题意;C 、“AD ∥BC ,AD=BC ”是四边形ABCD 的一组对边平行且相等,可以判定四边形ABCD 是平行四边形.故本选项不符合题意;D 、“∠A=∠C ,∠B=∠D ”是四边形ABCD 的两组对角相等,可以判定四边形ABCD 是平行四边形;故本选项不合题意;故选:A .【点评】本题考查平行四边形的判定,需注意一组对边相等,另一组对边相互平行的四边形不一定是平行四边形,等腰梯形也满足该条件.5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.【点评】此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.下列命题中逆命题成立的有()①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立;②如果两个角是直角,那么它们相等的逆命题是如果两个角相等,那么这两个角是直角,不成立;③全等三角形的对应边相等的逆命题是对应边相等的三角形全等,成立;④如果两个实数相等,那么它们的平方相等的逆命题是如果两个实数的平方相等,那么这两个实数相等,不成立;逆命题成立的有2个;故选B.【点评】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是()cm2.A.336 B.144 C.102 D.无法确定【考点】勾股定理的逆定理;勾股定理.【分析】利用勾股定理求出AC2的值,再由勾股定理的逆定理判定三角形ACD也为直角三角形,=S△ABC+S△ACD.则S四边形ABCD【解答】解:如图,连接AC.在Rt△ABC中,AC2=AB2+BC2=100,∵AC2+CD2=AD2=676∴△CDA也为直角三角形,=S△ABC+S△ACD=AB×BC+AC×CD=×6×8+×10×24=144(cm2),∴S四边形ABCD故选B.【点评】本题考查了三角形面积和勾股定理逆定理的应用,注意:在一个三角形中,如果有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.8.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16 B.14 C.12 D.10【考点】平行四边形的性质.【分析】根据平行四边形的对边相等得:CD=AB=4,AD=BC=5.再根据平行四边形的性质和对顶角相等可以证明:△AOE≌△COF.根据全等三角形的性质,得:OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+AD=12.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+AD+EF=4+5+1.5×2=12.故选C.【点评】能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.9.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第6个图形有()个小圆.A.42 B.44 C.46 D.48【考点】规律型:图形的变化类.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4.据此可以再求得第6个图形小圆的个数即可.【解答】解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1)个小圆,∴第6个图形有:4+6×(6+1)=46个小圆.故选:C.【点评】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.10.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10 B.8 C.6 D.5【考点】三角形中位线定理;垂线段最短;平行四边形的性质.【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【解答】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE 最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选C.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.二、填空题(共6小题,每小题3分,满分18分)11.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.12.在△ABC中,∠C=90°,若AC=5,BC=12,则AB=13.【考点】勾股定理.【分析】直接根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方进行计算即可.【解答】解:根据勾股定理可得AB===13,故答案为:13.【点评】此题主要考查了勾股定理,关键是掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.13.一只蚂蚁沿棱长为2的正方体表面从顶点A爬到顶点B,则它走过的最短路程为2.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短可得出结论.【解答】解:将正方体展开,连接A、B,根据两点之间线段最短,AB==2.故答案为:2.【点评】本题考查的是平面展开.最短路径问题,熟知“两点之间,线段最短”是解答此题的关键.14.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为24.【考点】三角形中位线定理;勾股定理的逆定理.【分析】根据三角形的中位线定理即可求得△ABC的各个边长,利用勾股定理的逆定理可以判断△ABC是直角三角形,则面积即可求解.【解答】解:设中位线DE=3,DF=4,EF=5.∵DE是△ABC的中位线,∴BC=2DE=2×3=6.同理:AC=2DF=8,AB=2EF=10.∵62+82=100=102,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴S△ABC=AC•BC=×6×8=24.故答案是:24.【点评】本题主要考查了勾股定理,以及三角形的中位线定理,正确求得△ABC的边长,判断△ABC 是直角三角形是解题关键.15.如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度hcm,则h的取值范围是5cm≤h≤6cm.【考点】勾股定理的应用.【分析】根据杯子内筷子的长度的取值范围得出杯子外面长度的取值范围,即可得出答案.【解答】解:∵将一根长为18cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,x=12,最长时等于杯子斜边长度是:x==13,∴h的取值范围是:(18﹣13)cm≤h≤(18﹣12)cm,即5cm≤h≤6cm.故答案为:5cm≤h≤6cm.【点评】此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.16.如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是5﹣5.【考点】菱形的判定与性质;坐标与图形性质;垂线段最短;等边三角形的判定与性质.【分析】利用菱形的性质以及等边三角形的性质得出A点位置,进而求出AO的长.【解答】解:如图所示:过点A作AE⊥BD于点E,当点A,O,E在一条直线上,此时AO最短,∵平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,∴AB=AD=CD=BC=10,∠BAD=∠BCD=60°,∴△ABD是等边三角形,∴AE过点O,E为BD中点,则此时EO=5,故AO的最小值为:AO=AE﹣EO=ABsin60°﹣×BD=5﹣5.故答案为:5﹣5.【点评】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出当点A,O,E在一条直线上,此时AO最短是解题关键.三、解答题(共8小题,满分72分)17.(1)×÷(2)+2﹣(﹣)【考点】二次根式的混合运算.【分析】(1)按照二次根式的乘除法的计算方法计算即可;(2)先化简,再进一步合并同类二次根式即可.【解答】解:(1)原式=÷=;(2)原式=2+2﹣3+=3﹣.【点评】此题考查二次根式的混合运算,掌握运算的方法和化简的方法是解决问题的关键.18.如图,在平行四边形ABCD中,E、F分别是边AB、CD的中点,四边形AEFD是平行四边形吗?为什么?【考点】平行四边形的判定与性质.【分析】根据平行四边形ABCD的性质推知AE∥DF;又E、F分别是边AB、CD的中点,则AD∥EF,所以由“有两组对边相互平行的四边形是平行四边形”证得四边形AEFD是平行四边形.【解答】解:四边形AEFD是平行四边形.理由如下:如图,∵四边形ABCD是平行四边形,∴AB∥DC,则AE∥DF.又∵E、F分别是边AB、CD的中点,∴AD∥EF,∴四边形AEFD是平行四边形.【点评】本题考查了平行四边形的判定与性质.解题时,利用了“有两组对边相互平行的四边形是平行四边形”证得四边形AEFD是平行四边形.19.已知x=+1,y=﹣1,求下列各式的值:(1)x2﹣y2;(2)x2+xy+y2.【考点】二次根式的化简求值.【分析】(1)先代入分别求出x+y,x﹣y的值,根据平方差公式分解因式,代入求出即可;(2)先代入分别求出x+y,xy的值,根据完全平方公式代入求出即可;【解答】解:∵x=+1,y=﹣1,∴x+y=2,x﹣y=2,xy=(+1)×(﹣1)=2,(1)x2﹣y2;=(x+y)(x﹣y)=2×2=4.(2)x2+xy+y2.=(x+y)2﹣xy=(2)2﹣2=10.【点评】本题考查了对平方差公式,完全平方公式,二次根式的混合运算的应用,主要考查学生能否选择恰当的方法进行计算.20.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=;(2)在图②中画一个△ABC,使其三边长分别为3,,.【考点】勾股定理.【专题】作图题.【分析】(1)如图①,在直角三角形MQN中,利用勾股定理求出MN的长为,故MN为所求线段;(2)如图②,分别利用勾股定理求出AB,AC,以及BC的长,即可确定出所求△ABC.【解答】解:(1)如图①所示,在Rt△MQN中,MQ=2,NQ=1,根据勾股定理得:MN==,则线段MN为所求的线段;(2)如图②所示,AB=3,AC==,BC==,则△ABC为所求三角形.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.21.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【考点】勾股定理的逆定理;方向角.【专题】应用题.【分析】根据路程=速度×时间分别求得OB、OA的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解.【解答】解:1小时“远航”号的航行距离:OB=16×1=16海里;1小时“海天”号的航行距离:OA=12×1=12海里,因为AB=20海里,所以AB2=OB2+OA2,即202=162+122,所以△OAB是直角三角形,又因为∠1=45°,所以∠2=45°,故“海天”号沿西北方向航行或东南方向航行.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.22.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【考点】平行四边形的判定与性质;等边三角形的性质;翻折变换(折叠问题).【分析】(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.【解答】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.【点评】此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.23.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【考点】三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.【解答】(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答图1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.【点评】本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.24.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B 运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.【考点】平行四边形的判定;坐标与图形性质;等腰三角形的判定;勾股定理.【分析】(1)根据二次根式的性质得出a,b的值进而得出答案;(2)由题意得:QP=2t,QO=t,PB=21﹣2t,QC=16﹣t,根据平行四边形的判定可得21﹣2t=16﹣t,再解方程即可;(3)①当PQ=CQ时,122+t2=(16﹣t)2,解方程得到t的值,再求P点坐标;②当PQ=PC时,由题意得:QM=t,CM=16﹣2t,进而得到方程t=16﹣2t,再解方程即可.【解答】解:(1)∵b=++16,∴a=21,b=16,故B(21,12)C(16,0);(2)由题意得:QP=2t,QO=t,则:PB=21﹣2t,QC=16﹣t,∵当PB=QC时,四边形PQCB是平行四边形,∴21﹣2t=16﹣t,解得:t=5,∴P (10,12)Q (5,0);(3)当PQ=CQ 时,过Q 作QN ⊥AB ,由题意得:122+t 2=(16﹣t )2,解得:t=,故P (7,12),Q (,0),当PQ=PC 时,过P 作PM ⊥x 轴,由题意得:QM=t ,CM=16﹣2t ,则t=16﹣2t ,解得:t=,2t=,故P (,12),Q (,0).【点评】此题主要考查了平行四边形的判定,等腰三角形的判定,关键是注意分类讨论,不要漏解.。

2017-2018学年八年级(下)期中数学试卷(有答案和解析) (2)

2017-2018学年八年级(下)期中数学试卷(有答案和解析) (2)

2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=23.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣45.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.106.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠07.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=15008.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥29.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=2410.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是.12.代数式中x的取值范围是.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)216.解方程:x2﹣4x+1=0.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),把方程化为一般形式,根据二次项系数不等于0,即可求得n的取值范围.【解答】解:∵方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,∴n≥0且n﹣1≠0,即n≥0且n≠1.故选:C.【点评】本题考查了一元二次方程的定义.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.10【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【解答】解:∵32+42=52,∴此三角形是直角三角形,=×3×4=6.∴S△故选:A.【点评】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.6.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.7.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=1500【分析】2018年年收入=2016年年收入×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为:300(1+x)2=1500.故选:A.【点评】此题主要考查了根据实际问题列一元二次方程;得到2018年收入的等量关系是解决本题的关键.8.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.9.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=24【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:x2﹣10x﹣1=0,移项,得x2﹣10x=1,方程两边同时加上25,得x2﹣10x+25=26,∴(x﹣5)2=26.故选:C.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.【分析】根据勾股定理求出BC,根据三角形的面积公式计算.【解答】解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是2.【分析】先根据有理数的平方求出(﹣1.7)2的值,再找出符合条件的最大整数即可.【解答】解:∵(﹣1.7)2=2.89,∴不超过2.89的最大整数为2.故答案为:2.【点评】本题考查的是有理数的乘方及有理数的大小比较,比较简单.12.代数式中x的取值范围是x>1.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是﹣2.【分析】根据一元二次方程解的定义,将x=0代入关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,然后解关于m的一元二次方程即可.【解答】解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.【点评】本题考查了一元二次方程的解的定义.解答该题时,注意一元二次方程的定义中的“一元二次方程的二次项系数不为0”这一条件.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=40°.【分析】由对顶角相等可得∠CGE=∠FGB1,由两角对应相等可得△ADF∽△B1GF,那么∠CGE 等于∠ADF的度数,进而利用三角形内角和得出答案.【解答】解:由翻折可得∠B1=∠B=60°,∴∠A=∠B1=60°,∵∠AFD=∠GFB1,∴△ADF∽△B1GF,∴∠ADF=∠B1GF,∵∠CGE=∠FGB1,∴∠CGE=∠ADF=80°.∴∠CEG=180°﹣80°﹣60°=40°,故答案为:40°【点评】本题考查了翻折变换问题;得到∠CGE等于∠ADF的度数的关系是解决本题的关键.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.16.解方程:x2﹣4x+1=0.【分析】根据配方法可以解答此方程.【解答】解:x2﹣4x+1=0x2﹣4x+4=3(x﹣2)2=3x﹣2=∴x1=2+,x2=2﹣;【点评】本题考查解一元二次方程﹣配方法,解答本题的关键是会用配方法解方程的方法.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.【分析】(1)将x=﹣1,n=1代入原方程,可求出m的值;(2)代入m=2,根据方程的系数结合根的判别式,可得出△=﹣4n2,分n=0及n≠0两种情况找出此方程根的情况.【解答】解:(1)将x=﹣1,n=1代入原方程,得:(﹣1)2﹣m+12+1=0,解得:m=3.(2)当m=2时,原方程为x2+2x+n2+1=0,∴△=22﹣4×1×(n2+1)=﹣4n2.当n=0时,△=﹣4n2=0,此时原方程有两个相等的实数根;当n≠0时,△=﹣4n2<0,此时原方程无解.【点评】本题考查了根的判别式以及一元二次方程的解,解题的关键是:(1)代入x,n的值求出m的值;(2)分n=0及n≠0两种情况找出方程解的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.【分析】先根据已知条件、算术平方根的性质和绝对值的性质求出a、b,再由勾股定理即可得出结果.【解答】解:∵+|b﹣4|=0,∴+|b﹣4|=0,∴|a﹣3|+|b﹣4|=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴直角三角形的斜边长===5.【点评】本题考查了勾股定理、绝对值的性质以及算术平方根的性质;熟练掌握勾股定理的运用,根据题意求出a、b是解决问题的关键.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长;(2)本题需先根据a=7,求出三边的长,根据三角形三边关系进行判断;(3)根据三角形的三边关系列出不等式组,即可求出a的取值范围;(3)本题需先求出a的值,然后即可得出三角形的三边长.【解答】解:(1)∵第二条边长为(2a+2)米,∴第三条边长为30﹣a﹣(2a+2)=28﹣3a(米);(2)不能.当a=7时,三边长分别为7,16,7,由于7+7<16,所以不能构成三角形,即第一条边长不能为7m;(3)根据题意得:,解得:<a<,即a的取值范围是<a<.(4)能围成.在(3)的条件下,a为整数时,a只能取5或6.当a=5时,三角形的三边长分别为5,12,13.由52+122=132知,恰好能构成直角三角形.当a=6时,三角形的三边长分别为6,14,10.由62+102≠142知,此时不能构成直角三角形.综上所述,能围成满足条件的小圈,它们的三边长分别为5m,12m,13m.【点评】本题主要考查了勾股定理、三角形三边关系以及一元一次不等式组的应用,在解题时根据三角形的三边关系,列出不等式组是本题的关键.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.【分析】题目明确给出了工作总量为10×10个饺子,工作时间10分钟,再设一个工作速度即能列得等量关系.(1)题干中明确给出妈妈和小侨包饺子的速度关系,设一个未知数即可表示两人的速度.问题出现“至少”说明应列不等式解题,即若小侨速度加快的话,包的饺子总量有可能大于100个.(2)明确了小侨的速度,妈妈速度提升的是一个百分数,所用是原来速度再乘以(1+a%),所用时间减少的也是一个百分数,应是10×(1﹣a%).小侨速度×时间+妈妈速度×时间=100个.计算时先把含a%的式子化简,能帮助准确计算.【解答】解:(1)设小侨每分钟包x个饺子,则妈妈每分钟包(2x﹣2)个饺子,得:10x+10(2x﹣2)≥10×10解得:x≥4(2)依题意得:小侨每分钟包4个饺子,妈妈每分钟包饺子数量为6×(1+a%)=6+a,包饺子总时间为10×(1﹣a%)=10﹣a,列得方程:(6+a)(10﹣a)+4(10﹣a﹣a)=100解得:a1=0(舍去),a2=40答:(1)小侨每分钟包至少包4个饺子;(2)a的值为40.【点评】本题考查了一元一次不等式的应用和一元二次方程的应用,解题关键是(1)找准是等量关系还是不等量关系;(2)提升或减少的是一个百分数,带a%式子的准确计算.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF =FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?【分析】(1)根据勾股定理可以求得这个梯子的顶端距地面的距离;(2)利用勾股定理可求出B′C的长,进而得到BB′=CB′﹣CB的值.【解答】解:(1)由题意可得,AC===2.4(米),即此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得A′C2+B′C2=A′B′2,即1.52+B′C2=2.52所以B′C=2(m)BB′=CB′﹣BC=2﹣0.7=1.3(m),即梯子的底端在水平方向滑动了1.3m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。

最新学校17—18学年下学期八年级期中考试数学试题(附答案)

最新学校17—18学年下学期八年级期中考试数学试题(附答案)

绝密★启用前2017-2018学年第二学期期中考试八年级数学试题卷2018.4本试卷共2页,23小题,满分100分.考试用时90分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回。

一、选择题(每小题3分,共36分)1. 下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是A.1个B.2个C.3个D.4个 2.已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是 A.9㎝ B .12㎝ C .12㎝或者15㎝ D .15㎝ 3.要使代数式2-x 有意义,则x 的取值范围是( ).A .2-≤xB .2-≥xC .2≥xD .2≤x4. 不等式组⎩⎨⎧<>-421x x 的解集是 ( ).A. x <3B. 3<x <4C. x <4D. 无解 5.下列各多项式中,不能用平方差公式分解的是( ).A.a 2b 2-1 B .4-0.25a 2 C .-a 2-b 2 D .-x 2+16.分解因式x 2y ﹣y 3结果正确的是( ).A .y (x +y )2B .y (x -y )2C .y (x 2-y 2)D .y (x +y )(x -y ) 7.如果多项式x 2-mx +9是一个完全平方式,那么m 的值为( ). A .-3 B .-6 C .±3 D .±6 8.满足0106222=+-++n m n m 的是( ). A.3,1==n mB.3,1-==n mC.3,1=-=n mD.3,1-=-=n m9.如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=620,则∠EFD 的度数为( )A 、150B 、160C 、170D 、18010.如图所示,在矩形ABCD 中,AD=8,DC=4,将△ADC 按逆时针方向绕点A 旋转到△AEF(点,A,B,E 在同一直线上),连接CF ,则CF=( )A . 10 B. 12C.D.11.矩形ABCD 中,AB=5,AD=12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )A.12πB.252π C. 13πD.12.某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办FCCDE F法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买( )块肥皂.A.5B.4C.3D.2 二、填空题(每小题3分,共12分)13.不等式组⎩⎨⎧-><13x x 的解集是 _____.14.利用分解因式计算:32003+6×32002-32004=_____________.15.已知关于x 的不等式组⎩⎪⎨⎪⎧4(x -1)+2>3x ,x -1<6x +a7有且只有三个整数解,则a 的取值范围是16.如图,Rt ⊿ABC 中,∠C = 90º,以斜边AB 为边向外 作正方形ABDE ,且正方形对角线交于点O ,连接OC , 已知AC=6,OC=BC 的长为 三、解答题(共52分)17.分解因式(每小题3分.共6分)⑴ 4a 2-8ab+4b 2 ⑵ (2)x 2(m ﹣n )﹣y 2(m ﹣n )18. (每小题4分.共8分)解下列不等式组:⑴ ⑵523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩①② CA BEDO4(1)42123x x x x -≥+⎧⎪+⎨<⎪⎩ 19.计算(每小题5分,共10分)⑴.已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值(2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?20. (6分)求关于x、y的方程组24563x y mx y m+=+⎧⎨+=+⎩的解x、y都是正数,求m的取值范围。

新人教版本20172018学年初中八年级的下期中数学试卷习题包括答案解析.docx

新人教版本20172018学年初中八年级的下期中数学试卷习题包括答案解析.docx

新人教版 2017-2018 学年八年级下期中数学试卷含答案解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.52.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的3.在平面直角坐标系中,点(4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)4.花粉的质量很小,一粒某种植物花粉的质量约为0.000037 毫克,那么 0.000037 毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克C. 37×10﹣7毫克D.3.7×10﹣8毫克5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.8.已知平行四边形ABCD 中,∠ B=5∠A ,则∠ C=()A. 30°B.60°C. 120°D. 150°9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B(5,0),D( 2, 3),则顶点 C 的坐标是()A.( 3,7)B.( 5,3)C.( 7,3)D.( 8,2)10.若反比例函数 y=(k<0)的图象经过点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()1>y2>y31>y3>y22y1> y3D.y3>y2>y1A. y B. y C.y >11.如图,在平面直角坐标系中,直线l1:y=x+3 与直线 l2:y=mx+n 交于点 A(﹣ 1,b),则关于 x、y 的方程组的解为()A.B.C.D.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4 D.﹣ 4二、填空题(本大题共 8 小题,每小题 4 分,共 32分)13.在函数 y=中,自变量 x 的取值范围是.14.当 x=时,分式的值为零.15.化简:=.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂).17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k=+18.一次函数 y=(2m﹣6)x+4 中, y 随 x 的增大而减小,则 m 的取值范围是.19.如图,在平行四边形ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段DE 的长度为.20.如图,平行四边形ABCD 的对角线相交于点O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.22.解方程:.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?26.如图,一次函数 y=kx b 与反比例函数 y= (x> 0)的图象交于 A(m,6), B( 3, n)两点.+( 1)直接写出 m=,n=;(2)根据图象直接写出使kx b<成立的 x 的取值范围;+(3)在 x 轴上找一点 P 使 PA PB 的值最小,求出 P 点的坐标.+27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲 16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?参考答案与试题解析一、选择题(本大题共12 小题,每小题 3 分,共 36 分)1.下列各式,,,,中,分式共有()个.A. 2 B.3 C. 4 D.5【考点】 61:分式的定义.【分析】根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式.,,的分母中含有字母,因此是分式.故选 B.2.若把分式中的x和y都扩大3倍,那么分式的值()A.为原来的 3 倍B.不变C.为原来的D.为原来的【考点】 65:分式的基本性质.【分析】根据分式的性质,可得答案.【解答】解:分式中的x和y都扩大3倍,得==,故选: C.3.在平面直角坐标系中,点( 4,﹣ 3)关于 y 轴对称的点的坐标是()A.(﹣ 4,﹣ 3)B.( 4,3)C.(﹣ 4, 3) D .( 4,﹣ 3)【考点】 P5:关于 x 轴、 y 轴对称的点的坐标.【分析】根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x, y)关于 y 轴的对称点的坐标是(﹣ x,y)即可得到点( 4,﹣ 3)关于 y 轴对称的点的坐标.【解答】解:点( 4,﹣ 3)关于 y 轴的对称点的坐标是(﹣ 4,﹣ 3),故选: A.4.花粉的质量很小,一粒某种植物花粉的质量约为 0.000037 毫克,那么0.000037毫克可用科学记数法表示为()A. 3.7× 10﹣5毫克B.3.7×10﹣6毫克 C. 37×10﹣7毫克 D.3.7×10﹣8毫克【考点】 1J:科学记数法—表示较小的数.a×10﹣n,与较大数的科学记【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解: 0.000037 毫克 =3.7× 10﹣5毫克;故选: A.5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.修车时间为15 分钟B.学校离家的距离为2000 米C.到达学校时共用时间20 分钟D.自行车发生故障时离家距离为1000 米【考点】 E6:函数的图象; E9:分段函数.【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断.【解答】解:由图可知,修车时间为15﹣10=5 分钟,可知 A 错误; B、 C、D 三种说法都符合题意.故选 A .6.考察反比例函数y=﹣,下列结论中不正确的是()A.图象必经过(﹣ 3, 2) B.当 x >0 时, y 随 x 的增大而增大C.图象在第二、四象限内 D.图象与直线 y=x 有两个交点【考点】 G8:反比例函数与一次函数的交点问题.【分析】根据反比例函数的图象和性质逐一判断可得.【解答】解: A、当 x=﹣3 时, y=﹣=2,即图象必经过(﹣ 3,2),此结论正确;B、∵﹣ 6<0,∴反比例函数在x>0 或 x<0 时, y 随 x 的增大而增大,此结论正确;C、由 k=﹣6<0 知函数图象在第二、四象限内,此结论正确;D、由反比例函数图象位于第二、四象限,而直线y=x 经过第一、三象限,∴图象与直线 y=x 没有交点,此结论错误;故选: D.7.一次函数 y=kx +b,当 k>0,b<0 时,它的图象是()A.B.C.D.【考点】 F7:一次函数图象与系数的关系.【分析】根据一次函数图象在坐标平面内的位置与 k、 b 的关系,可以判断出其图象过的象限,进而可得答案.【解答】解:根据题意,有k>0,b<0,则其图象过一、二、四象限;故选 C.8.已知平行四边形 ABCD 中,∠ B=5∠A ,则∠ C=( ) A . 30°B .60°C . 120° D . 150°【考点】 L5:平行四边形的性质.【分析】 首先根据平行四边形的性质可得∠ A= ∠C ,∠ A +∠ B=180°,再由已知条件计算出∠ A 的度数,即可得出∠ C 的度数.【解答】 解:∵四边形 ABCD 是平行四边形,∴ AD ∥BC ,∠ A= ∠C , ∴∠ A+∠B=180°, ∵∠ B=5∠ A ,∴∠ A+5∠ A=180°,解得:∠ A=30°, ∴∠ C=30°,故选: A .9.在平面直角坐标系中, ? ABCD 的顶点 A (0,0), B (5,0),D ( 2, 3),则顶点 C 的坐标是 ( ) A .( 3,7) B .( 5,3) C .( 7,3) D .( 8,2)【考点】 L5:平行四边形的性质; D5:坐标与图形性质.【分析】 根据题意画出图形,进而得出 C 点横纵坐标得出答案即可.【解答】 解:如图所示:∵ ? ABCD 的顶点 A ( 0, 0), B (5,0), D ( 2, 3),∴ AB=CD=5 , C 点纵坐标与 D 点纵坐标相同,∴顶点 C 的坐标是;( 7, 3).故选: C .11,y 2),( 2,y 3),则 y 1,y 2,y 310.若反比例函数 y= (k <0)的图象经过点(﹣ 2,y ),(﹣ 的大小关系为( ) 2> y 1> y 33> y 2> y 1A . y 1> y 2> y 31> y 3> y 2C .yD .yB . y【考点】 G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性, 再由各点横坐标的值即可得出结论.【解答】 解:∵反比例函数 y= (k <0),∴此函数图象的两个分支分别位于二、四象限,并且在每一象限内,y 随 x 的增大而增大.∵(﹣ 2,y 1),(﹣ 1, y 2),( 2, y 3)三点都在反比例函数 y= (k <0)的图象上,∴(﹣ 2,y1),(﹣ 1, y2)在第二象限,点( 2, y3)在第四象限,∴y2> y1> y3.故选 C.11.如图,在平面直角坐标系中,直线 l 1:y=x 3与直线 l2:y=mx n 交于点 A(﹣ 1,b),则关于 x、++y 的方程组的解为()A.B.C.D.【考点】 FE:一次函数与二元一次方程(组).【分析】首先将点 A 的横坐标代入y=x+3 求得其纵坐标,然后即可确定方程组的解.【解答】解:∵直线l : y=x 3 与直线 l : y=mx n 交于点 A (﹣ 1,b),1+2+∴当 x=﹣1 时, b=﹣1+3=2,∴点 A 的坐标为(﹣ 1,2),∴关于 x、 y 的方程组的解是,故选 C.12.如图,直线l⊥ x 轴于点 P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点 A ,B,连接 OA , OB,已知△ OAB 的面积为 2,则 k1﹣k2的值为()A. 2 B.3 C. 4D.﹣ 4【考点】 G5:反比例函数系数k 的几何意义.【分析】根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,由题意可知△ AOB 的面积为.【解答】解:根据反比例函数k 的几何意义可知:△ AOP 的面积为,△ BOP的面积为,∴△ AOB 的面积为,∴=2,∴k1﹣k2=4,故选( C)二、填空题(本大题共8 小题,每小题 4 分,共 32 分)13.在函数 y=中,自变量x的取值范围是x≠3.【考点】 E4:函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出 x 的范围.【解答】解:根据题意得: x﹣3≠0,解得: x≠3.故答案为 x≠3.14.当 x= 2时,分式的值为零.【考点】 63:分式的值为零的条件.【分析】要使分式的值为 0,必须分式分子的值为0 并且分母的值不为0.【解答】解:由分子 x2﹣4=0? x=±2;而x=2 时,分母 x+2=2+2=4≠0,x=﹣2 时分母 x+2=0,分式没有意义.所以 x=2.故答案为: 2.15.化简:= 1 .【考点】 6B:分式的加减法.【分析】首先把分式通分,然后进行同分母的分式的加减,最后把结果进行化简即可求解.【解答】解:原式 =﹣===1.故答案是: 1.16.计算:(﹣ m3n﹣2)﹣2=.(结果不含负整数指数幂)【考点】 47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】直接利用积的乘方运算法则结合负指数幂的性质计算得出答案.【解答】解:(﹣ m3n﹣2)﹣2=m﹣6n4=.故答案为:.17.一次函数 y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移 5 个单位长度得到,则 k= 2 .+【考点】 F9:一次函数图象与几何变换.【分析】直线 y=2x 平移时,系数 k=2 不会改变. 5 个单位长度得到,【解答】解:因为一次函数y=kx 5 的图象可由正比例函数 y=2x 的图象向上平移+所以 k=2.故答案是: 2.18.一次函数 y=(2m﹣6)x 4中, y 随 x 的增大而减小,则 m 的取值范围是m<3 .+【考点】 F7:一次函数图象与系数的关系.【分析】利用一次函数图象与系数的关系列出关于m 的不等式 2m﹣6<0,然后解不等式即可.【解答】解:∵一次函数y=(2m﹣6) x 4 中, y 随 x 的增大而减小,+∴ 2m﹣ 6< 0,解得, m< 3;故答案是: m<3.19.如图,在平行四边形 ABCD 中, BC=8cm,AB=6cm ,BE 平分∠ ABC 交 AD 边于点 E,则线段 DE 的长度为 2cm .【考点】 L5:平行四边形的性质.【分析】根据四边形ABCD 为平行四边形可得AE ∥BC,根据平行线的性质和角平分线的性质可得出∠ ABE=∠ AEB,继而可得 AB=AE ,然后根据已知可求得DE 的长度【解答】解:∵四边形 ABCD 为平行四边形,∴ AE∥ BC, AD=BC=8cm ,∴∠ AEB=∠ EBC,∵ BE 平分∠ ABC ,∴∠ ABE=∠ EBC,∴∠ ABE=∠ AEB,∴ AB=AE=6cm ,∴ DE=AD ﹣AE=8 ﹣6=2(cm);故答案为: 2cm.20.如图,平行四边形 ABCD 的对角线相交于点 O,且 AB ≠ AD ,过 O 作 OE⊥ BD 交 BC 于点 E,若平行四边形 ABCD 的周长为 20,则△ CDE 的周长为 10 .【考点】 L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形 ABCD 的对角线相交于点 O, OE⊥ BD ,根据线段垂直平分线的性质,可得BE=DE ,又由平行四边形 ABCD 的周长为 20,可得 BC+CD 的长,继而可得△ CDE 的周长等于BC+CD.【解答】解:∵四边形 ABCD 是平行四边形,∴OB=OD,AB=CD ,AD=BC ,∵平行四边形 ABCD 的周长为 20,∴BC+CD=10,∵OE⊥ BD ,∴ BE=DE,∴△ CDE 的周长为: CD+CE+DE=CD +CE+BE=CD+BC=10.故答案为: 10.三、解答题(本大题共7 小题,共 82 分)21.计算:( 1)(﹣)﹣2+﹣(﹣1)0( 2)( 1+)÷.【考点】 6C:分式的混合运算; 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂.【分析】(1)根据负整数指数幂、零指数幂可以解答本题;( 2)根据分式的加法和除法可以解答本题.【解答】解:( 1)(﹣)﹣2+﹣(﹣1)0=4+3﹣1=6;(2)( 1+)÷==x 1.+22.解方程:.【考点】 B3:解分式方程.x 的值,代入公分母进行检验即可.【分析】先去分母把分式方程化为整式方程,求出整式方程中【解答】解:方程两边同时乘以 2(3x﹣ 1),得 4﹣ 2( 3x﹣1)=3,化简,﹣ 6x=﹣3,解得 x=.检验: x=时, 2(3x﹣1)=2×( 3× ﹣1)≠ 0所以, x=是原方程的解.23.已知一次函数 y=kx +b,当 x=2 时 y 的值是﹣ 1,当 x=﹣ 1 时 y 的值是 5.(1)求此一次函数的解析式;(2)若点 P( m,n)是此函数图象上的一点,﹣ 3≤ m≤2,求 n 的最大值.【考点】 FA:待定系数法求一次函数解析式; F5:一次函数的性质.【分析】(1)把 x=2,y=﹣ 1 代入函数 y=kx +b,得出方程组,求出方程组的解即可;(2)把 P 点的坐标代入函数 y=﹣2x+3,求出 m 的值,根据已知得出不等式组,求出不等式组的解集即可.【解答】解:( 1)依题意得:,解得:,所以一次函数的解析式是y=﹣2x+3;( 2)由( 1)可得, y=﹣2x+3.∵点 P (m,n )是此函数图象上的一点,∴n=﹣2m 3即,+又∵﹣ 3≤m≤ 2,∴,解得,﹣ 1≤ n≤ 9,∴ n 的最大值是 9.24.如图, ? ABCD 中,对角线 AC 与 BD 相交于 O,EF 是过点 O 的任一直线交 AD 于点 E,交 BC 于点 F,猜想 OE 和 OF 的数量关系,并说明理由.【考点】 L5:平行四边形的性质.【分析】结论: OE=OF,欲证明 OE=OF,只要证明△ AOE≌△ COF 即可.【解答】解:结论: OE=OF.理由∵四边形 ABCD 是平行四边形,∴OA=OC,AD ∥ BC,∴∠ OAE=∠ OCF,在△ AOE 和△ COF 中,,∴△ AOE≌△ COF,∴OE=OF.25.列方程或方程组解应用题我区为缓解某景区的交通拥挤状况,区政府对通往景区的道路进行了改造.某施工队承包道路改造任务共3300 米,为了减少施工对周边居民及交通的影响,施工队加快了速度,比原计划每天多改造 10%,结果提前 3 天完成了任务,求原计划每天改造道路多少米?【考点】 B7:分式方程的应用.【分析】设原计划每天改造道路 x 米,实际每天改造( 1+10%)x 米,根据比原计划每天多改造 10%,结果提前 3 天完成了任务,列出方程,再进行求解即可.【解答】解:设原计划每天改造道路x 米,实际每天改造( 1+10%) x 米,根据题意得:=+3,解得: x=100,经检验 x=100 是原方程的解,且符合题意.答:原计划每天改造道路100 米.26.如图,一次函数y=kx+b 与反比例函数 y=(x>0)的图象交于A(m,6), B( 3, n)两点.(1)直接写出 m= 1 , n= 2 ;( 2)根据图象直接写出使kx+b<成立的x的取值范围0<x<1 或 x>3;( 3)在 x 轴上找一点 P 使 PA+PB 的值最小,求出P 点的坐标.【考点】 G8:反比例函数与一次函数的交点问题.【分析】(1)将点 A 、B 坐标代入即可得;(2)由函数图象即可得;(3)作点 A 关于 x 轴的对称点 C,连接 BC 与 x 轴的交点即为所求.【解答】解:( 1)把点( m,6), B(3,n)分别代入 y=(x>0)得:m=1,n=2,故答案为: 1、2;(2)由函数图象可知,使 kx+b<成立的 x 的取值范围是 0<x<1 或 x> 3,故答案为: 0<x<1 或 x> 3;(3)由( 1)知 A 点坐标为( 1, 6), B 点坐标为( 3, 2),则点 A 关于 x 的轴对称点 C 的坐标( 1,﹣ 6),设直线 BC 的解析式为 y=kx+b,将点 B、 C 坐标代入,得:,解得:,则直线 BC 的解析式为 y=4x﹣ 10,当y=0 时,由 4x﹣10=0 得: x= ,∴点 P 的坐标为(,0).27.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化而变化,开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间 x(分钟)的变化规律如图所示(其中 AB 、 BC 分别为线段, CD 为双曲线的一部分):( 1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?( 2)一道数学竞赛题,需要讲16 分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【考点】 GA:反比例函数的应用.【分析】(1)先用待定系数法分别求出 AB 和 CD 的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为 36 时的两个时间,再将两时间之差和 16 比较,大于 16 则能讲完,否则不能.【解答】解:( 1)设线段 AB 所在的直线的解析式为y1=k1x+20,把B(10,40)代入得, k1=2,∴ y1=2x+20.设C、D 所在双曲线的解析式为 y2= ,把 C(25,40)代入得, k2=1000,∴ y2=.当 x1=5 时, y1 =2×5+20=30,当 x2时, 2÷30=,=30y =1000∴y1< y2,∴第 30 分钟注意力更集中.(2)令 y1=36,∴ 36=2x+20,∴ x1=8.令y2=36,∴36=1000÷ x,∴x2=1000÷36≈27.8,∵ 27.8﹣8=19.8>16,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.2017 年 8 月 2 日。

青山区2017-2018学年八年级下学期期末考试数学试题

青山区2017-2018学年八年级下学期期末考试数学试题

轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
轻轻有很多经验丰富的一线老师,相信会对您有所帮助,如需预约老师辅导,扫码免费登记→ 试卷由【轻轻家教武汉升学】整理,如需更多试卷资料,请关注【轻轻家教武汉升学】微信公众号
所以,AC=2AB=8,BC= 3 AC=4 3
面积为:4 3 ×4=16 3
19、(1)8÷20%=40(人) (2)40-(14+4+6+8)=8(人)
8÷40×100%=20% (3)14÷40×1200=420(人) 20、(1)x<2
(2)将(2,2)代入

青山区2017-2018学年度第二学期八年级期中测试

青山区2017-2018学年度第二学期八年级期中测试

青山区2017-2018学年度第二学期八年级期中测试物理试卷说明:本试卷中g取10N/kg,ρ水=1.0×103kg/m3.第Ⅰ卷一、选择题1.在学习“物体运动状态改变的原因”时,老师做了如图的实验:具有一定速度的钢珠在水平面上能沿直线AB运动;如果在它的运动路径旁放一磁铁,钢珠的运动路径将变成曲线AC.对该实验的理解,正确的是A.钢珠与磁铁没有接触,所以没有力的作用B.钢珠在运动过程中不受重力C.钢珠沿曲线AC运动时运动状态保持不变D.实验说明力能改变物体的运动状态2.足球前锋队员面对已封住角度的守门员,轻轻地将球一挑,足球在空中划过一条弧线进入球门.若不计空气的作用,足球离开脚面后使其在空中运动状态发生改变的施力物体是A.前锋队员B.足球C.地球D.守门员3.某中学的同学们发明的“超市购物秒结算”系统,在市青少年科技创新大赛上获得一等奖,如图所示就是安装了这种系统的购物车.下列分析正确的是A.购物车受到的总重力和支持力是一对相互作用力B.人推着购物车前行时,人相对于货物架是静止的C.购物车从静止到运动的过程中,车中的某个商品惯性变大了D.商品从货物架放入购物车的过程中,商品的运动状态发生了改变4.如图所示,用弹簧测力计拉着木块在水平面上做匀速直线运动,下列说法正确的是A.木块受到的摩擦力和弹簧测力计对木块的拉力是一对平衡力B.木块对弹簧测力计的拉力和弹簧测力计对木块的拉力是一对平衡力C.木块对水平面的压力和水平面对木块的支持力是一对相互作用力D.木块对弹簧测力计的拉力和手对弹簧测力计的拉力是一对相互作用力5.如图所示,在光滑水平台面上,一轻质弹簧左端固定,右端连接一金属小球,弹簧在自然长度时,小球位于O点;当通过小球压缩弹簧到A位置时,释放小球;然后小球从A点开始向右运动,已知AO=BO,则A.小球从A运动到O的过程中,所受弹力方向向右,速度不断增大B.小球从O运动到B的过程中,所受弹力方向向右,速度不断减小C.小球运动到O点时,因弹簧恢复了原长,小球停止运动并保持静止D.小球运动到B点时,所受弹力方向向左,小球停止运动并保持静止6.如图所示,给四个静止的物体同时施加方向相反的力F1和F2的作用,其中能继续保持静止的物体是A.B.C.D.7.如图所示的各种做法中,属于增大摩擦的是A.自行车上的滚动轴承B.体操运动员手上涂有防滑粉C.冰壶运动员用刷子刷冰面D.给门轴上的合页加润滑油8.在研究滑动摩擦力时,小王利用同一木块进行了如图所示的三次实验,当用弹簧测力计水平拉动木块做匀速直线运动时,弹簧测力计的示数分别为F1、F2、F3,则F1、F2、F3大小关系正确的是A.F1>F2>F3B.F1<F2<F3C.F1=F2=F3D.F1>F2=F39.如图所示,在小桶内装入适量的沙子后,滑块在水平拉力的作用下,恰好在水平桌面上向右做匀速直线运动.已知滑块质量为M,小桶和沙子的总质量为m.不计滑轮摩擦及绳子自重,则下列说法中正确的是A.滑块对桌面的摩擦力方向为水平向左B.滑块受到的摩擦力大小为MgC.细绳对滑块的拉力大小为(M-m)gD.细绳对滑块的拉力大小为mg10.如图甲,是消防队员小王进行爬杆训练的示意图.在某次爬杆训练中,小王沿杆竖直向上运动的v-t图像如图乙所示,下列判断正确的是A.0-6s时间内,小王沿杆匀速向上运动B.6s至15s时间内,小王沿杆上爬的距离是5.4mC.0至18s时间内,小王受到的摩擦力方向向下D.15s至18s时间内,小王受到的摩擦力大小等于重力大小11.一块长为L,质量分布均匀的木板A放在水平桌面上,板A右端与桌边相齐(如图所示).在板的右端施一水平力F使板A右端缓慢地离开桌边L/3,在板A移动过程中,下列说法正确的是A.A对桌面的压强不变B.A对桌面的压力不断变小C.A对桌面的压力不变D.A对桌面的压强不断变小12.三峡船闸是世界上最大的人造连通器.图是轮船通过船闸的示意图.此时上游阀门A 打开,下游阀门B关闭.下列说法正确的是A.闸室和上游水道构成连通器,水对阀门A右侧的压力大于左侧的压力B.闸室和上游水道构成连通器,水对阀门A两侧的压力相等C.闸室和下游水道构成连通器,水对阀门B右侧的压力大于左侧的压力D.闸室和下游水道构成连通器,水对阀门B两侧的压力相等13.如图所示,两容器中分别装有相同高度的水和盐水(ρ水<ρ盐水),A、B、C三点液体的压强分别为p A、p B、p C,它们的大小关系是A.p A<p B<p CB.p A>p B>p CC.p A<p B=p CD.p A=p B=p C14.如图所示,下列四幅图中所涉及的物理知识描述正确的是A.甲图:通过增大受力面积来减小压力B.乙图:利用连通器原理C.丙图:利用流体在流速大的地方压强大D.丁图:可探究液体压强的大小与深度的关系15.如图所示,甲、乙两个实心正方体的密度之比ρA︰ρB=9︰4,质量之比m A︰m B=2︰3,若按甲、乙两种不同的方式,分别将它们叠放在水平地面上,则地面受到的压力之比和压强之比分别是A.F甲︰F乙=1︰1,p甲︰p乙=2︰3B.F甲︰F乙=1︰1,p甲︰p乙=9︰4C.F甲︰F乙=1︰1,p甲︰p乙=4︰9D.F甲︰F乙=1︰3,p甲︰p乙=2︰3第Ⅱ卷二、填空题16.小明踢足球时脚感到疼,说明________,他能踢出“香蕉球”,说明力的作用效果与力的方向和________有关;飞行中的球最终落向地面是由于受到________作用.17.如图所示,举重运动员正在用力将杠铃竖直举过头顶,使杠铃升高的力是________施加的,方向是________;同时运动员也感到非常吃力,是因为________.18.随着电子商务的发展,人们购物变得十分便捷.如图所示的是分拣快递件的皮带传输机,转动轮带动水平皮带匀速向右运动.将一快递件轻轻放在皮带的左端,快递件在皮带的作用下向右做速度增加的变速直线运动,此时快递件受到的摩擦力的方向为________(选填“向右”或“向左”).经过较短时间后,快递件随皮带一起以相同的速度向右做匀速直线运动,此时快递件受到的摩擦力________(选填“为零”、“方向向左”或“方向向右”)19.如图是探究“摩擦力对物体运动影响”的实验装置示意图,其实验过程用到了许多科学方法.(1)怎样控制小车在水平面上开始滑行时的速度相等呢?方法是:把小车放在同一斜面的________,由静止开始下滑.(2)怎样反映“摩擦力”对“物体运动的影响”呢?方法是:比较小车放在不同表面上运动的距离或________.(3)怎样得出“小车不受力作用是的运动状态”呢?必须要用推理的方法,即:如果小车运动时不受摩擦力的作用,那么小车将________.20.如图所示,用手握住重5N的瓶子,手与瓶子间的摩擦是静摩擦,此时瓶子受到的静摩擦力________(选填“大于”“小于”或“等”)5N,方向为________(选填“竖直向下”或“竖直向上”).增大手对瓶子的握力,瓶子受到的静摩擦力将________(选填“增大”、“减小”或“不变”).21.小明利用图示装置做“探究影响滑动摩擦力大小的因素”实验.他沿水平方向匀速拉动木板,稳定时弹簧测力计示数如图所示,读数为________N.在木块上放一重物,重复实验,弹簧测力计的示数变化情况是________.拉动木板过程中,木板________(选填“受到”、“不受”)木块的摩擦力.22.探究“压力的作用效果与受力面积的关系”时,分别采用如图甲、乙所示的两种方法,用两只手的食指分别压在铅笔的两端.(1)________(选填“甲”或“乙”)的方法是不合理的,该方法未控制________相等.(2)图甲中,铅笔笔尖的面积是0.5mm2,两手指均用2N的力对压铅笔两端,则笔尖对手指的压强为________Pa.23.如图所示,将A管插入装有水的杯中,用嘴衔住A管的上端能将水吸上来是利用了________;把另一根吸管B的管口贴靠在A管的上端,往B管中轻轻吹气,可看到的现象是A管内的水面会________(选填“上升”、“下降”或“不变”),这是因为________.24.如图所示,小明将一只质量为100g的圆柱形玻璃杯,放到水平的桌面上,杯底与桌面的接触面积为25cm2,则玻璃杯对桌面的压强是________Pa;在靠近玻璃杯的正后方,放一只点燃的蜡烛,用力对着玻璃杯吹气,会观察到烛焰________(选填“不受影响”、“摇曳但不熄灭”或“被吹灭”),判断的理由是________.25.物体下落时受到的空气阻力与速度和横截面积有关,已探究出在横截面积不变时空气阻力与速度的平方成正比.为探究空气阻力与横截面积的关系,取质量相同,半径分别为r、2r和3r的甲、乙、丙三个小球,让它们从不同高度分别竖直落下,并以砖墙为背景,当进入砖墙的区域时,用照相机通过每隔相等时间曝光一次的方法记录小球的运动过程,如图是其中一段的示意图.(1)在图示运动过程中,甲、乙、丙三个小球的速度之比是________.(2)分析实验数据可知:在阻力相同时,小球的速度与半径的关系是________.(3)实验结论是:在速度不变时,小球受到的空气阻力________.三、探究、作图题26.如图所示,站地水平地面上的人水平向左推静止于地面上的木箱,木箱没有动.请你画出推木箱时人所受的重力和地面对人右脚上的摩擦力的示意图.27.教室的门栓坏了,门经常被风吹开,这是门与门框间摩擦太小的缘故.如何增大摩擦呢?同学们提出一些设想,概括如下:a.增大压力增大摩擦;b.增大接触面粗糙程度增大摩擦;c.增大接触面积增大摩擦;d.增大运动速度增大摩擦.为了验证这些设想,他们利用长方体木块、铁块、弹簧测力计、毛巾和水平桌面等,进行实验探究,并将数据记入表中:(1)比较实验1、2可知:设想________是错误的,判断的理由是________;(2)比较实验________两组数据,可以判断设想c是否正确;在实验中,测量摩擦力时应保持木块在水平桌面上作________运动;如图的弹簧测力计示数是表中“★”处的数值,其大小为________N;(3)某同学分析实验3、4数据,并支持设想b,你认为他这种分析方法________(选填“正确”或“不正确”),其理由是________;28.在探究“影响液体内部压强大小的因素”实验中:(1)如图甲,用手按压强计的橡皮膜,U型管内水面出现高度差;将橡皮膜放入酒精中,U 型管内水面也出现高度差,这说明________;这种研究问题的方法是________法;(2)若在使用压强计前,发现U型管内水面已有高度差,通过________方法可以进行调节.①从U型管内向外倒出适量水;②拆除软管重新安装;③向U型管内加适量水;(3)比较乙、丙实验可知,液体内部压强与液体的________有关;比较丙、丁实验可知,液体内部压强与液体的________有关.四、综合题29.今年4月15日,小明参加了武汉市“汉马”比赛,小明的质量为50kg,双脚与地面的总接触面积为0.04m2.求:(1)小明所受的重力大小;(2)小明参加“汉马”比赛时对地面的压强;(3)小明的体积(人的密度跟水的差不多,取小明的密度为1.0×103kg/m3).30.如图所示,柱形容器A和均匀柱体B置于水平地面上,A中盛有体积为6×10-3m3的水,B受到的重力为250N,B的底面积为5×10-2m2.求(1)A中水的质量.(2)B对水平地面的压强.(3)现沿水平方向在圆柱体B上截去一定的厚度,B剩余部分的高度与容器A中水的深度之比h B'︰h水为2︰3,且B剩余部分对水平地面的压强等于水对容器A底部的压强,求B 的密度ρB.。

【精品】武汉市青山区2017-2018学年八年级下期末数学试题(有答案)

【精品】武汉市青山区2017-2018学年八年级下期末数学试题(有答案)

湖北省武汉市青山区2017-2018学年八年级下学期期末考试数学试题一、你一定能选对!(本大题共有10小题,每小题3分,共30分)1.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤22.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2 B.1,1,C.4,5,6 D.1,,23.下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD是平行四边形的条件是()A.3:4:3:4 B.3:3:4:4 C.2:3:4:5 D.3:4:4:34.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁5.如果直线y=kx+b经过一、二、四象限,则有()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.小华周末坚持体育锻炼.某个周末他跑步到离家较远的和平公园,打了一会儿篮球后散步回家.下面能反映当天小华离家的距离y与时间x的函数关系的大致图象是()A.B.C.D.8.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:)A.6.2小时B.6.4小时C.6.5小时D.7小时9.设直线y=kx+6和直线y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为S k(k=1,2,3,…,8),则S1+S2+S3+…+S8的值是()A.B.C.16 D.1410.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是()A.4+3 B.2C.2+6 D.4二、填空题(本大题共有6小题,每小题3分,共18分)11.计算:3﹣的结果是.12.函数y=﹣6x+5的图象是由直线y=﹣6x向平移个单位长度得到的.13.数据5,5,6,6,6,7,7的众数为14.如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为.15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.16.对于点P(a,b),点Q(c,d),如果a﹣b=c﹣d,那么点P与点Q就叫作等差点.例如:点P(4,2),点Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,则点P与点Q就是等差点.如图在矩形GHMN中,点H(2,3),点N(﹣2,﹣3),MN⊥y轴,HM⊥x轴,点P是直线y=x+b上的任意一点(点P不在矩形的边上),若矩形GHMN的边上存在两个点与点P是等差点,则b的取值范围为.三、解下列各题(本大题共8小题,共72分17.(8分)计算:(1)﹣+(2)(+)÷18.(8分)如图,▱ABCD 的对角线AC ,BD 相交于点O ,△OAB 是等边三角形. (1)求证:▱ABCD 为矩形; (2)若AB =4,求▱ABCD 的面积.19.(8分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题: (1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D ”的扇形圆心角的度数; (3)若该校共有1200名学生,请估计“最想去景点B “的学生人数.20.(8分)如图,直线l 1:y 1=﹣x +b 分别与x 轴、y 轴交于点A 、点B ,与直线l 2:y 2=x 交于点C (2,2).(1)若y 1<y 2,请直接写出x 的取值范围;(2)点P 在直线l 1:y 1=﹣x +b 上,且△OPC 的面积为3,求点P 的坐标?21.(8分)如图,矩形ABCD 中,点E ,F 分别在边AB 与CD 上,点G 、H 在对角线AC 上,AG =CH ,BE =DF .(1)求证:四边形EGFH是平行四边形;(2)若EG=EH,AB=8,BC=4.求AE的长.22.(10分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?23.(10分)已知,在四边形ABCD中,点E、点F分别为AD、BC的中点,连接EF.(1)如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为;(2)如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?(3)如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE,若AB=,CD=2,BC=6,则OE=.24.(12分)在平面直角坐标系中,点A,B分别是x轴正半轴与y轴正半轴上一点,OA=m,OB=n,以AB 为边在第一象限内作正方形ABCD.(1)若m=4,n=3,直接写出点C与点D的坐标;(2)点C在直线y=kx(k>1且k为常数)上运动.①如图1,若k=2,求直线OD的解析式;②如图2,连接AC、BD交于点E,连接OE,若OE=2OA,求k的值.参考答案一、你一定能选对1.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤2【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.解:根据题意得:x﹣2≥0,解得x≥2.故选:C.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.2.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2 B.1,1,C.4,5,6 D.1,,2【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选:D.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD是平行四边形的条件是()A.3:4:3:4 B.3:3:4:4 C.2:3:4:5 D.3:4:4:3【分析】由于平行四边形的两组对角分别相等,故只有D能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.解:根据平行四边形的两组对角分别相等,可知A正确.故选:A.【点评】此题主要考查了平行四边形的判定,运用了两组对角分别相等的四边形是平行四边形这一判定方法.4.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差是用来衡量一组数据波动大小的量,故由甲乙丙丁的方差可直接作出判断.解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,故选:C.【点评】本题主要考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.如果直线y=kx+b经过一、二、四象限,则有()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm【分析】由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.7.小华周末坚持体育锻炼.某个周末他跑步到离家较远的和平公园,打了一会儿篮球后散步回家.下面能反映当天小华离家的距离y与时间x的函数关系的大致图象是()A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.解:图象应分三个阶段,第一阶段:跑步到离家较远的和平公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿篮球,这一阶段离家的距离不随时间的变化而改变;第三阶段:散步回家,这一阶段,离家的距离随时间的增大而减小,并且这段的速度小于第一阶段的速度.故选:B.【点评】本题主要考查函数图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.8.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:)A.6.2小时B.6.4小时C.6.5小时D.7小时【分析】根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.解:根据题意得:(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时).故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.9.设直线y=kx+6和直线y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为S k(k=1,2,3,…,8),则S1+S2+S3+…+S8的值是()A.B.C.16 D.14【分析】联立两直线解析式成方程组,通过解方程组可求出两直线的交点,利用一次函数图象上点的坐标特征可得出两直线与x轴的交点坐标,利用三角形的面积公式可得出S k=×6×6(﹣),将其代入S 1+S 2+S 3+…+S 8中即可求出结论. 解:联立两直线解析式成方程组,得:,解得:,∴两直线的交点是(0,6).∵直线y =kx +6与x 轴的交点为(﹣,0),直线y =(k +1)x +6与x 轴的交点为(﹣,0),∴S k =×6×|﹣﹣(﹣)|=18(﹣),∴S 1+S 2+S 3+…+S 8=18×(1﹣+﹣+﹣+…+﹣), =18×(1﹣),=18×=16. 故选:C .【点评】本题考查了一次函数函数图象上点的坐标特征、三角形的面积以及规律型中数字的变化类,利用一次函数图象上点的坐标特征及三角形的面积公式找出S k =18(﹣)是解题的关键.10.如图,矩形ABCD 中,AB =2,BC =6,P 为矩形内一点,连接PA ,PB ,PC ,则PA +PB +PC 的最小值是( )A .4+3B .2C .2+6D .4【分析】将△BPC 绕点C 逆时针旋转60°,得到△EFC ,连接PF 、AE 、AC ,则AE 的长即为所求. 解:将△BPC 绕点C 逆时针旋转60°,得到△EFC ,连接PF 、AE 、AC ,则AE 的长即为所求.由旋转的性质可知:△PFC 是等边三角形, ∴PC =PF ,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,故选:B.【点评】本题考查轴对称﹣最短问题、矩形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题共有6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置11.计算:3﹣的结果是2.【分析】直接利用二次根式的加减运算法则计算得出答案.解:3﹣=2.故答案为:2.【点评】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.12.函数y=﹣6x+5的图象是由直线y=﹣6x向上平移 5 个单位长度得到的.【分析】根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.解:函数y=﹣6x+5的图象是由直线y=﹣6x向上平移5个单位长度得到的.故答案为上,5.【点评】本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.13.数据5,5,6,6,6,7,7的众数为 6【分析】根据众数的定义可得结论.解:数据5,5,6,6,6,7,7的众数为:6;故答案为:6【点评】本题主要考查众数的定义,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.14.如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为68°.【分析】只要证明∠EAD=90°,想办法求出∠FAD即可解决问题;解:∵四边形ABCD是平行四边形,∴∠B=∠ADC=66°,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠EAD=90°,∵EF=FD,∴FA=FD=EF,∵∠EDC=44°,∴∠ADF=∠FAD=22°,∴∠EAF=90°﹣22°=68°,故答案为68°【点评】本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13 cm.【分析】根据正方形的面积可用对角线进行计算解答即可.解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.16.对于点P(a,b),点Q(c,d),如果a﹣b=c﹣d,那么点P与点Q就叫作等差点.例如:点P(4,2),点Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,则点P与点Q就是等差点.如图在矩形GHMN中,点H(2,3),点N(﹣2,﹣3),MN⊥y轴,HM⊥x轴,点P是直线y=x+b上的任意一点(点P不在矩形的边上),若矩形GHMN的边上存在两个点与点P是等差点,则b的取值范围为﹣5<b<5 .【分析】由题意,G(﹣2,3),M(2,﹣3),根据等差点的定义可知,当直线y=x+b与矩形MNGH有两个交点时,矩形GHMN的边上存在两个点与点P是等差点,求出直线经过点G或M时的b的值即可判断.解:由题意,G(﹣2,3),M(2,﹣3),根据等差点的定义可知,当直线y=x+b与矩形MNGH有两个交点时,矩形GHMN的边上存在两个点与点P 是等差点,当直线y=x+b经过点G(﹣2,3)时,b=5,当直线y=x+b经过点M(2,﹣3)时,b=﹣5,∴满足条件的b的范围为:﹣5<b<5.故答案为﹣5<b<5【点评】本题考查一次函数图象上点的特征、矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解下列各题(本大题共8小题,共72分下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+)÷【分析】(1)根据二次根式的加减法可以解答本题;(2)根据二次根式的除法可以解答本题.解:(1)﹣+=3﹣2+=2;(2)(+)÷=+=4+.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.18.(8分)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形.(1)求证:▱ABCD为矩形;(2)若AB=4,求▱ABCD的面积.【分析】(1)根据题意可求OA=OB=DO,∠AOB=60°,可得∠BAD=90°,即结论可得(2)根据勾股定理可求AD的长,即可求▱ABCD的面积.解(1)∵△AOB为等边三角形∴∠BAO=60°=∠AOB,OA=OB∵四边形ABCD是平行四边形∴OB=OD,∴OA=OD∴∠OAD=30°,∴∠BAD=30°+60°=90°∴平行四边形ABCD为矩形;(2)在Rt△ABC中,∠ACB=30°,∴AB=4,BC=AB=4∴▱ABCD的面积=4×4=16【点评】本题考查了矩形的性质和判定,等边三角形的性质,灵活运用这些性质解决问题是本题的关键.19.(8分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用1200乘以样本中最想去A景点的人数所占的百分比即可.解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40﹣8﹣14﹣4﹣6=8(人), 补全条形统计图为:扇形统计图中表示“最想去景点D ”的扇形圆心角的度数为×360°=72°;(3)1200×=420,所以估计“最想去景点B “的学生人数为420人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.20.(8分)如图,直线l 1:y 1=﹣x +b 分别与x 轴、y 轴交于点A 、点B ,与直线l 2:y 2=x 交于点C (2,2).(1)若y 1<y 2,请直接写出x 的取值范围;(2)点P 在直线l 1:y 1=﹣x +b 上,且△OPC 的面积为3,求点P 的坐标?【分析】(1)依据直线l 1:y 1=﹣x +b 与直线l 2:y 2=x 交于点C (2,2),即可得到当y 1<y 2时,x >2; (2)分两种情况讨论,依据△OPC 的面积为3,即可得到点P 的坐标.解:(1)∵直线l 1:y 1=﹣x +b 与直线l 2:y 2=x 交于点C (2,2), ∴当y 1<y 2时,x >2;(2)将(2,2)代入y=﹣x+b,得b=3,1=﹣x+3,∴y1∴A(6,0),B(0,3),设P(x,﹣x+3),则当x<2时,由×3×2﹣×3×x=3,解得x=0,∴P(0,3);当x>2时,由×6×2﹣×6×(﹣x+3)=3,解得x=4,∴﹣x+3=1,∴P(4,1),综上所述,点P的坐标为(0,3)或(4,1).【点评】本题主要考查了一次函数图象上点的坐标特征以及一次函数的性质,设P(x,﹣x+3),利用三角形的面积的和差关系列方程是解题的关键.21.(8分)如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)若EG=EH,AB=8,BC=4.求AE的长.【分析】(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8﹣x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.解:(1)∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,又∵CH=AG,∴△AEG≌△CFH,∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形;(2)如图,连接EF,AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE,设AE=x,则FC=AF=x,DF=8﹣x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8﹣x)2=x2,解得x=5,∴AE=5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.22.(10分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?【分析】(1)根据函数图象和图象中的数据可以求得y与x的函数关系式;(2)①根据函数图象可以求得z与a的函数关系式,然后根据题意可知x=40,z=40,从而可以求得该厂第一个月销售这种机器的总利润;②根据题意可以得到每台的利润和台数之间的关系式,从而可以解答本题.解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=﹣0.5x+65(10≤x≤70,且为整数);(2)①设z与a之间的函数关系式为z=m a+n,,得,∴z与a之间的函数关系式为z=﹣a+90,当z=40时,40=﹣a+90,得a=50,当x=40时,y=﹣0.5×40+65=45,40×50﹣40×45=2000﹣1800=200(万元),答:该厂第一个月销售这种机器的总利润为200万元;②设每台机器的利润为w万元,w=(﹣x+90)﹣(﹣0.5x+65)=﹣x+25,∵10≤x≤70,且为整数,∴当x=10时,w取得最大值,答:每个月生产10台这种机器才能使每台机器的利润最大.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(10分)已知,在四边形ABCD中,点E、点F分别为AD、BC的中点,连接EF.(1)如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为2EF=AB+CD;(2)如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?(3)如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE,若AB=,CD=2,BC=6,则OE=.【分析】(1)根据三角形的中位线和全等三角形的判定和性质解答即可;(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.首先证明△AFB≌△KFC,推出AB=CK,再利用勾股定理,三角形的中位线定理即可解决问题;(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.想办法求出点E、O的坐标即可解决问题;解:(1)结论:AB+CD=2EF,理由:如图1中,∵点E、点F分别为AD、BC的中点,∴BC=FC,AE=ED,∵AB∥CD,∴∠ABF=∠GCF,∵∠BFA=∠CFG,∴△ABF≌△CFG(ASA),∴AB=CG,AF=FG,∵AE=ED,AF=FG,∴2EF=DG=DC+CG=DC+AB;故答案为2EF=AB+CD.(2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.∵∠ABF=∠KCF,BF=FC,∠AFB=∠CFK,∴△AFB≌△KFC,∴AB=CK,AF=FK,∵∠BCD=150°,∠BCK=90°,∴∠DCK=120°,∴∠DCH=60°,∴CH=CD,DH=CD,在Rt△DKH中,DK2=DH2+KH2=(CD)2+(AB+CD)2=AB2+CD2+AB•CD,∵AE=ED,AF=FK,∴EF=DG,∴4EF2=DK2,∴4EF2=AB2+CD2+AB•CD.(3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.由题意:A(1,1),B(6,0),D(4,2),∵AE=ED,∴E(,),∵中线AC的解析式为y=﹣,中线BD的解析式为y=x,由,解得,∴O(,),∴OE==,故答案为.【点评】本题考查四边形综合题、全等三角形的判定和性质、三角形的中位线定理、解直角三角形、平面直角坐标系、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会建立平面直角坐标系解决问题,属于中考压轴题.24.(12分)在平面直角坐标系中,点A,B分别是x轴正半轴与y轴正半轴上一点,OA=m,OB=n,以AB 为边在第一象限内作正方形ABCD.(1)若m=4,n=3,直接写出点C与点D的坐标;(2)点C在直线y=kx(k>1且k为常数)上运动.①如图1,若k=2,求直线OD的解析式;②如图2,连接AC、BD交于点E,连接OE,若OE=2OA,求k的值.【分析】(1)根据题意把m=4,n=3代入解答即可;(2)①利用待定系数法确定函数关系式即可;②根据勾股定理和函数关系式解答即可.解:(1)∵OA=m,OB=n,以AB为边在第一象限内作正方形ABCD,∴C(n,m+n),D(m+n,m),把m=4,n=3代入可得:C(3,7),D(7,4),(2)①设C(a,2a),由题意可得:,解得:m=n=a,∴D(2a,a),∴直线OD的解析式为:y=x,②由B(0,n),D(m+n,m),可得:E(),OE=2OA,∴,可得:(m+n)2=16m2,∴m+n=4m,n=3n,∴C(3m,4m),∴直线OC的解析式为:y=x,可得:k=.【点评】此题考查一次函数的综合题,关键是根据待定系数法确定函数关系式和勾股定理解答.21。

青山区2017~2018八下数学期中试卷

青山区2017~2018八下数学期中试卷

⻘青⼭山区2017--2018学年年度下学期⼋八年年级期中测试数学试卷⼀一、你⼀一定能选对!(本⼤大题共10⼩小题,每⼩小题3分,共30分)下列列各题均有四个备选答案,其中有且只有⼀一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂⿊黑.1.下列列⼆二次根式中,属于最简⼆二次根式的是()A.B.C.D.2.若在实数范围内有意义,则x的取值范围是()A.x>0B.x>1C.x≥1D.x≤13.正⽅方形矩形和菱形都具有的性质是()A.四个⻆角都是直⻆角B.对⻆角线互相平分C.对⻆角线相等D.对⻆角线互相垂直4.下列列计算正确的是()A.B.C.D.5.已知△ABC的三边分别为a、b、c,则下列列条件中不不能判定△ABC是直⻆角三⻆角形的是()A.∠A:∠B:∠C=3:4:5B.a:b:c=1::2C.b2=a2-c2D.∠A=∠B-∠C6.已知在□ABCD中,∠A+∠C=200°,则∠B的度数为()A.80°B.90°C.100°D.110°7.⼋八年年级(3)班同学要在⼴广场上布置⼀一个矩形的花坛,计划⽤用红花摆成两条对⻆角线,如果⼀一条对⻆角线⽤用了了49盆红花,还需从花房运来红花的盆数为()A.47B.48C.49D.508.如图,平⾏行行四边形ABCD的对⻆角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE 的⻓长为()A.B.C.D.9.如图,在平⾯面直⻆角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂⾜足分别是点A1、B1,连A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律律依次作下去,则点C10的坐标为()A.B.C.D.10.如图,正⽅方形ABCD的边⻓长为4,点P为BC边上⼀一动点,以AP为直⻆角边作等腰Rt△APE,M为边AE的中点,当点P从点B运动到点C,则点M的运动路路径⻓长为()A.4B.C.D.⼆二、填空题(本⼤大题共有6⼩小题,每⼩小题3分,共18分)11.计算:=.12.如图,在平⾯面直⻆角坐标系中有两点A(5,0),B(0,4),则A、B两点之间的距离为.13.如图,在菱形ABCD中,DE⊥AB于E,且AE=BE,则∠ADC=.14.计算:=.15.如图,在矩形ABCD中,M为BC边上⼀一点,连接AM,过点D作DE⊥AM于E,若DE=DC=2,AE =2EM,则BM的⻓长为.16.已知正⽅方形ABCD的边⻓长为4,E为平⾯面内⼀一点,连接DE,将线段DE绕着点D顺指针旋转90°得到DG,当点B、D、G三点在⼀一条直线上时,若DG=,则CE的⻓长为.三、解答题(本⼤大题共8⼩小题,共72分)下列列各题需要在答题卷的指定位置写出⽂文字说明、证明过程、演算步骤或画出图形.17.(本⼩小题满分8分)(1);(2).18.(本⼩小题满分8分)如图,在□ABCD中,DE平分∠ADC交BC于点E.(1)若∠ABC=70°,求∠EDC的度数;(2)若AB=4,AD=6,求BE的⻓长.19.(本⼩小题满分8分)已知:a=,b=.(1)求a2-b2的值(结果⽤用含n的代数式表示);(2)若(1)中代数式的值是整数,则正整数n的最⼩小值为.20.(本⼩小题满分8分)如图,□ABCD的对⻆角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点.(1)求证:四边形EFGH是平⾏行行四边形;(2)若AC+BD=36,AB=12,求△OEF的周⻓长.21.(本⼩小题满分8分)如图,□ABCD的对⻆角线AC、BD相交于点O,且∠OBC=∠OCB.(1)求证:四边形ABCD为矩形;(2)过B作BE⊥AO于E,∠CBE=3∠ABE,BE=2,求AE的⻓长.22.(本⼩小题满分10分)如图,在东⻄西⾛走向的⻓长江边同侧于相距40千⽶米的A、B两个村庄,计划在江边WE 上的P处修建⼀一⽔水⼚厂向两村输送⾃自来⽔水.村庄A在P的北北偏⻄西30°距离为千⽶米处,P、B距20千⽶米.(1)B村在P的什什么⽅方向?(2)①请画图找到合适的⽔水⼚厂修建地址P1,使⽔水⼚厂向A、B两个村庄输送⾃自来⽔水铺设的⽔水管最短;(注意:只保留留作图痕迹,不不写作法)②求铺设⽔水管的最短⻓长度为多少?23.(本⼩小题满分10分)如图,在菱形ABCD中,AB=6,∠ADC=120°,P为对⻆角线AC上⼀一点,过P作PE∥AB交AD与E,PF∥AD交CD于F,连接BE、BF、EF.(1)求AC的⻓长;(2)求证:△BEF为等边三⻆角形;(3)四边形BEPF⾯面积的最⼩小值为.24.(本⼩小题满分12分)已知,矩形ABCD的顶点A、C分别在y轴、x轴的正半轴上,点B的坐标为(a,b),且a、b满⾜足b=,P为射线BC上⼀一点.(1)求证:四边形ABCO为正⽅方形;(2)如图1,P为BC的中点,D为CP上⼀一点,且∠DAO=2∠BAP,求点D的坐标.(3)如图2,P为BC延⻓长线上⼀一动点,过P作PE∥OB交x轴于点E,过E作E⊥AP于Q.当P点运动时,求证:OQ的⻓长为定值.。

(精编)武汉市青山区2017-2018学年八年级下期末数学试题(有答案)

(精编)武汉市青山区2017-2018学年八年级下期末数学试题(有答案)

湖北省武汉市青山区 2017-2018学年八年级下学期期末考试数学试题一、你一定能选对!(本大题共有10小题,每小题3分,共30分)1 •若代数式—在实数范围内有意义,则 x 的取值范围是( ) A . x >- 2B . x >— 2C. x >2D. x < 22.下列各组数据中能作为直角三角形的三边长的是(的条件是(10次射击的平均成绩恰好是 9.4环,方差分别是 S 甲2= 0.90 ,S 乙2= 1.22 , S 丙2 = 0.43 , S 丁2= 1.68,在本次射击测试"中,成绩最稳定的是()5.如果直线y = kx +b 经过一、二、四象限,则有( )反映当天小华离家的距离 y 与时间x 的函数关系的大致图象是(A . 1, 2, 23.下面给出的四边形 B . 1 , 1,二ABCD 中,/ A 、/ B 、 C. 4, 5, 6D. 1 ,二,2 / C / D 的度数之比,其中能判定四边形 ABCD 是平行四边形 A . 3: 4: 3: 4 B . 3: 3: 4: 4 C. 2: 3: 4: 5 D. 3: 4: 4: 34.甲、乙、丙、丁四人进行射击测试,每人A .甲B .乙 C.丙D. 丁B . k > 0, b v 0 C. k v 0, b > 0D. k v 0, b v 0AD= 12cm AB= 8cm AE 平分/ BAD 交BC 边于点E ,贝U CE 的长等于(6 cm C. 4 cm D. 2 cm小华周末坚持体育锻炼.某个周末他跑步到离家较远的和平公园,打了一会儿篮球后散步回家.下面能 A . k > 0, b >0 7.某中学随机地调查了 50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示: 时间(小人数A .B.yC.yD.& )9.设直线y = kx +6和直线y =( k +1) x +6 (k 是正整数)及x 轴围成的三角形面积为 S (k = 1, 2, 3,…, 8),贝US+S 2+S+…+S 3 的值是( )A . JB .仏C. 169 410•如图,矩形 ABCDK AB= 2 _, BC = 6, P 为矩形内一点,连接( )A. 4 二+3B. 2 =C. 2 二+6二、填空题(本大题共有6小题,每小题3分,共18分)11 •计算:3—的结果是 _______ .12 •函数y =- 6x +5的图象是由直线 y =- 6x 向 ____________ 平移 ______ 个单位长度得到的. 13•数据5, 5, 6, 6, 6, 7, 7的众数为 __________14.如图,在?ABCDK AE! BC 于点E, F 为DE 的中点,/ B = 66点Q (- 1 , - 3),因4 - 2= 1 -(- 3 )= 2,则点P 与点Q 就是等差点.如图在矩形 GHM 中,点H( 2,3),点N (- 2, - 3), MNL y 轴,HML x 轴,点P 是直线y = x +b 上的任意一点(点 P 不在矩形的边上), 若矩形GHM 的边上存在两个点与点 P 是等差点,贝U b 的取值范围为 ________________ .A . 6.2小时B . 6.4小时 C. 6.5小时 D. 7小时D. 14PA PB PC 贝y PA +PBbPC 的最小值是,/ ED(= 44°,则/ EAF 的度数为50cm ,则菱形的边长为cm16.对于点P 与点Q 就叫作等差点. 例如:点P(4, 2),2 __120cm ,正方形AECF 勺面积为DhC1O~x\ I、解下列各题(本大题共8小题,共72分17. ( 8分)计算:(门—-二 +〔(2)( ~T+ | 「)=二石18. ( 8分)如图,?ABC啲对角线AC, BD相交于点Q △ OAB是等边三角形.分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:(1) 求被调查的学生总人数;(2) 补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3) 若该校共有1200名学生,请估计“最想去景点 B “的学生人数.•某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部(1)求证:?ABCD为矩形;2).(1)若丫1< 丫2,请直接写出X 的取值范围;20. (8分)如图,直线11: y 1— x +b 分别与x 轴、y 轴交于点 A 点B,与直线12: y 2= x 交于点 C (2,(2)点P在直线J:力=-;x+b上,且△ OPC勺面积为3,求点P的坐标?/021. (8分)如图,矩形ABCD中,点E, F分别在边AB与CD上点G H在对角线AC上,AG= CH BE= DF (1)求证:四边形EGFH1平行四边形;22.(10分)某工厂新开发生产一种机器,每台机器成本y (万元)与生产数量x (台)之间满足一次函数关系(其中10W x< 70,且为整数),函数y与自变量x的部分对应值如表30x单位:台)10205550y (单位:万兀/台)60(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价-成本)②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?55 75a(万元台)23. (10分)已知,在四边形ABCDL点E、点F分别为AD BC的中点,连接EF.(1)如图1, AB// CD连接AF并延长交B FC B F图]图3DC的延长线于点G,则AB CD EF之间的数量关系为(2)如图2,/ B= 90°,/ C= 150。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年湖北省武汉市武昌区八年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥22.下列式子中,属于最简二次根式的是()A.B.C. D.3.下列各式计算正确的是()A.8﹣2=6 B.5+5=10C.4÷2=2D.4×2=84.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D 5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.下列命题中逆命题成立的有()①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.A.1个B.2个C.3个D.4个7.如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是()cm2.A.336 B.144 C.102 D.无法确定8.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16 B.14 C.12 D.109.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第6个图形有()个小圆.A.42 B.44 C.46 D.4810.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10 B.8 C.6 D.5二、填空题(共6小题,每小题3分,满分18分)11.化简:﹣=.12.在△ABC中,∠C=90°,若AC=5,BC=12,则AB=.13.一只蚂蚁沿棱长为2的正方体表面从顶点A爬到顶点B,则它走过的最短路程为.14.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为.15.如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度hcm,则h的取值范围是.16.如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是.三、解答题(共8小题,满分72分)17.(1)×÷(2)+2﹣(﹣)18.如图,在平行四边形ABCD中,E、F分别是边AB、CD的中点,四边形AEFD是平行四边形吗?为什么?19.已知x=+1,y=﹣1,求下列各式的值:(1)x2﹣y2;(2)x2+xy+y2.20.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=;(2)在图②中画一个△ABC,使其三边长分别为3,,.21.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?22.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.23.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.24.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B 运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.2017-2018学年湖北省武汉市武昌区八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.使二次根式有意义的x的取值范围是()A.x≠2 B.x>2 C.x≤2 D.x≥2【考点】二次根式有意义的条件.【专题】计算题.【分析】利用当二次根式有意义时,被开方式为非负数,得到有关x的一元一次不等式,解之即可得到本题答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得:x≥2,故选D.【点评】本题考查了二次根式有意义的条件,此类考题相对比较简单,但从近几年的中考看,几乎是一个必考点.2.下列式子中,属于最简二次根式的是()A.B.C. D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.下列各式计算正确的是()A.8﹣2=6 B.5+5=10C.4÷2=2D.4×2=8【考点】二次根式的加减法;二次根式的乘除法.【分析】根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、8﹣2=6,原式计算错误,故A选项错误;B、5与5不是同类二次根式,不能直接合并,故B选项错误;C、4÷2=2,原式计算错误,故C选项错误;D、4×2=8,原式计算正确,故D选项正确;故选:D.【点评】本题考查了二次根式的加减及乘除运算,属于基础题,解答本题的关键是掌握各部分的运算法则.4.不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D 【考点】平行四边形的判定.【分析】根据平行四边形的判定定理进行判断.【解答】解:A、“AB∥CD,AD=BC”是四边形ABCD的一组对边平行,另一组对边相等,该四边形可以是等腰梯形,不可以判定四边形ABCD是平行四边形.故本选项符合题意;B、根据“AB∥CD,∠A=∠C”可以判定AD∥BC,由“两组对边相互平行的四边形为平行四边形”可以判定四边形ABCD为平行四边形.故本选项不符合题意;C、“AD∥BC,AD=BC”是四边形ABCD的一组对边平行且相等,可以判定四边形ABCD是平行四边形.故本选项不符合题意;D、“∠A=∠C,∠B=∠D”是四边形ABCD的两组对角相等,可以判定四边形ABCD是平行四边形;故本选项不合题意;故选:A.【点评】本题考查平行四边形的判定,需注意一组对边相等,另一组对边相互平行的四边形不一定是平行四边形,等腰梯形也满足该条件.5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.【解答】解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.【点评】此题主要考查了勾股定理逆定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.下列命题中逆命题成立的有()①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立;②如果两个角是直角,那么它们相等的逆命题是如果两个角相等,那么这两个角是直角,不成立;③全等三角形的对应边相等的逆命题是对应边相等的三角形全等,成立;④如果两个实数相等,那么它们的平方相等的逆命题是如果两个实数的平方相等,那么这两个实数相等,不成立;逆命题成立的有2个;故选B.【点评】此题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且∠ABC=90°,则四边形ABCD的面积是()cm2.A.336 B.144 C.102 D.无法确定【考点】勾股定理的逆定理;勾股定理.【分析】利用勾股定理求出AC2的值,再由勾股定理的逆定理判定三角形ACD也为直角三角形,=S△ABC+S△ACD.则S四边形ABCD【解答】解:如图,连接AC.在Rt△ABC中,AC2=AB2+BC2=100,∵AC2+CD2=AD2=676∴△CDA也为直角三角形,∴S=S△ABC+S△ACD=AB×BC+AC×CD=×6×8+×10×24=144(cm2),四边形ABCD故选B.【点评】本题考查了三角形面积和勾股定理逆定理的应用,注意:在一个三角形中,如果有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.8.如图,▱ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16 B.14 C.12 D.10【考点】平行四边形的性质.【分析】根据平行四边形的对边相等得:CD=AB=4,AD=BC=5.再根据平行四边形的性质和对顶角相等可以证明:△AOE≌△COF.根据全等三角形的性质,得:OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+AD=12.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,AD=BC=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OF=OE=1.5,CF=AE,故四边形EFCD的周长为CD+EF+ED+FC=CD+EF+AE+ED=CD+AD+EF=4+5+1.5×2=12.故选C.【点评】能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.9.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第6个图形有()个小圆.A.42 B.44 C.46 D.48【考点】规律型:图形的变化类.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4.据此可以再求得第6个图形小圆的个数即可.【解答】解:根据第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,∵6=4+1×2,10=4+2×3,16=4+3×4,24=4+4×5…,∴第n个图形有:4+n(n+1)个小圆,∴第6个图形有:4+6×(6+1)=46个小圆.故选:C.【点评】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.10.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.10 B.8 C.6 D.5【考点】三角形中位线定理;垂线段最短;平行四边形的性质.【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【解答】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE 最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选C.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.二、填空题(共6小题,每小题3分,满分18分)11.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.12.在△ABC中,∠C=90°,若AC=5,BC=12,则AB=13.【考点】勾股定理.【分析】直接根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方进行计算即可.【解答】解:根据勾股定理可得AB===13,故答案为:13.【点评】此题主要考查了勾股定理,关键是掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.13.一只蚂蚁沿棱长为2的正方体表面从顶点A爬到顶点B,则它走过的最短路程为2.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短可得出结论.【解答】解:将正方体展开,连接A、B,根据两点之间线段最短,AB==2.故答案为:2.【点评】本题考查的是平面展开.最短路径问题,熟知“两点之间,线段最短”是解答此题的关键.14.一个三角形的三条中位线的长分别为3,4,5,则三角形的面积为24.【考点】三角形中位线定理;勾股定理的逆定理.【分析】根据三角形的中位线定理即可求得△ABC的各个边长,利用勾股定理的逆定理可以判断△ABC是直角三角形,则面积即可求解.【解答】解:设中位线DE=3,DF=4,EF=5.∵DE是△ABC的中位线,∴BC=2DE=2×3=6.同理:AC=2DF=8,AB=2EF=10.∵62+82=100=102,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴S△ABC=AC•BC=×6×8=24.故答案是:24.【点评】本题主要考查了勾股定理,以及三角形的中位线定理,正确求得△ABC的边长,判断△ABC 是直角三角形是解题关键.15.如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度hcm,则h的取值范围是5cm≤h≤6cm.【考点】勾股定理的应用.【分析】根据杯子内筷子的长度的取值范围得出杯子外面长度的取值范围,即可得出答案.【解答】解:∵将一根长为18cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,x=12,最长时等于杯子斜边长度是:x==13,∴h的取值范围是:(18﹣13)cm≤h≤(18﹣12)cm,即5cm≤h≤6cm.故答案为:5cm≤h≤6cm.【点评】此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.16.如图,已知平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,两顶点B、D分别在平面直角坐标系的y轴、x轴的正半轴上滑动,连接OA,则OA的长的最小值是5﹣5.【考点】菱形的判定与性质;坐标与图形性质;垂线段最短;等边三角形的判定与性质.【分析】利用菱形的性质以及等边三角形的性质得出A点位置,进而求出AO的长.【解答】解:如图所示:过点A作AE⊥BD于点E,当点A,O,E在一条直线上,此时AO最短,∵平行四边形ABCD中,AB=BC,BC=10,∠BCD=60°,∴AB=AD=CD=BC=10,∠BAD=∠BCD=60°,∴△ABD是等边三角形,∴AE过点O,E为BD中点,则此时EO=5,故AO的最小值为:AO=AE﹣EO=ABsin60°﹣×BD=5﹣5.故答案为:5﹣5.【点评】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出当点A,O,E在一条直线上,此时AO最短是解题关键.三、解答题(共8小题,满分72分)17.(1)×÷(2)+2﹣(﹣)【考点】二次根式的混合运算.【分析】(1)按照二次根式的乘除法的计算方法计算即可;(2)先化简,再进一步合并同类二次根式即可.【解答】解:(1)原式=÷=;(2)原式=2+2﹣3+=3﹣.【点评】此题考查二次根式的混合运算,掌握运算的方法和化简的方法是解决问题的关键.18.如图,在平行四边形ABCD中,E、F分别是边AB、CD的中点,四边形AEFD是平行四边形吗?为什么?【考点】平行四边形的判定与性质.【分析】根据平行四边形ABCD的性质推知AE∥DF;又E、F分别是边AB、CD的中点,则AD∥EF,所以由“有两组对边相互平行的四边形是平行四边形”证得四边形AEFD是平行四边形.【解答】解:四边形AEFD是平行四边形.理由如下:如图,∵四边形ABCD是平行四边形,∴AB∥DC,则AE∥DF.又∵E、F分别是边AB、CD的中点,∴AD∥EF,∴四边形AEFD是平行四边形.【点评】本题考查了平行四边形的判定与性质.解题时,利用了“有两组对边相互平行的四边形是平行四边形”证得四边形AEFD是平行四边形.19.已知x=+1,y=﹣1,求下列各式的值:(1)x2﹣y2;(2)x2+xy+y2.【考点】二次根式的化简求值.【分析】(1)先代入分别求出x+y,x﹣y的值,根据平方差公式分解因式,代入求出即可;(2)先代入分别求出x+y,xy的值,根据完全平方公式代入求出即可;【解答】解:∵x=+1,y=﹣1,∴x+y=2,x﹣y=2,xy=(+1)×(﹣1)=2,(1)x2﹣y2;=(x+y)(x﹣y)=2×2=4.(2)x2+xy+y2.=(x+y)2﹣xy=(2)2﹣2=10.【点评】本题考查了对平方差公式,完全平方公式,二次根式的混合运算的应用,主要考查学生能否选择恰当的方法进行计算.20.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=;(2)在图②中画一个△ABC,使其三边长分别为3,,.【考点】勾股定理.【专题】作图题.【分析】(1)如图①,在直角三角形MQN中,利用勾股定理求出MN的长为,故MN为所求线段;(2)如图②,分别利用勾股定理求出AB,AC,以及BC的长,即可确定出所求△ABC.【解答】解:(1)如图①所示,在Rt△MQN中,MQ=2,NQ=1,根据勾股定理得:MN==,则线段MN为所求的线段;(2)如图②所示,AB=3,AC==,BC==,则△ABC为所求三角形.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.21.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【考点】勾股定理的逆定理;方向角.【专题】应用题.【分析】根据路程=速度×时间分别求得OB、OA的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解.【解答】解:1小时“远航”号的航行距离:OB=16×1=16海里;1小时“海天”号的航行距离:OA=12×1=12海里,因为AB=20海里,所以AB2=OB2+OA2,即202=162+122,所以△OAB是直角三角形,又因为∠1=45°,所以∠2=45°,故“海天”号沿西北方向航行或东南方向航行.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.22.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【考点】平行四边形的判定与性质;等边三角形的性质;翻折变换(折叠问题).【分析】(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.【解答】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.【点评】此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.23.已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.【考点】三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.【专题】压轴题.【分析】(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.【解答】(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=CE﹣BC,DE=EF﹣DF,∴BE=DE,∴△BDE是等腰直角三角形,∴∠EBM=45°,∵在等腰直角△CEF中,∠ECF=45°,∴∠EBM=∠ECF,∴MB∥CF;(2)解法一:如答图2a所示,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,∴AB=BC=BD=a,AC=CD=a,∴点B为AD中点,又点M为AF中点,∴BM=DF.分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a,∴点E为FG中点,又点M为AF中点,∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a,∴BM=ME=×a=a.解法二:如答图1b.∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;(3)证法一:如答图3a,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,AC=CD,∴点B为AD中点,又点M为AF中点,∴BM=DF.延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,∴CE=EF=EG,CF=CG,∴点E为FG中点,又点M为AF中点,∴ME=AG.在△ACG与△DCF中,,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.证法二:如答图3b,延长BM交CF于D,连接BE、DE,∵∠BCE=45°,∴∠ACD=45°×2+45°=135°∴∠BAC+∠ACF=45°+135°=180°,∴AB∥CF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=FM,在△ABM和△FDM中,,∴△ABM≌△FDM(ASA),∴AB=DF,BM=DM,∴AB=BC=DF,在△BCE和△DFE中,,∴△BCE≌△DFE(SAS),∴BE=DE,∠BEC=∠DEF,∴∠BED=∠BEC+∠CED=∠DEF+∠CED=∠CEF=90°,∴△BDE是等腰直角三角形,又∵BM=DM,∴BM=ME=BD,故BM=ME.【点评】本题考查了三角形中位线定理、全等三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出中位线、全等三角形和等腰直角三角形是解题的关键,也是本题的难点.24.如图,在平面直角坐标系中,AB∥OC,A(0,12),B(a,c),C(b,0),并且a,b满足b=++16.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B 运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动.设运动时间为t(秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,△PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.【考点】平行四边形的判定;坐标与图形性质;等腰三角形的判定;勾股定理.【分析】(1)根据二次根式的性质得出a,b的值进而得出答案;(2)由题意得:QP=2t,QO=t,PB=21﹣2t,QC=16﹣t,根据平行四边形的判定可得21﹣2t=16﹣t,再解方程即可;(3)①当PQ=CQ时,122+t2=(16﹣t)2,解方程得到t的值,再求P点坐标;②当PQ=PC时,由题意得:QM=t,CM=16﹣2t,进而得到方程t=16﹣2t,再解方程即可.【解答】解:(1)∵b=++16,∴a=21,b=16,故B(21,12)C(16,0);(2)由题意得:QP=2t,QO=t,则:PB=21﹣2t,QC=16﹣t,∵当PB=QC时,四边形PQCB是平行四边形,∴21﹣2t=16﹣t,解得:t=5,∴P(10,12)Q(5,0);(3)当PQ=CQ时,过Q作QN⊥AB,由题意得:122+t2=(16﹣t)2,解得:t=,故P(7,12),Q(,0),当PQ=PC时,过P作PM⊥x轴,由题意得:QM=t,CM=16﹣2t,则t=16﹣2t,解得:t=,2t=,故P(,12),Q(,0).【点评】此题主要考查了平行四边形的判定,等腰三角形的判定,关键是注意分类讨论,不要漏解.。

相关文档
最新文档