八年级上数学期中测试(一)11-12章

合集下载

八年级数学(上、11-12章)试题

八年级数学(上、11-12章)试题

八年级数学(上、11-12章)试题一、选择题1、如下图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC∥DF (D)AC=DF2、已知,如上图,AC=BC,AD=BD,下列结论,不正确的是()(A)CO=DO (B)AO=BO (C)AB⊥BD (D)△ACO≌△BCO3、在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点()(A)高(B)角平分线(C)中线(D)垂直平分线4、△ABC≌△DEF,AB=2,BC=4 若△DEF的周长为偶数,则DF的取值为()(A)3(B) 4(C)5(D)3或4或55、下列条件能判定△ABC≌△DEF的一组是()(A)∠A=∠D,∠C=∠F, AC=DF (B)AB=DE, BC=EF,∠A=∠D(C)∠A=∠D,∠B=∠E,∠C=∠F (D)AB=DE,△ABC的周长等于△DEF的周长6、下列图形中,不是轴对称图形的是 ( )A.等边三角形 B.等腰直角三角形 C.四边形 D.线段7、如下图,轴对称图形有()A.3 个 B.4个 C.5个 D.6个8、下列图形中,不是轴对称图形的是()A.有两条边相等的三角形 B.有一个角为450的直角三角形C.有一个角为600的等腰三角形D.一个内角为400,一个内角为1100的三角形9、当你看到镜子中的你在用右手往左梳理你的头发时,实际上你是()A.右手往左梳 B.右手往右梳 C.左手往左梳 D.左手往右梳10、下列条件中不能作出惟一直角三角形的是()A. 已知两个锐角B. 已知一条直角边和一个锐角C. 已知两条直角边D. 已知一条直角边和斜边二、填空题11、已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.第 11题第 12题第 13题12、如图,△ABC≌△ADE,则,AB= ,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC= .13、如图,在ΔAOC与ΔBOC中,若AO=OB,∠1=∠2,加上条件则有ΔAOC≌ΔBOC。

24-25学年八年级数学期中模拟卷01(全解全析)【测试范围:八年级上册第11章~第13章】(人教版

24-25学年八年级数学期中模拟卷01(全解全析)【测试范围:八年级上册第11章~第13章】(人教版

2024-2025学年八年级数学上学期期中模拟卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八年级上册第十一章~第十三章。

5.难度系数:0.75。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.未来计算机发展方向是让计算机能看、能听、能说、会思考!下列表示计算机视觉交互应用的图标中,文字上方的图案是轴对称图形的是()A.B.C.D.【答案】A【详解】A. 沿此直线对折,两边能完全重合,是轴对称图形,故此项正确;选项B、C、D均找不到一条直线对折,使得直线两边的图形能完全重合,所以都不是轴对称图形,故此三项均错误;故选:A.2.下列长度的三条线段能组成三角形的是()A.3cm,4cm,5cmB.2cm,2cm,4cm C.1cm,6cm,7cm D.2cm,6cm,9cm【答案】A【详解】解:A 、3+4>5,能组成三角形,符合题意;B 、2+2=4,不能组成三角形,不符合题意;C 、1+6=7,不能组成三角形,不符合题意;D 、2+6<9,不能组成三角形,不符合题意.故选:A .3.下面作三角形最长边上的高正确的是( )A .B .C .D .【答案】C【详解】解:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选C.4.已知一个多边形的内角和是720°,则该多边形的边数为( )A .4B .6C .8D .105.如图,已知ABC DEF ≌△△,且60,40A B Ð=°Ð=°,则F Ð的度数是( )A .80°B .70°C .60°D .50°【答案】A【详解】解:∵60,40A B Ð=°Ð=°,∴180604080ACB Ð=°-°-°=°,∵ABC DEF ≌△△,∴80A B F C Ð=°Ð=;故选A .6.等腰三角形一腰上的高与另一腰的夹角为54°,则该等腰三角形底角的度数为( )A .72°B .72°或36°C .36°D .72°或18°7.如图,在ABC V 中,DE 是AC 的垂直平分线,3cm AE =,ABD V 的周长为12cm ,则ABC V 的周长为( )A .15cmB .16cmC .17cmD .18cm8.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C 【详解】解:AD Q 是BAC Ð的平分线,且,,4DE AB DF AC DE ^^=,4DF DE \==,9.如图,△ABC 的面积为10cm 2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .3cm 2B .5cm 2C .6cm 2D .8cm 2,ABP EBP Ð=Ð,90°,10.如图,已知,AB AC AE AF ==,则ABE ACF V V ≌的根据是( )A .ASAB . AASC .SSSD .SAS 【答案】D 【详解】解:在ABE V 与ACF △中,AB AB A A AE AF =ìïÐ=Ðíï=î,∴()SAS ABE ACF ≌△△,故选:D .11.如图,Rt △ABC 中,ÐACB =90°,AC =6,BC =8,AB =10,BD 平分ÐABC ,如果点M ,N 分别为BD ,BC 上的动点,那么CM +MN 的最小值是( )A .4B .4.8C .5D .6【答案】B 【详解】解:如图所示:过点C 作CE ⊥AB 于点E ,交BD 于点M ,过点M 作MN ⊥BC于点N,∵BD 平分∠ABC ,∴ME =MN ,∴CM +MN =CM +ME =CE .∵Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,CE ⊥AB ,12.如图,已知ABC V 和ADE V 都是等腰三角形,90BAC DAE Ð=Ð=°,BD ,CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ^;③AF 平分CAD Ð;④45AFE Ð=°.其中正确结论的个数有( )A .①②③B .①②④C .②④③D .①③④二、填空题(本题共6小题,每小题2分,共12分.)13.如图,9060ABC ABD D CAD Ð=°Ð=°V V ≌,,,则ABD Ð的度数为 .【答案】60°/60度【详解】∵60ABC ABD CAD Ð=°V V ≌,,∴18060ABD D DAB Ð=°-Ð-Ð=°,故答案为:60°.14.若点()12A a -,与点()21B b -,关于x 轴对称,则a b += .【答案】2【详解】解:∵点()12A a -,与点()21B b -,关于x 轴对称,∴1212a b -=-=-,,解得31,==-a b ,∴312a b +=-=.故答案为:2.15.如图,在Rt △ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于E ,若DE =2cm ,则BC = cm .16.如图,△ABC ≌△ADE ,若∠B =70°,∠C =30°,∠DAC =25°,则∠EAC 的度数为 .【答案】55°/55度【详解】解:∵∠B =70°,∠C =30°,∴∠BAC =180°﹣70°﹣30°=80°,∵△ABC ≌△ADE ,∴∠DAE =∠BAC =80°,又∠DAC =25°,∴∠EAC =∠DAE ﹣∠DAC =80°﹣25°=55°.故答案为:55°.17.如图,在四边形ABCD 中,60D Ð=°,若沿图中虚线剪去D Ð,则12Ð+Ð= .18.如图,等边ABC V 的边长为12cm ,M ,N 两点分别从点AB 同时出发,沿ABC V 的边顺时针运动,点M的速度为1cm/s ,点N 的速度为2cm/s ,当点N 第一次到达B 点时,M ,N 两点同时停止运动,则当M ,N 运动时间t = s 时,AMN V 为等腰三角形.【答案】4或16【详解】如图1所示,设点M 、N 运动x 秒后,AN =AM ,由题意可知,AN =12-2x ,AM =x ,∴12-2x =x ,解得x =4,∴点M 、N 运动4秒后,AMN V 是等腰三角形;如图2所示,假设AMN V 是等腰三角形,∴AN =AM ,ÐAMN =ÐANM ∴ÐAMC =ÐANB④ÐC =ÐB =60° ,AC =AB ∴ACM △≌ABN V (AAS ),∴CM =BN设点M 、N 运动y 秒后,AN =AM ,由题意可知,∴CM =y -12,NB =36-2y ,∵CM =BN ,∴y -12=36-2y ,解得y =16,故假设成立,∴当点M 、N 运动4秒或16秒时,AMN V 为等腰三角形.故答案为:4或16.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)已知三角形的三边长分别为a―2,a―1和a+1,求a的取值范围.【详解】解:∵―2<―1<1,(1分)∴a―2<a―1<a+1,(2分)∵三角形的三边长分别为a―2,a―1和a+1,∴a―2+a―1>a+1a―2>0,(4分)∴a>4.(6分)20.(6分)如图,(1)求作一点P,使P至M,N的距离相等,且到AB,BC的距离相等;(2)在BC上求一点Q,使QM+QN最小.(2)解:如图,点Q即为所求.(6分)21.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC V 的顶点均在格点上,点A 的坐标为(6,4)-.(1)作111A B C △,使其与ABC V 关于x 轴对称.(2)在y 轴上画出点P ,使PA PC +的值最小.A 关于y 轴的对称点A ¢,(4分)A C³¢三点共线时,PA PC +有最小值,(6分)如图所示,点P即为所求.22.(10分)如图,在△ABC中,点D在边BC上.(1)若∠1=∠2=35°,∠3=∠4,求∠DAC的度数;(2)若AD为△ABC的中线,△ABD的周长比△ACD的周长大3,AB=9,求AC的长.【详解】(1)解:∵∠1=∠2=35°,∴∠3=∠1+∠2=70°,(2分)∵∠3=∠4,∴∠3=∠4=70°,(4分)∴∠DAC=180°―∠3―∠4=40°;(5分)(2)解:∵AD为△ABC的中线,∴BD=CD,(6分)∵△ABD的周长比△ACD的周长大3,∴AB+AD+BD―(AC+AD+CD)=3,(7分)∴AB+AD+BD―AC―AD―CD=3,(8分)∴AB ―AC =3,∵AB =9,∴AC =6.(10分)23.(10分)如图,点B ,F ,C ,E 在直线l 上,点A ,D 在l 的两侧,,,∥Ð=Ð=AB DE A D AB DE .(1)求证:ABC DEF ≌△△;(2)若10,3BE BF ==,求FC 的长.24.(10分)如图所示,在ABC V 中,DE 是边AB 的垂直平分线,交AB 于E ,交AC 于D ,连接BD .(1)若ABC C Ð=Ð,50A Ð=°,求DBC Ð的度数.(2)若AB AC =,且BCD △的周长为18cm ,ABC V 的周长为30cm ,求BE 的长.25.(12分)【教材呈现】以下是人教版八年级上册数学教材第53页的部分内容.如图1,四边形ABCD 中,AD CD =,AB CB =.我们把这种两组邻边分别相等的四边形叫做“筝形”.【性质探究】(1)如图1,连接筝形ABCD 的对角线AC 、BD 交于点O ,试探究筝形ABCD 的性质,并填空:对角线AC 、BD 的关系是: ;图中ADB Ð、CDB Ð的大小关系是:.【概念理解】(2)如图2,在ABC V 中,AD BC ^,垂足为D ,EAB V 与DAB V 关于AB 所在的直线对称,FAC V 与DAC △关于AC 所在的直线对称,延长EB ,FC 相交于点G .请写出图中所有的“筝形”,并选择其中一个进行证明;【应用拓展】(3)如图3,在(2)的条件下,连接EF ,分别交AB 、AC 于点M 、H .求证:B A C FE G Ð=Ð.【详解】解:(1)∵DA DC =,BA BC =,∴BD 垂直平分AC ,∵AC BD ^,AD CD =,∴ADB CDB Ð=Ð;(2分)(2)图中的“筝形”有:四边形AEBD 、四边形ADCF 、四边形AEGF ;(3分)证明四边形AEBD 是筝形:由轴对称的性质可知AE AD =,BE BD =;\四边形AEBD 是筝形.同理:AF AD =,CD CF =;\四边形ADCF 是筝形.连接EF ,∵AE AD =,AF AD =,∴AE AF =,∴AEF AFE Ð=Ð,∵AD BC ^,∴90AEG AFG ADB ADC Ð=Ð=Ð=Ð=°,∴GEF GFE Ð=Ð,∴EG FG =,∴四边形AEGF 是筝形;(8分)(3)证明:如图3中,由轴对称的性质可知:CAD CAF Ð=Ð,BAD BAE Ð=Ð,90ADB AEB Ð=Ð=°,AD AF AE ==,∴()22EAF EAD DAF BAD DAC BAC Ð=Ð+Ð=Ð+Ð=Ð,AEF AFE Ð=Ð,2180EAF AEF ÐÐ\+=°,22180BAC AEF ÐÐ\+=°,90BAC AEF ÐÐ\+=°,90FEG AEF Ðа+=Q , BAC FEG \Ð=Ð.(12分)26.(12分)等腰Rt ABC △,90ACB Ð=°,AC BC =,点A 、C 分别在x 轴、y 轴的正半轴上.(1)如图1,求证:BCO CAO Ð=Ð;(2)如图2,若5OA =,2OC =,求B 点的坐标;(3)如图3,点(0,3)C ,Q 、A 两点均在x 轴上,且12AQ =.分别以AC 、CQ 为腰,第一、第二象限作等腰Rt CAN V 、等腰Rt QCM V ,连接MN 交y 轴于P 点,OP 的长度是否发生改变?若不变,求出OP 的值;若变化,求OP 的取值范围.【详解】(1)解:如图1,90ACB Ð=°Q ,=90AOC а,90BCO ACO CAO ACO \Ð+Ð=°=Ð+Ð,D ,则90CDB AOC Ð=Ð=°Q 等腰Rt CAN V 、等腰Rt QCM V ,180MCQ ACN \Ð+Ð=°,360180180ACQ MCN \Ð+Ð=°-°=°,CNH ACQ \Ð=Ð,又90HCN ACO QAC ACO Ð+Ð=°=Ð+ÐQ ,HCN QAC \Ð=Ð,在HCN V 和QAC △中,CNH ACQ CN AC HCN QAC Ð=Ðìï=íïÐ=Ðî,(ASA)HCN QAC \△≌△,CH AQ \=,HN QC =,QC MC =Q ,HN CM \=,Q 12AQ =,12CH \=,NH CM ∥Q ,PNH PMC \Ð=Ð,\在PNH △和PMC △中,HPN CPM PNH PMC HN CM Ð=ÐìïÐ=Ðíï=î,。

八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)

八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)

2024-2025学年八年级数学上学期期中模拟试卷(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:华东师大版第11章数的开方~第13章全等三角形。

5.难度系数:0.68。

第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1)2.下列运算正确的是()A.a3+a2=a5B.C.a2_a3=a5D.(a2)4=a6【答案】C【解析】A.a3和a2不是同类项,不能合并,故选项错误,不符合题意;B.,故选项错误,不符合题意;C.a2_a3=a5,故选项正确,符合题意;D.(a2)4=a8,故选项错误,不符合题意;故选C.3.如图AB=DE,∠B=∠E,添加下列条件仍不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.D.AC=DF【答案】D【解析】A.AB=DE,∠B=∠E,∠A=∠D,可利用ASA证明△ABC≌△DEF,故该选项不符合题意;B.AB=DE,∠B=∠E,∠ACB=∠DFE,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;C.由可得出∠ACF=∠DFE,再结合AB=DE,∠B=∠E,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;D.用AB=DE,∠B=∠E,AC=DF,SSA无法证明△ABC≌△DEF.故该选项符合题意;故选D.4.设a=a在两个相邻整数之间,则这两个整数是()A.2和3B.3和4C.4和5D.5和65.下列因式分解正确的是()A.2a2―4a=2(a2+a)B.―a2+4=(a+2)(a―2)C.a2―10a+25=a(a―10)+25D.a2―2a+1=(―a+1)2【答案】D【解析】A、2a2―4a=2a(a―2),该选项分解错误,不合题意;B、―a2+4=―(a2―4)=―(a+2)(a―2),该选项分解错误,不合题意;C、a2―10a+25=(a―5)2,该选项分解错误,不合题意;D、a2―2a+1=(1―a)2=(―a+1)2,该选项分解正确,符合题意;故选D.6.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC 【答案】B 【解析】令AB 、CD 交于点O ,则∵∠1=∠2,∠AOD =∠BOC,∴∠B =∠D ,∵∠2=∠3,,即∠ACB =∠ECD ,在和中,B =?D ACB =?ECD :cAC =EC,,∴AB =ED .故选B .7.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .4m 2+12m +9B .3m +6C .3m 2+6mD .2m 2+6m +9【解析】根据题意,得:(2m+3)2―(m+3)2=[(2m+3)+(m+3)][(2m+3)―(m+3)]=(3m+6)m=3m2+6m故选C.8.观察下列各式:,…,根据你发现的规律,若式子=a、b为正整数)符合以上规律,则a+b的平方根是().A.B.4C.―4D.∵,的平方根是;9.设a=x―2022,b=x―2024,c=x―2023.若a2+b2=16,则c2的值是( ) A.5B.6C.7D.8【答案】C【解析】,b=x―2024,c=x―2023,,a―b=2,∵a2+b2=16,∴(a―b)2+2ab=16,∴ c 2=(a ―1)(b +1)=ab +a ―b ―1=6+2―1=7,故选C .10.如图,在中,AB =AC ,点D 、F 是射线BC 上两点,且,若AE =AD ,∠BAD =∠CAF =15°,则下列结论中①是等腰直角三角形;②;③;④BC ―12EF =2AD ―CF .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵,∴,∵∠BAD =∠CAF ,∴,又∵AB =AC ,∴是等腰直角三角形,故结论①正确;∵AB =AC ,,∴∠B =∠ACB =45°,在和中,AB =AC BAD =?CAE ADa =AE,∴,∴,∴,即,故结论②正确;∵,∴,∴,故结论,,∴,∴,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

江西省南昌市2023-2024学年八年级上学期期中数学试题(含答案)

南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。

一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。

人教版八年级数学上册第十一、十二、十三章综合测试-

人教版八年级数学上册第十一、十二、十三章综合测试-

八年级数学上册第十一、十二、十三章综合测试一.选择题:(每题3分,共30分)1.下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的共有()A.1个B.2个C.3个D.4个2.电子钟镜子里的像如图所示,实际时间是()A.21:10 B.10:21 C.10:51 D.12:013.下列结论中正确的是()A.有两边及一角对应相等的两个三角形全等B.有两角及一边相等的两个三角形全等C.有两边相等的两个直角三角形全等D.有斜边和一锐角相等的两个直角三角形全等4.如图工人师傅砌门常用木条EF固定长方形门框ABCD,使其不变形的根据()A.两点之间线段最短 B.长方形的对称性C.长方形的四个角都是直角 D.三角形的稳定性5.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°6.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点D.三边上高的交点7.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm8.如图,直线l1、l2相交于点A,点B是直线外一点,在直线l1、l2上找一点C,使△ABC为一个等腰三角形.满足条件的点C有()A.2个B.4个C.6个D.8个9.下面说法错误的个数有()(1)全等三角形对应边上的中线相等.(2)有两条边对应相等的等腰直三角形全等.(3)一条斜边对应相等的两个直角三角形全等.(4)两边及其一边上的高也对应相等的两个三角形全等.A.1个B.2个C.3个D.4个10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC 延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.B.C.D.不能确定二.填空题(每空2分,共36分)11.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.12.如图,△ABC≌△ADE,则AB=,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC=.13.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有个.14.如图,点D在边BC上,DE⊥AB,DF⊥BC,垂足分别为点E,D,BD=CF,BE =CD.若∠AFD=155°,则∠EDF=.15.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.16.如图,△ABC中,∠C=90°,AC=BC=a,AB=b,AD平分∠CAB交BC于D,DE⊥AB,垂足为E,则△DEB的周长为.(用a、b代数式表示)17.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.18.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.19.如图,BD垂直平分AC,则结论①AB=AD;②AD=DC;③∠BAC=∠DAC;④∠ABD=∠CBD中成立的是.(填序号)20.如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为时,能够使△BPE与△CQP全等.三、用心解一解(共34分)21.(5分)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C相对应);1(2)在直线l上找一点P,使得PA+PB的和最小.22.(5分)如图:某通信公司在A区要修建一座信号发射塔M,要求发射塔到两城镇P、Q的距离相等,同时到两条高速公路l1、l2的距离也相等.请用直尺和圆规在图中作出发射塔M的位置.(不写作法,保留作图痕迹)23.(6分)已知:如图,AC=AB,CD=BD,求证:∠ACD=∠ABD.24.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.25.(8分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、AD平分∠BAC;(1)求证:BE=CF;(2)已知AC=20,BE=4,DF=8,求四边形ABCD的面积.四、仔细想一想做一做(共20分)26.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.一.选择题:(每题3分,共30分)1.C; 2.C; 3.D; 4.D; 5.A;6.C; 7.C; 8.D; 9.B; 10.B;二.填空题(每空2分,共36分)11.3; 12.AD;C;80°; 13.4; 14.65°;15.AH=CB等(只要符合要求即可); 16.b; 17.1;18.4; 19.②④; 20.3厘米/秒或厘米/秒;三、用心解一解(共34分)21.(5分)解:(1)如图所示,△A1B1C1即为所求的三角形:;(2)如图所示:点A关于直线l的对称点A′,连接A′B与直线l交于点P,则P点即为所求..解:如图所示:,点M即为所求.23.(6分)证明:连接AD.在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠ACD=∠ABD.24.(8分)解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.25.(8分)证明:(1)∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DEB=∠DFC=90°,在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)∵DE⊥AB,DF⊥AC,∴∠E=∠DFA=90°,在Rt△AED和Rt△AFD中,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵Rt△BED≌Rt△CFD,∴CF=BE,∵AC=20,BE=4,∴AB=AE﹣BE=AF﹣CF=AC﹣CF﹣CF=20﹣4﹣4=12.∴四边形ABCD的面积=.四、仔细想一想做一做(共20分)26.解:问题背景:∵小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,∴EF=FG,FG=FD+DG=FD+BE,∴EF=BE+FD,故答案为:EF=BE+FD;探索延伸:上述结论EF=BE+FD成立,理由:如图2,延长FD到点G,使得DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,∵AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠DAF+∠BAE=∠BAD﹣∠EAF=∠BAD,∴∠GAF=∠EAF,又∵AG=AE,AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF,∵GF=DF+DG=DF+BE,∴EF=BE+FD;实际应用:如图3,连接EF,延长AE、BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠FOE=70°=,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=60°+120°=180°,∴图3符合探索延伸的条件,∴EF=AE+FB=×(60+80)=210(海里),即此时两舰艇之间的距离210海里.。

华东师大版数学八年级上册第11章、第12章检测题及答案(各一套)

华东师大版数学八年级上册第11章、第12章检测题及答案(各一套)

华东师大版数学八年级上册第11章测试题(时间:120 分值:120分)一.选择题(共10小题)1.下列说法正确的是()A.的相反数是 B.2是4的平方根C.是无理数 D.计算: =﹣32.下列各数中,是无理数的是()A.B.3.14 C. D.3.如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2﹣的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上4.估计+1的值,应在()A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间5.如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣16.若+|3﹣y|=0,则x﹣y的正确结果是()A.﹣1 B.1 C.﹣5 D.57.已知M=,则M的取值范围是()A.8<M<9 B.7<M<8 C.6<M<7 D.5<M<68.已知三角形三边长为a,b,c,如果+|b﹣8|+(c﹣10)2=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形9.若+|y﹣2|=0,则(x+y)2017的值为()A.﹣1 B.1 C.±1 D.010.﹣2014=()A.20142B.20142﹣1 C.2015 D.20152﹣1二.填空题(共5小题)11.一个正数的平方根分别是x+1和x﹣5,则x= .12.计算:﹣|﹣2|+()﹣1= .13.对于任意两个正数a,b,定义一种运算※如下:a※b=,按照此法则计算3※4= .14.已知2是x的立方根,且(y﹣2z+5)2+=0,求的值.15.已知,则= .三.解答题(共6小题)16.计算: ++﹣.17.(1)计算:﹣14﹣2×(﹣3)2+÷(﹣).(2)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac 的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.。

人教版八年级数学上学期期中模拟卷02(范围11-13章)(学生版)

人教版八年级数学上学期期中模拟卷02(范围11-13章)(学生版)

20232024学年人教版数学八年级上册期中真题汇编检测卷02 范围:1113章满分:120分考试时间:120分钟难度:0.59姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(3分)(2021秋•天门月考)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)(2020秋•阜南县期中)下列长度的三条线段能组成三角形的是()A.2,3,1 B.4,11,6 C.5,5,5 D.4,4,83.(3分)(2020秋•朝阳区校级期中)如图,在△ABC中,BC边上的高为()A.AB B.BD C.AE D.BE4.(3分)(2022秋•新化县期末)将一副直角三角板如图放置,使两直角边重合,则∠α的度数为()A.75°B.105°C.135°D.165°5.(3分)(2021春•江津区校级月考)已知点P关于x轴的对称点P′的坐标是(5,﹣1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)(2018秋•南通期末)如图,点D在AB上,点E在AC上,AB=AC.下列条件中不能判断△ABE ≌△ACD的是()A.BD=CE B.BE=CD C.AD=AE D.∠B=∠C7.(3分)(2020秋•太原期末)已知点P(2,﹣4)与点Q(6,﹣4)关于某条直线对称,则这条直线是()A.x轴B.y轴C.过点(4,0)且垂直于x轴的直线D.过点(0,﹣4)且平行于x轴的直线8.(3分)(2020秋•平房区期末)到△ABC的三个顶点距离相等的点是()A.三条中线的交点B.三条角平分线的交点C.三条高线的交点D.三条边的垂直平分线的交点9.(3分)(2021秋•杭锦后旗期中)在以BC为底边的等腰三角形ABC中,两底角为75°,AC=8,则△ACB的面积是()A.12 B.24 C.18 D.1610.(3分)(2020秋•东湖区校级期末)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O 作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列结论:①EF=BE+CF;②点O到△ABC各边的距离相等;③∠BOC=;④设OD=m,AE+AF=n,则S△AEF=mn;⑤AD=.其中正确的结论是()A.1个B.2个C.3个D.4个评卷人得分二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请将正确答案填写在横线上)11.(3分)(2021秋•句容市期末)如图,∠AOB是一角度为α的锐角木架,要使木架更加牢固,需在其内部添加一些连接支撑木件EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,一直摆放木条,直到6根为止,则锐角α的范围为.12.(3分)(2022春•宿州期末)等腰三角形的一边长为9cm,另一边长为4cm,则它的第三边长为cm.13.(3分)(2022•莱芜区二模)一个正多边形的每一个内角比每一个外角的3倍还大20°,则这个正多边形的边数为.14.(3分)(2021秋•平阳县期中)当三角形中一个内角β是另一个内角α的2倍时,我们称此三角形为“幸运三角形”,其中角α称为“幸运角”.如果一个“幸运三角形”中有一个内角为48°,那么这个“幸运三角形”的“幸运角”度数为.15.(3分)(2021春•威宁县期末)在Rt△ABC中,∠C=90°,AD平分∠BAC,CD=4cm,则D到AB的距离是cm.16.(3分)(2021春•历城区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=52°,以点B为圆心、以BC的长为半径画弧,交AB于点D,连接CD,则∠ADC的度数为.评卷人得分三、解答题(本大题8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(8分)(2020秋•江夏区校级月考)如图,点B,F,C,E在一条直线上,BF=CE,AB∥DE,AC∥DF.求证:AB=DE,AC=DF.18.(10分)(2023春•河南期中)如图,在△ABC中,以A点为圆心,AB的长为半径画弧交AC于D点,分别以B,D点为圆心,大于BD的长为半径画弧,两弧交于E点,作射线AE,交BC于点F,连接DF.(1)求证:△ABF≌△ADF;(2)若∠B=110°,∠C=40°,求∠DFC的度数.19.(8分)(2023•绥德县校级开学)如图,在△ABC中,AD为△ABC的高,点E为AC上一点,BE交AD 于点F,BF=AC,FD=CD.求证:BD=AD.20.(8分)(2022秋•孝昌县期中)如图,在等边△ABC中,P为AB边上的一点,线段BC与DC关于直线CP对称,连接DA并延长交直线CP于点E.若∠ACE=20°(1)求∠CED的度数;(2)若AB=,CE=4.求AD的长.21.(10分)(2021秋•锡山区校级月考)平面直角坐标系中,A、B两点坐标分别为(﹣4,0)、(0,2),以AB为边在第二象限内作正方形ABCD.①AB的长为;②点C的坐标为;②你能否在x轴上找一点M,使△MDB的周长最小?如果能,请画出M点,并求出M的坐标,并直接写出△MDB周长的最小值;如果不能,说明理由.22.(8分)(2021秋•西平县期末)如图,等边△ABC的边长为12cm,点P,Q分别是边BC,CA上的动点,点P,Q分别从顶点B,C同时出发,且它们的速度都为3cm/s,设运动时间为t秒.(1)如图1,在P,Q运动的过程中,△PCQ能否成为直角三角形?若不能,请说明理由;若能,请求出此时t的值.(2)如图2,连接AP,交BQ于点M,在点P,Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.23.(10分)(2022秋•清河区校级期末)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边三角形CBD,连接DA并延长,交y轴于点E.(1)求证:OC=AD;(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果改变,请说明理由;(3)当点C运动到什么位置时,以A、E、C为顶点的三角形是等腰三角形?24.(10分)(2023春•朝阳区校级期末)【问题提出】如图①,在△ABC中,AB=6,AC=4,求BC边上的中线AD的取值范围.【问题解决】经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD,连接BE,经过推理可知△ADC≌△EDB…(1)由已知和作图得到△ADC≌△EDB的理由是.A.边边边B.边角边C.角边角D.斜边直角边(2)AD的取值范围为.【方法总结】解题时若条件中出现“中点”或“中线”,则可以考虑将中线加倍来构造全等三角形,从而将分散的已知条件转换到同一个三角形中,我们称这种添加辅助线的方法为“倍长中线法”.【应用】如图②,在△ABC中,点D为BC边的中点,点E在AB边上,AD与CE相交于点F,EA=EF,求证:AB=CF.【拓展】如图,在△ABC中,∠BAC=90°,AD平分∠BAC,点E为BC边的中点,过点E作EF∥AD,交AC于点F,交BA的延长线于点G,若AF=1.5,CF=4.5,则△ABC的面积为.。

24-25八年级数学期中模拟卷(湖北省卷专用,人教版八上第11~13章)(全解全析)

24-25八年级数学期中模拟卷(湖北省卷专用,人教版八上第11~13章)(全解全析)

2024-2025学年八年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版第11章三角形+第12章全等三角形+第13章轴对称。

5.难度系数:0.65。

第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列长度的三条线段能首尾相接构成三角形的是( )A.1,2,3B.3,4,C.4,5,10D.6,9,2【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形,不符合题意;B、3+4>5,能构成三角形,符合题意;C、4+5<10,不能构成三角形,不符合题意;D、2+6<9,不能构成三角形,不符合题意.故选:B.2.第33届夏季奥运会于2024年7月26日至8月11日在法国巴黎举行,中国取得金牌榜第一名的好成绩,如图所示巴黎奥运会项目图标中,是轴对称图形的是( )A.B.C.D.【解答】解:A.该图形不是轴对称图形,故此选项不合题意;B.该图形不是轴对称图形,故此选项不合题意;C.该图形是轴对称称图形,故此选项符合题意;D.该图形不是轴对称图形,故此选项不合题意.故选:C.3.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为( )A.6cm B.7cm C.4cm D.3cm【解答】解:∵△ACE≌△DBF,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB=(11﹣5)÷2=3(cm),故选:D.4.如图,将一副三角尺按图中所示位置摆放,点C在FD的延长线上,点C、F分别为直角顶点,且∠A=60°,∠E=45°,若AB∥CF,则∠CBD的度数是( )A.15°B.20°C.25°D.30°【解答】解:∵AB∥CF,∴∠BCD=∠ABC=30°.∵∠BDF是△BCD的外角,∴∠CBD=∠EDF﹣∠BCD=45°﹣30°=15°.故选:A.5.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,∠ACB=∠DFE,BF=EC,只添加一个条件,不能判定△ABC≌△DEF的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,A、由SAS判定△ABC≌△DEF,故A不符合题意;B、∠ACB和∠DFE分别是AB和DE的对角,不能判定△ABC≌△DEF,故B符合题意;C、由AAS判定△ABC≌△DEF,故C不符合题意;D、由ASA判定△ABC≌△DEF,故D不符合题意.故选:B.6.如图,由一个正六边形和正五边形组成的图形中,∠1的度数应是( )A.72°B.84°C.82°D.94°【解答】解:如图,由题意得:∠3=360°÷6=60°,∠4=360°÷5=72°,则∠2=180°﹣60°﹣72°=48°,所以∠1=360°﹣48°﹣120°﹣108°=84°.故选:B.7.下列对△ABC的判断,不正确的是( )A.若AB=AC,∠C=60°,则△ABC是等边三角形B.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形C.若∠A=50°,∠B=80°,则△ABC是等腰三角形D.若AB=BC,∠C=40°,则∠B=40°【解答】解:A、若AB=AC,∠C=60°,则△ABC是等边三角形,说法正确,不符合题意;B、若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,说法正确,不符合题意;C、若∠A=50°,∠B=80°,可得∠C=50°,则△ABC是等腰三角形,说法正确,不符合题意;D、若AB=BC,∠C=40°,则∠A=40°∠B= 100°,说法错误,符合题意;故选:D.8.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠BAC=110°,则∠PAQ的度数是( )A.40°B.50°C.60°D.70°【解答】解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵PM、QN分别是线段AB、AC的垂直平分线,∴AP=BP,CQ=AQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=∠B+∠C=70°,∵∠BAC=110°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=110°﹣70°=40°,故选:A.9.如图,在△ABC中,AB=21cm,AC=12cm,∠A=60°,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒,当△APQ 为直角三角形时,t 的值为( )A .2.5秒B .3秒C .3或214秒D .2.5或3秒【解答】解:根据题意得:AP =AB ﹣BP =21﹣3t ,AQ =2t ,∵△APQ 为直角三角形,∠A =60°,∴当∠AQP =90°,∠APQ =30°时,则AQ =12AP ,∴2t =12(21―3t),解得:t =3,当∠APQ =90°,∠AQP =30°时,则12AQ =AP ,∴12×2t =21―3t ,解得:t =214,综上,当t 的值为3秒或214秒时,△APQ 为直角三角形,故选:C .10.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②∠ABC +2∠APC =180°;③∠BAC =2∠BPC ;④S △PAC =S △MAP +S △NCP .其中正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PD ,∵PM ⊥BE ,PD ⊥AC ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △PAM 和Rt △PAD 中,PM =PD PA =PA ,∴Rt △PAM ≌Rt △PAD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵BP 平分∠ABC ,CP 平分∠FCA ,∴∠ACF =∠ABC +∠BAC =2∠PCF ,∠PCF =12∠ABC +∠BPC ,∴∠BAC =2∠BPC ,③正确;④由②可知Rt △PAM ≌Rt △PAD (HL ),Rt △PCD ≌Rt △PCN (HL ),∴S △APD =S △MAP ,S △CPD =S △NCP ,∴S △PAC =S △MAP +S △NCP ,故④正确,故选:D .第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.已知等腰三角形的周长为18,其中一边长为5,则该等腰三角形的底边长为 .【解答】解:当腰为5时,另一腰也为5,则底为18﹣2×5=8,∵5+5>8,符合题意,当底为5时,腰为(18﹣5)÷2=6.5,符合题意,∴该三角形的底边长为8或5.故答案为:8或5.12.如图,在△ABC中,AB=BE,AD=DE.若∠A=70°,∠C=50°,则∠EDC= °.【解答】解:在△ABD和△EBD中,AB=EB AD=DE BD=BD,∴△ABD≌△EBD(SSS)∴∠DEB=∠A=70°,∵∠C=50°,∠BED=∠C+∠EDC,∴∠EDC=70°﹣50°=20°故答案为:20°13.如图,BC、AE是锐角△ABF的高,相交于点D,若AD=BF,AF=7,CF=2,则BD的长为 .【解答】解:∵BC、AE是锐角△ABF的高,∴∠DCA=∠BCF=∠AEF=90°,∵∠DAC+∠ADC=90°,∠EAF+∠F=90°∴∠ADC=∠F,在△ADC和△BFC中,∠ACD=∠BCF ∠ADC=∠FAD=BF,∴△ADC≌△BFC(AAS),∴CD=CF=2,BC=AC=AF﹣CF=7﹣2=5∴BD=BC﹣CD=5﹣2=3,故答案为:3.14.将△ABC按如图所示翻折,DE为折痕,若∠A+∠B=130°,则∠1+∠2= °.【解答】解:在△ABC中,∠A+∠B+∠C=180°,在△CDE中,∠CDE+∠CED+∠C=180°,∴∠A+∠B=∠CDE+∠CED,∵∠A+∠B=130°,∴∠CDE+∠CED=130°,∴∠BED+∠ADE=360°﹣130°=230°,由折叠的性质得,∠BED=∠B'ED,∠ADE=∠A'DE,∴∠B'ED+∠A'DE=230°,即∠1+∠CDE+∠2+∠CED=230°,∴∠1+∠2=230°﹣130°=100°,故答案为:100.15.如图,等腰三角形ABC的面积为24,底边BC=6,腰AC的垂直平分线EF分别交边AC、AB于E、F 两点,点M为线段EF上一动点,点D为BC的中点,连接CM、DM.在点M的运动过程中,△CDM 的周长存在最小值为 .【解答】解:连接AD ,AM ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,CD =12BC =3,∴S △ABC =12BC ⋅AD =12×6AD =24,解得AD =8,∵EF 是线段AC 的垂直平分线,∴MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短为:CM +MD +CD =AD +CD =8+3=11,故答案为:11.三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(6分)如图,已知AE ∥CF ,AB =CD ,∠ADF =∠CBE .求证:△ABE ≌△CDA .【解答】证明:∵AE ∥CF ,∴∠BAE =∠C ,∵∠ADF =∠CBE ,∴180°﹣∠ADF =180°﹣∠CBE ,即∠ADC =∠EBA ,又∵AB =CD ,在△ABE 和△CDA 中,∠BAE =∠C AB =CD ∠ADC =∠EBA,∴△ABE ≌△CDA (ASA ).17.(7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠C =70°.(1)求∠AOB 的度数;(2)若∠ABC =50°,求∠DAE 的度数.【解答】解:(1)∵AE 、BF 是∠BAC 、∠ABC 的角平分线,∴∠OAB +∠OBA =12(∠BAC +∠ABC),在△ABC 中,∠C =70°,∴∠BAC +∠ABC =180°﹣∠C =110°,∴∠AOB =180°―∠OAB ―∠OBA =180°―12(∠BAC +∠ABC)=125°;(2)∵在△ABC 中,AD 是高,∠C =70°,∠ABC =50°,∴∠DAC =90°﹣∠C =90°﹣70°=20°,∠BAC =180°﹣∠ABC ﹣∠C =60°∵AE是∠BAC的角平分线,∴∠CAE=12∠CAB=30°,∴∠DAE=∠CAE﹣∠CAD=30°﹣20°=10°,∴∠DAE=10°.18.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C1;(2)写出点A、B、C关于x轴的对称点的坐标;(3)求出△ABC的面积.【解答】解:(1)如图所示,△A1B1C1即为所求.……………………2分(2)如图所示,A2(﹣2,﹣3),B2(﹣3,﹣2),C2(﹣1,﹣1);……………………5分(3)△ABC的面积为2×2―12×1×2―12×1×2―12×1×1=32.……………………8分19.(8分)如图,在四边形ABCD中,AD∥BC,∠A=90°,BE=AD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠EBC.∵CE⊥BD,∠A=90°,∴∠A=∠CEB,在△ABD和△ECB中,∠ADB=∠EBC BE=AD∠A=∠CEB∴△ABD≌△ECB(ASA);……………………4分(2)解:∵△ABD≌△ECB,∴BC=BD,∵∠DBC=50°,∴∠EDC=12(180°﹣50°)=65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.……………………8分20.(8分)如图,在△ABC中,AB=AC,点D为BC的中点,连接AD,AB的垂直平分线EF交AB于点E,交AD于点O,交AC于点F,连接OB,OC.(1)求证:△AOC为等腰三角形;(2)若∠BAD=20°,求∠COF的度数.【解答】(1)证明:∵EF是AB的中垂线,∴OA=OB,∵AB=AC,D为BC中点,∴AD⊥BC,∴AD是BC的中垂线,∴OB=OC,∴OA=OC,∴△OAC是等腰三角形.……………………4分(2)解:∵AB=AC,D为BC中点,∴∠DAC=∠BAD=20°,∴∠BAC=40°,∵EF是AB的中垂线,∴EF⊥AB,∴∠AFE=50°,∵OA=OC,∴∠OCA=∠OAC=20°,∵∠AFE=∠OCA+∠COF,∴50°=20°+∠COF,∴∠COF=30°.……………………8分21.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.【解答】(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,DC=DE DF=DB,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;……………………4分(2)解:AB=AF+2BE,……………………5分理由如下:在Rt△ACD和Rt△AED中,DC=DE AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.……………………8分22.(8分)在等边三角形ABC中,点E在AB边上,点D在CB的延长线上,且DE=EC.(1)如图1,当E为AB中点时,求证:CB=2BD;(2)如图2,若AB=12,AE=2,求CD的长.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠A=∠ACB=60°,∵EB=AE,∴CE⊥AB,CE是∠ACB的角平分线,∴∠BEC=90°,∠BCE=30°,∴2EB=BC,∵ED=EC,∴∠EDC=∠ECD=30°,∴∠DEB=60°﹣30°=30°,∴BD=BE,∴BC=2BD;……………………4分(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,∠EBD=∠EFC ∠EDB=∠FEC ED=EC,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,∴CD=BC+BD=12+2=14.……………………8分23.(10分)小明在学习过程中,对教材中的一个有趣问题做如图探究:(1)【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;(2)【变式思考】如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,若∠B=40°,求∠CEF和∠CFE的度数;(3)【探究延伸】如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD 于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,求∠CFE 的度数.【解答】(1)证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;……………………3分(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF为∠BAG的角平分线,∴∠GAF=∠DAF=12×130°=65°,∵CD为AB边上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,……………………5分又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;……………………7分(3)证明:∵C、A、G三点共线,AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF =∠CFE ,∴∠M +∠CFE =90°.∴∠CFE =90°﹣∠M =90°﹣35°=55°. ……………………10分24.(12分)如图,△ABC 是等腰直角三角形,AB =BC ,直角顶点B 在x 轴上,一锐角顶点C 在y 轴上.(1)如图1,若点B 的坐标是(﹣2,0),点A 的坐标是(3,2),求点C 的坐标.(2)如图2,若y 轴恰好平分∠ACB ,AB 与y 轴交于点D ,过点A 作AE ⊥y 轴于点E ,问CD 与AE 有怎样的数量关系?并说明理由.(3)如图3,直角边BC 的两个端点在两坐标轴上滑动,使点A 在第二象限内,过点A 作AF ⊥y 轴于点F ,在滑动的过程中,OB―AF OC为定值,求出这个定值.【解答】解:(1)如图1,过点A 作AN ⊥x 轴于点N ,则∠ANB =∠BOC =90°,∴∠ABN +∠BAN =90°,∵△ABC 是等腰直角三角形,AB =BC ,∴∠ABN +∠CBO =∠ABC =90°,∴∠BAN =∠CBO ,在△BAN 和△CBO 中,∠ANB =∠BOC ∠BAN =∠CBO AB =BC,∴△BAN ≌△CBO (AAS ),∴BN =CO ,∵点B 的坐标是(﹣2,0),点A 的坐标是(3,2),∴BN =2+3=5,∴CO =5,∴点C 的坐标为(0,﹣5),……………………4分(2)CD 与AE 的数量关系为:CD =2AE ,理由如下: ……………………5分如图2,延长AE 交CB 的延长线于点G ,∵y 轴平分∠ACB ,AE ⊥y ,∴△ACG 是等腰三角形,∠AED =90°,∴AE =GE =12AG ,∠GAB +∠ADE =90°,∵△ABC 是等腰直角三角形,=BC ,∴∠CBD =∠ABG =90°,∴∠DCB +∠CDB =90°,∵∠ADE =∠CDB ,∴∠GAB =∠DCB ,在△GAB 和△DCB 中,∠ABG =∠CBDAB =BC ∠GAB =∠DCB ,∴△GAB ≌△DCB (ASA ),∴AG =CD ,∴AE =12CD ,∴CD =2AE ; ……………………8分(3)如图3,过点A 作AH ⊥OB 于点H ,则∠AHB =∠AHO =90°,∵AF ⊥y 轴,∴四边形AHOF 是矩形,∴OH =AF ,∵∠ABH +∠CBO =90°,∠CBO +∠BCO =90°,∴∠ABH =∠BCO ,在△ABH 和△BCO 中,∠AHB =∠BOC =90°∠ABH =∠BCO AB =BC ,∴△ABH ≌△BCO (AAS ),∴HB =OC ,∵HB =OB ﹣OH =OB ﹣AF ,∴OC =OB ﹣AF ,∴OB―AF OC =1. ……………………12分。

人教版八年级数学上册第11章、第12章测试题及答案(各一套)

人教版八年级数学上册第11章、第12章测试题及答案(各一套)

人教版八年级数学上册第11章测试题(三角形)(时间:120分分值:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案前的英文字母填在题后括号内)1.(3分)三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是()A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.(3分)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个B.2个C.3个D.4个3.(3分)下列说法错误的是()A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线4.(3分)给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个5.(3分)如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A.4 B.5 C.6 D.76.(3分)如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCA=90°.求解的直接依据是()A.三角形内角和定理B.三角形外角和定理C.多边形内角和公式D.多边形外角和公式7.(3分)如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个B.4个C.5个D.6个8.(3分)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A.∠A和∠B互为补角B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角9.(3分)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值。

24-25八年级期中考试卷(海南卷,人教版八上第11~13章:三角形+全等三角形+轴对称)(全解全析

24-25八年级期中考试卷(海南卷,人教版八上第11~13章:三角形+全等三角形+轴对称)(全解全析

2024-2025学年八年级数学上学期期中模拟卷(海南卷)(考试时间:100分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八上第11~13章(三角形+全等三角形+轴对称)。

5.难度系数:0.65。

一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.如图所示,一扇窗户打开后,用窗钩AB 即可固定,这里所用的几何原理是( )A .两点之间线段最短B .垂线段最短C .两点确定一条直线D .三角形具有稳定性【答案】D 【解析】由题意,所用的几何原理是三角形具有稳定性;故选D .2.如图,AB AC =,B C Ð=Ð,则ABE ACF V V ≌的判定依据为( )A .ASAB .AASC .SASD .SSS【答案】A 【解析】∵在ABE V 与ACF △中,A A AB AC B C Ð=Ðìï=íïÐ=Ðî,∴()ASA ABE ACF ≌△△.故选:A .3.点()5,2A -关于y 轴对称的点坐标是( )A .()5,2--B .()5,2C .()5,2-D .()2,5-【答案】A【解析】点()5,2A -关于y 轴对称的点坐标是()5,2--,故选:A .4.为方便劳动技术小组实践教学,需用篱笆围一块三角形空地,现已连接好三段篱笆AB BC ,,CD ,这三段篱笆的长度如图所示,其中篱笆AB CD ,可分别绕轴BE 和CF 转动.若要围成一个三角形的空地,则在篱笆AB 上接上新的篱笆的长度可以为( )A .1mB .2mC .3mD .4m【答案】D 【解析】设在篱笆AB 上接上新的篱笆长度为x ,根据题意得:2m,8m,3m AB BC CD ===,Q BC CD AB x BC CD -<+<+,即5m 13m AB x <+<,\3m 11mx <<\在篱笆AB 上接上新的篱笆的长度可以为4m ,故选:D .5.已知图中的两个三角形全等,则a Ð 等于( )A .72°B .60°C .58°D .50°【答案】D【解析】∵ABC DEF ≌△△,∴50A a Ð=Ð=°,故选:D .6.如图,AB CD ∥,点E 在BC CD CE =,若34ABC Ð=°,则BED Ð的度数是()A .104°B .107°C .116°D .124°【答案】B【解析】AB CD Q P ,34C ABC \Ð=Ð=°,又CD CE =Q ,D CED \Ð=Ð,180C D CED Ð+Ð+Ð=°Q ,即342180CED °+Ð=°,73CED \Ð=°,18073107BED \Ð=°-°=°,故选:B .7.如图,在ABC V 中,72B Ð=°,36C Ð=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M 、N ,连接MN ,交BC 于点D ,连接AD ,则BAD Ð的度数为( )A .40°B .38°C .36°D .32°【答案】C 【解析】72B Ð=°Q ,36C Ð=°,18072BAC B C \Ð=°-Ð-Ð=°,由作图可知MN 垂直平分线段AC ,DA DC \=,36\Ð=Ð=°DAC C ,723636BAD BAC DAC \Ð=Ð-Ð=°-°=°,故选:C8.已知两个等腰三角形可按如图所示方式拼接在一起,则边AC 的长可能为( )A .2B .3C .4D .5【答案】B 【解析】Q ABC V 为等腰三角形,\AC 为3或4,Q 224AC AD CD <+=+=,\3AC =,故选:B .9.如图,在ABC V 中,5AC =,7AB =,AD 平分BAC Ð,DE AC ^,2DE =,则ABD △的面积为( )A .14B .12C .10D .7【答案】D 【解析】过D 点作DF AB ^于F ,如图,AD Q 平分BAC Ð,DE AC ^,DF AB ^,2DF DE \==,1172722ABD S AB DF \==´´=V g .故选:D10.如图,在ABC V 与AEF △中,A C E 、、三点在一条直线上,180AEF BAF °Ð+Ð=,BCE BAF Ð=Ð,AB AF =,若24BC =,14EF =,则AC CE AE-的值为( )A .16B .27C .15D .310【答案】A【解析】解: ∵BCE BAF Ð=Ð,BCE B BAE Ð=Ð+Ð,BAF BAE FAE Ð=Ð+Ð,∴B FAE Ð=Ð,∵180AEF BAF Ð+Ð=°,180BCE BCA Ð+Ð=°,BCE BAFÐ=Ð∴BCA AEF Ð=Ð,在ABC V 和FAE V 中,BCA AEF B FAE AB AF Ð=ÐìïÐ=Ðíï=î,∴()AAS ABC FAE V V ≌,∴24BC AE ==,14CA EF ==,∴10CE AE CA =-=,∴14101246AC CE AE --==,故选:A .11.如图,AD 是ABC V 的角平分线,DE AB ^于点E ,7ABC S =△,24DE AB ==,,则AC 长是( )A .3B .4C .6D .5【答案】A 【解析】如图所示,过点D 作DF AC ^于F ,∵AD 是ABC V 的角平分线,DE AB ^,DF AC ^,∴2DF DE ==,∵7ABC ABD ACD S S S =+=△△△,∴11722AB DE AC DF ×+×=,∴11422722AC ´´+´=,∴3AC =,故选:A .12.如图,AB AD =,140BAD Ð=°,AB CB ^于点B ,AD CD ^于点D ,E 、F 分别是CB 、CD 上的点,且70EAF Ð=°,下列结论中①DF BE =, ②ADF ABE △≌△, ③FA 平分DFE Ð,④EF平分AEC Ð,⑤BE DF EF +=.其中正确的结论是( )A .④⑤B .①②C .③⑤D .①②③【答案】C 【解析】∵E 、F 分别是CB CD 、上的任意点,∴DF 与BE 不一定相等,故①错误;∵AB CB ^于点B AD CD ^,于点D ,∴90D ABE Ð=Ð=°,∵AB AD =,∴ADF ABE V V ≌的另一个条件是DF BE =,∵DF 与BE 不一定相等,∴ADF △与ABE V 不一定全等,故②错误;延长CB 到点G ,使BG DF =,连接AG ,则18090ABG ABE Ð=°-Ð=°,∴ABG D Ð=Ð,在ABG V 和ADF △中,AB AD ABG D BG DF =ìïÐ=Ðíï=î,∴()SAS ABG ADF V V ≌,∴AG AF BAG DAF G AFD =Ð=ÐÐ=Ð,,,∵14070BAD EAF Ð=°Ð=°,,∴70EAG BAE BAG BAE DAF BAD EAF Ð=Ð+Ð=Ð+Ð=Ð-Ð=°,∴Ð=ÐEAG EAF ,在EAG △和EAF △中,AG AF EAG EAF AE AE =ìïÐ=Ðíï=î,∴()SAS EAG EAF V V ≌,∴G AFE AEB AEF EG EFÐ=ÐÐ=Ð=,,∴AFD AFE BE DF BE BG EG EF Ð=Ð+=+==,,∴FA 平分DFE Ð,故③⑤正确;若EF 平分AEC Ð,而AEF AEG Ð=Ð,∴60CEF AEF AEG Ð=Ð=Ð=°,与题干信息矛盾,故④错误;故选C.二、填空题(本大题共4小题,每小题3分,满分12分)13.如果一个多边形的每个内角都是144°,那么这个多边形的边数是 .【答案】10【解析】Q 一个多边形的每个内角都是144°,\这个多边形的每个外角都是18014436°-°=°,\这个多边形的边数为:3603610¸°=.故答案为:10.14.如图,ABC V 中,CD 为AB 边上的中线,点E 是CD 的中点,连接BE ,若ABC V 的面积为10,则BECV 的面积是 . 【答案】52【解析】∵CD 为AB 边上的中线,ABC V 的面积为10,∴152BCD ABC S S ==△△.∵点E 是CD的中点,∴1522BEC BCD S S ==V V ,故答案为:52.15.如图,已知在ABC V ,BD 、CD 分别平分EBA Ð、ECA Ð,BD 交AC 于F ,连接AD ,且20BDC Ð=°,则CAD Ð的度数为 °.【答案】70【解析】过点D 分别作DH BE ^交BE 于点H ,DM BG ^交BG 于点M ,DN AC ^交AC 于点N ,如图所示:因为BD 、CD 分别平分EBA Ð、ECA Ð,则DH DM =,DH DN=则DM DN =,因为DM BG ^,DN AC ^,所以AD 是GAC Ð的角平分线,因为BD 、CD 分别平分EBA Ð、ECA Ð,所以2ABC CBD Ð=Ð,2ACE DCE Ð=Ð,因为20BDC Ð=°,所以20DCE CBD Ð=Ð+°,则22220DCE CBD Ð=Ð+´°,即40ACE ABC Ð=Ð+°,所以40BAC а=因为180MAC BAC Ð+Ð=°,且AD 是GAC Ð的角平分线所以18040702CAD GAD °-°Ð=Ð==°.故答案为:70.16.如图,CN 平分ABC V 的外角ACM Ð,过点A 作CN 的垂线,垂足为点D ,B BAD Ð=Ð.若9AC =,6BC =,则AD 的长为 .【答案】152【解析】如图,AD 的延长线交BM 于点E ,B BAD Ð=ÐQ ,AE BE \=,CN Q 平分ACM Ð,ACN ECN \Ð=Ð,AD CN ^Q ,90ADC EDC \Ð=Ð=°,在ACD V 和ECD V 中,ACN ECN CD CD ADC EDC Ð=Ðìï=íïÐ=Ðî,(ASA)ACD ECD \V V ≌,AC EC \=,AD ED =,9=Q AC ,9EC \=,6BC =Q ,15BE BC EC \=+=,15AE \=,152AD \=,故答案为:152.三、解答题(本大题共6小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知AB 、CD 是两条公路,E 、F 是两个村庄,通讯公司要在两公路之间建一座信号基站,要求到两条公路距离相等,并且到两村庄距离之和最小,请你用尺规作图帮通讯公司确定符合要求的位置点P (保留作图痕迹,不写做法)【解析】如图所示,则点P 即为所求:.18.(12分)正多边形的每个内角比它相邻的外角的3倍还多36°,求这个多边形的对角线是多少条?【解析】设这个多边形的每个外角为x °,则180336x x -=+,·····(3分)解得36x =·····(6分)∴这个多边形的边数是3601036°=°·····(9分)∴这个多边形的对角线是()10103352´-=(条).·····(12分)19.(12分)如图,A ,E ,B ,D 在同一直线上,FE AD ^,CB AD ^,AE DB =,AC DF =,若30D Ð=°,求C Ð的度数.【解析】∵FE AD ^,CB AD ^,∴90FED CBA Ð=Ð=°,·····(2分)∵AE DB =,∴AE EB EB BD +=+,·····(4分)即AB DE =,·····(5分)在Rt ABC △与Rt DEF △中AB DE AC DF =ìí=î,∴()Rt Rt HL ABC DEF ≌△△,·····(8分)∴30D A Ð=Ð=°,·····(11分)∴9060C A Ð=°-Ð=°.·····(12分)20.(12分)如图,ABC V 的高AD 与高BE 交于点F ,过点F 作FG BC P ,交直线AB 于点G ,45ABC Ð=°.求证:(1)BDF ADC V V ≌;(2)FG DC AD +=.【解析】(1)证明:∵AD 是BC 边上的高,45ABC Ð=°,∴90ADB ADC Ð=Ð=°,∴45DAB DBA Ð=Ð=°,∴BD AD =,·····(2分)在Rt BDF V 中,90DBF DFB Ð+Ð=°,∵BE 是AC 边上的高,∴90FEA FEC Ð=Ð=°,·····(4分)在Rt AEF V 中,90EAF EFA Ð+Ð=°,∵DFB EFA Ð=Ð,∴DBF EAF Ð=Ð,·····(6分)在Rt BDF V 和Rt ADC V 中,DBF DAC BD AD BDF ADC Ð=Ðìï=íïÐ=Ðî,∴()BDF ADC ASA V V ≌;·····(8分)(2)证明:∵FG BC P ,45ABC Ð=°,∴45AGF ABC Ð=Ð=°,由(1)可得,45DAB Ð=°,∴AGF GAF Ð=Ð,·····(10分)∴FG FA =,由(1)可得,BDF ADC V V ≌,∴DF DC =,·····(11分)∵AD AF DF =+,∴AD FG DC =+,即FG DC AD +=.·····(12分)21.(12分)如图,在平面直角坐标系中,ABC V 的三个顶点分别为A 、B 、C .(1)在图中作出ABC V 关于y 轴的对称图形111A B C △.(2)求ABC V 的面积.(3)在x 轴上画出点P ,使PA PC +最小.【解析】(1)解:∵ABC V 的三个顶点的坐标分别为()3,4A -,()4,1B -,()1,2C -,∴它们关于y 轴的对称点111,,A B C 的坐标为:()13,4A ,()14,1B ,()11,2C ,·····(3分)∴111A B C △的图形如下图所示,·····(6分)(2)解:111331313224222ABC S =´-´´-´´-´´=△;·····(9分)(3)解:如下图所示,作点C 关于x 轴的对称点2C ,连接2AC 交x 轴于点P ,即为所求作的点.·····(12分)22.(14分)如图,等边ABC V 中,CD AB ∥,P 为边BC 上一点,Q 为直线CD 上一点,连接AP PQ 、,使得APQ BAC Ð=Ð.(1)①如图1,探索PAC Ð与PQC Ð的数量关系并证明;②如图1,求证:AP PQ =.(2)如图2,若将“等边ABC V ”改为“等腰直角ABC AB AC =V ()”,其他条件不变,求证:AP PQ =.(3)如图3,若继续将“等腰直角ABC V ”改为“等腰ABC AB AC =V ()”,其他条件不变,(2)中的结论是否正确?若正确,请你给出证明;若不正确,请你说明理由.【解析】(1)证明:PAC PQC Ð=Ð,过程如下:·····(1分)①如图1所示,过P 点作PF AB ∥,·····(2分)则PQC FPQ Ð=Ð,CD AB Q ∥,FPA BAP \Ð=Ð,又APQ BAC Ð=ÐQ ,APQ FPA BAC BAP \Ð-Ð=Ð-Ð,即FPQ PAC PQC Ð=Ð=з····(3分)②如图1所示,过P 点作PE AC ∥,·····(4分)则BE BP =,AE PC =,APE PAC PQC Ð=Ð=Ð,180120AEP BEP Ð=°-Ð=°Q ,180120PCQ B Ð=°-Ð=°,AEP PCQ \Ð=Ð,·····(5分)在AEP △和PCQ △中,APE PQC AE PC AEP PCQ Ð=Ðìï=íïÐ=Ðî,()ASA AEP PCQ \V V ≌,·····(6分)AP PQ \=.·····(7分)(2)解:延长CA 至F 点使PF PC =,·····(8分)45PFC PCF \Ð=Ð=°,180454590FPC \Ð=°-°-°=°,CD AB Q ∥,AC AB ^,AC CD \^,90ACQ \Ð=°,904545PCQ ACQ ACP \Ð=Ð-Ð=°-°=°,PCQ PFA \Ð=Ð,90APQ BAC Ð=Ð=°Q ,90FPC Ð=°,APF APC QPC APC \Ð+Ð=Ð+Ð,APF QPC \Ð=Ð,在APF V 和QPC V 中,APF QPC PF PCPCQ PFA Ð=Ðìï=íïÐ=Ðî∴()ASA APF QPC V V ≌AP PQ \=.·····(9分)(3)解:正确,过程如下:·····(10分)在AC 上取一点F 使PF PC =,·····(11分)ABC \V 和PFC △均为等腰三角形,ACB PCF Ð=ÐQ ,FPC BAC \Ð=Ð,·····(12分)又APQ BAC Ð=ÐQ ,APQ FPC \Ð=Ð,APF QPC \Ð=Ð,CD AB \∥,ACQ BAC APQ FPC \Ð=Ð=Ð=,FPC FCP ACQ FCP \Ð+Ð=Ð+Ð,PFA PCQ \Ð=Ð,在APF V 和QPC V 中,APF QPC PF PC PCQ PFA Ð=Ðìï=íïÐ=Ðî,∴()ASA APF QPC V V ≌,·····(13分)AP PQ \=.·····(14分)。

人教版 八年级数学 上册第11--13章检测题含答案)

人教版 八年级数学 上册第11--13章检测题含答案)

人教版八年级数学上册第十一章检测题11.1 与三角形有关的线段一、选择题(本大题共12道小题)1. 三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2. 人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3. 已知在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A. 11B. 5C. 2D. 14. 课堂上,老师把教学用的两块三角尺叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.65. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 126. 如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长大3 cm,则AB与AC的差为()A.2 cm B.3 cm C.4 cm D.6 cm7. 如图,已知P为直线l外一点,点A,B,C,D在直线l上,且PA>PB>PC >PD,则下列说法正确的是()A.线段PD的长是点P到直线l的距离B.线段PC可能是△PAB的高C.线段PD可能是△PBC的高D.线段PB可能是△PAC的高8. 下列关于三角形的分类,有如图K-1-4所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误9. 如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添加木条()A.1根B.2根C.3根D.4根10. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种11. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形12. 某木材市场上木棒规格与对应单价如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m单价(元/根) 10 15 20 25 30 35小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场去购买一根木棒,则小明的爷爷至少带的钱数应为()A.10元B.15元C.20元D.25元二、填空题(本大题共6道小题)13. 如图,自行车的主框架采用了三角形结构,这样设计的依据是________________.14. 如图,AE是△ABC的中线,已知EC=8,DE=3,则BD=________.15. 已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是.16. 如图,在△ABC中,AD⊥BC于点D,点E在CD上,则图中以AD为高的三角形有______个.17. 已知三角形的三边长分别为3,8,x,若x为偶数,则x=____________.18. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.三、解答题(本大题共3道小题)19. 如图,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,橡皮筋始终绷直,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?20. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?21. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.人教版八年级数学11.1 与三角形有关的线段课时训练-答案一、选择题(本大题共12道小题)1. 【答案】D2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.6. 【答案】B[解析] ∵AD是△ABC的中线,∴BD=CD.∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC. ∵△ABD的周长比△ACD的周长大3 cm,∴AB与AC的差为3 cm.7. 【答案】C[解析] 由于PA>PB>PC>PD,因此PD可能是钝角三角形PBC 中BC边上的高.8. 【答案】C9. 【答案】C[解析] 添加3根木条以后成为如右所示图形,其由若干三角形组成,具有稳定性.10. 【答案】C11. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.12. 【答案】C[解析] 由三角形三边大小关系可得第三根木棒的长度应该大于2 m 且小于8 m,所以满足要求的木棒有3 m,4 m,5 m,6 m,其中买3 m木棒用钱最少,为20元.二、填空题(本大题共6道小题)13. 【答案】三角形具有稳定性14. 【答案】5[解析] ∵AE是△ABC的中线,EC=8,∴BE=EC=8.∵DE=3,∴BD=BE-DE=8-3=5.15. 【答案】15[解析] 若腰长为3,3+3=6,∴3,3,6不能组成三角形;若腰长为6,3+6=9>6,∴3,6,6能组成三角形,该三角形的周长为3+6+6=15.16. 【答案】617. 【答案】6或8或10[解析] 由三角形三边关系可知5<x<11.因为x为偶数,所以x的值为6或8或10.18. 【答案】13【解析】由折叠的性质可得:CD=AD,∴△BCD的周长=BC +CD+BD=BC+AD+BD=BC+BA=6+7=13.三、解答题(本大题共3道小题)19. 【答案】解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得x的取值范围为3<x<19.20. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.21. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.11.2三角形-与三角形有关的角一、选择题1.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()。

2024-2025学年初中八年级上学期数学(第11-12章)第一次月考卷及答案(人教版)

2024-2025学年初中八年级上学期数学(第11-12章)第一次月考卷及答案(人教版)

2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八年级上册第十一章~第十二章。

5.难度系数:0.85。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列长度的三条线段能组成三角形的是()A.6,2,3B.3,3,3C.4,3,8D.4,3,72.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性3.如图,CM是△ABC的中线,AB=10cm,则BM的长为()A.7cm B.6cm C.5cm D.4cm4.画△AAAAAA的AAAA边上的高AAAA,下列画法中正确的是()A.B.C.D.5.一个多边形的内角和等于540°,则它的边数为()A.4 B.5 C.6 D.86.请仔细观察用直尺和圆规作一个角∠AA′OO′AA′等于已知角∠AAOOAA的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠AA′OO′AA′=∠AAOOAA的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.58.如图,若要用“HL”证明Rt△AAAAAA≌Rt△AAAAAA,则还需补充条件()A.∠AAAAAA=∠AAAAAA B.∠AA=∠AA C.AAAA=AAAA D.AAAA=AAAA9.如图,在Rt△AAAAAA中,∠AA=90°,∠AAAAAA的平分线AAAA交AAAA于点D,AAAA=3,则点D到AAAA的距离是()A.6 B.2 C.3 D.410.如图,已知△AAAAAA为直角三角形,∠AA=90°,若沿图中虚线剪去∠AA,则∠1+∠2的度数为()A.210°B.250°C.270°D.300°11.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去12.如图1,∠AADDDD=20°,将长方形纸片AAAAAAAA沿直线DDDD折叠成图2,再沿折痕为AADD折叠成图3,则∠AADDDD的度数为()A.100°B.120°C.140°D.160°二、填空题(本题共6小题,每小题2分,共12分.)13.在Rt△ABC中,∠C=90°,∠A=40°,则∠B= .14.如图,AAAA是△AAAAAA的高,∠AAAAAA=90°.若∠AA=35°,则∠AAAAAA的度数是.15.如图所示的两个三角形全等,则∠1的度数是.16.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.17.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P= °.18.如图,在射线OOAA,OOAA上分别截取OOAA1=OOAA1,连接AA1AA1,在AA1AA1、AA1AA上分别截取AA1AA2=AA1AA2,连接AA2AA2,…按此规律作下去,若∠AA1AA1OO=αα,则∠AA2023AA2023OO=.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|−2|−6×�−12�+(−4)2+8.20.(6分)解不等式组�2xx+1>xx−123xx−1≤5,并写出它的所有正整数解.21.(8分)如图,AC和BD相交于点0,OA=OC,OB=OD,求证:DC//AB.22.(8分)如图△AAAAAA中,∠AA=40°,∠AAAAAA=∠AA.(1)作∠AAAAAA的平分线,交AAAA于点AA(用直尺和圆规按照要求作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠AAAAAA的大小.23.(10分)某校学生处为了了解全校1200名学生每天在上学路上所用的时间,随机调查了30名学生,下面是某一天这30名学生上学所用时间(单位:分钟):20,20,30,15,20,25,5,15,20,10,15,35,45,10,20,25,30,20,15,20,20,10,20,5,15,20,20,20,5,15.通过整理和分析数据,得到如下不完全的统计图.根据所给信息,解答下列问题:(1)补全条形统计图;(2)这30名学生上学所用时间的中位数为______ 分钟,众数为______ 分钟;(3)若随机问这30名同学中其中一名学生的时间,最有可能得到的回答是______ 分钟;(4)20分钟及以下的人数.24.(10分)中央大街工艺品店销售冰墩墩徽章和冰墩墩摆件,若购买4个冰墩墩徽章和2个冰墩墩摆件需要130元,购买3个冰墩墩徽章和5个冰墩墩摆件需要220元.(1)求每个冰墩墩徽章和每个冰墩墩摆件各需要多少钱?(2)若某旅游团计划买冰墩墩徽章和冰墩墩摆件共50个,所用钱数不超过1150元,则该旅游团至少买多少个冰墩墩徽章?25.(12分)如图,已知△AAAAAA中,AAAA=AAAA=20cm,AAAA=16cm,点AA为AAAA的中点.(1)如果点P在线段AAAA上以6cm/s的速度由A点向B点运动,同时,点Q在线段AAAA上由点B向C点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△AAAAAA与△AABBAA是否全等?说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△AAAAAA与△AABBAA全等?(2)若点Q以②中的运动速度从点B出发,点P以原来的运动速度从点A同时出发,都逆时针沿△AAAAAA三边运动,求经过多长时间点P与点Q第一次在△AAAAAA的哪条边上相遇?26.(12分)如图,在△AAAAAA中,∠AAAAAA=90°,AAAA=AAAA,点D为AAAA的中点.点E是直线AAAA上的一动点,连接AADD,作AADD⊥AADD交直线AAAA于点F.(1)如图1,若点E与点A重合时,请你直接写出线段AADD与AADD的数量关系;(2)如图2,若点E在线段AAAA上(不与A、B重合)时,请判断线段AADD与AADD的数量关系并说明理由;(3)若点E在AAAA的延长线上时,线段AADD与AADD的数量关系是否仍然满足上面(2)中的结论?请利用图3画图并说明理由.2024-2025学年八年级数学上学期第一次月考卷01(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

八年级数学第一次月考卷(沪科版)(解析版)【测试范围:第十一章~第十二章】

八年级数学第一次月考卷(沪科版)(解析版)【测试范围:第十一章~第十二章】

2024-2025学年八年级数学上学期第一次月考卷基础知识达标测(考试时间:150分钟试卷满分:120分)考前须知:1.本卷试题共23题,单选10题,填空4题,解答9题。

2.测试范围:第十一章~第十二章(沪科版)。

第Ⅰ卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)函数中y=x的取值范围是( )A.x≠1B.x≥2C.x>0D.x>2【分析】根据二次根式的被开方数是非负数、分母不为零列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2>0,解得:x>2,故选:D.2.(4分)如果点A(3,m+2)在B(m+1,m﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据x轴上的点的纵坐标为0列式求出m的值,然后计算即可得解.【解答】解:∵A(3,m+2)在x轴上,∴m+2=0,解得m=﹣2,∴m+1=﹣1,m﹣3=﹣5,∴B(m+1,m﹣3)所在的象限是第三象限.故选:C.3.(4分)在下列函数解析式中,①y=kx;②y=3x;③y=23x;④y=x2﹣(x﹣1)(x+2);⑤y=4﹣x,一定是一次函数的有( )A.4个B.3个C.2个D.1个【分析】一次函数中自变量的系数不能为0,且自变量次数为1,据此对各个函数分析,得出正确答案.【解答】解:①y=kx,k=0时不是一次函数;②y=3x是反比例函数;③y=23x是一次函数;④y=x2﹣(x﹣1)(x+2)=﹣x+2,是一次函数;⑤y=4﹣x是一次函数,所以是一次函数的有3个.故选:B.4.(4分)中国象棋是中华民族的文化瑰宝,如图,棋盘放在直角坐标系中,“炮”所在位置的坐标为(﹣2,1),“相”所在位置的坐标为(3,﹣1),则“帅”所在位置的坐标为( )A.(1,﹣1)B.(﹣1,﹣1)C.(1,0)D.(﹣1,1)【分析】直接利用已知点坐标进而得出原点位置,进而得出答案.【解答】解:如图所示:“帅”所在位置的坐标为:(1,﹣1).故选:A.5.(4分)如图,直线y=kx+b分别与x的负半轴和y的正半轴交于点A和点B,若OA=4,OB=3,则关于x的方程kx+b=0的解为( )A.x=﹣3B.x=﹣4C.x=3D.x=4【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:∵直线y=kx+b分别与x的负半轴和y的正半轴交于点A和点B,且OA=4,OB=3,∴A(﹣4,0),∴当x=﹣4时,y=kx+b=0,∴关于x的方程kx+b=0的解为:x=﹣4.故选:B.6.(4分)如图,在平面直角坐标系中,将三角形ABC平移至三角形A1B1C1,点P(a,b)是三角形ABC内一点,经平移后得到三角形A1B1C1内对应点P1(a+8,b﹣5),若点A1的坐标为(5,﹣1),则点A的坐标为( )A.(﹣4,3)B.(﹣1,2)C.(﹣6,2)D.(﹣3,4)【分析】先根据P点坐标的变化得出平移的方向和距离,进而可得出结论.【解答】解:∵点P(a,b)是三角形ABC内一点,经平移后得到三角形A1B1C1内对应点P1(a+8,b﹣5),∴设A(x,y),∵点A1的坐标为(5,﹣1),∴x+8=5,y﹣5=﹣1,解得x=﹣3,y=4,∴A(﹣3,4).故选:D.7.(4分)如图,一次函数y=m2x+4m(m是常数且m≠0)与一次函数y=4mx+m2的图象可能是( )A.B.C.D.【分析】求得令直线交点的横坐标,即可排除C、D,然后根据一次函数的图象和性质即可排除B.【解答】解:令m2x+4m=4mx+m2,整理得m(m﹣4)(x﹣1)=0,∵m≠0,m≠4,∴x=1,∴一次函数y=m2x+4m(m是常数且m≠0)与一次函数y=4mx+m2的图象的交点的横坐标为1,故C、D不合题意,当m>0时,一次函数y=m2x+4m的图象过一、二、三象限,一次函数y=4mx+m2的图象过一、二、三象限,当m<0时,一次函数y=m2x+4m的图象过一、三、四象限,一次函数y=4mx+m2的图象过一、二、四象限,故A符合题意,B不合题意,故选:A.8.(4分)已知P(a1,b1)、Q(a2,b2)是一次函数y=﹣3x+4图象上两个不同的点,以下判断正确的是( )A.(a1﹣a2)(b1﹣b2)<0B.(a1﹣a2)(b1﹣b2)>0C.(a1﹣a2)(b1﹣b2)≥0D.(a1﹣a2)(b1﹣b2)≤0【分析】由k=﹣3<0,利用一次函数的性质,可得出y随x的增大而减小,结合P(a1,b1)、Q (a2,b2)是一次函数y=﹣3x+4图象上两个不同的点,可得出(a1﹣a2)与(b1﹣b2)异号,进而可得出(a1﹣a2)(b1﹣b2)<0.【解答】解:∵k=﹣3<0,∴y随x的增大而减小,又∵P(a1,b1)、Q(a2,b2)是一次函数y=﹣3x+4图象上两个不同的点,∴当a1>a2时,b1<b2;当a1<a2时,b1>b2,∴(a1﹣a2)与(b1﹣b2)异号,∴(a1﹣a2)(b1﹣b2)<0.故选:A.9.(4分)如图,一只小蚂蚁在平面直角坐标系中按图中路线进行“爬楼梯”运动,第1次它从原点运动到点(1,0),第2次运动到点(1,1),第3次运动到点(2,1)……按这样的运动规律,经过第2023次运动后,小蚂蚁的坐标是( )A.(1011,1010)B.(1011,1011)C.(1012,1011)D.(1012,1012)【分析】根据吗,每次小蚂蚁运动的位置所对应的坐标,发现规律即可解决问题.【解答】解:由题知,小蚂蚁第1次运动到点(1,0);第2次运动到点(1,1);第3次运动到点(2,1);第4次运动到点(2,2);第5次运动到点(3,2);第6次运动到点(3,3);…由此可见,小蚂蚁运动2n(n为正整数)次,所在位置的坐标为(n,n),且下一次运动所对应的点的坐标为(n+1,n).所以第2022次运动到点(1011,1011),则第2023次运动到点(1012.1011).故选:C.10.(4分)已知点A(﹣2,2),B(2,3),直线y=kx﹣k经过点P(1,0).当该直线与线段AB有交点时,k的取值范围是( )A.0<k≤3或―23≤k<0B.―23≤k≤3且k≠0C.k≥3或―23≤k<0D.k≤―23或k≥3【分析】利用临界法求得直线PA和PB的解析式即可得出结论.【解答】解:当k<0时,∵直线y=kx﹣k经过点P(1,0),A(﹣2,2),∴﹣2k﹣k=2,∴k=―2 3,∴k≤―2 3,当k>0时,∵直线y=kx﹣k经过点P(1,0),B(2,3),∴2k﹣k=3,∴k=3,∴k≥3,综上,当该直线与线段AB有交点时,k的取值范围是:k≤―23或k≥3.故选:D.二.填空题(共4小题,满分20分,每小题5分)11.(5分)在平面直角坐标系中,已知点P(﹣1,﹣3)和Q(3a+1,3﹣2a),且PQ∥x轴,则a的值为 .【分析】根据平行于x轴的直线上的点纵坐标都相等得到﹣3=3﹣2a,解之即可得到答案.【解答】解:∵点P(﹣1,﹣3)和Q(3a+1,3﹣2a),且PQ∥x轴,∴﹣3=3﹣2a,∴a=3,故答案为:3.12.(5分)把一次函数y=x+1的图象l1进行平移后,得到的图象l2的解析式是y=x﹣3,有下列说法:①把l1向下平移4个单位,②把l1向上平移4个单位,③把l1向左平移4个单位,④把l1向右平移4个单位.其中正确的说法是 (把你认为正确说法的序号都填上).【分析】根据一次函数图象的平移规律逐个判断即可得.【解答】解:①把l1向下平移4个单位所得的函数解析式为y=x+1﹣4,即为y=x﹣3,则此说法正确;②把l1向上平移4个单位所得的函数解析式为y=x+1+4,即为y=x+5,则此说法错误;③把l1向左平移4个单位所得的函数解析式为y=x+4+1,即为y=x+5,则此说法错误;④把l1向右平移4个单位所得的函数解析式为y=x﹣4+1,即为y=x﹣3,则此说法正确;综上,正确的说法是①④,故答案为:①④.13.(5分)在平面直角坐标系中,已知点A(a,0)和点B(0,4),且直线AB与坐标轴围成的三角形的面积等于12,则直线AB的解析式为 .【分析】根据题意可知,|a|×42=12,即可求出a的值.【解答】解:根据题意,可知直线AB与x轴交于A,与y轴交于点B,∴|a|×42=12,解得a=±6,∵点A(6,0)或(﹣6,0),设直线AB的解析式y=kx+b,0=6k+b 4=b或0=―6k+b 4=b,解得k=―23b=4或k=23b=4,∴直线AB的解析式为y=―23x+4或y=23x+4,故答案为:y=―23x+4或y=23x+4.14.(5分)如图1,在长方形ABCD中,点E是CD上一点,点P从点A出发,沿着AB,BC,CE运动,到点E停止,运动速度为2cm/s,三角形AEP的面积为y(cm2),点P的运动时间为xs,y与x之间的函数关系图象如图2(长方形:四个内角都是直角,对边相等且平行).(1)长方形的宽BC的长为 cm;(2)当点P运动到点E时,x=m,则m的值为 .【分析】(1)依据题意,根据三角形的面积随点P的运动时间变化图象,判断出AB,AB+BC,进而可以得解;(2)依据题意,根据三角形的面积随点P的运动时间变化图象,抓住当x=8 s时,△AEP的面积=12CE•BC进而进行计算可以得解.【解答】解:(1)由题意,当P从A到B三角形的面积逐渐增大,再由B到C时,三角形的面积逐渐变小,最后由C到E时面积变小速度变慢.故AB=2×6=12(cm),AB+BC=2×8=16(cm),∴BC=16﹣12=4(cm).故答案为:4.(2)由题意,当x=8 s时,△AEP的面积=12CE•BC=16(cm2),又BC=4 cm,∴CE=8 cm.∴m=AB+BC+CE2=12+4+82=12.故答案为:12.三.解答题(共9小题,满分90分)15.(8分)(1)已知点M(2x+3,x﹣2)在第二、四象限的角平分线上,求x的值;(2)已知点P(3a﹣15,2﹣a),若点P位于第四象限,它到x轴的距离是4,试求出a的值.【分析】(1)根据点M(2x+3,x﹣2)在第二、四象限的角平分线上,可得2x+3+x﹣2=0,进一步求解即可;(2)根据点P位于第四象限,它到x轴的距离是4,可得2﹣a=﹣4,进一步求解即可.【解答】解:(1)∵点M(2x+3,x﹣2)在第二、四象限的角平分线上,∴2x+3+x﹣2=0,解得x=―1 3;(2)∵点P位于第四象限,它到x轴的距离是4,∴2﹣a =﹣4,解得a =6.16.(8分)已知2y +5与3x ﹣1成正比例关系,且满足当x =2时,y =5.(1)求y 与x 之间的函数关系式;(2)点(1,12)是否在该函数的图象上?【分析】(1)设2y +5=k (3x ﹣1),将x =2、y =5代入求出k 值即可解答;(2)将x =1代入(1)中所求解析式,若求得的值为12,则点在函数图象上.【解答】解:(1)设2y +5=k (3x ﹣1),将x =2、y =5代入上式可得:15=5k ,解得:k =3,∴2y +5=3(3x ﹣1),∴y =92x ―4;(2)当x =1时,y =92x ―4=92×1―4=12,∴点(1,12)在这个函数的图象上.17.(8分)如图,在平面直角坐标系中,三角形ABC 的顶点都在网格点上,完成下列任务.(1)将三角形ABC 向左平移6个单位,得到三角形A 1B 1C 1,画出三角形A 1B 1C 1;(2)将三角形A 1B 1C 1向下平移5个单位,得到三角形A 2B 2C 2,画出三角形A 2B 2C 2;(3)三角形A 2B 2C 2的面积为 .【分析】(1)根据平移的性质画图即可.(2)根据平移的性质画图即可.(3)利用割补法求三角形的面积即可.【解答】解:(1)如图,三角形A 1B 1C 1即为所求.(2)如图,三角形A2B2C2即为所求.(3)三角形A2B2C2的面积为12×(1+3)×3―12×2×1―12×1×3=72.故答案为:7 2.18.(8分)如图是一位病人从发烧到退烧过程中的体温变化(0h﹣24h),观察图象变化过程,回答下列问题:(1)自变量是时间,因变量是 ;(2)这个病人该天最高体温是 ℃,该天最低体温是 ℃;(3)若体温超过37.5°即为发烧,则这位病人发烧时间段是 .【分析】(1)根据自变量、因变量的定义即可得出答案;(2)根据图象中的信息即可得到结论;(3)根据图象中的信息即可得到结论.【解答】解:(1)自变量是时间,因变量是体温;(2)这个病人该天最高体温是39.8℃,该天最低体温是36.1℃;(3)若体温超过37.5°即为发烧,则这位病人发烧时间段是4时~14时.故答案为:(1)体温;(2)39.8,36.1;(3)4时~14时.19.(10分)已知:一次函数y=(2a+4)x+(3﹣b),根据给定条件,确定a、b的值.(1)y随x的增大而增大;(2)图象经过第二、三、四象限;(3)图象与y轴的交点在x轴上方.【分析】(1)根据函数y随x的增大而增大解答即可;(2)根据函数图象经过第二、三、四象限解答即可;(3)根据函数图象与y轴的交点在x轴上方解答即可.【解答】解:(1)∵y随x的增大而增大∴2a+4>0∴a>﹣2(2)∵图象经过第二、三、四象限∴2a+4<0,3﹣b<0∴a<﹣2,b>3(3)∵图象与y轴的交点在x轴上方∴3﹣b>0,2a+4≠0∴b<3,a≠﹣2.20.(10分)如图,在平面直角坐标系中,点A,B的坐标分别为(3,5),(3,0).将线段AB向下平移2个单位长度,再向左平移4个单位长度,得到线段CD,连接AC,BD;(1)直接写出坐标:点C( ),点D( ).(2)M,N分别是线段AB,CD上的动点,点M从点A出发向点B运动,速度为每秒1个单位长度,点N从点D出发向点C运动,速度为每秒0.5个单位长度,若两点同时出发,求几秒后MN∥x轴?(3)点P是直线BD上一个动点,连接PC、PA,当点P在直线BD上运动时,请直接写出∠CPA与∠PCD,∠PAB的数量关系.【分析】(1)利用平移变换的性质求解;(2)设t秒后MN∥x轴,构建方程求解;(3)分三种情形:①如图1中,当点P在直线AC的左侧时,②如图2中,当点P在直线AC的左侧或直线AC上且在直线AB的右侧时,③如图3中,当点P在直线AB的右侧时,分别求解即可.【解答】解:(1)由题意C(﹣1,3),D(﹣1,﹣2),故答案为:﹣1,3,﹣1,﹣2;(2)设t秒后MN∥x轴,∴5﹣t=0.5t﹣2,解得t=14 3,∴t=143时,MN∥x轴;(3)①如图1中,当点P在线段BD上时,∠APC=∠PCD+∠PAB.②如图2中,当点P在BD的延长线上时,∠PAB=∠PCD+∠APC.③如图3中,当点P在DB的延长线上时,∠PCD=∠PAB+∠APC.21.(12分)某校八年级学生在数学的综合与实践活动中,研究了一元一次不等式、一元一次方程和一次函数的关系这一课题.在研究过程中,他们将函数y=﹣|x+1|+2确定为研究对象,通过作图,观察图象,归纳性质等探究过程,进一步理解了一元一次不等式与函数的关系.请你根据以下探究过程,回答问题.(1)作出函数y=﹣|x+1|+2①列表:x…﹣4﹣3﹣2﹣101…y…﹣10m210…其中,表格中m的值为 ;②描点:根据表格的数据,请在直角坐标系中描出对应值为坐标的点;③连线:画出该函数的图象.(2)观察函数y=﹣|x+1|+2的图象,回答下列问题;①当x= 时,函数y=﹣|x+1|+2有最大值,最大值为 ;②方程﹣|x+1|+2=﹣1的解是x= .(3)已知直线y=15x―15,请结合图象,直接写出满足不等式15x―15≤―|x+1|+2的x的取值范围 .【分析】(1)把x =﹣2代入解析式即可求得m =1,描出表中以各对对应值为坐标的点,然后连线.(2)根据图象即可求得;(3)观察图象即可得到答案.【解答】解:(1)当x =﹣2时,y =﹣|﹣2+1|+2=1,∴m =1.函数图象如图所示.故答案为:1;(2)观察函数y =﹣|x +1|+2的图象,①当x =﹣1时,函数y =﹣|x +1|+2有最大值,最大值为2;②方程﹣|x +1|+2=﹣1的解是x =﹣4或2.故答案为:﹣1,﹣4或2;(3)画出直线y =15x ―15如图,观察图象,不等式15x ―15≤―|x +1|+2的x 的取值范围是﹣4≤x ≤1;故答案为:﹣4≤x ≤1.22.(12分)商店销售1台A 型和2台B 型电脑的利润为400元,销售2台A 型和1台B 型电脑的利润为350元,该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润y 元.(1)①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(2)实际进货时,厂家对A 型电脑出厂价下调了m (0<m ≤50)元,且限定商店最多的进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出售这100台电脑销售总利润最大的进货方案.【分析】(1)①据题意得,y =﹣50x +15000,②利用不等式求出x 的范围,又因为y =﹣50x +15000是减函数,所以x 取34,y 取最大值,(2)据题意得,y =(100+m )x +150(100﹣x ),即y =(m ﹣50)x +15000,分三种情况讨论,①当0<m <50时,y 随x 的增大而减小,②m =50时,m ﹣50=0,y =1500,y 随x 的增大而增大,分别进行求解.【解答】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得:a +2b =4002a +b =350 ,解得a =100b =150∴y =100x +150(100﹣x ),即y =﹣50x +15000,②据题意得,100﹣x ≤2x ,解得x ≥3313,∵y =﹣50x +15000,﹣50<0,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大.(2)据题意得,y =(100+m )x +150(100﹣x ),即y =(m ﹣50)x +15000,3313≤x ≤70①当0<m <50时,y 随x 的增大而减小,∴当x =34时,y 取最大值,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大.②m =50时,m ﹣50=0,y =15000,即商店购进A 型电脑数量满足3313≤x ≤70的整数时,均获得最大利润.23.(14分)如图,在平面直角坐标系中,一次函数y 1=―12x ―3的图象与x 轴、y 轴分别交于点A 和点C ,直线y 2=x +b (b 是常数)与x 轴交于点B 且经过点C .(1)求AB 的长;(2)若直线DE ∥y 轴且与直线AC ,BC 分别交于点D 和点E ,DE =3,求点D 的坐标;(3)若点P 是直线AC 上一点,是否存在点P 使得三角形ABP 的面积为9?若存在,求出点P 的坐标;若不存在,说明理由.【分析】(1)利用一次函数图象上点的坐标特征,可求出点A ,C 的坐标,由点C 的坐标,利用待定系数法可求出直线BC 的函数解析式,利用一次函数图象上点的坐标特征,可求出点B 的坐标,再利用数轴上两点间的距离公式,即可求出AB 的长;(2)设点D 的坐标为(m ,―12m ﹣3),则点E 的坐标为(m ,m ﹣3),由DE =3,可列出关于m 的含绝对值的一元一次方程,解之可求出m 的值,再将其代入点D 的坐标中,即可求出结论;(3)存在,设点P 的坐标为(n ,―12n ﹣3),根据三角形ABP 的面积为9,可列出关于n 的含绝对值符号的一元一次方程,解之可求出n 的值,再将其代入点P 的坐标中,即可求出结论.【解答】解:(1)当y1=0时,―12x﹣3=0,解得:x=﹣6,∴点A的坐标为(﹣6,0);当x=0时,y1=―12×0﹣3=﹣3,∴点C的坐标为(0,﹣3).将C(0,﹣3)代入y2=x+b得:﹣3=0+b,解得:b=﹣3,∴直线BC的函数解析式为y2=x﹣3.当y2=0时,x﹣3=0,解得:x=3,∴点B的坐标为(3,0),∴AB=|3﹣(﹣6)|=9;(2)设点D的坐标为(m,―12m﹣3),则点E的坐标为(m,m﹣3),∴DE=|m﹣3﹣(―12m﹣3)|=|32m|.又∵DE=3,∴|32m|=3,解得:m=±2,当m=2时,―12m﹣3=―12×2﹣3=﹣4;当m=﹣2时,―12m﹣3=―12×(﹣2)﹣3=﹣2.∴点D的坐标为(2,﹣4)或(﹣2,﹣2);(3)存在,设点P的坐标为(n,―12n﹣3),∴S△ABP =12AB•x P=12×9×|―12n﹣3|=9,解得:n=﹣10或m=﹣2,当n=﹣10时,―12n﹣3=―12×(﹣10)﹣3=2;当n=﹣2时,―12n﹣3=―12×(﹣2)﹣3=﹣2.∴点P的坐标为(﹣10,2)或(﹣2,﹣2)。

人教版数学八年级上学期期中备考综合练习(考察第十一、十二章)(三)及答案

人教版数学八年级上学期期中备考综合练习(考察第十一、十二章)(三)及答案

期中备考综合练习(考察第十一、十二章)(三)一.选择题1.在下列四组线段中,能组成三角形的是()A.2cm,6cm,9cm B.2cm,3cm,5cmC.3.4cm,2.7cm,6cm D.3cm,4cm,7cm2.如图,△ABC中,∠EFD=40°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠ABC的度数为()A.95°B.100°C.105°D.110°3.在直角三角形ABC中,∠A:∠B:∠C=2:m:4,则m的值是()A.3 B.4 C.2或6 D.2或44.如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°5.若一个多边形的内角和是它的外角和的5倍,则这个多边形是()A.六边形B.八边形C.十边形D.十二边形6.如图,在△ABC中,∠A=38°,∠B=70°,CD是AB边上的高,CE平分∠ACB交AB 于E,DP是△CDE中CE边上的高,则∠CDP的度数是()A.75°B.74°C.73°D.72°7.如图,AD=BC,∠DAB=∠CBA,由此可得下列哪组三角形全等()A.△ABC≌△BAD B.△AOC≌△AOBC.△BOD≌△AOB D.没有三角形全等8.根据下列条件能画出唯一△ABC的是()A.AB=1,BC=2,CA=3 B.AB=7,BC=6,∠A=40°C.∠A=50°,∠B=60°,∠C=70°D.AC=3.5,BC=4.8,∠C=70°9.如图,AB∥CD,AD∥BC,AC与BD相交于点O,AE⊥BD,CF⊥BD,垂足分别是E,F.则图中共有()对全等三角形.A.5 B.6 C.7 D.810.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC 的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64 B.48 C.32 D.4211.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'12.已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠FAC;②AF=AC;③FA平分∠EFC;④∠BFE =∠FAC中,正确的有()个.A.1 B.2 C.3 D.4二.填空题13.七边形ABCDEFG的内角和的度数为.14.如图所示,在△ABC中,∠A=50°,点D在△ABC的内部,并且∠DBA=∠ABC,∠DCA=∠ACB,则∠D的度数是.15.如图,AM、CM分别平分∠BAD和∠BCD,且∠B=31°,∠D=39°,则∠M=.16.如图,在△ABC中,CD平分∠ACB交AB于D,DE∥BC交AC于E,若∠ACB=60°,则∠EDC=.17.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示,若DE=4,则DF=.18.如图,EB交AC于点M,交CF于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②CD=DN;③△ACN≌△ABM;④BE=CF.其中正确的结论有.(填序号)三.解答题19.已知△ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点P在△ABC内时,①若y=70,s=10,t=20,则x=;②探究s、t、x、y之间的数量关系,并证明你得到的结论.(2)当点P在△ABC外时,直接写出s、t、x、y之间所有可能的数量关系,并画出相应的图形.20.如图所示,有一块直角三角板DEF(足够大),其中∠EDF=90°,把直角三角板DEF 放置在锐角△ABC上,三角板DEF的两边DE、DF恰好分别经过B、C.(1)若∠A=40°,则∠ABC+∠ACB=°,∠DBC+∠DCB=°∠ABD+∠ACD =°.(2)若∠A=55°,则∠ABD+∠ACD=°.(3)请你猜想一下∠ABD+∠ACD与∠A所满足的数量关系.21.如图,四边形ABCD中,∠BAD=106°,∠BCD=64°,点M,N分别在AB,BC上,将△BMN沿MN翻折得△FMN,若MF∥AD,FN∥DC.求(1)∠F的度数;(2)∠D的度数.22.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.23.如图,点A,B,C,D在同一直线上,AE∥DF,CE∥BF,AE=FD.求证:AB=CD.下面是推理过程,请将下列过程填写完整:证明:∵AE∥DF,∴∠A=∠D,().∵CE∥BF,∴∠ECA=∠FBD,又∵AE=DF,∴△AEC≌△DFB(),∴AC=DB,∴AC﹣=DB﹣,()∴AB=CD.24.如图,△ABC中,AB=AC,∠EAF═∠BAC,BF⊥AE于E交AF于点F,连结CF.(1)如图1所示,当∠EAF在∠BAC内部时,求证:EF=BE+CF.(2)如图2所示,当∠EAF的边AE、AF分别在∠BAC外部、内部时,求证:CF=BF+2BE.参考答案一.选择题1.解:A、∵6+2<9,∴不能组成三角形,故本选项错误,不符合题意;B、∵2+3=5,∴不能组成三角形,故本选项错误,不符合题意;C、∵3.4+2.7>6,∴能组成三角形,故本选项正确,符合题意;D、∵3+4=7,∴不能组成三角形,故本选项错误,不符合题意;故选:C.2.解:设∠ABC=α,∴∠A+∠C=180°﹣α,∵∠AFE=∠AEF,∠CFD=∠CDF,∠A+2∠AFE=180°,∠C+2∠CFD=180°,∴2∠AFE+2∠CFD=180°+α,∴∠AFE+∠CFD=90°,∴∠EFD=180°﹣(90°)=40°,∴α=100°,∴∠ABC的度数为100°,故选:B.3.解:设∠A、∠B、∠C的度数分别为2x、mx、4x,当∠C为直角时,2x+mx=4x,解得,m=2,当∠B为直角时,2x+4x=mx,解得,m=6,故选:C.4.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣30°﹣50°=100°(三角形内角和定义).∵CD平分∠ACB,∴∠BCD=∠ACB=×100°=50°,∴∠ADC=∠BCD+∠B=50°+50°=100°.5.解:设这个多边形的边数为n,依题意得(n﹣2)•180°=5×360°,解得n=12,∴这个多边形是十二边形,故选:D.6.解:∵∠A=38°,∠B=70°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣38°﹣70°=72°,∵CE平分∠ACB,∴∠ACE=∠ACB=×72°=36°,∵CD⊥AB,∴∠ACD=90°﹣∠A=90°﹣38°=52°,∴∠DCE=∠ACD﹣∠ACE=52°﹣36°=16°,∵DP⊥CE,∴∠CDP=90°﹣∠DCE=90°﹣16°=74°.故选:B.7.解:∵在△DAB和△CBA中,∴△DAB≌△CBA(SAS),故选:A.8.解:A、AB=1,BC=2,CA=3;不满足三角形三边关系,本选项不符合题意;B、AB=7,BC=6,∠A=40°;边边角三角形不能唯一确定.本选项不符合题意;C、∠A=50°,∠B=60°,∠C=70°;角角角三角形不能唯一确定.本选项不符合题意;D、AC=3.5,BC=4.8,∠C=70°;两边夹角三角形唯一确定.本选项符合题意;9.解:∵AB∥CD,AD∥BC,∴∠ABD=∠CDB,∠ADB=∠CBD,∠BAC=∠DCA,在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),同理:△ABC≌△CDA(ASA);∴AB=CD,BC=DA,在△AOB和△COD中,,∴△AOB≌△COD(AAS),同理:△AOD≌△COB(AAS);∵AE⊥BD,CF⊥BD,∴∠AEB=∠AEO=∠CFD=∠CFO=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),同理:△AOE≌△COF(AAS),△ADE≌△CBF(AAS);图中共有7对全等三角形;故选:C.10.解:连接AM,过M作ME⊥AB于E,MF⊥AC于F,∵MB和MC分别平分∠ABC和∠ACB,MD⊥BC,MD=4,∴ME=MD=4,MF=MD=4,∵△ABC的周长是16,∴AB+BC+AC=16,∴△ABC 的面积S =S △AMC +S △BCM +S △ABM==×AC ×4++ =2(AC +BC +AB )=2×16=32, 故选:C .11.解:将一根笔直的竹竿斜放在竖直墙角AOB 中,初始位置为CD ,当一端C 下滑至C '时,另一端D 向右滑到D ',可得:CD =C 'D ',A 、下滑过程中,CC '与DD '不一定相等,说法错误;B 、下滑过程中,当△OCD 与△OD 'C '全等时,CC '=DD ',说法错误;C 、若OC <OD ,则下滑过程中,不存在某个位置使得CC '=DD ',说法错误; D 、若OC >OD ,则下滑过程中,当△OCD 与△OD 'C '全等时,一定存在某个位置使得CC '=DD ',说法正确;故选:D .12.解:在△AEF 和△ABC 中,,∴△AEF ≌△ABC (SAS ),∴∠EAF =∠BAC ,AF =AC ,∠C =∠EFA ,∴∠EAB =∠FAC ,∠AFC =∠C ,∴∠EFA =∠AFC ,即FA 平分∠EFC .又∵∠AFB =∠C +∠FAC =∠AFE +∠BFE ,∴∠BFE =∠FAC .故①②③④正确.故选:D .二.填空题(共6小题)13.解:七边形ABCDEFG 的内角和的度数为:(7﹣2)×180°=900°.故答案为:900°.14.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠DBA=∠ABC,∠DCA=∠ACB,∴∠DBA+∠DCA=(∠ABC+∠ACB)=26°,∴∠DBC+∠DCB=130°﹣26°=104°,∴∠D=180°﹣(∠DBC+∠DCB)=76°,故答案为:76°.15.解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,所以,∠BAM﹣∠BCM=∠M﹣∠B,同理,∠MAD﹣∠MCD=∠D﹣∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M﹣∠B=∠D﹣∠M,∴∠M=(∠B+∠D),∵∠B=31°,∠D=39°,∴∠M=(31°+39°)=35°.故答案为:35°.16.解:如图,在△ABC中,CD平分∠ACB交AB于D,∠ACB=60°,∴∠BCD=∠DCE=∠ACB=30°.又∵DE∥BC,∴∠EDC=∠BCD=30°.故答案是:30°.17.解:作DG⊥OB于G,∵OC是∠AOB的平分线,DG⊥OB,DE⊥OA,∴DG=DE=4,在Rt△EOF中,∠AOB=60°,∴∠OFE=30°,∴DF=2DG=8,故答案为:8.18.解:①在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠EAB=∠FAC,∴∠EAB﹣∠BAC=∠FAC﹣∠BAC,∴∠1=∠2.∴①正确;没有条件可以证明CD=DN,∴②错误;∵△ABE≌△ACF,∴AB=AC,在△ACN和△ABM中,,∴△ACN≌△ABM(ASA),∴③正确;∵△ABE≌△ACF,∴BE=CF,∴④正确.∴其中正确的结论有①③④.故答案为:①③④.三.解答题(共6小题)19.解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;.20.解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=140°﹣90°=50°;故答案为:140;90;50.(2)在△ABC中,∵∠A=55°,∴∠ABC+∠ACB=180°﹣55°=125°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=125°﹣90°=35°,故答案为:35;(3)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°﹣∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°﹣∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB﹣(∠DBC+∠DCB)=180°﹣∠A﹣90°.∴∠ABD+∠ACD=90°﹣∠A,故答案为:∠ABD+∠ACD=90°﹣∠A.21.解:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°﹣53°﹣32°=95°;(2)∠F=∠B=95°,∠D=360°﹣106°﹣64°﹣95°=95°.22.解:(1)∵∠B=70°,AB=AD,∴∠ADB=∠B=70°,∵∠B+∠BAD+∠ADB=180°,∴∠BAD=40°,∵∠CAE=∠BAD,∴∠CAE=40°,∵AE∥BC,∴∠C=∠CAE=40°;(2)AD平分∠BDE,理由是:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS)∴∠B=∠ADE,∵∠B=∠ADB,∴∠ADE=∠ADB,即AD平分∠BDE.23.证明:∵AE∥DF,∴∠A=∠D(两直线平行,内错角相等),∵CE∥BF,∴∠ECA=∠FBD,在△AEC和△DFB中∴△AEC≌△DFB(AAS),∴AC=DB,∴AC﹣BC=DB﹣BC(等式的性质),∴AB=CD,故答案为:两直线平行,内错角相等,AAS,BC,BC,等式的性质.24.证明:(1)如图,在EF上截取EH=BE,连接AH,∵EB=EH,AE⊥BF,∴AB=AH,∵AB=AH,AE⊥BH,∴∠BAE=∠EAH,∵AB=AC,∴AC=AH,∵∠EAF═∠BAC∴∠BAE+∠CAF=∠EAF,∴∠BAE+∠CAF=∠EAH+∠FAH,∴∠CAF=∠HAF,在△ACF和△AHF中,,∴△ACF≌△AHF(SAS),∴CF=HF,∴EF=EH+HF=BE+CF;(2)如图,在BE的延长线上截取EN=BE,连接AN,∵AE⊥BF,BE=EN,AB=AC,∴AN=AB=AC,∵AN=AB,AE⊥BN,∴∠BAE=∠NAE,∵∠EAF═∠BAC∴∠EAF+∠NAE=(∠BAC+2∠NAE)∴∠FAN=∠CAN,∴∠FAN=∠CAF,在△ACF和△ANF中,,∴△ACF≌△ANF(SAS),∴CF=NF,∴CF=BF+2BE.。

人教版 八年级数学上册 第11_13章 期中综合复习(一 )

人教版 八年级数学上册 第11_13章 期中综合复习(一 )

人教版八年级数学上册第11~13章期中综合复习(一)一、选择题(本大题共10道小题)1. 角是轴对称图形,它的对称轴是()A.角平分线B.角平分线所在的射线C.角平分线所在的线段D.角平分线所在的直线2. 在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件不能判定Rt△ABC≌Rt△DEF的是()A.AC=DF,∠B=∠E B.∠A=∠D,∠B=∠EC.AB=DE,AC=DF D.AB=DE,∠A=∠D3. 如图,小明做了一个长方形框架,发现它很容易变形,请你帮他选择一个最好的加固方案()4. 如图,点A在点O的北偏西30°的方向上,AB⊥OA,垂足为A.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点O在点A的南偏东60°方向上B.点B在点A的北偏东30°方向上C.点B在点O的北偏东60°方向上D.点B在点O的北偏东30°方向上5. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种6. 根据下列条件,能画出唯一的△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.AB=5,AC=6,∠A=50°D.∠A=30°,∠B=70°,∠C=80°7. 如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°8. 如图,在△ABC中,D是∠ABC和∠ACB的平分线的交点,∠A=80°,∠ABD =30°,则∠BDC的度数为()A.100°B.110°C.120°D.130°9. 如图,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字形通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是()A.75°B.80°C.85°D.90°10. 如图,△ACB≌△A'CB',∠ACA'=30°,则∠BCB'的度数为()A.20°B.30°C.35°D.40°二、填空题(本大题共8道小题)11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=________.13. 如图,请用符号语言表示“角的平分线上的点到角的两边的距离相等”.条件:____________________________________.结论:PC=PD.14. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.15. 如图,要测量河岸相对两点A,B之间的距离,从B点沿与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续向前走50米到D处,在D处转90°沿DE方向再走17米到达E处,这时A,C,E三点在同一直线上,则A,B之间的距离为________米.16. 如图所示,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=________°.17. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.18. 如图,在△ABC中,点E在BC的延长线上,∠ABC的平分线与∠ACE的平分线相交于点D.(1)若∠A=70°,则∠ACE-∠ABC=________°,∠D=________°;(2)若∠A=α,则∠ACE-∠ABC=________,∠D=________.三、解答题(本大题共7道小题)19. 已知点A(2m+n,2),B(1,n-m).(1)当m,n为何值时,点A,B关于x轴对称?(2)当m,n为何值时,点A,B关于y轴对称?20. 如图,C是线段BD的中点,AB=EC,∠B=∠ECD.求证:△ABC≌△ECD.21. 如图所示,点E在△ABC中AC边的延长线上,点D在AB边上,DE交BC 于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.22. 如图,现有一块三角形的空地,其三条边长分别是20 m,30 m,40 m.现要把它分成面积比为2∶3∶4的三部分,分别种植不同种类的花,请你设计一种方案,并简单说明理由.(要求:尺规作图,保留作图痕迹,不写作法)23. 某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.24. 如图,在△ABC中,O是边AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△ABC的外角平分线于点F.探究线段OE与OF的数量关系,并说明理由.25. 已知:多边形的外角∠CBE和∠CDF的平分线分别为BM,DN.(1)若多边形为四边形ABCD.①如图(a),∠A=50°,∠C=100°,BM与DN交于点P,求∠BPD的度数;②如图(b),猜测当∠A和∠C满足什么数量关系时,BM∥DN,并证明你的猜想.(2)如图(c),若多边形是五边形ABCDG,已知∠A=140°,∠G=100°,∠BCD =120°,BM与DN交于点P,求∠BPD的度数.人教版八年级数学上册第11~13章期中综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】B[解析] 选项A,D均可由“AAS”判定Rt△ABC≌Rt△DEF,选项C 可由“HL”判定Rt△ABC≌Rt△DEF,只有选项B不能判定Rt△ABC≌Rt△DEF.3. 【答案】B[解析] 三角形具有稳定性,选项B通过添加木条,把长方形框架变成两个三角形,从而具有稳定性.4. 【答案】D[解析] 如图,由题意知∠AOD=30°,∠COD=90°,∴∠AOC=120°.由作图可知,OB平分∠AOC,∴∠AOB=∠AOC=60°.∴∠DOB=30°.∴点B在点O的北偏东30°方向上.5. 【答案】C6. 【答案】C[解析] 对于选项A来说,AB+BC<AC,不能画出△ABC;对于选项B来说,可画出△ABC为锐角三角形或者钝角三角形;对于选项C来说,已知两边及其夹角,△ABC是唯一的;对于选项D来说,△ABC的形状可确定,但大小不确定.7. 【答案】B[解析] 如图,分别作点A关于BC,DC的对称点A1,A2,连接A1A2交BC于点M,交DC于点N,则此时△AMN的周长最小.∵∠A1AA2=120°,∴∠A1+∠A2=60°.∵MA=MA1,NA=NA2,∴∠AMN+∠ANM=2(∠A1+∠A2)=2×60°=120°.8. 【答案】D[解析] ∵BD是∠ABC的平分线,∴∠DBC=∠ABD=30°,∠ABC=2∠ABD=2×30°=60°.∴∠ACB=180°-∠A-∠ABC=40°.∵CD平分∠ACB,∴∠DCB=12∠ACB=12×40°=20°.∴∠BDC=180°-∠DCB-∠DBC=130°.9. 【答案】C[解析] ∵∠DBA=130°,∠ECA=135°,∴∠ABC=180°-∠DBA=50°,∠ACB=180°-∠ECA=45°.∴∠A=180°-∠ABC-∠ACB=180°-50°-45°=85°.10. 【答案】B[解析] 由△ACB≌△A'CB',得∠ACB=∠A'CB'.由等式的基本性质,得∠ACB-∠A'CB=∠A'CB'-∠A'CB.所以∠BCB'=∠ACA'=30°.二、填空题(本大题共8道小题)11. 【答案】3【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA的距离为3.12. 【答案】2 [解析] 如图,连接OQ.∵点P 关于直线OB 的对称点是Q , ∴OB 垂直平分PQ.∴∠POB =∠QOB =30°,OP =OQ.∴∠POQ =60°. ∴△POQ 为等边三角形.∴PQ =OP =2.13. 【答案】∠AOP =∠BOP ,PC ⊥OA 于点C ,PD ⊥OB 于点D14. 【答案】12[解析] 如图,连接BE.∵D 为Rt △ABC 中斜边BC 上的一点,过点D 作BC 的垂线,交AC 于点E ,∴∠A=∠BDE=90°. 在Rt △DBE 和Rt △ABE 中,∴Rt △DBE ≌Rt △ABE (HL).∴DE=AE.∵AE=12 cm ,∴DE=12 cm .15. 【答案】17[解析] 在△ABC 和△EDC 中,⎩⎨⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴△ABC ≌△EDC(ASA). ∴AB =ED =17米.16. 【答案】60[解析] ∵六边形ABCDEF 的内角和为(6-2)×180°=720°且每个内角都相等, ∴∠B =720°6=120°.∵AD ∥BC ,∴∠DAB =180°-∠B =60°.17. 【答案】3[解析] ∵AD 平分∠BAC ,且DE ⊥AB ,∠C =90°,∴CD =DE=1.∵DE 是AB 的垂直平分线,∴AD =BD. ∴∠B =∠DAB. ∵∠DAB =∠CAD , ∴∠CAD =∠DAB =∠B.∵∠C =90°,∴∠CAD +∠DAB +∠B =90°. ∴∠B =30°.∴BD =2DE =2. ∴BC =BD +CD =2+1=3.18. 【答案】(1)7035 (2)α 12α三、解答题(本大题共7道小题)19. 【答案】解:(1)∵点A (2m+n ,2),B (1,n-m )关于x 轴对称,∴解得(2)∵点A (2m+n ,2),B (1,n-m )关于y 轴对称,∴解得20. 【答案】证明:∵C 是线段BD 的中点,∴BC =CD.在△ABC 与△ECD 中,⎩⎨⎧BC =CD ,∠B =∠ECD ,AB =EC ,∴△ABC ≌△ECD.21. 【答案】证明:如图所示,过点D 作DG ∥AC 交BC 于点G ,则∠GDF =∠E ,∠DGB =∠ACB. 在△DFG 和△EFC 中,⎩⎨⎧∠DFG =∠EFC ,DF =EF ,∠GDF =∠E ,∴△DFG ≌△EFC(ASA).∴GD =CE.∵BD =CE ,∴BD =GD.∴∠B =∠DGB.∴∠B =∠ACB.∴AB =AC ,即△ABC 是等腰三角形.22. 【答案】解:(答案不唯一)如图,分别作∠ACB 和∠ABC 的平分线,相交于点P ,连接PA ,则△PAB ,△PAC ,△PBC 的面积之比为2∶3∶4.理由如下:如图,过点P 分别作PE ⊥AB 于点E ,PF ⊥AC 于点F ,PH ⊥BC 于点H. ∵P 是∠ABC 和∠ACB 的平分线的交点,∴PE =PF =PH.∵S △PAB =12AB·PE =10PE ,S △PAC =12AC·PF =15PF ,S △PBC =12BC·PH =20PH ,∴S △PAB ∶S △PAC ∶S △PBC =10∶15∶20=2∶3∶4.23. 【答案】解:(1)设这个多边形的一个内角的度数是x °,则与其相邻的外角度数是x °+12°. 由题意,得x+x+12=180,解得x=140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是=9.24. 【答案】 解:OE =OF.理由:∵MN ∥BC ,∴∠OEC =∠BCE ,∠OFC =∠DCF.∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠OCE =∠BCE ,∠OCF =∠DCF.∴∠OEC =∠OCE ,∠OFC =∠OCF.∴OE =OC ,OC =OF.∴OE =OF.25. 【答案】解:(1)①∵∠A =50°,∠C =100°,∴在四边形ABCD 中,∠ABC +∠ADC =360°-∠A -∠C =210°.∴∠CBE +∠CDF =150°.∵外角∠CBE 和∠CDF 的平分线分别为BM ,DN ,∴∠PBC +∠PDC =12∠CBE +12∠CDF =75°.∴∠BPD =360°-50°-210°-75°=25°.②当∠A =∠C 时,BM ∥DN.证明:如图(a),连接BD.∵BM ∥DN ,∴∠BDN +∠DBM =180°.∴∠FDN +∠ADB +∠ABD +∠MBE =360°-180°=180°, 即12(∠FDC +∠CBE)+(∠ADB +∠ABD)=180°.∴12(360°-∠ADC -∠CBA)+(180°-∠A)=180°.∴12(360°-360°+∠A +∠C)+(180°-∠A)=180°.∴∠A =∠C.(2)∵∠A =140°,∠G =100°,∠BCD =120°,∠A +∠ABC +∠BCD +∠CDG +∠G =540°,∴∠ABC +∠CDG =180°.∴∠CBE +∠CDF =180°.∵BP 平分∠CBE ,DP 平分∠CDF ,∴∠CBP+∠CDP=12(∠CBE+∠CDF)=90°.如图(b),延长DC交BP于点Q.∵∠BCD=∠CBP+∠CQB,∠CQB=∠QDP+∠BPD,∴∠BCD=∠CBP+∠QDP+∠BPD.∴∠BPD=120°-90°=30°.。

2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(一)

2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(一)
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.测试范围:八年级上册第 11-13 章 5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共 14 个小题,每题 2 分,共 28 分,在每个小题的四个选项中只有一项是符合题目要求 的.
1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列 4 个汉字中,可以 看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是( )
A.①②
B.①②③
C.①②④
第Ⅱ卷
D.①②③④
二、填空题:本题共 4 个小题;每个小题 3 分,共 12 分,把正确答案填在横线上.
15.(2020·福建省福州延安中学八年级期中)已知点 Р(a,3)和点 Q(4,b)关于 x 轴对称,则 a b 2021 ________.
A. 35
B. 40
高,则 CD 的长( )
A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④ 13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形 ABC 的边 AB 上一点 P ,作
PE AC 于点 E , Q 为 BC 延长线上一点,当 AP CQ 时, PQ 交 AC 于点 D ,则 DE 的长为( )
D.不能确定
14.(2022·陕西·西安爱知初级中学七年级期末)如图,在 VABC 中, BAC 90, AB 2AC ,点 D 是线段
AB 的中点,将一块锐角为 45 的直角三角板按如图 VADE 放置,使直角三角板斜边的两个端点分别与 A 、
D 重合,连接 BE 、 CE , CE 与 AB 交于点 F. 下列判断正确的有( )
△A1B1C1 ,第二次将等边 △A1B1C1 的三边向外延长一倍,得到第二个新的 △A2B2C2 ,依此规律继续延长下去, 若△ABC 的面积 S0 1,则第 2022 个新的三角形的面积 S2022 为________

2024-2025学年八年级数学上学期期中模拟卷(重庆专用,人教版八上第11~13章)(考试版A4)

2024-2025学年八年级数学上学期期中模拟卷(重庆专用,人教版八上第11~13章)(考试版A4)

2024-2025学年八年级数学上学期期中模拟卷(重庆专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版八上第11~13章(三角形、全等三角形、轴对称)含七年级部分内容。

5.难度系数:0.69。

第一部分(选择题共40分)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.学校为庆祝国庆,在校内张贴了“爱我中华”四字标语,这些汉字中是轴对称图形的是()A.B.C.D.V的高的图形是()2.下面四个图形中,线段BD是ABCA.B.C.D.3.下列长度的各组线段可以组成三角形的是( )A .2,3,5B .5,7,4C .4,4,8D .2,4,64.已知多边形的内角和是1080°,则这个多边形是几边形?( )A .六边形B .七边形C .八边形D .十边形5.下列说法,正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .到三角形二个顶点距离相等的点是三边垂直平分线的交点C .三角形一边上的中线将三角形分成周长相等的两个三角形D .两边分别相等的两个直角三角形全等6.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是( )A .39B .44C .49D .547.如图,若31A Ð=°,那么A B C D E Ð+Ð+Ð+Ð+Ð=( )A .90°B .180°C .211°D .242°8.如图,在中,AB AC =,6BC =,且面积是24,AC 的垂直平分线EF 分别交,AC AB 边于点,E F ,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM D 周长的最小值为( )A .9B .10C .11D .129.如图,已知CAE BAD Ð=Ð,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D Ð=Ð;④B E Ð=Ð.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个10.如图,在等腰直角ACB △中,90ACB Ð=°,点D 是ACB △内部一点,连接DC 并延长至点E ,连接AE 、,BE AD BE ^,垂足为点,G AG 交BC 于点Q ,延长AC 交BE 于点F ,连接DF ,EAC DAC Ð=Ð.给出以下结论:①CF CQ =;②DE 平分AEB Ð;③若点G 为BF 的中点,连接GC 并延长交AE 于点H ,则AH CH DG =+:④2ACE ADFE S S =四边形△.其中正确的结论有( )A .1个B .2个C .3个D .4个第二部分(非选择题 共110分)二、填空题:本题共8小题,每小题4分,共32分。

沪科版八年级数学上册(第11-12章)综合测试试题

沪科版八年级数学上册(第11-12章)综合测试试题

沪科版八年级数学上册(第11-12章)综合测试试题测试范围:第11~12章考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是()A.(5,4)B.(4,5)C.(﹣4,5)D.(﹣5,4)3.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)第3题图第5题图第9题图4.点P(a,b)在函数y=3x+2的图象上,则代数式6a-2b+1的值等于()A.5 B.3 C.﹣3 D.﹣15.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)6.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A.B.C.D.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.69.如图,一个弹簧不挂重物时长6 cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3 B.4 C.5 D.610.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2021,1)D.(2021,2)第10题图第14题图二、填空题(本大题共4小题,每小题5分,满分20分)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.在函数y=中,自变量x的取值范围是.13.点(﹣,m)和点(2,n)在直线y=2x+b上,则m与n 的大小关系是.14.某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是km/h.三、(本大题共2小题,每小题8分,满分16分)15.已知一次函数y=kx+b,它的图象经过(1,﹣3),(4,6)两点.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.16.已知点P(2m+4,m﹣1),试分别根据下列条件,求出P 点的坐标.(1)点P在y轴上;(2)点P在过点A(2,3)且与x轴平行的直线上.四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=kx+b的图象经过点(﹣2,5),并且与y 轴相交于点P,直线y=﹣x+3与y轴相交于点Q,点Q恰与点P关于x轴对称,求这个一次函数y=kx+b的表达式.18.在平面直角坐标系中,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:「P」,即「P」=|x|+|y|.(1)求点A(﹣1,3)的勾股值「A」;(2)若点B在第一象限且满足「B」=3,求满足条件的所有B点与坐标轴围成的图形的面积.五、(本大题共2小题,每小题10分,满分20分)19.为迎接新年,某单位组织员工开展娱乐竞赛活动,工会计划购进A、B两种电器共21件作为奖品.已知A种电器每件90元,B 种电器每件70元.设购买B种电器x件,购买两种电器所需费用为y 元.(1)y关于x的函数关系式为:;(2)若购买B种电器的数量少于A种电器的数量,请给出一种最省费用的方案,并求出该方案所需费用.20.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标;(2)若y1>y2>0,求x的取值范围;(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.六、(本题满分12分)21.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.七、(本题满分12分)22.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y 甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱八、(本题满分14分)23.在平面直角坐标系xOy中,△ABC如图所示,点A(﹣3,2),B(1,1),C(0,4).(1)求直线AB的解析式;(2)求△ABC的面积;(3)已知一次函数y=ax+3a+2(a为常数).①求证:一次函数y=ax+3a+2的图象一定经过点A;②若一次函数y=ax+3a+2的图象与线段BC有交点,直接写出a 的取值范围.答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.B 9.A10.C 解析:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4每个数一个循环,因为2021÷4=505……1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选C.11.﹣1(答案不唯一)12.x>13.m<n14.65 解析:当x≥2时,设函数解析式为y=kx+b,把(2,156)和(3,221)代入解析式,可得,解得,所以函数解析式为y=65x+26(x≥2),所以2小时后货车的速度是65km/h,或利用图象法,平均速度==65(km/h).故答案为65.15.解:(1)将(1,﹣3),(4,6)代入y=kx+b中,得,解得,∴y与x之间的函数关系式为y=3x﹣6.(4分)(2)把点(a,3)代入y=3x﹣6中,得3a﹣6=3,解得a=3,∴a的值为3.(8分)16.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3).(4分)(2)由题意得点P的纵坐标与点A的纵坐标相等,令m﹣1=3,解得m=4.所以P点的坐标为(12,3).(8分)17.解:由题意可得,点Q的坐标是(0,3),则点P的坐标是(0,﹣3),把(0,﹣3),(﹣2,5)代入一次函数y=kx+b得3,25,bk b解得3,4.bk所以这个一次函数的表达式为y=﹣4x﹣3.(8分)18.解:(1)「A」=|﹣1|+|3|=4.(3分)(2)设B(x,y),由「B」=3且点B在第一象限知,x+y=3(x>0,y>0),即:y=﹣x+3(x>0,y>0).故所有点B与坐标轴围成的图形为如图所示的三角形,故其面积为×3×3=.(8分)19.解:(1)y=﹣20x+1890(4分)(2)∵y=﹣20x+1890,﹣20<0,∴y随x的增大而减小,∴x 取最大值时,y最小.∵购买B种电器的数量少于A种电器的数量,∴x<21﹣x,∴x<.∵x为整数,∴x的最大值为10,∴当x=10时,y有最小值,为1690,21﹣x=11.∴使费用最省的方案是购买B种电器10件,A种电器11件,所需费用为1690元.(10分)20.解:(1)根据题意,得,解得,∴点P的坐标为(﹣2,1).(3分)(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3.由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2.(6分)(3)由题意可知E(m,﹣2m﹣3),F(m,m+3).∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得m=﹣3或m=﹣1.(10分)21.解:(1)如图所示,A′(0,4)、B′(﹣1,1)、C′(3,1).(3分)(2)S△ABC=×(3+1)×3=6.(7分)(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,由题意得×4×|y+2|=6,解得y=1或y=﹣5,∴点P的坐标为(0,1)或(0,﹣5).(12分)22.解:(1)y甲=25x+200,.(6分)(2)当0≤x≤10时,令25x+200=60x,解得x=.当10<x≤20时,令25x+200=600,解得x=16.答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人且小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人且不超过20人时,小王公司应该选择在乙店吃小龙虾更省钱.(12分)23.解:(1)设直线AB的解析式是y=kx+b,将点A(﹣3,2),点B(1,1)代入,得,解得,∴直线AB的解析式是1544y x.(4分)(2)设直线AB与y轴的交点为D点,则点D的坐标为,.(8分)(3)①证明:∵y=ax+3a+2=a(x+3)+2,∴y=ax+3a+2必过点(﹣3,2),即必过A点;②把B(1,1)代入y=ax+3a+2得,1=a+3a+2,解得a=﹣;把C(0,4)代入y=ax+3a+2得,4=3a+2,解得a=,∴若一次函数y=ax+3a+2的图象与线段BC有交点,则且a≠0.(14分)]。

新人教版八年级上数学期中试题(11-13章)

新人教版八年级上数学期中试题(11-13章)

八年级上数学期中试题一、选择题1. 下列运算正确的是( ) A.42=±B .2142-⎛⎫=- ⎪⎝⎭C .382-=-D .|2|2--=2. 在下列实数中,无理数是( ) A .13B .πC .16D .2273. 下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等4. 如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E . 已知PE =3,则点P 到AB 的距离是( )A .3B .4C .5D .6 5. 如图,已知:AB ∥EF ,CE =CA ,∠E =65,则 ∠CAB 的度数为A.25 B.50 C.60 D.656. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为( ) A .20B .120C .20或120D .36二、填空题7. 右图是用七巧板拼成的一艘帆船,其中全等的三角形共有 对.7 89 8. 如图,线段AC 与BD 交于点O ,且OA=OC, 请添加一个条件,使△OAB ≅△OCD, 这个条件是______________________.9. 如图,AC 、BD 相交于点O ,∠A =∠D ,请你再补充一个条件,使得△AOB ≌△DOC , 你补充的条件是 .10. 如图,50ABC AD ∠=,垂直平分线段BC 于点D ABC ∠,的平分线BE 交AD 于点E ,连结EC ,则AEC ∠的度数是 .11. 夷陵长江大桥为三塔斜拉桥.如图,中塔左右两边所挂的最长钢索AB AC =,塔柱底端D 与点B 间的距离是228米,则BC 的长是 米.12. 如图,在ABC △中,点D 是BC 上一点,80BAD ∠=°,AB AD DC ==, 则C ∠= 度.FBCE AOD CBA10 ()11 1213. 已知Rt ABC△中,90C=∠,6AC=,8BC=,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则CDE△的周长为.14.如图,三角形纸片ABC,10cm7cm6cmAB BC AC===,,,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED△的周长为cm.15. 写出一个大于2的无理数.16. ABC△为等边三角形,D E F,,分别在边BC CA AB,,上且AE CD BF==,则DEF△为三角形三、计算题17. 计算200711(1)524+-+--四、画(作)图题18. 近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P点的位置.五、证明题19. 已知:如图,OP是AOC∠和BOD∠的平分线,OA OC OB OD==,.求证:AB CD=.CDBEAAB CDACB D80AEB CFDO20. 已知:如图,直线AD 与BC 交于点O ,OA OD =,OB OC =. 求证:AB CD ∥.21. 如图,在等腰R t △ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E , 过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF . (1)求证:AD ⊥CF ;(2)连接AF ,试判断△ACF 的形状,并说明理由.22. 如图,在等边ABC △中,点D E ,分别在边BC AB ,上,且BD AE =,AD 与CE 交于点F . (1)求证:AD CE =; (2)求DFC ∠的度数.七、开放题23. 如图,D E ,分别为ABC △的边AB AC ,上的点,BE 与CD 相交于O 点.现有四个条件:①AB AC =,②OB OC =,③ABE ACD ∠=∠,④BE CD =.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确..的命题: A BDC O DA EF命题的条件是 和 ,命题的结论是 和 (均填序号). (2)证明你写出的命题. 已知: 求证: 证明:八、猜想、探究题24. 已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,. 当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.参考答案 一、选择题1. C2. B3. B4. A5. B6. CB C(图1) A B C D E F M N (图2) A B C D E FM N (图3)AB CDE F MN二、填空题7. 2 8. ∠A =∠C ,∠B =∠D ,OD =OB AB ∥CD9. AO =DO 或AB =DC 或BO =CO10. 115°(填115不扣分) 11. 456 12. 25 13. 10或11 14. 9 15. 如5(答案不唯一) 16. 正 三、计算题 17. 解: 原式=21-1+21-5(后面三个数中每计算正确一个得2分) 4分= 1-1-5= -56分四、证明题 18. 画(作)图题画出角平分线 3分 作出垂直平分线 3分19. 证明:因为OP 是AOC ∠和BOD ∠的平分线, 所以 AOP COP ∠=∠,BOP DOP ∠=∠. 所以AOB COD ∠=∠. 在AOB △和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,,, 所以AOB COD △≌△. 所以 AB CD =.20. 在AOB △和DOC △中,OA OD =,OB OC =,又AOB DOC =∠∠, AOB DOC ∴△≌△, 3分 A D ∴=∠∠, 4分 AB CD ∴∥.6分21. (1)证明:在等腰直角三角形ABC 中,∵∠ACB =90o ,∴∠CBA =∠CAB =45°. 又∵DE ⊥AB ,∴∠DEB =90°,∴∠BDE =45°. 又∵BF ∥AC ,∴∠CBF =90°, ∴∠BFD =45°=∠BDE , ∴BF =DB .…………2分 又∵D 为BC 的中点,∴CD =DB ,即BF =CD . 在R t △CBF 和R t △ACD 中,⎪⎩⎪⎨⎧==∠=∠=︒,,90,AC CB ACD CBF CD BF ∴R t △CBF ≌R t △ACD ,∴∠BCF =∠CAD . ……………………………………………………………4分 又∵∠BCF +∠GCA =90°,李张 P∴∠CAD +∠GCA =90°,即AD ⊥CF ;……………………………………………6分 (2) △ACF 是等腰三角形.理由:由(1)知: CF =AD ,△DBF 是等腰直角三角形,且BE 是∠DBF 的平分线, ∴BE 垂直平分DF ,即AF =AD ,…………………………………………………8分 ∴CF =AF ,∴△ACF 是等腰三角形. ………………………………………………………10分22. (1)证明:ABC △是等边三角形,60BAC B ∴==∠∠,AB AC =又AE BD =(SAS)AEC BDA ∴△≌△,4分 AD CE ∴=.5分 (2)解由(1)AEC BDA △≌△, 得ACE BAD =∠∠6分DFC FAC ACE ∴=+∠∠∠60FAC BAD =+=∠∠ 8分七、开放题23. 解:(1)①,③;②,④.(注:①④为题设,②③为结论的命题不给分, 其他组合构成的命题均给4分)(2)已知:D E ,分别为ABC △的边AB ,AC 上的点, 且AB AC =,ABE ACD ∠=∠.求证:OB OC BE CD ==,. 4分 证明:AB AC =,ABE ACD ∠=∠,ABC ACB ∴∠=∠,且ABE ACD △≌△. BE CD ∴=. 6分又BCD ACB ACD ABC ABE CBE ∠=∠-∠=∠-∠=∠, BOC ∴△是等腰三角形.OB OC ∴=. 8分八、猜想、探究题24. 图2成立,图3不成立. 2分证明图2.延长DC 至点K ,使CK AE =,连结BK , 则BAE BCK △≌△,∴BE BK ABE KBC =∠=∠,,60FBE ∠=,120ABC ∠=,∴60FBC ABE ∠+∠=, 60FBC KBC ∴∠+∠=,B C(图2)AB C DE FMNK60∴∠=∠=,KBF FBE△≌△,∴KBF EBF=,∴KF EF+=,∴KC CF EF+=.6分即AE CF EF图3不成立,-=.8分,,的关系是AE CF EFAE CF EF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中测试卷(一)11-12章 1、到三角形三条边的距离都相等的点是这个三角形的( ) A. 三条中线的交点 B. 三条边的垂直平分线的交点 C. 三条高的交点 D. 三条角平分线的交点 2、 在Rt ABC ∆中,90C ∠= ,A D 平分BAC ∠,交B C 于点D ,若32B C =,且:9:7B D C D =,则点D 到AB 的距离为( ) A. 18 B. 16 C. 14 D. 12 3、如图,直线123,,l l l 表示三条互相交叉的公路,现要修建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有( ) A. 一处 B. 两处 C. 三处 D. 四处 4、如图,在Rt ABC ∆中,90C ∠= ,BD 是ABC ∠的平分线,交A C 于D ,若C D n =,A B m =,则ABD ∆的面积是( ) A. 13m n B. 12m n C. m n D. 2m n 5、如图,A B C ∆中,90C ∠= ,点O 为A B C ∆的三条角平分线的交点,O D BC ⊥,O E AC ⊥,O F A B ⊥,点,,D E F 分别是垂足,且10AB cm =,8BC cm =,6C A cm =,则点O 到三边,,AB AC BC 的距离分别等于( )cm A. 2、2、2 B. 3、3、3 C. 4、4、4 D. 2、3、5 6、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( ) A 、带①去 B 、带②去 C 、带③去 D 、带①和②去 7、 △ABC 中,AB=AC,AB 的垂直平分线与直线AC 相交所成锐角为40°则此等腰三角形的顶角为( ) A. 50° B. 60° C. 130° D. 50°或130° 8、 等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) A.横坐标 B.纵坐标 C.横坐标及纵坐标 D.横坐标或纵坐标 9、如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么, 学校班级姓名试卷难度B测试日阳光教育一对一模式………………………………………咨询热线412—612588……………………………………………人教版•八上级数学(下) …………………………………………………………………………………………………………………………………………………………………………………有下列说法: ①△EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定相等 ③折叠后得到的图形是轴对称图形 ④△EBA 和△EDC 一定是全等三角形其中正确的有( ) A.1个 B.2个 C.3个 D.4个 10、如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( ) A .80° B .90° C .100° D .108° 11、如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是 ( ) A .20° B .40° C .50° D . 60 12、如图,已知,BA CA 分别是D BC ∠,EC B ∠的平分线,BD DE ⊥,C E D E ⊥,垂足分别为,D E ,则D A 与EA 有怎样的数量关系____________。

13、已知A B C ∆中,90C ∠= ,A D 平分A ∠,2AD BD C D ==,点D 到AB 的距离等于5.6cm ,则B C 的长为___________cm 。

14、如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,D F BC ⊥于F ,236ABC S cm ∆=,18AB cm =,12BC cm =,则DE 的长是__________。

15、如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 连结OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD .要使点D 上,则AP 的长是___________ 16、已知:如图,在平面上将△ABC 绕B 点旋转到△A ’BC ’的位置时,AA ’∥BC ,∠ABC=70°,则∠CBC ’为________度.A B CD C 学校班级姓名试卷难度B测试日期阳光教育一对一模式………………………………………咨询热线412—612588……………………………………………人教版•八上级数学(下) ……………………………………………………………………………………………………………………………………………………………………………………17、如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,要在河边建一个7水站,将河水送到A 、B 两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹)。

18、如图,,F G 是O A 上两点,,M N 是O B 上两点,且FG M N =,PFG PM N S S ∆∆=,试问点P 是否在AO B ∠的平分线上? 19、△ABC 中,∠ABC=3∠C,AD 是∠BAC 的平分线,BE ⊥AD 于E 点,求证AC-AB=2BE 20、如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,BE 与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF =AC ; (2)求证:CE =12B F .学校班级姓名试卷难度B测试日期光教育一对一模式………………………………………咨询热线412—612588……………………………………………人教版•八上级数学(下) ………………………………………………………………………………………………………………………………………………………………………………C B 21、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足, 连接CD ,与∠AOB 的平分线交于点F , (1)求证:OE 是CD 的垂直平分线. (2)若∠AOB=60º,求OF:FE 的值. 22、△DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三角形(4)MN ∥BC 23、已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC 的中点, (1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF , 求证:△DEF 为等腰直角三角形. (2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变, 那么,△DEF 是否仍为等腰直角三角形?证明你的结论.学校班级姓名试卷难度B测试日期光教育一对一模式………………………………………咨询热线412—612588……………………………………………人教版•八上级数学(下) ………………………………………………………………………………………………………………………………………………………………………………19题:证明:①连结∠BAC=90°D为BC的中点∵AB AC∴AD⊥BC BD=AD∴∠B=∠DAC=45°又BE=AF∴△BDE≌△ADF (S.A.S)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形 6分②若E,F分别是AB,CA延长线上的点,如图所示.连结AD∵AB=AC ∠BAC=90° D为BC的中点∴AD=BD AD⊥BC∴∠DAC=∠ABD=45°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (S.A.S)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形 6分。

相关文档
最新文档