加权粗糙集算法的PDA图书馆最优选书策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PDA
12
1.454003
2.467000
PDA
PDA PDA
PDA TP301.6
A
1001-7119201507-0152-04
Most Preferred Strategy of PDA Library Book Selection Based on Weighted Rough Algorithm
Chen Lei 1Yang Xingwei 2
1.Henan Polytechnic University Jiaozuo Henan 454003China
2.He 'nan Quality Polytechnic He 'nan Pingdingshan 467000China
Abstract Bayesian network model for a standard library book selection in PDA applications analysis showed large errors,this paper presents an optimization model based on Bayesian network PDA choosing books based on the weighted rough set,first using rough set way,reconstructed collection of properties,with a new set of properties instead of the original set of attributes,and then use the properties described sequence method,the condition attribute reduction thus obtained will be arranged in sequential order after attribute effect on the decision in accordance with decreasing order,in order to reduce little effect
this defect,weighted manner Bayesian model based on rough set to improve.The simulation results show that Bayesian network optimization based on the weighted rough set book selection system fully functional PDA and Selected Stories by actually choosing books to prove its high accuracy.
Keywords bayesian network model PDA book selection policy rough set weighted optimization
2015-03-20
1980-
E-mail 35182905@
PDA PDA
PDA Netlibrary [4]Ingram Digital [5]
EBL [6]Ebrary [7]PDA
PDA
31720157
BULLETIN OF SCIENCE AND TECHNOLOGY
Vol.31No.7Jul.2015
7
PDA
1
s
MAP=arg max s i S P(s i|x1,x2,...,x n)1
s MAP=arg max s i S P(x1,x2,...,x n|s i)P(s i) P(x1,x2,...,x n)
=arg max P
s
i S (x1,x2,...,x n|2
2
P(s
i)
s
i
P(x1,x2,...,x n|s i)P(s i)
x1,x2,...,x n
P(x1,x2,...,x n|s i)=k P(x k|s i)3
2
s
NB=arg max P(s i)
s
i S k P(x k|s i)4
s NB
P(x
k|s i)
P(x1,x2,...,x n|s i)
m-
estimate
m-estimate
P(m
i|n i)=
v
x+up v+u5
v n i v x
n
i
m
i
u p
P(m
i|n i)=p p n i
m
i
p v
x
v
2
PDA
2.1
0~1
Z
i
Y
i
(Z,Y)=cov(Z i,Y)
D(Z
i)D(Y)
6
W
A
i=
|
|(Z,Y)=|
|
|
|
|
|
|
|
cov(Z i,Y)
D(Z
i)D(Y)
7 .PDA153