高中数学人教a版必修4模块综合检测(三) word版含解析

合集下载

2021高中同步创新课堂数学优化方案人教A版必修4习题:模块综合检测 Word版含答案

2021高中同步创新课堂数学优化方案人教A版必修4习题:模块综合检测 Word版含答案

模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设向量a =(1,0),b =⎝⎛⎭⎫12,12,则下列结论中正确的是( ) A .|a |=|b | B .a·b =22C .a -b 与b 垂直D .a ∥b解析:选C .a -b =⎝⎛⎭⎫12,-12,(a -b )·b =0, 所以a -b 与b 垂直.故选C .2.已知sin(π+α)=13,则cos 2α=( )A .79B .89C .-79D .429解析:选A .由于sin(π+α)=13,所以sin α=-13,所以cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫-132 =79.3.下列函数中同时满足最值是12,最小正周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A .由题意得,A =12,2πω=6π,ω=13,故选A .4.已知平面对量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B .由于a =(1,2),b =(-2,m ), 所以1×m -2×(-2)=0, 所以m =-4.所以2a +3b =(2,4)+(-6,-12)=(-4,-8).5.在△ABC 中,A =15°,则3sin A -cos(B +C )的值为( ) A .22B .32C . 2D .2解析:选C .由于A +B +C =180°, 所以原式=3sin A -cos(180°-A ) =3sin A +cos A =2sin(A +30°) =2sin(15°+30°)=2sin 45°=2.6.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于( ) A .30° B .60° C .120°D .90°解析:选C .设a ,b 的夹角为θ,由c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a·b =0⇒a·b =-1⇒cos θ=a·b |a ||b |=-12且0°≤θ≤180°⇒θ=120°.故选C .7.已知α,β为锐角,且tan α=17,sin β=35,则α+β等于( )A .3π4B .2π3C .π4D .π3解析:选C .由于β为锐角,sin β=35,所以cos β=1-sin 2β=45,所以tan β=sin βcos β=34, 所以tan(α+β)=tan α+tan β1-tan αtan β=17+341-17×34=1.由于α,β为锐角,所以α+β∈(0,π), 所以α+β=π4.8.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π12B .π6C .π3D .5π6解析:选B .y =f (x )=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m (m >0)个单位长度后得f (x +m )=2sin ⎝⎛⎭⎫x +m +π3,由于图象关于y 轴对称,令x =0,得⎪⎪⎪⎪2sin ⎝⎛⎭⎫m +π3=2, 从而m +π3=2k π±π2,故m =2k π+π6或m =2k π-5π6,k ∈Z .又m >0,所以m min =π6.9.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (11)的值等于( )A .2B .2+ 2C .2+2 2D .-2-2 2解析:选C .由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而f (x )=2sinπ4x . 所以f (1)+f (2)+f (3)+…+f (11)=f (1)+f (2)+f (3)=2sin π4+2sin π2+2sin 3π4=2+22.10.已知向量a =(2cos φ,2sin φ),φ∈⎝⎛⎭⎫π2,π,b =(0,-1),则a 与b 的夹角为( ) A .φ B .π2-φC .π2+φ D .3π2-φ 解析:选D .|a |=(2cos φ)2+(2sin φ)2=2,|b |=1,a·b =-2sin φ,设a 与b 的夹角为θ,则cos θ=a·b |a |·|b |=-2sin φ2×1=-sin φ=sin(-φ)=cos ⎝⎛⎭⎫3π2-φ,即cos θ=cos ⎝⎛⎭⎫3π2-φ,且3π2-φ∈⎝⎛⎭⎫π2,π,所以θ=3π2-φ.故选D .11.已知|p |=22,|q |=3,p ,q 的夹角为π4,如图所示,若AB →=5p +2q ,AC →=p -3q ,D 为BC 的中点,则|AD →|为( )A .152B .152C .7D .18解析:选A .由于AD →=12(AC →+AB →)=12(5p +2q +p -3q )=12(6p -q ),所以|AD →|=|AD →|2=12(6p -q )2=1236p 2-12p ·q +q 2=1236×()222-12×22×3×cos π4+32=152.12.已知函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,其图象与直线y =2的交点的横坐标为x 1,x 2,若|x 1-x 2|的最小值为π,则( )A .ω=2,θ=π2B .ω=12,θ=π2C .ω=12,θ=π4D .ω=2,θ=π4解析:选A .由于函数y =2sin(ωx +θ)(ω>0,0<θ<π)为偶函数,所以θ=π2,所以y =2cos ωx ,排解C ,D ;y =2cos ωx ∈[-2,2],结合题意可知T =π,所以2πω=π,所以ω=2,排解B ,故选A .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知2sin θ+3cos θ=0,则tan(3π+2θ)=________.解析:由同角三角函数的基本关系式,得tan θ=-32,从而tan(3π+2θ)=tan 2θ=2tan θ1-tan 2 θ=2×⎝⎛⎭⎫-321-⎝⎛⎭⎫-322=125. 答案:12514.在平面直角坐标系xOy 中,已知OA →=(-1,t ),OB →=(2,2).若∠ABO =90°,则实数t 的值为________. 解析:由于∠ABO =90°,所以AB →⊥OB →,所以OB →·AB →=0. 又AB →=OB →-OA →=(2,2)-(-1,t )=(3,2-t ), 所以(2,2)·(3,2-t )=6+2(2-t )=0. 所以t =5. 答案:515.已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1,x ∈⎣⎡⎦⎤π4,π2,则f (x )的最小值为________. 解析:f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x -1=1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4+x -3cos 2x -1 =-cos ⎝⎛⎭⎫π2+2x -3cos 2x =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3, 由于π4≤x ≤π2,所以π6≤2x -π3≤2π3,所以12≤sin ⎝⎛⎭⎫2x -π3≤1. 所以1≤2sin ⎝⎛⎭⎫2x -π3≤2, 所以1≤f (x )≤2,所以f (x )的最小值为1. 答案:116(2021·高考安徽卷)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出全部正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →. 解析:由于 AB →2=4|a |2=4,所以|a |=1,故①正确;由于 BC →=AC →-AB →=(2a +b )-2a =b ,又△ABC 为等边三角形,所以|BC →|=|b |=2,故②错误; 由于 b =AC →-AB →,所以a ·b =12AB →·(AC →-AB →)=12×2×2×cos 60°-12×2×2=-1≠0,故③错误;由于 BC →=b ,故④正确;由于 (AB →+AC →)·(AC →-AB →)=AC →2-AB →2=4-4=0, 所以(4a +b )⊥BC →,故⑤正确. 答案:①④⑤三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面直角坐标系中,A (1,-2),B (-3,-4),O 为坐标原点. (1)求OA →·OB →;(2)若点P 在直线AB 上,且OP →⊥AB →,求OP →的坐标. 解:(1)OA →·OB →=1×(-3)+(-2)×(-4)=5. (2)设P (m ,n ),由于P 在AB 上,所以BA →与P A →共线.BA →=(4,2),P A →=(1-m ,-2-n ),所以4·(-2-n )-2(1-m )=0. 即2n -m +5=0.①又由于OP →⊥AB →,所以(m ,n )·(-4,-2)=0. 所以2m +n =0.②由①②解得m =1,n =-2,所以OP →=(1,-2).18.(本小题满分12分)已知tan α=-13,cos β=55,α,β∈(0,π).(1)求tan(α+β)的值;(2)求函数f (x )=2sin(x -α)+cos(x +β)的最大值. 解:(1)cos β=55,β∈(0,π), 得sin β=255,即tan β=2.所以tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.(2)由于tan α=-13,α∈(0,π),所以sin α=110,cos α=-310. 所以f (x )=-355sin x -55cos x +55cos x -255sin x =-5sin x .所以f (x )的最大值为5.19.(本小题满分12分)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)争辩f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx=2(sin 2ωx +cos 2ωx )+2 =2sin ⎝⎛⎭⎫2ωx +π4+2. 由于f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 20.(本小题满分12分)(2021·高考湖北卷)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上全部点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.解:(1)依据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1),知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 由于y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0. 21.(本小题满分12分)将射线y =17x (x ≥0)围着原点逆时针旋转π4后所得的射线经过点A (cos θ,sin θ).(1)求点A 的坐标;(2)若向量m =(sin 2x ,2cos θ),n =(3sin θ,2cos 2x ),求函数f (x )=m·n ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的值域. 解:(1)设射线y =17x (x ≥0)与x 轴的非负半轴所成的锐角为α,则tan α=17,α∈⎝⎛⎭⎫0,π2. 所以tan α<tan π4,所以α∈⎝⎛⎭⎫0,π4, 所以tan θ=tan ⎝⎛⎭⎫α+π4=17+11-17×1=43,θ∈⎝⎛⎭⎫π4,π2,所以由⎩⎪⎨⎪⎧sin 2θ+cos 2θ=1,sin θcos θ=43,得⎩⎨⎧sin θ=45,cos θ=35.所以点A 的坐标为⎝⎛⎭⎫35,45. (2)f (x )=3sin θ·sin 2x +2cos θ·2cos 2x =125sin 2x +125cos 2x =1225sin ⎝⎛⎭⎫2x +π4. 由x ∈⎣⎡⎦⎤0,π2, 得2x +π4∈⎣⎡⎦⎤π4,5π4, 所以sin ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 所以函数f (x )的值域为⎣⎡⎦⎤-125,1225.22.(本小题满分12分)已知向量OA →=(cos α,sin α),α∈[-π,0],向量m =(2,1),n =()0,-5,且m ⊥(OA →-n ).(1)求向量OA →; (2)若cos(β-π)=210,0<β<π,求cos(2α-β)的值. 解:(1)由于OA →=(cos α,sin α), 所以OA →-n =()cos α,sin α+5. 由于m ⊥(OA →-n ),所以m ·(OA →-n )=0, 所以2cos α+sin α+5=0.① 又sin 2α+cos 2α=1,②由①②得sin α=-55,cos α=-255, 所以OA →=⎝⎛⎭⎫-255,-55. (2)由于cos(β-π)=210, 所以cos β=-210, 又0<β<π, 所以sin β=1-cos 2β=7210,且π2<β<π. 又由于sin 2α=2sin αcos α=2×⎝⎛⎭⎫-55×⎝⎛⎭⎫-255=45,cos 2α=2cos 2α-1=2×45-1=35,所以cos(2α-β)=cos 2αcos β+sin 2αsin β =35×⎝⎛⎭⎫-210+45×7210 =25250=22.。

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

高中数学必修4第三章三角恒等变换综合检测题(人教A版)

第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。

第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。

高中数学人教A必修4章末综合测评3 Word版含解析

高中数学人教A必修4章末综合测评3 Word版含解析

章末综合测评(三)三角恒等变换(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).(·日照高一检测)已知(α+β)+(α-β)=,则αβ的值为( )....【解析】由题意得:αβ-αβ+αβ+αβ=αβ=,所以αβ=.【答案】.已知(π+α)=,则α α)等于( )...-.-【解析】由(π+α)=,得α=,∴α α)=α α)=α)=.【答案】.(·重庆高考)若α=,则=( )【导学号:】....【解析】∵==,∴原式==α(π)+α(π) α(π)-α(π))=α+(π) α-(π)).又∵α=,∴原式==.【答案】.(·大连高一检测)°- ° °)的值为( )....【解析】原式=° °)=° °+° °)-° °)=° °)=.【答案】.(·锦州高一检测)-等于( )....-【解析】原式==-==.【答案】.已知函数=(+φ)的图象过点,则φ的值可以是( ) .-..-.【解析】由题得=,即=,+φ=π,∈,φ=π-,∈,当=时,φ=-,故选.【答案】.若θ∈,θ-θ=,则θ等于( )..-.±.±【解析】由θ-θ=两边平方得,θ=,又θ∈,且θ> θ,所以<θ<,所以<θ<π,因此,θ=-,故选.【答案】.已知=,则的值为( )。

高中人教A版数学必修4:习题课(三) Word版含解析

高中人教A版数学必修4:习题课(三) Word版含解析

一、选择题1.对于非零向量ab 下列说法不正确的是( )A .若a =b 则|a |=|b |B .若a ∥b 则a =b 或a =-bC .若a ⊥b 则a ·b =0D .a ∥b 与ab 共线是等价的答案:B解析:根据平面向量的概念和性质可知a ∥b 只能保证a 与b 的方向相同或相反但模长不确定因此B 错误.2.设向量ab 满足|a +b |=10|a -b |=6则a ·b =( )A .1B .2C .3D .5答案:A解析:将已知两式左右两边分别平方得⎩⎪⎨⎪⎧ a 2+2a ·b +b 2=10a 2-2a ·b +b 2=6两式相减并除以4可得a ·b =1 3.设xy ∈R 向量a =(x 1)b =(1y )c =(2-4)且a ⊥cb ∥c 则|a +b |等于( )A 5B 10C .2 5D .10答案:B解析:∵a ⊥c ∴2x -4=0x =2又b ∥c ∴2y +4=0∴y =-2∴a +b =(x +11+y )=(3-1). ∴|a +b |=10 4.对于非零向量αβ定义一种向量积:α°β=α·ββ·β已知非零向量ab 的夹角θ∈⎝⎛⎭⎫π4,π2且a °bb °a 都在集合⎩⎨⎧⎭⎬⎫ ⎪⎪n 2n ∈N 中则a °b =( ) A 52或32 B 12或32C .1D 12答案:D解析:a °b =a ·b b ·b =|a |·|b |cos θ|b |2=|a |cos θ|b |=n 2n ∈N ①同理可得b °a =b ·a a ·a =|a |·|b |cos θ|a |2=|b |cos θ|a |=m 2m ∈N ②再由a 与b 的夹角θ∈⎝⎛⎭⎫π4,π2可得cos 2θ∈⎝⎛⎭⎫0,12①②两式相乘得cos 2θ=mn 4mn ∈N ∴m =n =1∴a °b =n 2=12选D 二、填空题7.若向量OA →=(1-3)|OB →|=|OA →|OA →·OB →=0则|AB →|=________答案:2 5解析:因为|AB →|2=|OB →-OA →|2=|OB →|2+|OA →|2-2OA →·OB →=10+10-0=20所以|AB →|=20=2 58.已知向量ab 满足|a |=1|b |=3a +b =(31)则向量a +b 与向量a -b 的夹角是________.答案:2π3解析:因为|a -b |2+|a +b |2=2|a |2+2|b |2所以|a -b |2=2|a |2+2|b |2-|a +b |2=2+6-4=4故|a -b |=2因此cos 〈a -ba +b 〉=(a -b )·(a +b )|a -b |·|a +b |=1-34=-12故所求夹角是2π3 9.设正三角形ABC 的面积为2边ABAC 的中点分别为DEM 为线段DE 上的动点则MB →·MC →+BC →2的最小值为________. 答案:532 解析:设正三角形ABC 的边长为2a 因为正三角形ABC 的面积为2所以a 2=233设MD =x (0≤x ≤a )则ME =a -xMB →·MC →+BC →2=(MD →+DB →)·(ME →+EC →)+BC →2=MD →·ME →+MD →·EC →+DB →·ME →+DB →·EC →+BC →2=-x (a -x )+xa cos120°+(a -x )a cos120°+a 2cos60°+4a 2=x 2-ax +4a 2当x =a 2时MB →·MC →+BC →2取得最小值⎝⎛⎭⎫a 22-a ×a 2+4a 2=154a 2=532三、解答题10.已知|a |=4|b |=8a 与b 的夹角是120°(1)求a ·b 及|a +b |的值;(2)当k 为何值时(a +2b )⊥(k a -b )?解:(1)a ·b =|a ||b |cos120°=-16|a +b |=(a +b )2=a 2+b 2+2a ·b=4 3(2)由题意知(a +2b )·(k a -b )=k a 2+(2k -1)a ·b -2b 2=0即16k -16(2k -1)-2×64=0解得k =-711.如图在△OAB 中P 为线段AB 上一点且OP →=xOA →+yOB →(1)若AP →=PB →求xy 的值;(2)若AP →=3PB →|OA →|=4|OB →|=2且OA →与OB →的夹角为60°求OP →·AB →的值.解:(1)若AP →=PB →则OP →=12OA →+12OB → 故x =y =12(2)若AP →=3PB →则OP →=14OA →+34OB → OP →·AB →=错误!·(错误!-错误!)=-14OA →2-12OA →·OB →+34OB →2 =-14×42-12×4×2×cos60°+34×22 =-3能力提升12.已知A (10)B (5-2)C (84)D (46)那么四边形ABCD 为( )A .正方形B .菱形C .梯形D .矩形答案:D解析:AB →=(4-2)BC →=(36).AB →·BC →=4×3+(-2)×6=0故AB →⊥BC →又DC →=(4-2)故 AB →=DC →又|AB →|=20=2 5|BC →|=45=3 5故|AB →|≠|BC →|所以四边形ABCD 为矩形.13.在平面直角坐标系中已知三点A (40)B (t 2)C (6t )t ∈R O 为坐标原点.(1)若△ABC 是直角三角形求t 的值;(2)若四边形ABCD 是平行四边形求|OD →|的最小值.解:(1)由题意得AB →=(t -42)AC →=(2t )BC →=(6-tt -2)若∠A =90°则AB →·AC →=0即2(t -4)+2t =0∴t =2;若∠B =90°则AB →·BC →=0即(t -4)(6-t )+2(t -2)=0∴t =6±22;若∠C =90°则AC →·BC →=0即2(6-t )+t (t -2)=0无解∴满足条件的t 的值为2或6±2 2(2)若四边形ABCD 是平行四边形则AD →=BC →设点D 的坐标为(xy )即(x -4y )=(6-tt -2)∴⎩⎪⎨⎪⎧x =10-t y =t -2即D (10-tt -2) ∴|OD →|=(10-t )2+(t -2)2=2t 2-24t +104∴当t =6时|OD →|取得最小值4 2。

2018秋新版高中数学人教A版必修4习题:模块综合检测 Word版含解析

2018秋新版高中数学人教A版必修4习题:模块综合检测 Word版含解析

模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若sinα2=√33,则cos α=()A.−23B.−13C.13D.23解析:cosα=1-2sin2α2=1−2×(√33)2=13.故选C.答案:C2若tan(α-3π)>0,sin(-α+π)<0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由已知得tanα>0,sinα<0,∴α是第三象限角.答案:C3函数f(x)=si n(2x+π3)的图象的对称轴方程可以为()A.x=π12B.x=5π12C.x=π3D.x=π6解析:由2x+π3=kπ+π2(k∈Z),得x=kπ2+π12(k∈Z).当k=0时,x=π12 .答案:A4已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()A.π3B.π2C.2π3D.5π6解析:因为a⊥(2a+b),所以a·(2a+b)=0, 即2|a|2+a·b=0.设a与b的夹角为θ,则有2|a |2+|a ||b |cos θ=0.又|b |=4|a |,所以2|a |2+4|a |2cos θ=0,则cos θ=−12,从而θ=2π3. 答案:C5已知a =(1,12),b =(1,-12),c=a +k b ,d=a-b ,c 与d 的夹角是π4,则k 的值为( ) A.−13B.−3C.-3或−13D.−1解析:c =(1,12)+(k ,-12k)=(1+k ,12-12k),d =(0,1). co s π4=12-12k √(1+k )+14(1-k ),解得k=-3或−13.答案:C6将函数y =√3cos x +sin x(x ∈R )的图象向左平移m (m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π12B.π6C .π3D.5π6解析:y =√3cos x+sin x=2co s (x -π6),向左平移m (m>0)个单位长度后得到函数y=2co s (x +m -π6)的图象.由于该图象关于y 轴对称,所以m −π6=kπ(k ∈Z ),即m=k π+π6,故当k=0时,m 取得最小值π6.答案:B7对任意平面向量a ,b ,下列关系式中不恒成立的是( )A.|a ·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b )2=|a+b|2D.(a+b )·(a-b )=a 2-b 2。

高中人教A版数学必修4:模块综合测试卷Word版含解析

高中人教A版数学必修4:模块综合测试卷Word版含解析

2
3
A. 3π B. 4π
5 C.6π D .π
答案: A
解析: 设该弦 AB 所对的圆心角为 α,由已知 R= 1, AB
∴ sinα= 2 = 2R
3,∴ 2
α= 2
π,∴ 3
α=
2 3π,∴
l=
αR=
2 3π.
2.- 3290 °角是 ( )
A .第一象限角 B.第二象限角
C.第三象限角 D.第四象限角 答案: D
9. y=2cos
π- 2x 4
的单调减区间是
(
)
A. kπ+ π8, kπ+58π(k∈ Z )
B.

3 8π+
kπ,
π8+
kπ(
k∈
Z
)
C.
π+ 8
2kπ,
58π+
2kπ
(
k∈
Z
)
D.

3 8π+
2kπ,π8+
2kπ
(
k∈
Z
)
答案: A
解析:
y= 2cos
π4- 2x
= 2cos
2x-
π 4 .由
0,
π 4

∴ cos
β-
π 4

45,
于是
sin2
β-π4 = 2sin
π β- 4 cos
β-
π 4

24 25.

sin2
π β- 4 =-
cos2β,∴
cos2β=-
24 25
.
又 2β∈
π, 2
π
,∴
sin2
β=
275,又

2019版高中数学人教A版必修4:模块综合检测 含解析

2019版高中数学人教A版必修4:模块综合检测 含解析

模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.cos 660°等于()A.-B.-C.D.解析:cos 660°=cos(-60°+2×360°)=cos(-60°)=cos 60°=,故选C.答案:C2.若tan(α-3π)>0,sin(-α+π)<0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由已知得tan α>0,sin α<0,∴α是第三象限角.答案:C3.若一工件是扇形,其圆心角的弧度数为2,且该扇形弧所对的弦长也是2,则这个工件的面积为()A. B. C. D.解析:由题意,得扇形的半径为.又由扇形的面积公式,得该扇形的面积为×2×.答案:A4.已知△ABC的边BC上有一点D满足=2,则可表示为()A. B.C. D.解析:由题得)=.答案:C5.已知a=,b=-,c=a+k b,d=a-b,c与d的夹角是,则k的值为()A.-B.-3C.-3或-D.-1解析:c=--,d=(0,1).,cos--解得k=-3或-.答案:C6.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A. B.C. D.解析:y=cos x+sin x=2cos-,向左平移m(m>0)个单位长度后得到函数y=2cos-的图象.因为该图象关于y轴对称,所以m-=kπ(k∈Z),即m=kπ+,故当k=0时,m取得最小值.答案:B7.对任意平面向量a,b,下列关系式不恒成立的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2解析:当a与b为非零向量且反向时,B显然错误.答案:B8.已知函数y=A sin(ωx+φ)+m(A>0)的最大值为4,最小值为0,最小正周期为,直线x=是其图象的一条对称轴,则下面各式中符合条件的函数解析式是()A.y=4sinB.y=2sin+2C.y=2sin+2D.y=2sin+2得A=2,m=2.解析:由-又∵T=,∴ω==4,∴ωx+φ=4x+φ.∵x=是其图象的一条对称轴,∴π+φ=kπ+(k∈Z),∴φ=kπ-π.当k=1时,φ=,∴y=2sin+2.答案:D9.已知向量=(2,0),=(0,2),=(cos θ,sin θ),则||的取值范围是()A.[1,2]B.[2,4]C.[2-1,2+1]D.[2,2+1]解析:由题意知,=(2-cos θ,-2-sin θ),所以||=---=-=-∈[-],即||∈[2-1,2+1].答案:C10.已知函数f(x)=A sin,x∈R,A>0,y=f(x)的部分图象如图,P,Q分别为该图象的最高点和最低点,点P 的横坐标为1.若点R的坐标为(1,0),∠PRQ=,则A=()A. B.2C.1D.2解析:函数f(x)的周期为T==6,∴Q(4,-A).又∠PRQ=,∴直线RQ的倾斜角为,∴=-,A=.-答案:A11.若动直线x=a与函数y=sin-和y=sin的图象分别交于M,N两点,则|MN|的最大值为()A.1B.C. D.2解析:|MN|=--=---=|cos 2a|≤.答案:C12.已知cos α=,cos(α+β)=-,且α,β∈,则cos(α-β)=()A.-B.C.-D.解析:因为α∈,所以2α∈(0,π).因为cos α=,所以cos 2α=2cos2α-1=-,所以sin 2α=-.又α,β∈,所以α+β∈(0,π),所以sin(α+β)=-,所以cos(α-β)=cos[2α-(α+β)]=cos 2αcos(α+β)+sin 2αsin(α+β)=--.答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知扇形的周长为8 cm,圆心角为2弧度,则该扇形的面积为.解析:设扇形的弧长为l cm,半径为r cm,则l=2r.又l+2r=8,∴2r+2r=8,即r=2(cm).∴扇形的面积S=lr=×4×2=4(cm2).答案:4 cm214.函数y=3-的定义域为.解析:由2cos≥0,得2kπ-≤3x+≤2kπ+(k∈Z),即kπ-≤x≤kπ+(k∈Z).答案:-(k∈Z)15.已知非零实数a,b满足关系式-=tan ,则的值是.解析:由题可得-=tan=tan =tan,其中sin θ=,cos θ=,所以θ=+kπ,k∈Z,所以=tan θ=tan=tan .答案:16.已知ω>0,在函数y=2sin ωx与y=2cos ωx的图象的交点中,距离最短的两个交点的距离为2,则ω=.解析:如图所示,在同一直角坐标系中,作出函数y=2sin ωx与y=2cos ωx的图象.A,B为符合条件的两交点.则A,B--,由|AB|=2,得=2,解得=2,即ω=.答案:三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知sin+sin-.(1)求sin α的值;(2)求---的值.解:(1)∵sin+sin-, ∴sin α=.∴sin α=.(2)∵---=--=--,∴原式=.18.(12分)已知电流I与时间t的关系式为I=A sin(ωt+φ).(1)如图是I=A sin(ωt+φ)在一个周期内的图象,根据图中数据求I=A sin(ωt+φ)的解析式;(2)如果t在任意一个长度为的区间内,电流I=A sin(ωt+φ)都能取得最大值,那么ω的最小正整数值是多少? 解:(1)因为周期T=2×--,ω==150π.又A=300,所以I=300sin(150πt+φ).将点-的坐标代入上式,得sin-=0.因为|φ|<,所以φ-=0,φ=,即所求的解析式为I=300sin.(2)如果t在任意一个长度为的区间内,电流I=A sin(ωt+φ)都能取得最大值,那么必须满足,即ω≥300π≈942,所以ω的最小正整数值是943.19.(12分)设在平面上有两个向量a=(cos 2α,sin 2α)(0≤α<π),b=,a与b不共线.(1)求证:向量a+b与a-b垂直;(2)当向量a+b与a-b的模相等时,求α的大小.(1)证明由已知得|a|==1,|b|==1,则(a+b)·(a-b)=a2-b2=0,所以a+b与a-b垂直.(2)解由|a+b|=|a-b|两边平方,得3|a|2+2a·b+|b|2=|a|2-2a·b+3|b|2,∴2(|a|2-|b|2)+4a·b=0.而|a|=|b|,∴a·b=0.∴cos 2α+sin 2α=0,即sin=0,∴2α+=kπ(k∈Z).又0≤α<π,∴α=或α=.20.(12分)如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B两点的横坐标分别为.(1)求tan(α+β)的值;(2)求α+2β的值.解:由已知得cos α=,cos β=.∵α,β为锐角,∴sin α=-,sin β=-.∴tan α=7,tan β=.=-3.(1)tan(α+β)=--(2)∵tan 2β=,--∴tan(α+2β)==-1.--∵α,β为锐角,∴0<α+2β<.∴α+2β=.21.(12分)已知点A,B,C的坐标分别为A(3,0),B(0,3),C(cos α,sin α),α∈.(1)若||=||,求角α的值;(2)若=-1,求的值.解:(1)∵=(cos α-3,sin α),=(cos α,sin α-3),∴||=--,||=--.由||=||,得sin α=cos α.又∵α∈,∴α=.(2)由=-1,得(cos α-3)cos α+sin α(sin α-3)=-1.∴sin α+cos α=.①又=2sin αcos α.由①式两边平方,得1+2sin αcos α=,∴2sin αcos α=-.∴=-.22.(12分)如图,已知OPQ是半径为1,圆心角为θ的扇形,A是扇形弧PQ上的动点,AB∥OQ,OP与AB交于点B,AC∥OP,OQ与AC交于点C.(1)当θ=时,求点A的位置,使矩形ABOC的面积最大,并求出这个最大面积;(2)当θ=时,求点A的位置,使平行四边形ABOC的面积最大,并求出这个最大面积.解:(1)连接OA,设∠AOB=α,则OB=cos α,AB=sin α.∴矩形面积S=OB·AB=sin αcos α.∴S=sin 2α.由于0<α<,∴当2α=,即α=时,S最大=.∴A点在的中点时,矩形ABOC面积最大,最大面积为.(2)连接OA,设∠AOP=α,过A点作AH⊥OP,垂足为H.在Rt△AOH中,AH=sin α,OH=cos α.在Rt△ABH中,=tan 60°=,∴BH=sin α.∴OB=OH-BH=cos α-sin α.设平行四边形ABOC的面积为S,则S=OB·AH=-sin α=sin αcos α-sin2α=sin 2α-(1-cos 2α)=sin 2α+cos 2α-==sin.由于0<α<,∴当2α+,即α=时,S最大=.∴当A是的中点时,平行四边形面积最大,最大面积为.。

高中数学模块综合测评含解析新人教A版必修4

高中数学模块综合测评含解析新人教A版必修4

模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若cos α=13,则cos 2α=( )A.429B .-429C.79D .-79D [cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫132-1=-79,故选D.]2.已知扇形的圆心角为2π3弧度,半径为2,则扇形的面积是( )A.8π3B.43 C .2πD.4π3D [扇形的面积S =12×2π3×22=4π3.]3.已知sin ⎝ ⎛⎭⎪⎫α-π12=13,则cos ⎝ ⎛⎭⎪⎫α+5π12的值等于( ) A.13 B.223C .-13D .-223C [cos ⎝ ⎛⎭⎪⎫α+5π12=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-π12+π2=-sin ⎝ ⎛⎭⎪⎫α-π12=-13,故选C.] 4.设向量a =(2tan α,tan β),向量b =(4,-3),且a +b =0,则tan(α+β)=( ) A.17 B .-15C.15D .-17A [∵a +b =(2tan α+4,tan β-3)=0,∴⎩⎪⎨⎪⎧2tan α+4=0,tan β-3=0,∴tan α=-2,tan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+31--2×3=17.]5.已知函数f (x )=sin x +cos x ,g (x )=2cos x ,动直线x =t 与f (x )和g (x )的图象分别交于A ,B 两点,则|AB |的取值范围是( )A .[0,1]B .[0,2]C .[0,2]D .[1,2]B [题意得|AB |=|f (t )-g (t )|=|sin t -cos t |=⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫t -π4∈[0,2].故选B.]6.已知tan θ2=23,则1-cos θ+sin θ1+cos θ+sin θ的值为( )A.23 B .-23C.32D .-32A [1-cos θ+sin θ1+cos θ+sin θ=2sin2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cosθ2=tan θ2=23.]7.为了得到函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4的图象,只要把函数y =2cos 2x 图象上所有的点( )A .向左平行移动π8个单位长度B .向右平行移动π8个单位C.向左平行移动π4个单位长度D .向右平行移动π4个单位B [只要把函数y = 2 cos 2x 图象上所有的点,向右平行移动π8个单位,可得函数y = 2 sin ⎝ ⎛⎭⎪⎫2x +π4的图象, 故选B.]8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )在一个周期内的图象如图所示,则y =f (x )的解析式是( )A .f (x )=4sin ⎝⎛⎭⎪⎫3x -π4 B .f (x )=4sin ⎝ ⎛⎭⎪⎫43x +π3 C.f (x )=4sin ⎝ ⎛⎭⎪⎫3x +π4 D .f (x )=4sin ⎝ ⎛⎭⎪⎫43x -π3B [由图象知函数的最大值为A =4,T 4=π8-⎝ ⎛⎭⎪⎫-π4=3π8.即T =3π2=2πω,即ω=43,即f (x )=4sin ⎝ ⎛⎭⎪⎫43x +φ, 由五点对应法得43×⎝ ⎛⎭⎪⎫-π4+φ=0,得φ=π3,得f (x )=4sin ⎝ ⎛⎭⎪⎫43x +π3,故选B.]9.已知f (x )=1+sin 2x2,若a =f (lg 5),b =f (lg 0.2),则下列正确的是( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1C [∵b =f (lg 0.2)=f (-lg 5),∴f (x )+f (-x )=1+sin 2x 2+1+sin -2x2=1,∴a +b =f (lg 5)+f (-lg 5)=1.]10.如图,设P 为△ABC 内一点,且AP →=14AB →+15AC →,BM →=34BA →,CN →=45CA →,则△PMB 的面积与△ABC 的面积之比等于( )A .1∶5B .2∶5C .3∶20D .7∶20C [由题可知AM →=14AB →,AN →=15AC →,则AP →=AM →+AN →,由平行四边形法则可知NP →∥AB →,AN →∥MP →,所以S △PMB S △ABC =|PM →|·|MB →||AB →|·|AC →|=15×34=320.]11.函数f (x )=cos x +cos ⎝ ⎛⎭⎪⎫x -π3的一个单调递增区间为( )A.⎣⎢⎡⎦⎥⎤-5π6,π6B.⎣⎢⎡⎦⎥⎤0,5π6C.⎣⎢⎡⎦⎥⎤-π,-π6 D.⎣⎢⎡⎦⎥⎤π6,π A [函数f (x )=cos x +cos ⎝⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x=3sin ⎝⎛⎭⎪⎫x +π3,令-π2+2k π≤x +π3≤2k π+π2(k ∈Z ),解得-5π6+2k π≤x ≤2k π+π6,当k =0时,函数的单调递增区间为⎣⎢⎡⎦⎥⎤-5π6,π6.故选A.]12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ·cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1D [f (B )=4sin B cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B=4sin B ·1+cos ⎝ ⎛⎭⎪⎫π2-B 2+cos 2B=2sin B (1+sin B )+(1-2sin 2B ) =2sin B +1. ∵f (B )-m <2恒成立, ∴2sin B +1-m <2恒成立, 即m >2sin B -1恒成立. ∵0<B <π, ∴0<sin B ≤1,∴-1<2sin B -1≤1,故m >1.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知OA →=(-2,1), OB →=(0,2),且AC →∥OB →,BC →⊥AB →,则点C 的坐标是 . (-2,6) [设C (x ,y ),则AC →=(x +2,y -1),B C →=(x ,y -2),AB →=(2,1).由AC →∥OB →,BC →⊥AB →,得⎩⎪⎨⎪⎧2x +2=0,2x +y -2=0,解得⎩⎪⎨⎪⎧x =-2,y =6,∴点C 的坐标为(-2,6).]14.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),则所得的图象的函数解析式为 .y =sin 4x [y =sin ⎝⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位得y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π3=sin 2x ,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变)得y =sin 4x .]15.设α是第二象限角,P (x,4)为其终边上一点,且cos α=x5,则tan 2α= .247[因为α是第二象限角,P (x,4)为其终边上的一点,所以x <0, 因为cos α=x 5=xx 2+16,所以x =-3,所以tan α=y x =-43,所以tan 2α=2tan α1-tan 2α=247.] 16.如图,在等腰△ABC 中,D 为底边BC 的中点,E 为AD 的中点,直线BE 与边AC 交于点F ,若AD =BC =4,则AB →·CF →= .-8 [以点D 为原点,以BC 为x 轴建立平面直角坐标系;则A (0,4),B (-2,0),C (2,0),E (0,2),直线AC 的方程为2x +y -4=0; 直线BE 的方程为x -y +2=0;由⎩⎪⎨⎪⎧2x +y -4=0x -y +2=0得⎩⎪⎨⎪⎧x =23y =83,向量AB →=(-2,-4),CF →=⎝ ⎛⎭⎪⎫-43,83,则AB →·CF →=-2×⎝ ⎛⎭⎪⎫-43+⎝ ⎛⎭⎪⎫-4×83=-8, 所以AB →·CF →=-8.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知角α的终边过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求式子sin ⎝ ⎛⎭⎪⎫π2-αsin α+π·tan α-πcos 3π-α的值.[解] (1)∵|OP |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫-352=1, ∴点P 在单位圆上,由正弦函数定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α.由(1)知,P 在单位圆上,∴由余弦函数定义得cos α=45,∴原式=54.18.(本小题满分12分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝ ⎛⎭⎪⎫π2,π,a·b =25,求52sin 2α-4cos ⎝⎛⎭⎪⎫α+π42cos 2α2.[解] ∵a·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎪⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎪⎫α+π42cos 2α2=52sin 2α-22cos α-sin α1+cos α=52×⎝ ⎛⎭⎪⎫-2425-22⎝ ⎛⎭⎪⎫-45-351-45=-10 2.19.(本小题满分12分)如图,在△ABC 中,已知AB =2,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=5AE →.(1)若BF →=-34AB →+110AC →,求证:点F 为DE 的中点;(2)在(1)的条件下,求BA →·EF →的值. [解] (1)证明:因为BF →=-34AB →+110AC →,所以AF →=BF →-BA →=14AB →+110AC →,又AB →=2AD →,AC →=5AE →,所以AF →=12AD →+12AE →,所以F 为DE 的中点.(2)由(1)可得EF →=12ED →=12(AD →-AE →),因为AB →=2AD →,AC →=5AE →, 所以EF →=14AB →-110AC →,所以BA →·EF →=-AB →·⎝ ⎛⎭⎪⎫14AB →-110AC →=-14AB 2→+110AB →·AC →=-14×4+110×2×6×cos 60°=-25.20.(本小题满分12分)已知函数f (x )=cos 4x -12cos ⎝ ⎛⎭⎪⎫π2+2x +cos 2x -sin 2x .(1)求函数f (x )的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间⎣⎢⎡⎦⎥⎤38π,118π的图象(只作图不写过程).[解] f (x )=1-2sin 22x -1-2sin 2x+cos 2x=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4. (1)函数f (x )的最小正周期T =2π2=π,令2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,则2k π+π4≤2x ≤2k π+5π4,k ∈Z ,故k π+π8≤x ≤k π+5π8,k ∈Z ,所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). (2)图象如下:21.(本小题满分12分)如图,已知OP →=(2,1),OA →=(1,7),OB →=(5,1),设Z 是直线OP 上的一动点.(1)求使ZA →·ZB →取最小值时的OZ →;(2)对(1)中求出的点Z ,求cos∠AZB 的值. [解] (1)∵Z 是直线OP 上的一点, ∴OZ →∥OP →.设实数t ,使OZ →=tOP →, ∴OZ →=t (2,1)=(2t ,t ), 则ZA →=OA →-OZ →=(1,7)-(2t ,t ) =(1-2t,7-t ),ZB →=OB →-OZ →=(5,1)-(2t ,t )=(5-2t,1-t ),∴ZA →·ZB →=(1-2t )(5-2t )+(7-t )(1-t ) =5t 2-20t +12=5(t -2)2-8. 当t =2时,ZA →·ZB →有最小值-8, 此时OZ →=(2t ,t )=(4,2).(2)当t =2时,ZA →=(1-2t,7-t )=(-3,5), |ZA →|=34,ZB →=(5-2t,1-t )=(1,-1),|ZB →|= 2. 故cos∠AZB =ZA →·ZB→|ZA →||ZB →|=-834×2=-417=-41717.22.(本小题满分12分)(2019·钦州高一期末)已知函数f (x )=sin 2x -3cos 2x . (1)求f (x )的单调递增区间;(2)若关于x 的方程f (x )=m 在x ∈⎣⎢⎡⎦⎥⎤π4,π2上有两个不相等的实数根,求m 的取值范围.[解] (1)f (x )=sin 2x -3cos 2x =2⎝ ⎛⎭⎪⎫12sin 2x -32cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,即函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)因为x ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤π6,2π3,设X =2x -π3,则X ∈⎣⎢⎡⎦⎥⎤π6,2π3,f (x )=m 在x ∈⎣⎢⎡⎦⎥⎤π4,π2上有两个不相等的实数根,即g (X )=2sin X =m 在⎣⎢⎡⎦⎥⎤π6,2π3上有两个不相等的实数根,由图象知g ⎝⎛⎭⎪⎫2π3=2sin 2π3=2×32=3,则要使g (X )=m 在⎣⎢⎡⎦⎥⎤π6,2π3上有两个不相等的实数根,则3≤m<2,即实数m的取值范围是[3,2).- 11 -。

高中人教A版数学必修4:模块综合测试卷 Word版含解析

高中人教A版数学必修4:模块综合测试卷 Word版含解析

模块综合测试卷班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.-3290°角是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案:D解析:-3290°=-360°×10+310°∵310°是第四象限角∴-3290°是第四象限角2.在单位圆中,一条弦AB 的长度为3,则该弦AB 所对的弧长l 为( )A.23πB.34π C.56π D .π 答案:A解析:设该弦AB 所对的圆心角为α,由已知R =1,∴sin α2=AB 2R =32,∴α2=π3,∴α=23π,∴l =αR =23π. 3.下列函数中周期为π2的偶函数是( ) A .y =sin4xB .y =cos 22x -sin 22xC .y =tan2xD .y =cos2x答案:B解析:A 中函数的周期T =2π4=π2,是奇函数.B 可化为y =cos4x ,其周期为T =2π4=π2,是偶函数.C 中T =π2,是奇函数,D 中T =2π2=π,是偶函数.故选B. 4.已知向量a ,b 不共线,实数x ,y 满足(3x -4y )a +(2x -3y )·b =6a +3b ,则x -y 的值为( )A .3B .-3C .0D .2答案:A解析:由原式可得⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3.∴x -y =3. 5.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD是( )A .长方形B .平行四边形C .菱形D .梯形答案:D解析:AD →=AB →+BC →+CD →=-8a -2b =2BC →,且|AD →|≠|BC →|∴四边形ABCD 是梯形.6.已知向量a =(1,0),b =(cos θ,sin θ),θ∈⎣⎡⎦⎤-π2,π2,则|a +b |的取值范围是( ) A .[0,2] B .[0,2]C .[1,2]D .[2,2]答案:D解析:|a +b |2=a 2+b 2+2a ·b =2+2cos θ,因为θ∈⎣⎡⎦⎤-π2,π2,所以2+2cos θ∈[2,4],所以|a +b |的取值范围是[2,2].7.已知cos α=-45,且α∈⎝⎛⎭⎫π2,π,则tan ⎝⎛⎭⎫π4-α=( ) A .-17B .7 C.17D .-7 答案:B解析:∵α∈⎝⎛⎭⎫π2,π,cos α=-45,∴sin α=35,tan α=-34, tan ⎝⎛⎭⎫π4-α=1-⎝⎛⎭⎫-341+⎝⎛⎭⎫-34=7. 8.函数f (x )=2sin ⎪⎪⎪⎪x -π2的部分图象是( )答案:C解析:∵f (x )=2sin ⎪⎪⎪⎪x -π2, ∴f (π-x )=2sin ⎪⎪⎪⎪π-x -π2=2sin ⎪⎪⎪⎪π2-x =f (x ), ∴f (x )的图象关于直线x =π2对称.排除A 、B 、D. 9.y =2cos ⎝⎛⎭⎫π4-2x 的单调减区间是( ) A.⎣⎡⎦⎤k π+π8,k π+58π(k ∈Z ) B.⎣⎡⎦⎤-38π+k π,π8+k π(k ∈Z ) C.⎣⎡⎦⎤π8+2k π,58π+2k π(k ∈Z ) D.⎣⎡⎦⎤-38π+2k π,π8+2k π(k ∈Z ) 答案:A解析:y =2cos ⎝⎛⎭⎫π4-2x =2cos ⎝⎛⎭⎫2x -π4.由2k π≤2x -π4≤π+2k π,(k ∈Z ) 得π8+k π≤x ≤58π+k π(k ∈Z )时,y =2cos ⎝⎛⎭⎫2x -π4单调递减.故选A. 10.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ的值为( )A.π4B.π3C.π2D.3π4答案:A解析:因为直线x =π4和x =5π4是函数图象中相邻的两条对称轴,所以5π4-π4=T 2,即T 2=π,T =2π.又T =2πω=2π,所以ω=1,所以f (x )=sin(x +φ).因为直线x =π4是函数图象的对称轴,所以π4+φ=π2+k π,k ∈Z ,所以φ=π4+k π,k ∈Z .因为0<φ<π,所以φ=π4,检验知,此时直线x =5π4也为对称轴.故选A. 11.若向量a =(2x -1,3-x ),b =(1-x,2x -1),则|a +b |的最小值为( ) A.2-1 B .2- 2C. 2 D .2答案:C解析:|a +b |=2(x 2+2x +2)≥ 2.12.若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=( ) A.33 B .-33C.539 D .-69答案:C解析:∵α+β2=⎝⎛⎭⎫α+π4-⎝⎛⎭⎫π4-β2, ∴cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-⎝⎛⎭⎫π4-β2=cos ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫α+π4sin ⎝⎛⎭⎫π4+β2=13×33+223×63=3+439=539. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知|a |=4,a 与b 的夹角为π6,则a 在b 方向上的投影为__________. 答案:2 3解析:由投影公式计算:|a |cos π6=2 3. 14.函数y =2sin x cos x -1,x ∈R 的值域是______.答案:[-2,0]解析:y =2sin x cos x -1=sin2x -1,∵x ∈R ,∴sin2x ∈[-1,1],∴y ∈[-2,0]. 15.已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是________. 答案:⎣⎡⎦⎤-32,3 解析:由f (x )与g (x )的图像的对称轴完全相同,易知:ω=2,因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6,则f (x )的最小值为3sin ⎝⎛⎭⎫-π6=-32,最大值为3sin π2=3, 所以f (x )的取值范围是⎣⎡⎦⎤-32,3.16.下列判断正确的是________.(填写所有正确判断序号)①若sin x +sin y =13,则sin y -cos 2x 的最大值是43②函数y =sin ⎝⎛⎭⎫π4+2x 的单调增区间是⎣⎡⎦⎤k π-π8,k π+3π8(k ∈Z ) ③函数f (x )=1+sin x -cos x 1+sin x +cos x是奇函数 ④函数y =tan x 2-1sin x的最小正周期是π 答案:①④解析:①sin y -cos 2x =sin 2x -sin x -23,∴sin x =-1时,最大值为43. ②2k π-π2≤2x +π4≤2k π+π2,∴k π-3π8≤x ≤k π+π8. ③定义域不关于原点对称.④y =tan x 2-1sin x =-1tan x,∴T =π. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α终边上一点P (-4,3),求cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值. 解:∵tan α=y x =-34∴cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α=-sin α·sin α-sin α·cos α=tan α=-34. 18.(12分)已知向量m =(sin A ,cos A ),n =(1,-2),且m ·n =0.(1)求tan A 的值;(2)求函数f (x )=cos2x +tan A ·sin x (x ∈R )的值域.解:(1)∵m ·n =0,∴sin A -2cos A =0.∴tan A =sin A cos A=2. (2)f (x )=cos2x +tan A sin x =cos2x +2sin x=1-2sin 2x +2sin x =-2⎝⎛⎭⎫sin x -122+32. ∵-1≤sin x ≤1∴sin x =12时,f (x )取最大值32, sin x =-1时,f (x )取最小值-3,∴f (x )的值域为⎣⎡⎦⎤-3,32. 19.(12分)已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2).(1)若|c |=2 5,且c ∥a ,求c 的坐标;(2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ. 解:(1)设c =(x ,y ).∵|c |=2 5,∴x 2+y 2=2 5,即x 2+y 2=20.①∵c ∥a ,a =(1,2)∵2x -y =0,即y =2x ,②联立①②得⎩⎪⎨⎪⎧ x =2y =4或⎩⎪⎨⎪⎧x =-2y =-4, ∴c =(2,4)或(-2,-4).(2)∵(a +2b )⊥(2a -b ),∴(a +2b )·(2a -b )=0,∴2|a |2+3a ·b -2|b |2=0.∵|a |2=5,|b |2=54,代入上式得a ·b =-52, ∴cos θ=a ·b |a |·|b |=-525×52=-1. 又∵θ∈[0,π],∴θ=π.20.(12分)已知函数f (x )=cos 2⎝⎛⎭⎫x -π6-sin 2x . (1)求f ⎝⎛⎭⎫π12的值;(2)若对于任意的x ∈⎣⎡⎦⎤0,π2,都有f (x )≤c ,求实数c 的取值范围. 解:(1)f ⎝⎛⎭⎫π12=cos 2⎝⎛⎭⎫-π12-sin 2π12=cos π6=32. (2)f (x )=12⎣⎡⎦⎤1+cos ⎝⎛⎭⎫2x -π3-12(1-cos2x ) =12⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3+cos2x =12⎝⎛⎭⎫32sin2x +32cos2x =32sin ⎝⎛⎭⎫2x +π3. 因为x ∈⎣⎡⎦⎤0,π2,所以2x +π3∈⎣⎡⎦⎤π3,4π3, 所以当2x +π3=π2,即x =π12时,f (x )取得最大值32. 所以对任意x ∈⎣⎡⎦⎤0,π2,f (x )≤c 等价于32≤c . 故当对任意x ∈⎣⎡⎦⎤0,π2,f (x )≤c 时,c 的取值范围是⎣⎡⎭⎫32,+∞. 21.(12分)已知sin α+cos α=355,α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35,β∈⎝⎛⎭⎫π4,π2. (1)求sin2α和tan2α的值;(2)求cos(α+2β)的值. 解:(1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45. 又2α∈⎝⎛⎭⎫0,π2,∴cos2α=1-sin 22α=35, ∴tan2α=sin2αcos2α=43. (2)∵β∈⎝⎛⎭⎫π4,π2,β-π4∈⎝⎛⎭⎫0,π4, ∴cos ⎝⎛⎭⎫β-π4=45, 于是sin2⎝⎛⎭⎫β-π4=2sin ⎝⎛⎭⎫β-π4cos ⎝⎛⎭⎫β-π4=2425.又sin2⎝⎛⎭⎫β-π4=-cos2β,∴cos2β=-2425. 又2β∈⎝⎛⎭⎫π2,π,∴sin2β=725,又cos 2α=1+cos2α2=45, ∴cos α=25,∴sin α=15⎝⎛⎭⎫α∈⎝⎛⎭⎫0,π4. ∴cos(α+2β)=cos αcos2β-sin αsin2β=255×⎝⎛⎭⎫-2425-55×725=-11525. 22.(12分)如图,点P ⎝⎛⎭⎫0,A 2是函数y =A sin ⎝⎛⎭⎫2π3x +φ(其中A >0,φ∈[0,π))的图象与y 轴的交点,点Q ,点R 是它与x 轴的两个交点.(1)求φ的值;(2)若PQ ⊥PR ,求A 的值.解:(1)∵函数经过点P ⎝⎛⎭⎫0,A 2,∴sin φ=12, 又∵φ∈[0,π),且点P 在递增区间上,∴φ=π6. (2)由(1)可知y =A sin ⎝⎛⎭⎫2π3+π6.令y =0,得sin ⎝⎛⎭⎫2π3x +π6=0,∴2π3x +π6=k π,(k ∈Z ),∴可得x =-14,54, ∴Q ⎝⎛⎭⎫-14,0,R ⎝⎛⎭⎫54,0. 又∵P ⎝⎛⎭⎫0,A 2,∴PQ →=⎝⎛⎭⎫-14,-A 2,PR →=⎝⎛⎭⎫54,-A 2. ∵PQ ⊥PR ,∴PQ →·PR →=-516+14A 2=0,解得A =52.。

人教A版高中数学必修4:模块综合检测Word版含解析

人教A版高中数学必修4:模块综合检测Word版含解析

模块综合检测(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中最值是12,周期是6π的三角函数的解析式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫3x +π6 C .y =2sin ⎝⎛⎭⎫x 3-π6D .y =12sin ⎝⎛⎭⎫x +π6 解析:选A 由题意得,A =12,2πω=6π,ω=13,故选A.2.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA +OB +OC +OD 等于 ( )A .OMB .2OMC .3OMD .4OM解析:选D 依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以OA +OC =2OM ,OB +OD =2OM ,所以OA +OC +OB +OD =4OM ,故选D.3.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6)D .(-2,-4)解析:选B ∵a =(1,2),b =(-2,m ), ∴1×m -2×(-2)=0, ∴m =-4.∴2a +3b =(2,4)+(-6,-12)=(-4,-8).4.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)的值为( ) A.225B .-25C.25D .-225解析:选B sin ⎝⎛⎭⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α=22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 5.已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( )A .30°B .60°C .120°D .150°解析:选C a ·b =-10,则(c -b )·a =c ·a -b ·a =c ·a +10=152,所以c ·a =-52,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12,又0°<θ<180°,所以θ=120°.6.将函数y =sin ⎝⎛⎭⎫2x +π3的图象经怎样的平移后所得的图象关于点⎝⎛⎭⎫-π12,0成中心对称( )A .向左平移π12个单位长度B .向左平移π6个单位长度C .向右平移π12个单位长度D .向右平移π6个单位长度解析:选C 函数y =sin ⎝⎛⎭⎫2x +π3的对称中心为⎝⎛⎭⎫k π2-π6,0,其中离⎝⎛⎭⎫-π12,0最近的对称中心为⎝⎛⎭⎫-π6,0,故函数图象只需向右平移π12个单位长度即可. 7.函数ƒ(x )=A sin(ωx +φ)(A >0,ω>0,x ≥0)的部分图象如图所示,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)的值等于( )A .2B .2+2C .2+2 2D .-2-22解析:选C 由图象可知,函数的振幅为2,初相为0,周期为8,则A =2,φ=0,2πω=8,从而ƒ(x )=2sin π4x .∴ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(11)=ƒ(1)+ƒ(2)+ƒ(3)=2sin π4+2sin π2+2sin 3π4=2+2 2.8.如图,在四边形ABCD 中,|AB |+|BD |+|DC |=4,|AB |·|BD |+|BD |·|DC |=4,AB ·BD =BD ·DC =0,则(AB +DC )·AC 的值为( )A .4B .2C .4 2D .22解析:选A ∵AC =AB +BD +DC ,AB ·BD =BD ·DC =0, ∴(AB +DC )·AC=(AB +DC )·(AB +BD +DC )=AB 2+AB ·BD +AB ·DC +DC ·AB +DC ·BD +DC 2=AB 2+2AB ·DC +DC 2.∵AB ·BD =0,BD ·DC =0,∴AB ⊥BD ,DC ⊥BD ,∴AB ∥DC , ∴AB ·DC =|AB ||DC |, ∴原式=(|AB |+|DC |)2.设|AB |+|DC |=x ,则|BD |=4-x ,|BD |·x =4, ∴x 2-4x +4=0,∴x =2,∴原式=4,故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中横线上)9.在平面直角坐标系 xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:∵∠ABO =90°,∴AB ⊥OB ,∴OB ·AB =0. 又AB =OB -OA =(2,2)-(-1,t )=(3,2-t ), ∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. 答案:510.已知ƒ(x )=sin ⎝⎛⎭⎫x +π6,若cos α=35⎝⎛⎭⎫0<α<π2,则ƒ⎝⎛⎭⎫α+π12=________.解析:因为cos α=35⎝⎛⎭⎫0<α<π2,所以sin α=45; ƒ⎝⎛⎭⎫α+π12=sin ⎝⎛⎭⎫α+π12+π6=sin ⎝⎛⎭⎫α+π4 =22(sin α+cos α)=7210. 答案:721011.在△ABC 中,已知sin A =10sin B sin C ,cos A =10cos B · cos C ,则tan A =________,sin 2A =________.解析:由sin A =10sin B sin C ,cos A =10cos B cos C 得cos A -sin A =10cos(B +C )=-10cos A ,所以sin A =11cos A ,所以tan A =11,sin 2A =2sin A cos A sin 2A +cos 2A =2tan A 1+tan 2A =1161. 答案:11116112.函数f (x )=cos 2x -sin 2x +sin 2x +1的最小正周期是________,振幅是________. 解析:f (x )=cos 2x -sin 2x +sin 2x +1=cos 2x +sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1,所以最小正周期为π,振幅为 2.答案:π213.已知向量a ,b 满足|a |=2,|b |=3,且|2a -b |=13,则|2a +b |=________,向量a 在向量b 方向上的投影为________.解析:|2a -b |2=4a 2-4a·b +b 2=4×22-4a ·b +32=13,解得a·b =3.因为|2a +b |2=4a 2+4a·b +b 2=4×22+4×3+32=37,所以|2a +b |=37.向量a 在向量b 方向上的投影为a·b |b |=33=1.答案:37 114.已知函数f (x )=M cos(ωx +φ)(M >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,AC =BC =22,∠C =90°,则f (x )=________,f ⎝⎛⎭⎫12=________.解析:依题意知,△ABC 是直角边长为22的等腰直角三角形,因此其边AB 上的高是12,AB =1,故M =12,函数f (x )的最小正周期是2,即2πω=2,ω=π,所以f (x )=12cos(πx +φ),又函数f (x )是奇函数,所以φ=k π+π2,k ∈Z.由0<φ<π,得φ=π2,故f (x )=12cos ⎝⎛⎭⎫πx +π2=-12sin πx ,则f ⎝⎛⎭⎫12=-12sin π2=-12. 答案:-12sin πx -1215.有下列四个命题:①若α,β均为第一象限角,且α>β,则sin α>sin β; ②若函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期是4π,则a =12; ③函数y =sin 2x -sin xsin x -1是奇函数;④函数y =sin ⎝⎛⎭⎫x -π2在[0,π]上是增函数. 其中正确命题的序号为________.解析:α=390°>30°=β,但sin α=sin β,所以①不正确; 函数y =2cos ⎝⎛⎭⎫ax -π3的最小正周期为T =2π|a |=4π, 所以|a |=12,a =±12,因此②不正确;③中函数定义域是⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠2k π+π2,k ∈Z ,显然不关于原点对称,所以③不正确; 由于函数y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,它在(0,π)上单调递增,因此④正确. 答案:④三、解答题(本大题共5小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知|a |=1,|b |=2,a 与b 的夹角为θ. (1)若a ∥b ,求a ·b ; (2)若a -b 与a 垂直,求θ. 解:(1)∵a ∥b ,∴θ=0°或180°, ∴a ·b =|a ||b |cos θ=± 2.(2)∵a -b 与a 垂直,∴(a -b )·a =0, 即|a |2-a ·b =1-2cos θ=0, ∴cos θ=22. 又0°≤θ≤180°,∴θ=45°.17.(本小题满分15分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈π2,π,a ·b =25,求52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2. 解:∵a ·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎫α+π42cos 2α2=52sin 2α-22(cos α-sin α)1+cos α=52×⎝⎛⎭⎫-2425-22⎝⎛⎭⎫-45-351-45=-10 2.18.(本小题满分15分)已知函数ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x . (1)当x ∈⎣⎡⎦⎤0,π2时,求ƒ(x )的值域; (2)用五点法在下图中作出y =ƒ(x )在闭区间⎣⎡⎦⎤-π6,5π6上的简图;解:ƒ(x )=2cos x ·sin ⎝⎛⎭⎫x +π3-3sin 2x +sin x cos x =2cos x ⎝⎛⎭⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3.(1)∵x ∈⎣⎡⎦⎤0,π2,∴π3≤2x +π3≤4π3, ∴-32≤sin ⎝⎛⎭⎫2x +π3≤1,∴当x ∈⎣⎡⎦⎤0,π2时,ƒ(x )的值域为[-3,2]. (2)由T =2π2,得T =π,列表: x -π6 π12 π3 7π12 5π6 2x +π30 π2 π 3π2 2π 2sin ⎝⎛⎭⎫2x +π3 02-219.(本小题满分15分)已知向量OA =(cos α,sin α),α∈[-π,0],向量m =(2,1),n =(0,-5),且m ⊥(OA -n ).(1)求向量OA ; (2)若cos(β-π)=210,0<β<π,求cos(2α-β)的值. 解:(1)∵OA =(cos α,sin α), ∴OA -n =(cos α,sin α+5). ∵m ⊥(OA -n ),∴m ·(OA -n )=0, ∴2cos α+sin α+5=0.① 又sin 2α+cos 2α=1,② 由①②得sin α=-55,cos α=-255, ∴OA =⎝⎛⎭⎫-255,-55. (2)∵cos(β-π)=210,∴cos β=-210.又0<β<π,∴sin β=1-cos 2β=7210.又∵sin 2α=2sin αcos α=2×⎝⎛⎭⎫-55×⎝⎛⎭⎫-255=45,cos 2α=2cos 2α-1=2×45-1=35,∴cos(2α-β)=cos 2αcos β+sin 2αsin β =35×⎝⎛⎭⎫-210+45×7210 =25250=22. 20.(本小题满分15分)已知函数ƒ(x )=A sin(ωx +φ)ω>0,0<φ<π2的部分图象如图所示.(1)求ƒ(x )的解析式;(2)将函数y =ƒ(x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤-π2,5π12时,求函数y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3的最值. 解:(1)由图得34T =11π6-π3=9π6=3π2,∴T =2π,∴ω=2πT=1. 又ƒ⎝⎛⎭⎫11π6=0,得A sin ⎝⎛⎭⎫11π6+φ=0, ∴11π6+φ=2k π,k ∈Z ,φ=2k π-11π6,k ∈Z. ∵0<φ<π2,∴当k =1时,φ=π6.又由ƒ(0)=2,得A sin π6=2,∴A =4,∴ƒ(x )=4sin ⎝⎛⎭⎫x +π6. (2)将ƒ(x )=4sin ⎝⎛⎭⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π6个单位得到g (x )= 4sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π6=4sin ⎝⎛⎭⎫2x -π6,由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)得k π-π6≤x ≤k π+π3(k ∈Z),∴g (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). (3)y =ƒ⎝⎛⎭⎫x +π12-2ƒ⎝⎛⎭⎫x +π3 =4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π12+π6-2×4sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π3+π6=4sin ⎝⎛⎭⎫x +π4-42sin ⎝⎛⎭⎫x +π2 =4⎝⎛⎭⎫sin x ·cos π4+cos x ·sin π4-42cos x =22sin x +22cos x -42cos x =22sin x -22cos x =4sin ⎝⎛⎭⎫x -π4. ∵x ∈⎣⎡⎦⎤-π2,5π12,x -π4∈⎣⎡⎦⎤-3π4,π6, ∴sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-1,12, ∴函数的最小值为-4,最大值为2.。

高中数学人教A版必修4模块综合检测(一) Word版含解析

高中数学人教A版必修4模块综合检测(一) Word版含解析

模块综合检测(一)(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-1 120°角所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D -1 120°=-360°×4+320°,-1 120°角所在象限与320°角所在象限相同.又320°角为第四象限角,故选D.2.(江西高考)若sin α2=33,则cos α=( )A .-23B .-13C.13D.23解析:选C 因为sin α2=33,所以cos α=1-2sin 2 α2=1-2×⎝⎛⎭⎫332=13. 3.(陕西高考)已知向量a =(1,m ),b =(m,2), 若a ∥b, 则实数m 等于( ) A .- 2 B. 2 C .-2或 2D .0 解析:选C a ∥b 的充要条件的坐标表示为1×2-m 2=0,∴m =±2,选C. 4.1-sin 20°=( ) A .cos 10° B .sin 10°-cos 10° C.2sin 35°D .±(sin 10°-cos 10°)解析:选C ∵1-sin 20°=1-cos 70°=2sin 235°, ∴1-sin 20°=2sin 35°.5.已知a =(1,2),b =(x,4),且a·b =10,则|a -b |=( ) A .-10 B .10C .- 5 D. 5解析:选D 因为a· b =10,所以x +8=10,x =2,所以a -b =(-1,-2),故|a -b |= 5.6.(2013·浙江高考)函数f (x )=sin x cos x +32·cos 2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1D .2π,2解析:选A 由f (x )=sin x cos x +32cos 2x =12sin 2x +32·cos 2x =sin ⎝⎛⎭⎫2x +π3,得最小正周期为π,振幅为1,故选A.7.已知α满足sin α=12,那么sin ⎝⎛⎭⎫π4+α·sin ⎝⎛⎭⎫π4-α的值为( ) A.14 B .-14C.12D .-12解析:选A 依题意得,sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=sin π4+α·cos ⎝⎛⎭⎫π4+α=12sin ⎝⎛⎭⎫π2+2α=12cos 2α=12(1-2sin 2α)=14. 8.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3 D.π2解析:选A 由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z.取k =0,得|φ|的最小值为π6.9.已知向量a =⎝⎛⎭⎫sin ⎝⎛⎭⎫α+π6,1,b =(4,4cos α-3),若a ⊥b ,则sin ⎝⎛⎭⎫α+4π3=( ) A .-34B .-14C.34 D.14解析:选B a·b =4sin ⎝⎛⎭⎫α+π6+4cos α-3= 23sin α+6cos α-3=43sin ⎝⎛⎭⎫α+π3-3=0, ∴sin ⎝⎛⎭⎫α+π3=14.∴sin ⎝⎛⎭⎫α+4π3=-sin ⎝⎛⎭⎫α+π3=-14,故选B. 10.函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ为( ) A .k π,(k ∈Z) B .k π+π6,(k ∈Z)C .k π+π3,(k ∈Z)D .-k π-π3,(k ∈Z)解析:选D f (x )=3cos(3x -θ)-sin(3x -θ)=2cos ⎝⎛⎭⎫3x -θ+π6.由函数为奇函数得-θ+π6=k π+π2(k ∈Z),解得θ=-k π-π3(k ∈Z),故选D.11.如图,已知正六边形P 1P 2P 3P 4-P 5P 6,下列向量的数量积中最大的是( )A .12P P u u u u r ·13PP u u u u r B .12P P u u u u r ·14PP u u u u r C .12P P u u u u r ·15PP u u u u r D .12P P u u u u r ·16P P u u u u r 解析:选A 由于12P P u u u u r ⊥15P P u u u u r ,故其数量积是0,可排除C ;12P P u u u u r 与16P P u u u u r 的夹角是2π3,故其数量积小于零,可排除D ;设正六边形的边长是a ,则12P P u u u u r ·13P P u u u u r =|12P P u u u u r |·|13P P u u u u r |·cos 30°=32a 2,12P P u u u u r ·14P P u u u u r =|12P P u u u u r |·|14P P u u u u r |·cos 60°=a 2. 12.已知函数f (x )=2a sin 2x -23a sin x cos x +a +b (a <0)的定义域是⎣⎡⎦⎤0,π2,值域为[-5,1],则a 、b 的值分别为( )A .a =2,b =-5B .a =-2,b =2C .a =-2,b =1D .a =1,b =-2解析:选C f (x )=-a (cos 2x +3sin 2x )+2a +b =-2a sin ⎝⎛⎭⎫2x +π6+2a +b .又∵x ∈⎣⎡⎦⎤0,π2, ∴2x +π6∈⎣⎡⎦⎤π6,7π6, ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. ∵-5≤f (x )≤1,a <0,∴⎩⎪⎨⎪⎧3a +b =-5,-2a +2a +b =1, ∴⎩⎪⎨⎪⎧a =-2,b =1. 二、填空题(本题共4小题,每小题5分,共20分) 13.cos ⎝⎛⎭⎫-17π3=________.解析:cos ⎝⎛⎭⎫-17π3=cos ⎝⎛⎭⎫-6π+π3=cos π3=12. 答案:1214.(四川高考)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB u u u r +AD u u u r=λAO u u u r,则λ=________.解析:AB u u u r +AD u u u r =AC u u ur =2AO u u u r ,故λ=2.答案:215.(重庆高考)在OA 为边,OB 为对角线的矩形中,OA u u u r =(-3,1),OB u u u r=(-2,k ),则实数k =________.解析:因为AB u u u r =OB u u u r -OA u u u r =(1,k -1),且OA u u u r ⊥AB u u u r ,所以OA u u u r ·AB u u u r=0,即-3×1+1×(k -1)=0,解得k =4.答案:416.函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象如图所示,则y 的表达式为________.解析:由图象,知A =2,由T 2=2π3-π6,求出周期T =π,ω=2,然后可求得φ=π6.答案:y =2sin ⎝⎛⎭⎫2x +π6 三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a ,b 满足|a |=|b|=2,a 与b 的夹角为120°.求: (1)|a +b |及|a -b |;(2)向量a +b 与a -b 的夹角.解:(1)a·b =|a||b |cos θ=2×2×cos 120°=-2,所以|a +b |2=(a +b )2=a 2+b 2+2a·b =22+22+2×(-2)=4,所以|a +b |=2,同理可求得|a -b |=2 3.(2)因为(a +b )·(a -b )=a 2-b 2=22-22=0,所以(a +b )⊥(a -b ),所以a +b 与a -b 的夹角为90°.18.(本小题满分12分)已知函数f (x )=a sin(2ωx +π6)+a2+b (x ∈R ,a >0,ω>0)的最小正周期为π,函数f (x )的最大值是74,最小值是34.(1)求ω、a 、b 的值; (2)指出f (x )的单调递增区间.解:(1)由函数最小正周期为π,得2π2ω=π,∴ω=1,又f (x )的最大值是74,最小值是34,则⎩⎨⎧a +a 2+b =74,-a +a 2+b =34,解得⎩⎪⎨⎪⎧a =12,b =1.(2)由(1)知,f (x )=12sin(2x +π6)+54,当2k π-π2≤2x +π6≤2k π+π2(k ∈Z),即k π-π3≤x ≤k π+π6(k ∈Z)时,f (x )单调递增,∴f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z).19.(本小题满分12分)(福建高考)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4 的值;(2)求函数f (x ) 的最小正周期及单调递增区间. 解:法一:(1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =-2cos π4⎝⎛⎭⎫-sin π4-cos π4 =2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1, 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z.所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z. 法二:f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1. (1)f ⎝⎛⎭⎫5π4=2sin 11π4+1 =2sin π4+1=2.(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z.所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z. 20.(本小题满分12分)已知向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +kc )∥(2b -a ),求实数k 的值;(2)设d =(x ,y )满足(d -c )∥(a +b )且|d -c |=1,求d . 解:(1)∵(a +kc )∥(2b -a ),且a +kc =(3+4k,2+k ),2b -a =(-5,2), ∴2×(3+4k )-(-5)×(2+k )=0, ∴k =-1613.(2)∵d -c =(x -4,y -1),a +b =(2,4),(d -c )∥(a +b )且|d -c |=1,∴⎩⎪⎨⎪⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=1,解得⎩⎨⎧x =4+55,y =1+255或⎩⎨⎧x =4-55,y =1-255.∴d =20+55,5+255或d =20-55,5-255.21.(本小题满分12分)如图所示,是一个半径为10个长度单位的水轮,水轮的圆心离水面5 2 个长度单位.已知水轮每分钟转4圈,水轮上的点P 到水面距离d 与时间t 满足的函数关系是正弦曲线,其表达式为d -k b =sin(t -ha).(1)求正弦曲线的振幅和周期;(2)如果从P 点在水中浮现时开始计算时间,写出其有关d 与t 的关系式; (3)在(2)的条件下,求P 首次到达最高点所用的时间. 解:(1)A =r =10.T =604=15(s).(2)由d -k b =sin t -h a ,得d =b sin t -h a +k . b =A =10,T =2π1a =2πa =15,∴a =152π.由于圆心离水面52个长度单位, ∴k =5 2.∴d =10sin 2π(t -h )15+5 2.将t =0,d =0代入上式,得sin(2π15h )=22,2π15h =π4,∴d =10sin(2π15t -π4)+5 2.(3)P 到达最高点时d =10+5 2.∴sin(2π15t -π4)=1,得2π15t -π4=π2,t =458(s).即P 首次到达最高点所用时间为458s.22.(本小题满分12分)已知函数f (x )=sin(π-ωx )·cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎡⎦⎤0,π16上的最小值. 解:(1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx , 所以f (x )=sin ωx cos ωx +1+cos 2ωx2=12sin 2ωx +12cos 2ωx +12 =22sin ⎝⎛⎭⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π,所以ω=1.(2)由(1)知f (x )=22sin ⎝⎛⎭⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎫4x +π4+12. 当0≤x ≤π16时,π4≤4x +π4≤π2,所以22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g (x )≤1+22.故g (x )在区间⎣⎡⎦⎤0,π16上的最小值为1.。

高中数学人教A版必修4阶段质量检测(三) Word版含解析

高中数学人教A版必修4阶段质量检测(三) Word版含解析

阶段质量检测(三)(A 卷 学业水平达标)(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.函数y =cos 2x +sin 2xcos 2x -sin 2x 的最小正周期为( )A .2πB .πC.π2D.π4 答案:C2.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( ) A.210B .-210 C.7210 D .-7210答案:A3.已知sin(α-β)cos α-cos(α-β)sin α=45,且β是第三象限角,则cos β2的值等于( )A .±55B .±255C .-55D .-255答案:A4.设sin θ=35,cos θ=-45,则2θ的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限答案:D5.若(4tan α+1)(1-4tan β)=17,则tan(α-β)的值为( ) A.14 B.12 C .4 D .12 答案:C6.(湖北高考)将函数y =3cos x +sin x (x ∈R)的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6 答案:B7.在△ABC 中,已知tan A +B 2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形答案:C8.若cos 2αsin ⎝⎛⎭⎫α-π4=-22,则sin α+cos α的值为( )A .-72B .-12C.12D.72 答案:C9.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-5 B .-6 C .-7 D .-8答案:D10.若f (x )=2tan x -2sin 2 x2-1sin x 2cos x2,则f ⎝⎛⎭⎫π12的值为( ) A .-433B .8C .4 3D .-4 3答案:B二、填空题(本大题共4小题,每小题5分,共20分)11.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________. 答案:15712.tan 10°+tan 50°+3tan 10°tan 50°=________. 答案: 313.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则 sin ⎝⎛⎭⎫2θ+π3的值为________. 答案:1214.已知(sin x -2cos x )(3+2sin x +2cos x )=0,则sin 2x +2cos 2x1+tan x 的值为________.答案:25三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知函数f (x )=(a +2cos 2x )·cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin α+π3的值. 解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数, 所以y 2=cos(2x +θ)为奇函数, 又θ∈(0,π),则θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ). 由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-sin2x ·(2cos 2x -1)=-12sin 4x ,因为f ⎝⎛⎭⎫α4=-12sin α=-25,即sin α=45, 又α∈⎝⎛⎭⎫π2,π,从而cos α=-35, 所以sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3310. 16.(本小题满分12分)已知函数f (x )=sin ⎝⎛⎭⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos α+π4·cos 2α,求cos α-sin α的值. 解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z.由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z.所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z. (2)由已知sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α), 得sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin α sin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时, 由α是第二象限角,知α=3π4+2k π,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0, 此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 17.(本小题满分12分)已知f (x )=sin x +2sin π4+x2cos ⎝⎛⎭⎫π4+x 2. (1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 解:(1)f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2 =sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4.由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22, ∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12.(2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35.∴sin x =2sin x 2cos x 2=2425,cos x =-1-sin 2x =-725.∴f (x )=sin x +cos x =2425-725=1725.18.(本小题满分14分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R). (1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎡⎦⎤π4,π2,求cos 2x 0的值. 解:(1)由f (x )=23sin x cos x +2cos 2x -1,得 f (x )=3(2sin x cos x )+(2cos 2x -1) =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. ∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎣⎡⎦⎤π6,π2上为减函数,又f (0)=1,f ⎝⎛⎭⎫π6=2,f ⎝⎛⎭⎫π2=-1,∴函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)由(1)可知f (x 0)=2sin ⎝⎛⎭⎫2x 0+π6. 又∵f (x 0)=65,∴sin ⎝⎛⎭⎫2x 0+π6=35. 由x 0∈⎣⎡⎦⎤π4,π2,得2x 0+π6∈⎣⎡⎦⎤2π3,7π6. 从而cos ⎝⎛⎭⎫2x 0+π6=-1-sin 2⎝⎛⎭⎫2x 0+π6 =-45.∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0+π6-π6 =cos ⎝⎛⎭⎫2x 0+π6cos π6+sin ⎝⎛⎭⎫2x 0+π6sin π6 =3-4310. (B 卷 能力素养提升) (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.cos 24°sin 54°-cos 66°sin 36°的值为( ) A .0 B.12C.32D .-12解析:选B 因为cos 24°sin 54°-cos 66°sin 36°=cos 24°sin 54°-sin 24°cos 54°=sin(54°-24°)=sin 30°=12,故选B.2.若sin αsin β=1,则cos(α-β)的值为( ) A .0 B .1 C .±1D .-1解析:选B 由sin αsin β=1,得cos αcos β=0, ∴cos(α-β)=cos αcos β+sin αsin β=1. 3.下列各式中,值为-34的是( ) A .2sin 15°cos 15°B .cos 215°-sin 215°C .2sin 215°-1 D.12-cos 215°解析:选D 用二倍角公式求解可知,只有D 的结果为-34. 4.设α∈⎝⎛⎭⎫0,π2,若sin α=35,则2cos ⎝⎛⎭⎫α+π4等于( ) A.75 B.15 C .-75D .-15解析:选B 依题意可得cos α=45,∴2cos α+π4=2·cos αcos π4-2sin αsin π4=cos α-sinα=45-35=15.5.设tan(α+β)=5,tan ⎝⎛⎭⎫β-π4=4,那么tan α+π4的值等于( ) A .-919 B.121C.119D.921解析:选B tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)·tan ⎝⎛⎭⎫β-π4=5-41+5×4=121. 6.在△ABC 中,若tan A tan B +tan A +tan B =1,则cos C 的值是( ) A .-22 B.22C.12D .-12解析:选A 由tan A tan B +tan A +tan B =1,得 tan A +tan B =1-tan A tan B , 所以tan(A +B )=tan A +tan B1-tan A tan B =1.又tan(A +B )=-tan C ,所以tan C =-1, 所以C =3π4,cos C =cos 3π4=-22.7.函数f (x )=sin x -cos x ,x ∈⎣⎡⎦⎤0,π2的最小值为( ) A .-2 B .- 3 C .- 2D .-1解析:选D f (x )=2sin ⎝⎛⎭⎫x -π4,x ∈⎣⎡⎦⎤0,π2. ∵-π4≤x -π4≤π4.∴f (x )min =2sin ⎝⎛⎭⎫-π4=-1. 8.已知α、β为锐角,且cos α=110,cos β=15,则α+β的值是( ) A.3π4 B.π3 C.π4或3π4 D.π3或2π3解析:选A ∵α、β为锐角,且cos α=110,cos β=15, ∴sin α=1-cos 2α=310,sin β=1-cos 2β=25. ∴cos(α+β)=cos αcos β-sin αsin β=110×15-310×25=-22.∵0<α+β<π,∴α+β=3π4.9.在△ABC 中,若sin B sin C =cos 2A2,则此三角形为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形解析:选B ∵sin B sin C =cos 2A2,∴sin B sin C =1+cos A2,可得2sin B sin C =1+cos [π-(B +C )], 即2sin B sin C =1-cos(B +C ).∴cos(B -C )=1.又角B 、角C 为△ABC 的内角, ∴B -C =0,即B =C .故选B.10.已知函数f (x )=sin 23x +cos ⎝⎛⎭⎫23x -π6,对任意实数α,β,当f (α)-f (β)取最大值时,|α-β|的最小值是( )A .3π B.3π2C.4π3D.2π3解析:选B f (x )=sin 23x +cos ⎝⎛⎭⎫23x -π6= sin 23x +sin ⎝⎛⎭⎫23x +π3=3sin ⎝⎛⎭⎫23x +π6. 又当f (α)-f (β)取最大值时,|α-β|的最小值是函数f (x )的最小正周期的一半,而函数的最小正周期T =2π23=3π,从而选B.二、填空题(本大题共4小题,每小题5分,共20分) 11.函数f (x )=2cos 2x2+sin x 的最小正周期是________.解析:化简得f (x )=1+2sin ⎝⎛⎭⎫x +π4, ∴T =2π1=2π.答案:2π12.已知sin α=23,α∈⎝⎛⎭⎫π2,π,cos β=-34,β∈⎝⎛⎭⎫π,3π2,则cos(α+β)=________. 解析:因为sin α=23,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-53. 因为cos β=-34,β∈⎝⎛⎭⎫π,3π2, 所以sin β=-1-cos 2β=-74. 所以cos(α+β)=cos αcos β-sin αsin β=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34-23×⎝⎛⎭⎫-74=35+2712. 答案:35+271213.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎫0,π2,则α+β=________. 解析:∵α,β∈⎝⎛⎭⎫0,π2,sin α=35,cos β=35, ∴cos α=45,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β=0.∵ α,β∈⎝⎛⎭⎫0,π2,∴0<α+β<π,故α+β=π2. 答案:π214.cos 6·tan 6的符号为________(填“正”“负”或“不确定”). 解析:∵3π2<6<2π,∴6是第四象限角.∴cos 6>0,tan 6<0,则cos 6·tan 6<0. 答案:负三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知sin θ+cos θ=sin θcos θ=1-2,求cos 3⎝⎛⎭⎫π2-θ+sin 3π2-θ的值.解:cos 3⎝⎛⎭⎫π2-θ+sin 3⎝⎛⎭⎫π2-θ =sin 3θ+cos 3θ=(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ) =(1-2)[1-(1-2)]=2-2.16.(本小题满分12分)已知函数f (x )=3sin 2x -2sin 2x . (1)若点P (1,-3)在角α的终边上,求f (α)的值; (2)若x ∈⎣⎡⎦⎤-π6,π3,求f (x )的值域. 解:(1)因为点P (1,-3)在角α的终边上, 所以sin α=-32,cos α=12, 所以f (α)=3sin 2α-2sin 2α=23sin αcos α-2sin 2α =23×⎝⎛⎭⎫-32×12-2×⎝⎛⎭⎫-322=-3. (2)f (x )=3sin 2x -2sin 2x =3sin 2x +cos 2x -1=2sin ⎝⎛⎭⎫2x +π6-1, 因为x ∈⎣⎡⎦⎤-π6,π3,所以-π6≤2x +π6≤5π6, 所以-12≤sin ⎝⎛⎭⎫2x +π6≤1, 所以f (x )的值域是[-2,1].17.(本小题满分12分)(广东高考)已知函数f (x )=A cos ⎝⎛⎭⎫x 4+π6,x ∈R ,且f ⎝⎛⎭⎫π3= 2. (1)求A 的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫4α+43π=-3017,f ⎝⎛⎭⎫4β-23π=85,求cos(α+β)的值. 解:(1)因为f ⎝⎛⎭⎫π3=2,所以A cos ⎝⎛⎭⎫14×π3+π6=A cos π4=22A =2,所以A =2. (2)由(1)知f (x )=2cos ⎝⎛⎭⎫x 4+π6,f ⎝⎛⎭⎫4α+4π3=2cos ⎝⎛⎭⎫α+π3+π6=-2sin α=-3017,所以sin α=1517,因为α∈⎣⎡⎦⎤0,π2,所以cos α=817;又因为f ⎝⎛⎭⎫4β-2π3=2cos ⎝⎛⎭⎫β-π6+π6=2cos β=85,所以cos β=45,因为β∈⎣⎡⎦⎤0,π2,所以sin β=35.所以cos(α+β)=cos αcos β-sin αsin β=817×45-1517×35=-1385. 18.(本小题满分14分)已知函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2,且f ⎝⎛⎭⎫5π6=-1. (1)求φ的值;(2)若f (α)=35,f ⎝⎛⎭⎫β+π12=513,且π6<α<π3,0<β<π4,求cos ⎝⎛⎭⎫2α+2β-π6的值. 解:(1)∵f (x )=sin(2x +φ),且f ⎝⎛⎭⎫5π6=-1,∴2×5π6+φ=2k π+3π2,k ∈Z. ∵|φ|<π2,∴φ=-π6. (2)由(1)得f (x )=sin ⎝⎛⎭⎫2x -π6. ∵π6<α<π3,0<β<π4, ∴2α-π6∈⎝⎛⎭⎫π6,π2,2β∈⎝⎛⎭⎫0,π2. ∵f (α)=35,f ⎝⎛⎭⎫β+π12=513, ∴sin ⎝⎛⎭⎫2α-π6=35,sin 2β=513, ∴cos ⎝⎛⎭⎫2α-π6=45,cos 2β=1213, ∴cos ⎝⎛⎭⎫2α+2β-π6=cos ⎝⎛⎭⎫2α-π6+2β=cos ⎝⎛⎭⎫2α-π6·cos 2β-sin ⎝⎛⎭⎫2α-π6sin 2β=3365.。

高中数学人教A版必修4模块综合检测(二) Word版含解析

高中数学人教A版必修4模块综合检测(二) Word版含解析

模块综合检测(二)(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(北京高考)已知向量a =(2,4),b =(-1,1),则 2a -b =( )A .(5,7)B .(5,9)C .(3,7)D .(3,9)解析:选A 因为a =(2,4),b =(-1,1),所以2a -b =(2×2-(-1),2×4-1)=(5,7),故选A.2.点M (2,tan 300°)位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D ∵tan 300°=tan(360°-60°)=-tan 60°=-3,∴M (2,-3).故点M (2,tan 300°)位于第四象限.3.已知OA =(2,3),OB =(-3,y ),且OA ⊥OB ,则y 等于( )A .2B .-2 C.12 D .-12解析:选A ∵OA ⊥OB ,∴OA ·OB =-6+3y =0,∴y =2. 4.已知cos ⎝⎛⎭⎫π2-φ=32,且|φ|<π2,则tan φ=( ) A .-33 B.33C .- 3 D. 3解析:选D cos ⎝⎛⎭⎫π2-φ=sin φ=32,又|φ|<π2,则cos φ=12,所以tan φ= 3. 5.2sin 2α1+cos 2α·cos 2αcos 2α等于( ) A .tan αB .tan 2αC .1 D.12解析:选B 2sin 2α1+cos 2α·cos 2αcos 2α=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α. 6.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( )A .-3B .-1C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2,则tan(α+β)=tan α+tan β1-tan αtan β=-3. 7.已知函数f (x )=2sin x ,对任意的x ∈R 都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为( )A.π4B.π2C .πD .2π解析:选C ∵f (x )=2sin x 的周期为2π,∴|x 1-x 2|的最小值为π.8.已知a =(1,sin 2x ),b =(2,sin 2x ),其中x ∈(0,π).若|a ·b |=|a ||b |,则tan x 的值等于( )A .1B .-1 C. 3 D.22 解析:选A 由|a ·b |=|a ||b |知a ∥b .所以sin 2x =2sin 2x ,即2sin x cos x =2sin 2x .而x ∈(0,π),所以sin x =cos x ,即x =π4,故tan x =1. 9.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10 B .y =sin ⎝⎛⎭⎫2x -π5 C .y =sin ⎝⎛⎭⎫12x -π10 D .y =sin ⎝⎛⎭⎫12x -π20 解析:选C 函数y =sin x 的图象上的点向右平移π10个单位长度可得函数y =sin ⎝⎛⎭⎫x -π10的图象;再把各点的横坐标伸长到原来的2倍(纵坐标不变)可得函数y =sin ⎝⎛⎭⎫12x -π10的图象,所以所得函数的解析式是y =sin ⎝⎛⎭⎫12x -π10. 10.(山东高考)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3解析:选A 当0≤x ≤9时,-π3≤πx 6-π3≤7π6, -32≤sin ⎝⎛⎭⎫πx 6-π3≤1,所以函数的最大值为2,最小值为-3,其和为2- 3. 11.如图,在△ABC 中,AD ⊥AB ,BC =3BD ,|AD |=1,则AC ·AD =( )A .2 3B .3 3 C.32 D. 3 解析:选D 建系如图.设B (x B,0),D (0,1),C (x C ,y C ),BC =(x C -x B ,y C ),BD =(-x B,1).∵BC = 3 BD ,∴x C -x B =-3x B ⇒x C =(1-3)x B ,y C = 3.AC =((1-3)x B ,3),AD =(0,1),AC ·AD = 3.12.已知向量a ,b 不共线,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为( )A .3B .-3C .0D .2解析:选A 由原式可得⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3, 解得⎩⎪⎨⎪⎧x =6,y =3.所以x -y =3. 二、填空题(本题共4小题,每小题5分,共20分)13.(重庆高考)已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 解析:因为a =(-2,-6),所以|a |=(-2)2+(-6)2=210,又|b|=10,向量a 与b的夹角为60°,所以a ·b =|a|·|b|·cos 60°=210×10×12=10. 答案:1014.(江西高考)已知单位向量e 1与e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.解析:因为a 2=(3e 1-2e 2)2=9-2×3×2×cos α+4=9,所以|a |=3.答案:315.(山东高考)函数y =32sin 2x +cos 2x 的最小正周期为________. 解析:y =32sin 2x +12cos 2x +12=sin2x +π6+12,所以其最小正周期为2π2=π. 答案:π16.化简:sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α =1-cos 2α2-1-cos 2α2=12. 答案:12三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设a =(1+cos x,1+sin x ),b =(1,0),c =(1,2).(1)求证:(a -b )⊥(a -c );(2)求|a |的最大值,并求此时x 的值.解:(1)证明:a -b =(cos x,1+sin x ),a -c =(cos x ,sin x -1),(a -b )·(a -c )=(cos x,1+sin x )·(cos x ,sin x -1)=cos 2x +sin 2x -1=0.∴(a -b )⊥(a -c ).(2)|a |= (1+cos x )2+(1+sin x )2 =3+2(sin x +cos x )= 3+22sin ⎝⎛⎭⎫x +π4≤ 3+22=2+1.当sin ⎝⎛⎭⎫x +π4=1,即x =π4+2k π(k ∈Z)时,|a |有最大值2+1.18.(本小题满分12分)已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α;(2)求f (x )的解析式.解:(1)证明:由sin(2α+β)=3sin β,得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin (α+β)cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)sin α.∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α, 即x +y 1-xy=2x , ∴y =x 1+2x 2, 即f (x )=x 1+2x 2. 19.(本小题满分12分)已知cos ⎝⎛⎭⎫α-β2=-45,sin β-α2=513,且π2<α<π,0<β<π2,求cos α+β2的值.解:∵π2<α<π,0<β<π2, ∴α-β2∈⎝⎛⎭⎫π4,π,β-α2∈⎝⎛⎭⎫-π2,π4. ∴sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=35, cos ⎝⎛⎭⎫β-α2= 1-sin 2⎝⎛⎭⎫β-α2=1213. ∵⎝⎛⎭⎫α-β2+⎝⎛⎭⎫β-α2=α+β2, ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2+⎝⎛⎭⎫β-α2 =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫β-α2-sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫β-α2 =⎝⎛⎭⎫-45×1213-35×513=-6365. 20.(本小题满分12分)(湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度;(2)求实验室这一天的最大温差.解:(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.21.(本小题满分12分)已知f (x )=23cos 2x +sin 2x -3+1(x ∈R).(1)求f (x )的最小正周期;(2)求f (x )的递增区间;(3)当x ∈⎣⎡⎦⎤-π4,π4时,求f (x )的值域. 解:f (x )=sin 2x +3(2cos 2x -1)+1=sin 2x +3cos 2x +1=2sin ⎝⎛⎭⎫2x +π3+1. (1)函数f (x )的最小正周期T =2π2=π. (2)由2k π-π2≤2x +π3≤2k π+π2, 得2k π-5π6≤2x ≤2k π+π6, ∴k π-5π12≤x ≤k π+π12(k ∈Z). ∴函数f (x )的递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z). (3)∵x ∈⎣⎡⎦⎤-π4,π4,∴2x +π3∈⎣⎡⎦⎤-π6,5π6. ∴sin ⎝⎛⎭⎫2x +π3∈⎣⎡⎦⎤-12,1. ∴f (x )∈[0,3].22.(本小题满分12分)(陕西高考)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值. 解:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x ) =3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期为T =2πω=2π2=π, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2, ∴-π6≤2x -π6≤5π6. 由正弦函数的性质,当2x -π6=π2,即x =π3时,f (x )取得最大值1. 当2x -π6=-π6,即x =0时,f (0)=-12, 当2x -π6=5π6,即x =π2时,f ⎝⎛⎭⎫π6=12, ∴f (x )的最小值为-12. 因此,f (x )在⎣⎡⎦⎤0,π2上的最大值是1,最小值是-12.。

2020高中数学人教A版必修4模块综合检测(三) Word版含解析

2020高中数学人教A版必修4模块综合检测(三) Word版含解析

模块综合检测(三)(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A .-12 B.12C .-32 D.32解析:选B ∵r =64m 2+9, ∴cos α=-8m64m 2+9=-45,∴m >0, ∴4m 264m 2+9=125,∴m =±12. ∵m >0,∴m =12.2.在同一平面直角坐标系中,画出三个函数f (x )=2·sin ⎝ ⎛⎭⎪⎫2x +π4,g (x )=sin2x+π3,h (x )=cos ⎝ ⎛⎭⎪⎫x -π6的部分图象(如图),则( ) A .a 为f (x ),b 为g (x ),c 为h (x ) B .a 为h (x ),b 为f (x ),c 为g (x ) C .a 为g (x ),b 为f (x ),c 为h (x ) D .a 为h (x ),b 为g (x ),c 为f (x )解析:选B 由于函数f (x )、g (x )、h (x )的最大值分别是2、1、1,因此结合图形可知,曲线b 为f (x )的图象;g (x )、h (x )的最小正周期分别是π、2π,因此结合图形可知,曲线a 、c 分别是h (x )、g (x )的图象.3.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC u u u r +CBu u u r=0,则OC u u u r等于( )A .2OA u u u r -OB u u u rB .-OA u u u r +2OB u u u rC.23OA u u ur -13OB u u u r D .-13OA u u ur +23OB u u u r解析:选A ∵OC u u u r =OB u u u r +BC u u u r =OB u u u r +2AC u u u r =OB u u u r +2(OC u u u r -OA u u u r), ∴OC u u u r =2OA u u u r -OB u u u r .4.已知两不共线的向量a ,b ,若对非零实数m ,n 有ma +nb 与a -2b 共线,则mn=( ) A .-2 B .2C .-12 D.12解析:选C ∵ma +nb =λ(a -2b ), ∴⎩⎪⎨⎪⎧m =λ,n =-2λ,∴m n =-12.5.若α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=45,则sin ⎝ ⎛⎭⎪⎫α+π4-22·cos(π-α)等于( )A.225B .-25C.25 D .-225解析:选B sin ⎝ ⎛⎭⎪⎫α+π4-22cos(π-α)=22sin α+22cos α+22cos α =22sin α+2cos α. ∵sin α=45,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 6.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( ) A.22 B.12 C .0D .-1解析:选C ∵a ⊥b ,∴a ·b =-1+2cos 2θ=cos 2θ=0. 7.下列函数为奇函数的是( ) A .y =2cos 2πx -1 B .y =sin 2πx +cos 2πx C .y =tan πx 2+1D .y =sin πx cos πx解析:选D 对于A ,y =2cos 2πx -1=cos 2πx 是偶函数;对于B ,y =sin 2πx +cos 2πx =2·sin ⎝ ⎛⎭⎪⎫2πx +π4非奇非偶;对于C ,y =tan πx 2+1非奇非偶;对于D ,y =sin πx cos πx =12sin 2πx 是奇函数.8.已知向量m ,n 的夹角为π6,且|m |=3,|n |=2,在△ABC 中,AB u u u r =m+n ,AC u u u r =m -3n ,D 为BC 边的中点,则|AD u u u r|等于( )A .1B .2C .3D .4解析:选A AD u u u r =12(AB u u u r +AC u u ur )=m -n .∴|AD u u u r |=m -n2=|m |2-2m ·n +|n |2=1.9.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA u u u r +PB u u u r +PC u u u r =AB u u u r,则点P 与△ABC 的关系为( )A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在AB 边所在直线上D .P 是AC 边的一个三等分点解析:选D ∵PA u u u r +PB u u u r +PC u u u r =AB u u u r,∴PA u u u r +PB u u u r +PC u u u r =PB u u u r -PA u u u r ,∴PC u u u r =-2PA u u u r =2AP u u u r, ∴P 是AC 边的一个三等分点.10.(天津高考)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22C.22D .0解析:选B 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22.11.如图是函数f (x )=A ·cos(2π3x +φ)-1(A >0,|φ|<π2)的图象的一部分,则f (2012)=( )A .-3B .2 C.32D .1解析:选A 由函数的最大值为1可知A =2,由函数f (x )的图象过原点,可知2cos φ-1=0,又|φ|<π2,所以φ=±π3,又点(1,0)在函数f (x )的图象上,代入检验可知φ=-π3,故f (x )=2·cos ⎝ ⎛⎭⎪⎫2π3x -π3-1,所以f (2 012)=2·cos ⎝ ⎛⎭⎪⎫1 340π+4π3-π3-1=-3.12.已知向量OA u u u r =(2,2),OB u u u r =(4,1),在x 轴上有一点P ,使AP u u u r ·BP u u u r有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C 设P (x,0),则AP u u u r=(x -2,-2), BP u u u r=(x -4,-1), ∴AP u u u r ·BP u u u r=(x -2)(x -4)+2=x 2-6x +10=(x -3)2+1,故当x =3时,AP u u u r ·BP u u u r最小,此时P (3,0). 二、填空题(本题共4小题,每小题5分,共20分)13.要得到函数y =13sin(2x +π8)的图象,只需将函数y =13sin 2x 的图象________个单位.解析:y =13sin(2x +π8)=13sin 2⎝ ⎛⎭⎪⎫x +π16,故向左平移π16个单位.答案:向左平移π1614.直线x =t 与函数y =sin x ,y =cos x 的图象分别相交于M ,N 两点,则|MN |的最大值为________.解析:M ,N 的纵坐标分别为sin t ,cos t , 则|MN |=|sin t -cos t |=|2sin(t -π4)|.∴|MN |max = 2. 答案: 215.若0≤α≤2π,sin α>3cos α,则α的取值范围是____________. 解析:∵sin α>3cos α,∴sin α-3cos α>0, 即2⎝ ⎛⎭⎪⎫12sin α-32cos α=2sin ⎝ ⎛⎭⎪⎫α-π3>0,由0≤α≤2π,得-π3≤α-π3≤5π3,∴0<α-π3<π,即α∈⎝ ⎛⎭⎪⎫π3,4π3.答案:⎝ ⎛⎭⎪⎫π3,4π316.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB u u u r ·AF u u u r =2,则AE u u u r ·BF u u u r的值是________.解析:以A 为坐标原点,AB ,AD 所在的直线分别为x ,y 轴建立直角坐标系,则B (2,0),E (2,1),D (0,2),C (2,2).设F (x,2)(0≤x ≤2),由AB u u u r ·AF u u u r=2⇒2x =2⇒x =1,所以F (1,2),AE u u u r ·BF u u u r=(2,1)·(1-2,2)= 2.答案: 2三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知sin α+2cos⎝⎛⎭⎪⎫5π2+αcosπ-α-sin⎝⎛⎭⎪⎫π2-α=-14.(1)求tan α的值;(2)若β为第二象限的角,且tan(α-β)=13,求β.解:(1)∵sin α+2cos⎝⎛⎭⎪⎫5π2+αcosπ-α-sin⎝⎛⎭⎪⎫π2-α=sin α-2sin α-cos α-cos α=12tan α=-14.∴tan α=-1 2 .(2)∵tan β=tan [α-(α-β)]=tan α-tanα-β1+tan αtanα-β=-12-131+⎝⎛⎭⎪⎫-12×13=-1.又∵β为第二象限角,∴β=2kπ+3π4,k∈Z.18.(本小题满分12分)(广东高考)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=322. (1)求A 的值;(2)若 f (θ)-f (-θ)=3,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫π6-θ.解:(1)∵f (x )=A sin ⎝ ⎛⎭⎪⎫x +π3,且f ⎝ ⎛⎭⎪⎫5π12=322,∴A sin ⎝ ⎛⎭⎪⎫5π12+π3=322⇒A sin 3π4=322⇒A =3.(2)由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫x +π3,∵f (θ)-f (-θ)=3,∴3sin ⎝ ⎛⎭⎪⎫θ+π3-3sin ⎝⎛⎭⎪⎫-θ+π3=3,展开得312sin θ+32cos θ-332cos θ-12sin θ=3,化简得sin θ=33.∵θ∈0,π2,∴cos θ=63.∴f π6-θ=3sin ⎣⎢⎡⎦⎥⎤π6-θ+π3=3sin π2-θ=3cos θ= 6.19.(本小题满分12分)(北京高考)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6 的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12 上的最大值和最小值.解:(1)f (x )的最小正周期为2πω=2π2=π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.20.(本小题满分12分)已知某海滨浴场海浪的高度y (m)是时间t (0≤t ≤24)的函数,下表是某日各时的浪高数据:t (h) 0 3 6 9 12 15 18 21 24 y (m)1.51.00.51.01.510.50.991.5y t (2)依据规定,当海浪高度高于1 m 时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?解:(1)以时间为横坐标,高度为纵坐标,在直角坐标系中画出散点图.根据散点图,可考虑用函数y =A cos ωt +b 刻画y 与t 的函数关系.由表中数据,知周期T =12. ∴ω=2πT =2π12=π6.由t =0,y =1.5,得A +b =1.5, 由t =3,y =1.0,得b =1.0,∴A=0.5,b=1,∴振幅为12,∴y=12cosπ6t +1.(2)由题知,当y>1时才可对冲浪者开放,∴12cosπ6t+1>1,∴cos π6t>0.∴2kπ-π2<π6t<2kπ+π2.即12k-3<t<12k+3,∵0≤t≤24,∴k可取0,1,2,得0≤t<3或9<t<15或21<t≤24.∴在规定时间上午8:00至晚上20:00之间,有6 h时间可供冲浪者运动:上午9:00至15:00.21.(本小题满分12分)已知函数f(x)=A sin(π3x+φ),x∈R,A>0,0<φ<π2.y=f(x)的部分图象如图所示,P,Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(1)求f(x)的最小正周期及φ的值;(2)若点R的坐标为(1,0),∠PRQ=2π3,求A的值.解:(1)由题意得,T=2ππ3=6.因为P(1,A)在y=A sin(π3x+φ)的图象上,所以sin(π3+φ)=1. 又因为0<φ<π2,所以φ=π6. (2)设点Q 的坐标为(x 0,-A ),由题意可知π3x 0+π6=3π2,得x 0=4, 所以Q (4,-A ).则RP u u u r =(0,A ),RQ u u u r =(3,-A ),∴cos ∠PRQ =RP u u u r ·RQ u u u r |RP u u u r ||RQ u u u r |=-A 2A ·9+A 2=-12, 解得A 2=3.又A >0,所以A = 3.。

高中数学人教A版必修4阶段质量检测(三) Word版含解析

高中数学人教A版必修4阶段质量检测(三) Word版含解析

阶段质量检测(三)(A 卷 学业水平达标)(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.函数y =cos 2x +sin 2xcos 2x -sin 2x 的最小正周期为( )A .2πB .πC.π2D.π4 答案:C2.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( ) A.210B .-210 C.7210 D .-7210答案:A3.已知sin(α-β)cos α-cos(α-β)sin α=45,且β是第三象限角,则cos β2的值等于( )A .±55B .±255C .-55D .-255答案:A4.设sin θ=35,cos θ=-45,则2θ的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限答案:D5.若(4tan α+1)(1-4tan β)=17,则tan(α-β)的值为( ) A.14 B.12 C .4 D .12答案:C6.(湖北高考)将函数y =3cos x +sin x (x ∈R)的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6 答案:B7.在△ABC 中,已知tan A +B 2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形答案:C8.若cos 2αsin ⎝⎛⎭⎫α-π4=-22,则sin α+cos α的值为( )A .-72B .-12C.12D.72 答案:C9.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-5 B .-6 C .-7 D .-8答案:D10.若f (x )=2tan x -2sin 2 x2-1sin x 2cos x2,则f ⎝⎛⎭⎫π12的值为( ) A .-433B .8C .4 3D .-4 3答案:B二、填空题(本大题共4小题,每小题5分,共20分)11.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________. 答案:15712.tan 10°+tan 50°+3tan 10°tan 50°=________. 答案: 313.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则 sin ⎝⎛⎭⎫2θ+π3的值为________. 答案:1214.已知(sin x -2cos x )(3+2sin x +2cos x )=0,则sin 2x +2cos 2x1+tan x 的值为________.答案:25三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知函数f (x )=(a +2cos 2x )·cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin α+π3的值. 解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数, 所以y 2=cos(2x +θ)为奇函数, 又θ∈(0,π),则θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ). 由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-sin2x ·(2cos 2x -1)=-12sin 4x ,因为f ⎝⎛⎭⎫α4=-12sin α=-25,即sin α=45, 又α∈⎝⎛⎭⎫π2,π,从而cos α=-35, 所以sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3310. 16.(本小题满分12分)已知函数f (x )=sin ⎝⎛⎭⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos α+π4·cos 2α,求cos α-sin α的值. 解:(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z. 由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z.所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z. (2)由已知sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α), 得sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin α sin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时, 由α是第二象限角,知α=3π4+2k π,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54.由α是第二象限角,知cos α-sin α<0, 此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 17.(本小题满分12分)已知f (x )=sin x +2sin π4+x2cos ⎝⎛⎭⎫π4+x 2. (1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 解:(1)f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2 =sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. 由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22, ∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4.∴α+π4=π6,∴α=-π12.(2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35.∴sin x =2sin x 2cos x 2=2425,cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725.18.(本小题满分14分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R). (1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎡⎦⎤π4,π2,求cos 2x 0的值. 解:(1)由f (x )=23sin x cos x +2cos 2x -1,得 f (x )=3(2sin x cos x )+(2cos 2x -1) =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. ∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎣⎡⎦⎤π6,π2上为减函数,又f (0)=1,f ⎝⎛⎭⎫π6=2,f ⎝⎛⎭⎫π2=-1,∴函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)由(1)可知f (x 0)=2sin ⎝⎛⎭⎫2x 0+π6. 又∵f (x 0)=65,∴sin ⎝⎛⎭⎫2x 0+π6=35. 由x 0∈⎣⎡⎦⎤π4,π2,得2x 0+π6∈⎣⎡⎦⎤2π3,7π6. 从而cos ⎝⎛⎭⎫2x 0+π6=-1-sin 2⎝⎛⎭⎫2x 0+π6 =-45.∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0+π6-π6 =cos ⎝⎛⎭⎫2x 0+π6cos π6+sin ⎝⎛⎭⎫2x 0+π6sin π6 =3-4310. (B 卷 能力素养提升) (时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.cos 24°sin 54°-cos 66°sin 36°的值为( ) A .0 B.12C.32D .-12解析:选B 因为cos 24°sin 54°-cos 66°sin 36°=cos 24°sin 54°-sin 24°cos 54°=sin(54°-24°)=sin 30°=12,故选B.2.若sin αsin β=1,则cos(α-β)的值为( ) A .0 B .1 C .±1D .-1解析:选B 由sin αsin β=1,得cos αcos β=0, ∴cos(α-β)=cos αcos β+sin αsin β=1. 3.下列各式中,值为-34的是( ) A .2sin 15°cos 15°B .cos 215°-sin 215°C .2sin 215°-1 D.12-cos 215°解析:选D 用二倍角公式求解可知,只有D 的结果为-34. 4.设α∈⎝⎛⎭⎫0,π2,若sin α=35,则2cos ⎝⎛⎭⎫α+π4等于( ) A.75 B.15 C .-75D .-15解析:选B 依题意可得cos α=45,∴2cos α+π4=2·cos αcos π4-2sin αsin π4=cos α-sin α=45-35=15.5.设tan(α+β)=5,tan ⎝⎛⎭⎫β-π4=4,那么tan α+π4的值等于( ) A .-919 B.121C.119D.921解析:选B tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)·tan ⎝⎛⎭⎫β-π4=5-41+5×4=121. 6.在△ABC 中,若tan A tan B +tan A +tan B =1,则cos C 的值是( ) A .-22 B.22C.12D .-12解析:选A 由tan A tan B +tan A +tan B =1,得 tan A +tan B =1-tan A tan B , 所以tan(A +B )=tan A +tan B1-tan A tan B=1.又tan(A +B )=-tan C ,所以tan C =-1, 所以C =3π4,cos C =cos 3π4=-22. 7.函数f (x )=sin x -cos x ,x ∈⎣⎡⎦⎤0,π2的最小值为( ) A .-2 B .- 3 C .- 2D .-1解析:选D f (x )=2sin ⎝⎛⎭⎫x -π4,x ∈⎣⎡⎦⎤0,π2. ∵-π4≤x -π4≤π4.∴f (x )min =2sin ⎝⎛⎭⎫-π4=-1. 8.已知α、β为锐角,且cos α=110,cos β=15,则α+β的值是( ) A.3π4 B.π3 C.π4或3π4 D.π3或2π3解析:选A ∵α、β为锐角,且cos α=110,cos β=15, ∴sin α=1-cos 2α=310,sin β=1-cos 2β=25.∴cos(α+β)=cos αcos β-sin αsin β=110×15-310×25=-22.∵0<α+β<π,∴α+β=3π4. 9.在△ABC 中,若sin B sin C =cos 2A2,则此三角形为( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形解析:选B ∵sin B sin C =cos 2A2,∴sin B sin C =1+cos A2, 可得2sin B sin C =1+cos [π-(B +C )], 即2sin B sin C =1-cos(B +C ).∴cos(B -C )=1.又角B 、角C 为△ABC 的内角, ∴B -C =0,即B =C .故选B.10.已知函数f (x )=sin 23x +cos ⎝⎛⎭⎫23x -π6,对任意实数α,β,当f (α)-f (β)取最大值时,|α-β|的最小值是( )A .3π B.3π2C.4π3D.2π3解析:选B f (x )=sin 23x +cos ⎝⎛⎭⎫23x -π6= sin 23x +sin ⎝⎛⎭⎫23x +π3=3sin ⎝⎛⎭⎫23x +π6. 又当f (α)-f (β)取最大值时,|α-β|的最小值是函数f (x )的最小正周期的一半,而函数的最小正周期T =2π23=3π,从而选B. 二、填空题(本大题共4小题,每小题5分,共20分) 11.函数f (x )=2cos 2x2+sin x 的最小正周期是________.解析:化简得f (x )=1+2sin ⎝⎛⎭⎫x +π4, ∴T =2π1=2π.答案:2π12.已知sin α=23,α∈⎝⎛⎭⎫π2,π,cos β=-34,β∈⎝⎛⎭⎫π,3π2,则cos(α+β)=________. 解析:因为sin α=23,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-53. 因为cos β=-34,β∈⎝⎛⎭⎫π,3π2, 所以sin β=-1-cos 2β=-74. 所以cos(α+β)=cos αcos β-sin αsin β=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34-23×⎝⎛⎭⎫-74=35+2712.答案:35+271213.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎫0,π2,则α+β=________. 解析:∵α,β∈⎝⎛⎭⎫0,π2,sin α=35,cos β=35, ∴cos α=45,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β=0. ∵ α,β∈⎝⎛⎭⎫0,π2,∴0<α+β<π,故α+β=π2. 答案:π214.cos 6·tan 6的符号为________(填“正”“负”或“不确定”). 解析:∵3π2<6<2π,∴6是第四象限角.∴cos 6>0,tan 6<0,则cos 6·tan 6<0. 答案:负三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知sin θ+cos θ=sin θcos θ=1-2,求cos 3⎝⎛⎭⎫π2-θ+sin 3π2-θ的值.解:cos 3⎝⎛⎭⎫π2-θ+sin 3⎝⎛⎭⎫π2-θ =sin 3θ+cos 3θ=(sin θ+cos θ)(sin 2θ-sin θcos θ+cos 2θ) =(1-2)[1-(1-2)]=2-2.16.(本小题满分12分)已知函数f (x )=3sin 2x -2sin 2x . (1)若点P (1,-3)在角α的终边上,求f (α)的值; (2)若x ∈⎣⎡⎦⎤-π6,π3,求f (x )的值域. 解:(1)因为点P (1,-3)在角α的终边上, 所以sin α=-32,cos α=12, 所以f (α)=3sin 2α-2sin 2α=23sin αcos α-2sin 2α =23×⎝⎛⎭⎫-32×12-2×⎝⎛⎭⎫-322=-3. (2)f (x )=3sin 2x -2sin 2x =3sin 2x +cos 2x -1=2sin ⎝⎛⎭⎫2x +π6-1, 因为x ∈⎣⎡⎦⎤-π6,π3,所以-π6≤2x +π6≤5π6, 所以-12≤sin ⎝⎛⎭⎫2x +π6≤1, 所以f (x )的值域是[-2,1].17.(本小题满分12分)(广东高考)已知函数f (x )=A cos ⎝⎛⎭⎫x 4+π6,x ∈R ,且f ⎝⎛⎭⎫π3= 2. (1)求A 的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫4α+43π=-3017,f ⎝⎛⎭⎫4β-23π=85,求cos(α+β)的值. 解:(1)因为f ⎝⎛⎭⎫π3=2,所以A cos ⎝⎛⎭⎫14×π3+π6=A cos π4=22A =2,所以A =2. (2)由(1)知f (x )=2cos ⎝⎛⎭⎫x 4+π6,f ⎝⎛⎭⎫4α+4π3=2cos ⎝⎛⎭⎫α+π3+π6=-2sin α=-3017,所以sin α=1517,因为α∈⎣⎡⎦⎤0,π2,所以cos α=817;又因为f ⎝⎛⎭⎫4β-2π3=2cos ⎝⎛⎭⎫β-π6+π6=2cos β=85,所以cos β=45,因为β∈⎣⎡⎦⎤0,π2,所以sin β=35.所以cos(α+β)=cos αcos β-sin αsin β=817×45-1517×35=-1385. 18.(本小题满分14分)已知函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2,且f ⎝⎛⎭⎫5π6=-1. (1)求φ的值;(2)若f (α)=35,f ⎝⎛⎭⎫β+π12=513,且π6<α<π3,0<β<π4,求cos ⎝⎛⎭⎫2α+2β-π6的值. 解:(1)∵f (x )=sin(2x +φ),且f ⎝⎛⎭⎫5π6=-1, ∴2×5π6+φ=2k π+3π2,k ∈Z.文档仅供参考文档仅供参考 ∵|φ|<π2,∴φ=-π6. (2)由(1)得f (x )=sin ⎝⎛⎭⎫2x -π6. ∵π6<α<π3,0<β<π4, ∴2α-π6∈⎝⎛⎭⎫π6,π2,2β∈⎝⎛⎭⎫0,π2. ∵f (α)=35,f ⎝⎛⎭⎫β+π12=513, ∴sin ⎝⎛⎭⎫2α-π6=35,sin 2β=513, ∴cos ⎝⎛⎭⎫2α-π6=45,cos 2β=1213, ∴cos ⎝⎛⎭⎫2α+2β-π6=cos ⎝⎛⎭⎫2α-π6+2β=cos ⎝⎛⎭⎫2α-π6·cos 2β-sin ⎝⎛⎭⎫2α-π6sin 2β=3365. 高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

2019-2020学年人教版高中数学必修四教材用书:模块综合检测(三) Word版含答案

2019-2020学年人教版高中数学必修四教材用书:模块综合检测(三) Word版含答案

模块综合检测(三)(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A .-12B.12 C .-32D.32解析:选B ∵r =64m2+9, ∴cos α=-8m64m2+9=-45,∴m >0,∴4m264m2+9=125,∴m =±12.∵m >0,∴m =12.2.在同一平面直角坐标系中,画出三个函数f (x )=2·sin ⎝⎛⎭⎪⎫2x +π4,g (x )=sin2x +π3,h (x )=cos ⎝⎛⎭⎪⎫x -π6的部分图象(如图),则( )A .a 为f (x ),b 为g (x ),c 为h (x )B .a 为h (x ),b 为f (x ),c 为g (x )C .a 为g (x ),b 为f (x ),c 为h (x )D .a 为h (x ),b 为g (x ),c 为f (x )解析:选B 由于函数f (x )、g (x )、h (x )的最大值分别是2、1、1,因此结合图形可知,曲线b 为f (x )的图象;g (x )、h (x )的最小正周期分别是π、2π,因此结合图形可知,曲线a 、c 分别是h (x )、g (x )的图象.3.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC +CB =0,则OC 等于( ) A .2OA -OB B .-OA +2OB C.23OA -13OB D .-13OA +23OB解析:选A ∵OC =OB +BC =OB +2AC =OB +2(OC -OA ), ∴OC =2OA -OB .4.已知两不共线的向量a ,b ,若对非零实数m ,n 有ma +nb 与a -2b 共线,则mn =( )A .-2B .2C .-12 D.12解析:选C ∵ma +nb =λ(a -2b ),∴⎩⎪⎨⎪⎧m =λ,n =-2λ,∴m n =-12. 5.若α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=45,则sin ⎝ ⎛⎭⎪⎫α+π4-22·cos (π-α)等于( )A.225 B .-25 C.25D .-225解析:选B sin ⎝⎛⎭⎪⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α =22sin α+2cos α. ∵sin α=45,α∈⎝ ⎛⎭⎪⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 6.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( ) A.22 B.12C .0D .-1解析:选C ∵a ⊥b ,∴a ·b =-1+2cos 2θ=cos 2θ=0. 7.下列函数为奇函数的是( ) A .y =2cos 2πx -1 B .y =sin 2πx +cos 2πx C .y =tanπx2+1D .y =sin πx cos πx解析:选 D 对于A ,y =2cos 2πx -1=cos 2πx 是偶函数;对于B ,y =sin 2πx +cos 2πx =2·sin ⎝ ⎛⎭⎪⎫2πx +π4非奇非偶;对于C ,y =tan πx 2+1非奇非偶;对于D ,y =sin πx cos πx =12sin 2πx 是奇函数.8.已知向量m ,n 的夹角为π6,且|m |=3,|n |=2,在△ABC 中,AB =m +n ,AC =m -3n ,D 为BC 边的中点,则|AD |等于( )A .1B .2C .3D .4解析:选A AD =12(AB +AC )=m -n .∴|AD |=-=|m|2-2m·n+|n|2=1.9.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA +PB +PC =AB ,则点P 与△ABC 的关系为( )A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在AB 边所在直线上D .P 是AC 边的一个三等分点解析:选D ∵PA +PB +PC =AB ,∴PA +PB +PC =PB -PA ,∴PC =-2PA =2AP , ∴P 是AC 边的一个三等分点.10.(天津高考)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( ) A .-1 B .-22C.22D .0解析:选B 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22.11.如图是函数f (x )=A ·cos(2π3x +φ)-1(A >0,|φ|<π2)的图象的一部分,则f (2 017)=( )A .0B .2 C.32D .1解析:选A 由函数的最大值为1可知A =2,由函数f (x )的图象过原点,可知2cos φ-1=0,又|φ|<π2,所以φ=±π3,又点(1,0)在函数f (x )的图象上,代入检验可知φ=-π3,故f (x )=2·cos ⎝ ⎛⎭⎪⎫2π3x -π3-1,所以f (2 012)=2·cos ⎝⎛⎭⎪⎫1 340π+4π3-π3-1=-3. 12.已知向量OA =(2,2),OB =(4,1),在x 轴上有一点P ,使AP ·BP 有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C 设P (x,0),则AP =(x -2,-2),BP =(x -4,-1),∴AP ·BP =(x -2)(x -4)+2 =x 2-6x +10=(x -3)2+1,故当x =3时,AP ·BP 最小,此时P (3,0). 二、填空题(本题共4小题,每小题5分,共20分)13.要得到函数y =13sin(2x +π8)的图象,只需将函数y =13sin 2x 的图象________个单位.解析:y =13sin(2x +π8)=13sin 2⎝ ⎛⎭⎪⎫x +π16,故向左平移π16个单位.答案:向左平移π1614.直线x =t 与函数y =sin x ,y =cos x 的图象分别相交于M ,N 两点,则|MN |的最大值为________. 解析:M ,N 的纵坐标分别为sin t ,cos t , 则|MN |=|sin t -cos t |=|2sin(t -π4)|.∴|MN |max = 2. 答案: 215.若0≤α≤2π,sin α>3cos α,则α的取值范围是____________. 解析:∵sin α>3cos α,∴sin α-3cos α>0, 即2⎝ ⎛⎭⎪⎫12sin α-32cos α=2sin ⎝ ⎛⎭⎪⎫α-π3>0, 由0≤α≤2π,得-π3≤α-π3≤5π3,∴0<α-π3<π,即α∈⎝ ⎛⎭⎪⎫π3,4π3.答案:⎝ ⎛⎭⎪⎫π3,4π316.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB ·AF =2,则AE ·BF 的值是________.解析:以A 为坐标原点,AB ,AD 所在的直线分别为x ,y 轴建立直角坐标系,则B (2,0),E (2,1),D (0,2),C (2,2).设F (x,2)(0≤x ≤2),由AB ·AF =2⇒2x =2⇒x =1,所以F (1,2),AE ·BF=(2,1)·(1-2,2)= 2.答案: 2三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知sin α+2cos ⎝ ⎛⎭⎪⎫5π2+απ-α-sin ⎝ ⎛⎭⎪⎫π2-α=-14.(1)求tan α的值;(2)若β为第二象限的角,且tan(α-β)=13,求β.解:(1)∵sin α+2cos ⎝ ⎛⎭⎪⎫5π2+απ-α-sin ⎝ ⎛⎭⎪⎫π2-α=sin α-2sin α-cos α-cos α=12tan α=-14. ∴tan α=-12.(2)∵tan β=tan [α-(α-β)]=tan α-α-β1+tan αα-β=-12-131+⎝ ⎛⎭⎪⎫-12×13=-1.又∵β为第二象限角, ∴β=2k π+3π4,k ∈Z.18.(本小题满分12分)(山东高考)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝ ⎛⎭⎪⎫π6的值. 解:(1)f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+3-1, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z), 得k π-π12≤x ≤k π+5π12(k ∈Z), 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z).(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x -π3+3-1, 把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin ⎝⎛⎭⎪⎫x -π3+3-1的图象,再把得到的图象向左平移π3个单位, 得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1, 所以g ⎝ ⎛⎭⎪⎫π6=2sin π6+3-1= 3. 19.(本小题满分12分)函数f (x )=cos(πx +φ)0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值. 解:(1)由题图得f (0)=32,所以cos φ=32, 因为0<φ<π2,故φ=π6. 由于f (x )的最小正周期等于2,所以由题图可知1<x 0<2,故7π6<πx 0+π6<13π6,由f (x 0)=32得cos ⎝ ⎛⎭⎪⎫πx0+π6=32,所以πx 0+π6=11π6,故x 0=53. (2)因为f ⎝ ⎛⎭⎪⎫x +13=cos ⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫x +13+π6 =cos ⎝⎛⎭⎪⎫πx +π2=-sin πx , 所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝ ⎛⎭⎪⎫πx +π6-sin πx =cos πx cos π6-sin πx sin π6-sin πx =32cos πx -32sin πx =3sin ⎝ ⎛⎭⎪⎫π6-πx .当x ∈⎣⎢⎡⎦⎥⎤-12,13时,-π6≤π6-πx ≤2π3.所以-12≤sin ⎝ ⎛⎭⎪⎫π6-πx ≤1,故当π6-πx =π2,即x =-13时,g (x )取得最大值3;当π6-πx =-π6,即x =13时, g (x )取得最小值-32. 20.(本小题满分12分)已知已知函数ƒ(x )=A sin(ωx +φ)ω>0,0<φ<π2的部分图象如图所示.(1)求ƒ(x )的解析式;(2)将函数y =ƒ(x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间; (3)当x ∈⎣⎢⎡⎦⎥⎤-π2,5π12时,求函数y =ƒ⎝ ⎛⎭⎪⎫x +π12-2ƒ⎝⎛⎭⎪⎫x +π3的最值.解:(1)由图得34T =11π6-π3=9π6=3π2,∴T =2π,∴ω=2πT=1.又ƒ⎝ ⎛⎭⎪⎫11π6=0,得A sin ⎝ ⎛⎭⎪⎫11π6+φ=0, ∴11π6+φ=2k π,k ∈Z ,φ=2k π-11π6,k ∈Z. ∵0<φ<π2,∴当k =1时,φ=π6.又由ƒ(0)=2,得A sinπ6=2,∴A =4, ∴ƒ(x )=4sin ⎝⎛⎭⎪⎫x +π6. (2)将ƒ(x )=4sin ⎝⎛⎭⎪⎫x +π6的图象上所有点的横坐标缩短为原来的12倍,纵坐标不变得到y =4sin ⎝ ⎛⎭⎪⎫2x +π6,再将图象向右平移π6个单位得到g (x )=4sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π6=4sin ⎝ ⎛⎭⎪⎫2x -π6,由2k π-π2≤2x -π6≤2k π+π2(k ∈Z)得 k π-π6≤x ≤k π+π3(k ∈Z),∴g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (3)y =ƒ⎝ ⎛⎭⎪⎫x +π12-2ƒ⎝⎛⎭⎪⎫x +π3 =4sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π12+π6-2×4sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +π3+π6=4sin ⎝ ⎛⎭⎪⎫x +π4-42sin ⎝⎛⎭⎪⎫x +π2=4⎝ ⎛⎭⎪⎫si n x·cos π4+cos x·sin π4-42cos x =22sin x +22cos x -42cos x=22sin x -22cos x =4sin ⎝ ⎛⎭⎪⎫x -π4.∵x ∈⎣⎢⎡⎦⎥⎤-π2,5π12,x -π4∈⎣⎢⎡⎦⎥⎤-3π4,π6,∴sin ⎝⎛⎭⎪⎫x -π4∈⎣⎢⎡⎦⎥⎤-1,12, ∴函数的最小值为-4,最大值为2. 21.(本小题满分12分)已知函数f (x )=A sin(π3x +φ),x ∈R ,A >0,0<φ<π2.y =f (x )的部分图象如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值; (2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值. 解:(1)由题意得,T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图象上, 所以sin(π3+φ)=1.又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ), 由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).则RP ―→=(0,A ),RQ ―→=(3,-A ), ∴cos ∠PRQ =RP―→·RQ―→|RP―→||RQ―→|=-A2A·9+A2=-12,解得A 2=3.又A >0,所以A = 3.中0≤φ≤π2)22.(本小题满分12分)如图,函数y =2sin(πx +φ),x ∈R(其的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =sin(πx +φ)的单调递增区间;(3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin(πx +π6), ∴当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =sin(πx +π6)是增函数.则y =2sin(πx +π6)的单调递增区间为[-23+2k ,13+2k ],k ∈Z.(3)由y ≥1,得sin(πx +π6)≥12,∴π6+2k π≤πx +π6≤5π6+2k π,k ∈Z , 得2k ≤x ≤23+2k ,k ∈Z ,∴y ≥1时,x 的集合为{x |2k ≤x ≤23+2k ,k ∈Z}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块综合检测(三)(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A .-12 B.12C .-32 D.32解析:选B ∵r =64m 2+9, ∴cos α=-8m64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12. ∵m >0,∴m =12.2.在同一平面直角坐标系中,画出三个函数f (x )=2·sin ⎝⎛⎭⎫2x +π4,g (x )=sin2x +π3,h (x )=cos ⎝⎛⎭⎫x -π6的部分图象(如图),则( ) A .a 为f (x ),b 为g (x ),c 为h (x ) B .a 为h (x ),b 为f (x ),c 为g (x ) C .a 为g (x ),b 为f (x ),c 为h (x ) D .a 为h (x ),b 为g (x ),c 为f (x )解析:选B 由于函数f (x )、g (x )、h (x )的最大值分别是2、1、1,因此结合图形可知,曲线b 为f (x )的图象;g (x )、h (x )的最小正周期分别是π、2π,因此结合图形可知,曲线a 、c 分别是h (x )、g (x )的图象.3.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC +CB =0,则OC 等于( )A .2OA -OB B .-OA +2OB C.23OA -13OBD .-13OA +23OB解析:选A ∵OC =OB +BC =OB +2AC =OB +2(OC -OA ), ∴OC =2OA -OB .4.已知两不共线的向量a ,b ,若对非零实数m ,n 有ma +nb 与a -2b 共线,则m n =( )A .-2B .2C .-12 D.12解析:选C ∵ma +nb =λ(a -2b ),∴⎩⎪⎨⎪⎧m =λ,n =-2λ,∴m n =-12.5.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22·cos(π-α)等于( ) A.225B .-25 C.25D .-225解析:选B sin ⎝⎛⎭⎫α+π4-22cos(π-α) =22sin α+22cos α+22cos α =22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π, ∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25. 6.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( ) A.22 B.12C .0D .-1解析:选C ∵a ⊥b ,∴a ·b =-1+2cos 2θ=cos 2θ=0. 7.下列函数为奇函数的是( ) A .y =2cos 2πx -1 B .y =sin 2πx +cos 2πxC .y =tanπx 2+1 D .y =sin πx cos πx解析:选D 对于A ,y =2cos 2πx -1=cos 2πx 是偶函数;对于B ,y =sin 2πx +cos 2πx =2·sin ⎝⎛⎭⎫2πx +π4非奇非偶;对于C ,y =tan πx 2+1非奇非偶;对于D ,y =sin πx cos πx =12sin 2πx 是奇函数.8.已知向量m ,n 的夹角为π6,且|m |=3,|n |=2,在△ABC 中,AB =m +n ,AC =m -3n ,D 为BC 边的中点,则|AD |等于( )A .1B .2C .3D .4解析:选A AD =12(AB +AC )=m -n .∴|AD |=(m -n )2=|m |2-2m·n +|n |2=1.9.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA +PB +PC =AB ,则点P 与△ABC 的关系为( )A .P 在△ABC 内部B .P 在△ABC 外部 C .P 在AB 边所在直线上D .P 是AC 边的一个三等分点解析:选D ∵PA +PB +PC =AB ,∴PA +PB +PC =PB -PA ,∴PC =-2PA =2AP , ∴P 是AC 边的一个三等分点.10.(天津高考)函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C.22D .0解析:选B 由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4,所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin2x -π4在区间⎣⎡⎦⎤0,π4上的最小值为-22. 11.如图是函数f (x )=A ·cos(2π3x +φ)-1(A >0,|φ|<π2)的图象的一部分,则f (2 012)=( )A .-3B .2 C.32D .1解析:选A 由函数的最大值为1可知A =2,由函数f (x )的图象过原点,可知2cos φ-1=0,又|φ|<π2,所以φ=±π3,又点(1,0)在函数f (x )的图象上,代入检验可知φ=-π3,故f (x )=2·cos ⎝⎛⎭⎫2π3x -π3-1,所以f (2 012)=2·cos ⎝⎛⎭⎫1 340π+4π3-π3-1=-3. 12.已知向量OA =(2,2),OB =(4,1),在x 轴上有一点P ,使AP ·BP 有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C 设P (x,0),则AP =(x -2,-2),BP =(x -4,-1), ∴AP ·BP =(x -2)(x -4)+2 =x 2-6x +10=(x -3)2+1,故当x =3时,AP ·BP 最小,此时P (3,0). 二、填空题(本题共4小题,每小题5分,共20分)13.要得到函数y =13sin(2x +π8)的图象,只需将函数y =13sin 2x 的图象________个单位.解析:y =13sin(2x +π8)=13sin 2⎝⎛⎭⎫x +π16,故向左平移π16个单位. 答案:向左平移π1614.直线x =t 与函数y =sin x ,y =cos x 的图象分别相交于M ,N 两点,则|MN |的最大值为________.解析:M ,N 的纵坐标分别为sin t ,cos t , 则|MN |=|sin t -cos t |=|2sin(t -π4)|.∴|MN |max = 2. 答案: 215.若0≤α≤2π,sin α>3cos α,则α的取值范围是____________. 解析:∵sin α>3cos α,∴sin α-3cos α>0,即2⎝⎛⎭⎫12sin α-32cos α=2sin ⎝⎛⎭⎫α-π3>0, 由0≤α≤2π,得-π3≤α-π3≤5π3,∴0<α-π3<π,即α∈⎝⎛⎭⎫π3,4π3. 答案:⎝⎛⎭⎫π3,4π316.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB ·AF =2,则AE ·BF 的值是________.解析:以A 为坐标原点,AB ,AD 所在的直线分别为x ,y 轴建立直角坐标系,则B (2,0),E (2,1),D (0,2),C (2,2).设F (x,2)(0≤x ≤2),由AB ·AF =2⇒2x =2⇒x =1,所以F (1,2),AE ·BF =(2,1)·(1-2,2)= 2.答案: 2三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知sin α+2cos ⎝⎛⎭⎫5π2+αcos (π-α)-sin ⎝⎛⎭⎫π2-α=-14. (1)求tan α的值;(2)若β为第二象限的角,且tan(α-β)=13,求β.解:(1)∵sin α+2cos ⎝⎛⎭⎫5π2+αcos (π-α)-sin ⎝⎛⎭⎫π2-α =sin α-2sin α-cos α-cos α=12tan α=-14. ∴tan α=-12.(2)∵tan β=tan [α-(α-β)]=tan α-tan (α-β)1+tan αtan (α-β)=-12-131+⎝⎛⎭⎫-12×13=-1.又∵β为第二象限角, ∴β=2k π+3π4,k ∈Z. 18.(本小题满分12分)(广东高考)已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若 f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ. 解:(1)∵f (x )=A sin ⎝⎛⎭⎫x +π3,且f ⎝⎛⎭⎫5π12=322, ∴A sin ⎝⎛⎭⎫5π12+π3=322⇒A sin 3π4=322⇒A =3. (2)由(1)知f (x )=3sin ⎝⎛⎭⎫x +π3, ∵f (θ)-f (-θ)=3,∴3sin ⎝⎛⎭⎫θ+π3-3sin ⎝⎛⎭⎫-θ+π3=3, 展开得312sin θ+32cos θ-332cos θ-12sin θ=3,化简得sin θ=33.∵θ∈0,π2,∴cos θ=63.∴f π6-θ=3sin ⎣⎡⎦⎤π6-θ+π3=3sin π2-θ=3cos θ= 6. 19.(本小题满分12分)(北京高考)函数f (x )=3sin ⎝⎛⎭⎫2x +π6 的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12 上的最大值和最小值. 解:(1)f (x )的最小正周期为2πω=2π2=π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0. 于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.20.(本小题满分12分)已知某海滨浴场海浪的高度y (m)是时间t (0≤t ≤24)的函数,下表是某日各时的浪高数据:(1)(2)依据规定,当海浪高度高于1 m 时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?解:(1)以时间为横坐标,高度为纵坐标,在直角坐标系中画出散点图.根据散点图,可考虑用函数y =A cos ωt +b 刻画y 与t 的函数关系.由表中数据,知周期T =12. ∴ω=2πT =2π12=π6. 由t =0,y =1.5,得A +b =1.5, 由t =3,y =1.0,得b =1.0, ∴A =0.5,b =1,∴振幅为12,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放, ∴12cos π6t +1>1, ∴cos π6t >0.∴2k π-π2<π6t <2k π+π2.即12k -3<t <12k +3, ∵0≤t ≤24, ∴k 可取0,1,2,得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8:00至晚上20:00之间,有6 h 时间可供冲浪者运动: 上午9:00至15:00.21.(本小题满分12分)已知函数f (x )=A sin(π3x +φ),x ∈R ,A>0,0<φ<π2.y =f (x )的部分图象如图所示,P ,Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值; (2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值. 解:(1)由题意得,T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图象上,所以sin(π3+φ)=1.又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ), 由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).则RP =(0,A ),RQ =(3,-A ), ∴cos ∠PRQ =RP ·RQ|RP ||RQ |=-A 2A ·9+A2=-12, 解得A 2=3.又A >0,所以A = 3.22.(本小题满分12分)如图,函数y =2sin(πx +φ),x ∈R(其中0≤φ≤π2)的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin(πx +π6),∴当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =sin(πx +π6)是增函数.则y =2sin(πx +π6)的单调递增区间为[-23+2k ,13+2k ],k ∈Z.(3)由y ≥1,得sin(πx +π6)≥12,∴π6+2k π≤πx +π6≤5π6+2k π,k ∈Z , 得2k ≤x ≤23+2k ,k ∈Z ,∴y ≥1时,x 的集合为{x |2k ≤x ≤23+2k ,k ∈Z}.。

相关文档
最新文档