Adaptive Channel Partitioning and Modulation for Linear Time-Varying Channels
DRAM efficient adaptive MCMC
DRAM
The success of the DR strategy depends largely on the fact that at least one of the proposals is successfully chosen. The intuition behind adaptive strategies is to learn from the information obtained during the run of the chain, and, based on this, to tune the proposals to work more efficiently. In the example, we shall combine AM adaptation with an m–stages DR algorithm in the following way: K The proposal at the first stage of DR is adapted just as in AM: the covariance C 1 n is computed from the points of the sampled chain, no matter at which stage these points have been accepted in the sample path. K The covariance Ci n of the proposal for the i:th stage (i = 2, ..., m) is always computed simply 1 as a scaled version of the proposal of the first stage, Ci n = γ i Cn .
森海塞尔 evolution wireless G4 SKM 100 G4 SKM 100 G4
Handheld TransmitterFEATURES• Your choice of Sennheiser‘s renowned e 835, e 845, e865, e 935, e 945 capsules • Easy and flexible wireless synchronization betweentransmitter and receiver via infrared • Fast frequency allocation for up to 12 receivers via newlinking functionality • Up to 20 compatible channels• Up to 42 MHz bandwidth with 1680 selectable frequen-cies, fully tunable in a stable UHF range • Transmission Range: up to 100 meters / 300 feet • High RF output power (up to 30 mW) depending oncountry regulationsDELIVERY INCLUDES• SKM 100 G4 or SKM 100 G4-S handheld transmitter • MZQ 1 microphone clamp • 2 AA batteries • quick guide • safety guide• manufacturer declaration sheetPowerful handheld transmitter with a lightweight aluminum housing and integrated mute switch for evolution wireless G4 100 Series systems.SKM 100 G4SKM 100 G4-SHandheld Transmitter PRODUCT VARIANTSMade in GermanySKM 100 G4-S-A1470 - 516 MHz Art. no. 507594 SKM 100 G4-S-A516 - 558 MHz Art. no. 507595 SKM 100 G4-S-GB606 - 648 MHz Art. no. 507596 SKM 100 G4-S-G566 - 608 MHz Art. no. 507597 SKM 100 G4-S-B626 - 668 MHz Art. no. 507598 SKM 100 G4-S-C734 - 776 MHz Art. no. 507599 SKM 100 G4-S-E823 - 865 MHz Art. no. 507600 SKM 100 G4-S-1G81785 - 1800 MHz Art. no. 507601 SKM 100 G4-S-K+925 - 937.5 MHz Art. no. 507602 SKM 100 G4-A1470 - 516 MHz Art. no. 507660 SKM 100 G4-A516 - 558 MHz Art. no. 507661 SKM 100 G4-GB606 - 648 MHz Art. no. 507662 SKM 100 G4-G566 - 608 MHz Art. no. 507663 SKM 100 G4-B626 - 668 MHz Art. no. 507664 SKM 100 G4-C734 - 776 MHz Art. no. 507665 SKM 100 G4-E823 - 865 MHz Art. no. 507666 SKM 100 G4-1G81785 - 1800 MHz Art. no. 507667 SKM 100 G4-K+925 - 937.5 MHz Art. no. 507668Assembled in USASKM 100 G4-S-A1470 - 516 MHz Art. no. 507937 SKM 100 G4-S-A516 - 558 MHz Art. no. 507938 SKM 100 G4-S-AS520 - 558 MHz Art. no. 507939 SKM 100 G4-S-G566 - 608 MHz Art. no. 507940 SKM 100 G4-S-B626 - 668 MHz Art. no. 507941 SKM 100 G4-S-C734 - 776 MHz Art. no. 507942 SKM 100 G4-S-D780 - 822 MHz Art. no. 507943 SKM 100 G4-S-JB806 - 810 MHz Art. no. 507945 SKM 100 G4-A1470 - 516 MHz Art. no. 508001 SKM 100 G4-A516 - 558 MHz Art. no. 508002 SKM 100 G4-AS520 - 558 MHz Art. no. 508003 SKM 100 G4-G566 - 608 MHz Art. no. 508004 SKM 100 G4-B626 - 668 MHz Art. no. 508005 SKM 100 G4-C734 - 776 MHz Art. no. 508006 SKM 100 G4-D780 - 822 MHz Art. no. 508007 SKM 100 G4-JB806 - 810 MHz Art. no. 508008ACCESSORIESMMD 835cardioid dynamicmicrophone headArt. no. 502575MMD 845supercardioid dynamicmicrophone headArt. no. 502576MME 865supercardioid conden-ser microphone headArt. no. 502581MMD 935cardioid dynamicmicrophone headArt. no. 502577MMD 945supercardioid dynamicmicrophone headArt. no. 502579MMK 965condenser microphonehead with switchablecharacteristicsArt. no. 502582BA 2015rechargeable battery Art. no. 009950 LA 2charging adapter forL 2015 chargerArt. no. 503162L 2015charger Art. no. 009828 KEN 2identification rings Art. no. 530195Handheld Transmitter SPECIFICATIONSRF characteristicsModulation Wideband FM Frequency ranges A1: 470 - 516 MHzA: 516 - 558 MHzAS: 520 - 558 MHzG: 566 - 608 MHzGB: 606 - 648 MHzB: 626 - 668 MHzC: 734 - 776 MHzD: 780 - 822 MHzE: 823 - 865 MHzJB: 806 - 810 MHzK+: 925 - 937.5 MHz1G8: 1785 - 1800 MHz Transmission frequencies Max. 1680 receivingfrequencies, adjustable in25 k Hz steps20 frequency banks, eachwith up to 12 factory-presetchannels, no intermodula-tion1 frequency bank with up to12 programmable channels Switching bandwidth up to 42 MHzNominal/peak deviation±24 kHz / ±48 kHz Frequency stability≤ ±15 ppmRF output power at 50 ΩMax. 30 mWPilot tone squelch Can be switched off AF characteristicsCompander system Sennheiser HDXAF frequency response80 – 18,000 HzSignal-to-noise ratio (1 mV,peak deviation)≥ 110 dBATotal harmonic distortion(THD)≤ 0.9 %Max. input voltage 3 VeffInput impedance40 kΩInput capacitance SwitchableSetting range for inputsensitivity48 dB,adjustable in 6 dB steps Overall deviceTemperature range-10 °C to +55 °CPower supply 2 AA batteries, 1.5 V orBA 2015 accupack Nominal voltage 3 V battery /2.4 V rechargeable battery Current consumption at nominal voltage:typ. 180 mAwith transmitter switchedoff: ≤ 25 µAOperating time Typically 8 h Dimensions Approx. Ø 50 x 265 mm Weight (incl. batteries)approx. 450 gHandheld Transmitter DIMENSIONSSKM 100 G4-SHandheld Transmitter DIMENSIONSSKM 100 G4Handheld TransmitterSennheiser electronic GmbH & Co. KG · Am Labor 1 · 30900 Wedemark · Germany · ARCHITECT‘S SPECIFICATIONThe handheld vocal radio microphone shall be for use with a companion receiver as part of a wireless RF transmission system.The radio microphone shall operate within twelve UHF frequency ranges, with a switching bandwidth of up to 42 MHz: 470 – 516 M Hz, 516 – 558 MHz, 520 – 558 MHz, 566 – 608 MHz, 606 – 648 MHz, 626 – 668 MHz, 734 – 776 MHz, 780 – 822 MHz, 823 – 865 MHz, 806 – 810 MHz, 925 – 937.5 MHz, 1785 – 1800 MHz; transmission frequencies shall be 1,680 per range and shall be tunable in 25 kHz steps. The radio microphone shall feature 20 fixed frequency banks with up to 12 compatible frequency presets and 1 user bank with up to 12 user programmable frequencies.The radio microphone shall be menu-driven with a backlit LC display showing the current frequency, frequency bank and channel number, metering of AF level, transmission status, lock status, pilot tone transmission, muting function, and bat-tery status. An auto-lock feature shall be provided to prevent settings from being accidentally altered.The radio microphone parameters shall either be configurable in the associated receiver’s menu and synchronized with the radio microphone via an integrated infrared interface or shall be programmable in the radio microphone menu. Recei-ver parameters such as receiving frequency, receiver name and pilot tone setting shall be synchronizable with the radio microphone via an integrated infrared interface.Nominal/peak deviation shall be ±24 kHz/±48 kHz. Frequency stability shall be ≤ ±15 ppm. RF output power at 50 Ω shall be 30 mW (typical).The radio microphone shall incorporate the Sennheiser HDX compander system and a defeatable pilot tone squelch.Audio frequency response shall range from 80 – 18,000 Hz. Signal-to-noise ratio at 1 mV and peak deviation shall be ≥ 110 dBA. Total harmonic distortion (THD) shall be ≤ 0.9 %. Input sensitivity shall be adjustable within a 48 dB range in steps of 6 dB.Power shall be supplied to the radio microphone by two 1.5 V AA size batteries or by one Sennheiser BA 2015 recharge-able accupack. Nominal voltage shall be 2.4 V, current consumption shall be typical 180 mA at nominal voltage; ≤ 25 µA when radio microphone is switched off. Operating time shall be typical 8 hours. The radio microphone shall have a rugged metal housing; dimensions shall be approximately 50 mm (1.97") in diameter and 265 mm (10.43") in length. Weight inclu-ding the batteries shall be approximately 450 grams (0.99 lbs). Operating temperature shall range from −10 °C to +55 °C (+14 °F to +131 °F).A range of microphone heads shall be available for the radio microphone.The radio microphone shall be the Sennheiser SKM 100 G4.A variant of the handheld vocal radio microphone shall be equipped with a mute switch, which shall be switchable bet-ween “AF on/off”, “RF on/off” and “Disabled” via the user interface.The radio microphone shall be the Sennheiser SKM 100-S G4.。
dpm adaptive原理
dpm adaptive原理DPM Adaptive原理概述•DPM Adaptive是指动态传输模式自适应技术(Dynamic Play Mode Adaptive),用于在线视频播放中的自适应码率选择。
•在视频传输过程中,根据网络状况实时调整播放的码率,以提供更好的用户体验。
原理详解1. 动态码率调整•DPM Adaptive通过实时监测网络带宽和延迟情况,动态调整视频的码率。
•当网络带宽较低或延迟较高时,会自动降低码率以适应网络状况;当网络带宽较高或延迟较低时,会自动提高码率以提高观看质量。
2. 媒体文件分片•在DPM Adaptive中,视频文件会被分成多个小片段进行传输。
•每个小片段的时长通常在几秒到十几秒之间,这样可以更精细地控制视频码率的调整。
3. 播放器与服务器的交互•在视频播放过程中,播放器会与服务器进行交互,获取不同码率的小片段。
•播放器会根据当前网络状况选择合适的码率片段进行播放,以实现码率自适应。
•当网络状况改变时,播放器会再次向服务器请求适合当前状况的码率片段,保证播放的稳定性和流畅度。
4. 码率选择算法•DPM Adaptive中常用的码率选择算法有BOLA(Bitrate-Optimization Based on Ladder-shaped Association)和ABR(Adaptive Bitrate)等。
•这些算法根据网络条件和视频质量评估,选择合适的码率片段进行播放。
•BOLA算法在选择码率时综合考虑了当前缓冲区的状态、带宽预测和视频质量;ABR算法则主要根据带宽和缓冲区来动态调整码率。
应用场景1. 在线视频服务•DPM Adaptive广泛应用于各大视频平台和流媒体服务,如YouTube、Netflix等。
•用户通过在线观看视频时,可以获得更好的观影体验,避免了视频卡顿、加载过慢等问题。
2. 直播•在直播场景中,DPM Adaptive也发挥重要作用。
【5G技术知识】_5G:非正交多址技术(NOMA)的性能优势-
5G:非正交多址技术(NOMA)的性能优势移动通信技术发展到今天,频谱资源也变得越来越紧张了。
同时,为了满足飞速增长的移动业务需求,人们已经开始在寻找既能满足用户体验需求又能提高频谱效率的新的移动通信技术。
在这种背景下,人们提出了非正交多址技术(NOMA)。
非正交多址技术(NOMA)的基本思想是在发送端采用非正交发送,主动引入干扰信息,在接收端通过串行干扰删除(SIC)接收机实现正确解调。
虽然,采用 SIC 技术的接收机复杂度有一定的提高,但是可以很好地提高频谱效率。
用提高接收机的复杂度来换取频谱效率,这就是NOMA 技术的本质。
NOMA 的子信道传输依然采用正交频分复用(OFDM)技术,子信道之间是正交的,互不干扰,但是一个子信道上不再只分配给一个用户,而是多个用户共享。
同一子信道上不同用户之间是非正交传输,这样就会产生用户间干扰问题,这也就是在接收端要采用 SIC 技术进行多用户检测的目的。
在发送端,对同一子信道上的不同用户采用功率复用技术进行发送,不同的用户的信号功率按照相关的算法进行分配,这样到达接收端每个用户的信号功率都不一样。
SIC 接收机再根据不同户用信号功率大小按照一定的顺序进行干扰消除,实现正确解调,同时也达到了区分用户的目的,如图 1 所示。
图 1:下行链路中的NOMA 技术原理总的来说,NOMA 主要有 3 个技术特点:1、接收端采用串行干扰删除(SIC)技术。
NOMA 在接收端采用SIC 技术来消除干扰,可以很好地提高接收机的性能。
串行干扰消除技术的基本思想是采用逐级消除干扰策略,在接收信号中对用户逐个进行判决,进行幅度恢复后,将该用户信号产生的多址干扰从接收信号中减去,并对剩下的用户再次进行判决,如此循环操作,直至消除所有的多址干扰。
与正交传输相比,采用SIC 技术的NOMA 的接收机比较复杂,而NOMA 技术的关键就是能否设计出复杂的SIC 接收机。
随着未来几年芯片处理能力的提升,相信这一问题将会得到解决。
《2024年5G高隔离正交极化MIMO终端天线的研究设计》范文
《5G高隔离正交极化MIMO终端天线的研究设计》篇一一、引言随着5G通信技术的快速发展,移动通信设备对天线性能的要求越来越高。
多输入多输出(MIMO)技术因其能显著提高系统容量和链路可靠性,已成为5G通信系统的关键技术之一。
而高隔离正交极化MIMO终端天线作为MIMO技术的重要组成部分,其设计对于提升整个通信系统的性能具有至关重要的作用。
本文将重点研究并设计一款适用于5G通信的高隔离正交极化MIMO终端天线。
二、研究背景及意义在5G通信系统中,MIMO技术通过在发送端和接收端使用多个天线来提高系统性能。
然而,多天线系统面临的一个重要问题是天线间的隔离问题。
高隔离正交极化MIMO终端天线的研发,可以有效解决这一问题,提高天线间的隔离度,降低信号间的干扰,从而提高整个通信系统的性能。
此外,该天线的研发还有助于推动5G通信技术的发展,对于提升我国在全球通信领域的竞争力具有重要意义。
三、天线设计原理及方案1. 设计原理高隔离正交极化MIMO终端天线的设计原理主要基于正交极化和高隔离技术。
通过设计具有正交极化方向的天线单元,使不同天线单元之间的极化方向相互垂直,从而降低天线间的耦合,提高隔离度。
同时,采用高隔离技术进一步增强天线间的隔离效果。
2. 设计方案(1)天线结构:采用微带贴片天线作为基本单元,通过调整贴片尺寸和形状,实现正交极化。
(2)隔离技术:采用电磁带隙(EBG)结构、接地平面上的缝隙等技术,提高天线间的隔离度。
(3)优化方法:利用电磁仿真软件对天线进行仿真分析,通过调整天线尺寸、位置和方向等参数,优化天线性能。
四、天线性能仿真与分析通过电磁仿真软件对所设计的高隔离正交极化MIMO终端天线进行仿真分析,得到以下结果:1. 辐射性能:天线的辐射性能良好,增益高、波束指向准确。
2. 隔离度:天线间的隔离度较高,有效降低了信号间的干扰。
3. 频带宽度:天线的频带宽度较宽,适应5G通信的频段要求。
4. 尺寸与重量:天线的尺寸和重量适中,适用于移动终端设备。
LTE中结合自适应调制编码和HARQ的跨层设计
LTE中结合自适应调制编码和HARQ的跨层设计方应勇;吴健学;王德胜【摘要】通常链路自适应技术均是基于分层的思想来设计的,往往使得局部性能最优化,但系统的整体性能却未达到最优.文章在LTE(长期演进)网络架构基础上,针对物理层的AMC(自适应调制编码)和MAC(介质访问控制)层的HARQ(混合自动请求重传)两种自适应技术提出一种跨层设计方案.分析了跨层耦舍参数与系统性能之间的关系,并给出了详细的推导过程和具体的表达式.然后给出了平均时延和平均误包率约束条件下的跨层优化问题.仿真结果表明,该跨层设计能进一步提高系统的平均频谱效率;在给定业务QoS(服务质量)需求下,可以根据信道质量来选择最佳的最大重传次数和AMC方式,使得系统的平均频谱效率最大化.【期刊名称】《光通信研究》【年(卷),期】2013(000)002【总页数】4页(P58-61)【关键词】跨层设计;自适应调制编码;混合自动请求重传;频谱效率【作者】方应勇;吴健学;王德胜【作者单位】华中科技大学电子与信息工程系,湖北武汉430074【正文语种】中文【中图分类】TN929.50 引言LTE(长期演进)系统在物理层引入了OFDM(正交频分复用)、MIMO(多输入多输出)等接入技术,其目标是提供更高的传输速率、改善小区边缘系统性能和降低系统延时等。
LTE系统不仅要支持语音、图像和数据等基本业务,还要求支持多媒体和更高比特率分组数据业务。
为了提高数据传输的可靠性和系统的频谱利用率,LTE系统采用了AMC(自适应调制编码)和HARQ(混合自动请求重传)这两项关键技术[1-3]。
然而,现有的LTE系统中,数据链路层的ARQ(自动请求重传)协议和物理层的AMC技术都是只考虑各自本层因素设计的,虽然能使各层性能达到最优,但系统整体性能却没有最优化。
文献[4]提出了联合物理层的AMC技术和链路层的ARQ 协议,可进一步提高物理层的频谱效率,但是其只是讨论了简单ARQ的情况,并未考虑业务延时的要求。
可重构智能超表面 工作频段
可重构智能超表面工作频段
智能超表面是一种新型的无线通信技术,它利用具有可调节性能的微小元件来控制电磁波的传播。
可重构智能超表面是指这种超表面具有可重构性,可以根据需要动态地调整其性能。
在设计可重构智能超表面时,工作频段是一个至关重要的参数,它决定了超表面在哪些频段内可以发挥作用。
首先,可重构智能超表面的工作频段通常取决于其应用场景。
比如,在通信系统中,工作频段可能会涉及到5G、毫米波甚至太赫兹频段。
因此,设计可重构智能超表面时需要考虑到这些不同频段的特性和要求。
其次,工作频段还需要考虑到超表面元件的可调节范围。
不同类型的超表面元件可能具有不同的工作频段范围,因此在设计可重构智能超表面时,需要确保其可以覆盖到所需的工作频段范围内。
此外,工作频段还需要考虑到超表面的调节速度和精度。
在实际应用中,超表面需要能够快速而精确地调节其性能以适应不同的通信环境和需求,因此工作频段的选择也会受到这些因素的影响。
总的来说,设计可重构智能超表面的工作频段需要综合考虑其应用场景、元件特性、调节范围以及调节速度和精度等因素,以确保其在实际应用中能够有效地发挥作用。
EDGE_解决方案和应用介绍
L1
channel coding
channel decoding
MS
IR memory & combining
•New channel coding schemes •Mandatory incremental redundancy •Interleaving of an RLC block over 2 GSM bursts possible •8 PSK modulation
•Resegmentation in retransmissions possible •Larger transmission window size •1 or 2 RLC blocks sent per radio block
control TX data RX data
Um Gb BSS SGSN Gn GGSN IP IP SNDCP SNDCP L1bis GTP L1bis GTP LLC LLC TCP or UDP L1bis TCP or UDP L1bis
Rel-7
•PS业务切换/Packet Switched Hand-over
Rel-6
•垮BSC的NACC/Inter BSC NACC over Gb •持流类业务/GERAN enhancements for streaming services
Rel-5
•网络辅助小区改变/Network Assisted Cell Change •扩展上行TBF模式/Extended Uplink TBF Mode (EUTM), Extended •扩展动态分配,高阶多时隙/Dynamic Allocation (EDA), High Multi slot Class (HMC) •上下行支持8-PSK的调制方式/8-PSK uplink & downlink •上下行支持增量冗余重传 机制/Incremental Redundancy uplink & downlink •上下行支持链路自适应/Link Adaptation uplink & downlink
随机空间矢量脉宽调制
随机空间矢量脉宽调制英文回答:Pulse width modulation (PWM) is a technique used in many applications, including random space vector modulation (RSVM). RSVM is a modulation scheme used in power electronics to control the output voltage of inverters. It is widely used in variable speed drives, renewable energy systems, and electric vehicles.The basic idea of RSVM is to randomly select space vectors from a predefined set and modulate the pulse width of these vectors to achieve the desired output voltage. By randomly selecting the space vectors, RSVM can reduce the harmonic content in the output voltage and improve the overall performance of the system.One advantage of RSVM is its ability to generate ahigh-quality output voltage with reduced harmonic distortion. This is particularly important in applicationswhere the quality of the output voltage is critical, such as in renewable energy systems or electric vehicles. By randomly selecting the space vectors, RSVM can distribute the harmonics across a wide frequency spectrum, reducing the amplitude of individual harmonics and improving the overall quality of the output voltage.Another advantage of RSVM is its ability to reduce the common-mode voltage (CMV) in the system. CMV is a common problem in power electronics, as it can cause electromagnetic interference and damage to the system. By randomly selecting the space vectors, RSVM can distribute the CMV across a wide frequency spectrum, reducing its amplitude and minimizing its impact on the system.RSVM can also improve the efficiency of the system by reducing the switching losses in the inverter. Switching losses occur when the transistors in the inverter switch on and off, and they can significantly affect the overall efficiency of the system. By randomly selecting the space vectors, RSVM can distribute the switching losses across a wide frequency spectrum, reducing their amplitude andimproving the overall efficiency of the system.In conclusion, random space vector modulation (RSVM) is a modulation scheme used in power electronics to controlthe output voltage of inverters. It offers several advantages, including reduced harmonic distortion, reduced common-mode voltage, and improved efficiency. RSVM iswidely used in variable speed drives, renewable energy systems, and electric vehicles to achieve high-quality output voltage and improve system performance.中文回答:脉宽调制(PWM)是一种在许多应用中使用的技术,包括随机空间矢量调制(RSVM)。
数据链路层技术中的自适应调制技术解析(七)
数据链路层技术中的自适应调制技术解析自适应调制(Adaptive Modulation)是数据链路层技术中一种重要的调制方式,它通过根据信道条件的变化自动调整调制方式,以提高数据传输的可靠性和效率。
在本文中,我们将对自适应调制技术进行深入解析,从其原理、优点以及应用场景等方面进行论述。
一、自适应调制的原理自适应调制技术可以根据当前信道的质量来调整调制方式,以适应信道条件的变化。
当信道质量良好时,可以选择高速率的调制方式,以提高数据传输的速率;而当信道质量变差时,可以选择低速率的调制方式,以提高数据传输的可靠性。
在自适应调制中,通过接收端测量和反馈信道质量的参数,例如信噪比(SNR)和比特误码率(BER),来判断当前信道的质量。
根据这些参数,发送端可以根据事先设定好的调制方式列表,选择最适合当前信道的调制方式。
常见的调制方式包括BPSK、QPSK、16QAM和64QAM等。
二、自适应调制的优点自适应调制技术具有以下优点:1. 提高系统的频谱效率:通过选择适当的调制方式,可以在同样带宽下实现更高的数据传输速率,从而提高频谱效率。
2. 提高数据传输的可靠性:当信道质量下降时,通过降低调制方式的复杂度,可以减少比特误码率,从而提高数据传输的可靠性。
3. 适应多变环境:自适应调制可以在不同的信道环境下自动切换调制方式,以适应不同的信道特性,提高系统对多变环境的适应能力。
4. 降低功耗和延迟:自适应调制技术可以根据信道质量的变化灵活调整调制方式,从而减少功耗和传输延迟。
三、自适应调制的应用场景自适应调制技术在各种通信系统中都得到了广泛应用。
以下是几个常见的应用场景:1. 移动通信系统:对于移动通信系统来说,信道条件随时会发生变化,如高楼大厦、山区和密集城市等环境下的信道衰落问题。
自适应调制技术可以通过测量信道质量,选择适当的调制方式,提高数据传输的可靠性和效率。
2. 卫星通信系统:卫星通信受到天气、大气等因素的干扰,信道条件不稳定。
On the Synchronization Techniques for Wireless OFDM Systems
On the Synchronization Techniques for Wireless OFDM SystemsBo Ai,Member,IEEE,Zhi-xing Yang,Chang-yong Pan,Jian-hua Ge,Yong Wang,Member,IEEE,and Zhen LuAbstract—The latest research works on the synchronization scheme for either continuous transmission mode or burst packet transmission mode for the wireless OFDM communications are overviewed in this paper.The typical algorithms dealing with the symbol timing synchronization,the carrier frequency syn-chronization as well as the sampling clock synchronization are briefly introduced and analyzed.Three improved methods for the fine symbol timing synchronization in frequency domain are also proposed,with several key issues on the synchronization for the OFDM systems discussed.Index Terms—Carrier frequency synchronization,continuous mode and burst packet mode transmission systems,OFDM, sampling clock synchronization,symbol timing synchronization.I.I NTRODUCTIONO FDM,associated with other related technologies have found its wide applications in many scientific areas due to its high spectrum efficiency,its robustness against both multi-path and pulse noises,its highly reliable transmission speed under serious channel conditions,adaptive modulation for each sub-carrier according to the channel conditions, and etc.It has become fundamental technology in the future 4G-multimedia mobile communications systems[1].Many digital transmission systems have adopted OFDM as the modulation technique such as digital video broadcasting terrestrial TV(DVB-T)[2],digital audio broadcasting(DAB), terrestrial integrated services digital broadcasting(ISDB-T), digital subscriber line(xDSL),WLAN systems based on the IEEE802.11(a)[3]or Hiperlan2,multimedia mobile access communications(MMAC),and thefixed wireless access(FW A) system in IEEE802.16.3standard.OFDM has also found its application in Cable TV systems.Technologies fundamentally based on OFDM,such as vector OFDM(V-OFDM),wide-band OFDM(W-OFDM),flash OFDM(F-OFDM)have also shown their great advantages in certain application areas.There are some disadvantages,however,appeared in the OFDM systems,for example,the large Peak-to Average Power Ratio(PAPR)as well as high sensitivity to the synchronization errors.Synchronization issues are of great importance in allManuscript received April26,2005;revised October27,2005.This work was supported in part by the National Natural Science Funds in China(Nos. 50177001,60372007,and60332030)and by the Ministry of Information Industry Foundation under Grant no.2002291.B.Ai is with the Dept.of E&E Tsinghua University,State Key Lab.on Microwave and Digital Communications,China(100084).He is also with the Engineering College of Armed Police Force,Xi’an,China(710086)(e-mail: abeffort_apple@).Z.Yang and C.Pan are with the Dept.of E&E Tsinghua University,State Key Lab.on Microwave and Digital Communications,China(100084).J.Ge and Y.Wang are with the National key Lab.of Integrated Service Net-works,Xidian Univ.,Xi’an,China(710071).Z.Lu is with the Dept.of Electronic Engineering in Shanghai Jiaotong Uni-versity,China(200052).Digital Object Identifier10.1109/TBC.2006.872990digital communications systems,especially in the OFDM systems.Synchronization errors not only cause inter-symbol interference(ISI)but also introduce inter-carrier interference (ICI)due to the loss of orthogonality among all sub-carriers. In this paper,we focus on the synchronization schemes in the OFDM systems.Fundamental theory for the synchronization is briefly described in Section II and in Section III,the symbol timing scheme and three improved methods for thefine symbol timing in frequency domain are proposed.We then conduct the analysis on the carrier frequency recovery as well as the sampling clock synchronization methods in Sections IV and V respectively.In Section VI,joint estimation of all the synchro-nization errors including timing,frequency and phase offsets is simply described.Technical forecast is made in Section VII with conclusions drawn in Section VIII.II.O VERVIEW FOR THE S YNCHRONIZATION IN OFDM S YSTEMS Synchronization is of great importance for all digital com-munication systems.OFDM systems are very sensitive to both timing and carrier frequency offset,especially,when combined with other multi-access techniques such as FDMA,TDMA,and CDMA.Therefore,synchronization is extremely crucial to the OFDM systems.A.Three Synchronization Issues in the OFDM Systems There are three major synchronization issues in the OFDM systems:a.The symbol timing synchronization,which is to deter-mine the correct symbol start position before the FFT de-modulation at the receiver end.b.The carrier frequency synchronization(i.e.,carrier fre-quency recovery technique),which is utilized to eliminate the carrier frequency offset caused by the mismatch from the local oscillators between the transmitter and the re-ceiver,nonlinear characteristic of the wireless channel as well as the Doppler shift.c.The sampling clock synchronization,which is to miti-gate the sampling clock errors due to the mismatch of the crystal oscillators.All these synchronization errors will significantly degrade system performance[4],[5].B.Synchronization Technologies in the Continuous Mode and Burst Packet Mode Transmission SystemsAccurate synchronization is indispensable to suppress the negative impact of the synchronization errors in the commu-nication systems no matter,whether it is in continuous or burst packet mode transmission systems.However,these two different modes require different synchronization schemes:0018-9316/$20.00©2006IEEEa.In the burst packet mode,synchronization ought to beestablished at any time because when data streams are ready to transmit is unknown The duration of the training symbols used for synchronization in this mode is rela-tively short and synchronization should be done within a single training symbol time for the systems such as IEEE 802.11(a)[3]and HiperLan/2to avoid the reduction of the system capacity.It is inappropriate to do averaging over many symbols or pilots because of the stringent re-quirement on synchronization time and the less number of sub-carriers.It is also important for the systems in this mode to establish the synchronization in time domain and this will greatly reduce the acquisition time since it avoids the feedback from frequency domain.b.In the continuous mode such as DAB,DVB-T[2]sys-tems,averaging method can be used to improve the es-timation accuracy because there is no stringent require-ment on the acquisition time.In this mode,large numbers of sub-carriers has been utilized and,it is appropriate to apply the cyclic prefix(CP)or pilots to these synchroniza-tion methods.III.S YMBOL T IMING S YNCHRONIZATIONWhen signals are transmitted through severe channel con-ditions of multi-path fading,pulse noise disturbance and the Doppler Shift,it is important to solve symbol timing synchro-nization problemfirst during the design process of an OFDM receiver.The symbol timing error can not only disturb the amplitude as well as the phase of the received signal,but also introduce ISI. In order to perform the FFT demodulation correctly,the symbol timing synchronization must be done to determine the starting point(i.e.FFT window)of the OFDM symbol.The cyclic prefix (CP,or Guard Interval,GIB)can be removed afterwards.The concept of the GIB wasfirst proposed by A.Peled[6],which can prevent OFDM symbols from ISI disturbance and keeps the orthogonality among all the sub-carriers.Fig.1shows the vari-ation of the signal constellation due to the symbol timing errors. Fig.1(a)and(1b)represent the symbol starting point within GIB(case1)and outside ISI-Free region(case2)respectively. It clearly shows how bad the signal constellation could be due to the symbol timing errors.Accurate and steady symbol timing synchronization can be realized through the coarse symbol timing,thefine symbol timing as well as the symbol timing control structure combined together.The coarse symbol timing synchronization isfirst executed in time domain and then,thefine symbol timing in frequency domain is done to ensure a more accurate estimation. The symbol timing control structure is utilized to coordinate the operations of the coarse and thefine symbol timing.A.The Coarse Symbol Timing Algorithms in Continuous Mode The conventional algorithms for the coarse symbol timing synchronization in time domain are MLE(Maximum Like-lihood Estimation)utilizing the cyclic prefix of the OFDM symbols.The most representative algorithm was proposed by J.J.Van de Beek[7].However,good performanceachieves(a)(b)Fig.1.(a)Constellation variation due to the symbol timing error.The total subcarriers N=2048,cyclic prefix L=128,64-QAM mapping.No carrier frequency and sampling clock offset.The normalized symbol timing offset is 36(samples)Case1.(b)Constellation variation due to the symbol timing error. The total subcarriers N=2048,cyclic prefix L=128,64-QAM mapping. No carrier frequency and sampling clock offset.The normalized symbol timing offset is36(samples)Case2.only under the AWGN channel.When the channel condition becomes severely degraded,data in GIB is badly contaminated by ISI,there will be significantfluctuation for the starting point estimated for the OFDM symbol.And suchfluctuation will have the significant influence on the carrier frequency offset as well as the sampling clock offset estimation in frequency domain.To improve the performance of ML Estimator,a novel scheme utilizing both CP and pilots to do the coarse symbol timing synchronization was proposed by ndström [8].It has better performance compared to that of[7]under the multi-path fading channel.However,the nonnegligible fluctuation still exists because of the ISI contamination on the data within GIB and the limited number of pilots used for estimation.In order to mitigate thefluctuation,T.M.Schmidlintroduced a new method making use of the training symbols in time domain,in which a timing function was defined[9]. It has better performance compared to those proposed by J.J.Van de Beek and ndström.Unfortunately,it has a“flat region”in the estimation,which,to a great extent,increases the variance of the symbol timing estimator.Some new schemes has been proposed in the literatures [10]–[13]in recent years to overcome the defects of the al-gorithms mentioned above,with the target to decrease the fluctuation of the starting point of the estimated symbol as well as to make the estimation within the ISI-Free region.The convolution characteristic of the cyclic prefix are utilized in literature[10],while,PN sequences are adopted in[11]–[13], to take the advantage of the intrinsic,fairly good correlation property of PN:Kasami sequence is utilized in[11]with the excellent correlation properties;and in[12],[13],a novel timing recovery methods for TDS-OFDM(key techniques for the Terrestrial Digital Multimedia/Television Broadcasting System,namely DMB-T proposed by Tsinghua University [14])is developed.This scheme is based on the searching and tracking on the correlation peaks of the PN sequences,which is as the GIB for each OFDM symbol.Because of the excellent correlation properties of the so-called m-sequence,the perfor-mance of these algorithms[10]–[13]outperforms those from[7]–[9]under the multi-path fading channels.B.The Fine Symbol Timing Synchronization in Continuous ModeThefine symbol timing synchronization in frequency domain is often required to guarantee the estimation accuracy.A pre-amble structure including a synchronizationfield(S-filed)and a cell-searchingfield(C-field)is proposed in literature[15]with thefine symbol timing done by using the cell identification method.In[16],a specially designed pilot symbol structure is utilized to generate afine symbol timing -puter simulations and analysis verify their good estimation per-formances but low bandwidth efficiency.The residual symbol timing error may cause the phase rotation of the sub-carriers in frequency domain.In this Section,we propose three improved algorithms to do thefine symbol timing based on the algorithm introduced by[17].Computer simulations show that these pro-posed methods have better performance compared with the al-gorithm in[17]when under serious channel conditions.In the following,we referred the algorithm in[17]as Algorithm1,and named our proposed methods as Algorithm2,Algorithm3and Algorithm4respectively.Algorithm2:(1)(2)Where,denotes the number of scattered pilots(SP),isa complex variable forthe SP inthe OFDMsymbol,is the phase deviation of the two adjacent SP’s causedby the symbol timing offsetof OFDM symbol,is thedistance between the two adjacent SP’s.,,denotestheFig.2.Performance comparison among Algorithm1,2,3,and4for thesymbol timing estimation.The total subscribers N=2048,cyclic prefixL=128,SNR=5dB,Rayleigh fading channel[2],normalized carrierfrequency offset is0.135and048respectively.integer part of symbol timing offset,useful symbol duration pe-riod and the nominal sampling frequency respectively.This al-gorithm has the same limited estimation range as that in Algo-rithm1and its estimation accuracy is influenced by the carrierfrequency offset[17].Algorithm3::Algorithm1and2perform the estimation onthe adjacent SP’s within the same OFDM symbol.In algorithm3and4,we derive the offset for thefine symbol timing from thepilots in the two consecutive OFDM symbols(Fig.2).Thatis,(3)Where,denotes the complex conjugationof,Algorithm4::The same as that in Algorithm3,SP’s of con-secutive OFDM symbols can be utilized.But the only differentfrom algorithm3is the phase characteristic of known pilots isnow givenby:(4)Lots of computer simulations validate the following conclu-sions:a.The performances of algorithms2and4outperformthat of algorithms1and3under multi-path fading channels re-spectively.This is because the phase characteristic is utilized inalgorithms2and4,while,the power characteristic is utilizedin algorithms1and3.It is well known that,power character-istic is much more sensitive to the multi-path fading channelsthan phase characteristic.b.When the normalized decimal car-rier frequency offset is less than certain value(about0.15thatof sub-carrier spacing),the performance of algorithms3and4outperform that of algorithms1and2and the best estimationresults can be obtained with Algorithm4.c.When the normal-ized decimal carrier frequency offset is larger than certain value(about0.15that of sub-carrier spacing),the performances of al-gorithms1and2outperform that of algorithms3and4and thebest estimation results can be achieved by Algorithm2.The de-tailed analysis for the effects of the carrier frequency offset onthefine symbol timing synchronization can be found in[17].Fig.3.Frequency synchronization estimator.C.The Symbol Timing Synchronization Algorithms in Burst Packet Transmission ModeThe synchronization requirements vary with the applications, therefore,we should adopt the appropriate synchronization techniques in both continuous and burst packet transmission modes respectively.As being discussed in Section II-B,it is inappropriate to do the symbol timing synchronization with pi-lots in the burst packet mode due to the stringent requirements on synchronization time.In[18],a novel scheme to do the coarse symbol timing with training symbols is proposed and, the computer simulations based on IEEE802.11(a)standard [3]illustrate that more accurate coarse symbol timing synchro-nization can be achieved by the convolution method in time domain than that by the ordinary MLE method,no matter it is in the office environment[19]or under much severe channel conditions[2].This really comes from the fully utilization of the convolution property of CP.D.Symbol Timing Synchronization Control ModelOther than the accuracy of the estimation in the symbol timing synchronization process,the robust and efficient syn-chronization control structure to ensure the system stability is also requested.A new symbol timing synchronization control model has been proposed in[10].Similar to those control models in[17],[20],it also has two synchronization states:the acquisition state and the tracking state.The difference is that the threshold and counters are utilized to perform the control process with less computational complexity than those in[17].IV.C ARRIER F REQUENCY R ECOVERY T ECHNIQUES Carrier frequency offset(CFO)caused by the Doppler shift, local oscillators mismatch between the transmitter and the re-ceiver ends,may introduce ICI and destroy the orthogonality of OFDM sub-carriers,resulting in the losses of SNR.With the insertion of the GIB in OFDM symbols,symbol timing error within a certain range will not introduce ISI and ICI.OFDM system is more sensitive to the CFO and the sampling clock offset(SCO).Regarding to higher modulation modes such as 64-QAM,tiny CFO may introduce severe degradation on the system performance[21].Carrier frequencyoffset puts an extra phase factorofin the received signal,where is the sub-carrierspacing,is the CFO normalizedby and is usu-ally divided into an integerpart,(multiple of the sub-carrier spacing,causing a shift of the sub-carrier indices),and a dec-imalpart,(less than half of the sub-carrier spacing,causes a number of impairments,including attenuation and rotation of the sub-carriers and ICI).We can divide CFO into three parts:the integer part,the coarse decimal part and thefine decimal part.CFO can usually be compensated for through the following procedures shown in Fig.3.First,a coarse symbol starting point for the FFT demod-ulation is provided by the coarse symbol timing module and then,the estimation and correction of the coarse decimal fre-quency offset in time domain is performed to minimize the ICI impact on the estimation in frequency domain,with the integerpart estimated in frequency domain to get the correct sub-car-rier index.Finally,the residual frequencyoffset,i.e.thefine decimal frequency offset is estimated.A tracking loop structure (the Acquisition and the Tracking Mode Switching module)can be exploited to coordinate the coarse decimal part,the integer part and thefine decimal part of the frequency offset.Each of them makes unique contribution to the recovery of the carrier frequency offset[50].Many literatures have discussed how to make OFDM systems less sensitive to the carrier frequency offset,for instances,per-form the windowing on the transmitted signals or use self-can-cellation schemes[22],[23].However,long prefix adopted in systems with these approaches results in low bandwidth effi-ciency.Generally,we can divide the carrier frequency recovery algorithms into three categories:a.Methods are based on training symbols or pilots[9],[24]–[33],named Data Aided(DA)method.b.Methods use of the intrinsic structure of OFDM symbols,e.g.cyclic prefix[7],[34]–[40],which is called Non DataAided(NDA)method.c.Blind approaches [41]–[43],which relies on the signal statistics and often has very high computational com-plexity,some approaches may have extra requirements on the channel statistics.A.Integer Carrier Frequency OffsetThe integer as well as the coarse decimal CFO correction can make the sub-carriers spacing offset less than half of sub-car-rier spacing in the present of more than tens of sub-carriers.Most algorithms for the integer CFO estimation [9],[29],[31],[44]–[47]nowadays have two major defects:a.Limited esti-mation range on CFO;b.Stringent requirement on the symbol timing synchronization.The earliest algorithm in this category was proposed by P.H.Moose [47]with the estimation rangelimitedwithin,that is,only 1/2that of sub-carrier spacing.P.H.Moose tried to overcome this problem by increasing thesub-carrier spacing to avoid phase offsetexceeding .How-ever,the increase of sub-carrierspacing satisfying (5)may decrease the useful OFDM symbol durationtime ,resulting in tighter requirements on the symbol timing synchronization.Besides,the increase of the sub-carrier spacing will not enlarge the range of the integer part estimation to a very largeextent.(5)T.M.Schmidl et al.,later,proposed an improved algorithm [9]with better performance under multi-path fading channel,and its estimation range was one time wider than that by P.H.Moose [47].Unfortunately,a large pre fix is still needed,for ex-ample,in DVB-T [2]systems,pre fix (2k mode)must be used.On the other hand,its estimation range is still very limited and is sensitive to the symbol timing errors.Three improved estimation algorithms are proposed in litera-ture [48]to overcome these defects.All of them use the power and phase characteristic of the known pilots,which is insensitive to the symbol timing errors and have a wider estimation rangeof integer part of CFO (i.e.,as largeas,with the total number of useful sub-carriers in one OFDM symbol).B.Coarse Decimal Carrier Frequency OffsetAs mentioned earlier,CFO estimation should follow three procedures.If the decimal part of CFO,however,can be es-timated in frequency domain,why should we carry out the coarse CFO estimation in time domain first?There are two main reasons:a.To reduce ICI caused by CFO,which lays the foundation on a more accurate CFO estimation in frequency domain;b.To estimate and compensate for the CFO all in time do-main,reducing the synchronization time,and is suitable for the systems of burst packet transmission mode.The early-proposed typical algorithm on the coarse decimal CFO estimation was from J.J.Van de Beek et al.[7]with CP characteristic exploited.T.M.Schimdl et al.,later,proposed a new algorithm named SCA [9].However,either of them has a very stringent requirement on the symbol timing.An improved algorithm,not so sensitive to the symbol timing errors was pro-posed recently in literature [49],with only(is the length of the Guard Interval)correlation window length utilized for es-timation,avoiding the data portion contaminated by the incor-rect phase information from the symbol timing errors.Computer simulations show that when the decimal part of the CFO approaches to 0.5of the sub-carrier spacing,the estimated value may,due to the multi-path fading,the phase noises as well as the discontinuity of the arctangent function,jump to the inverse polarity,as pointed out in literature [47].For example,if the decimal frequency offset in data streams is 0.498of the sub-carrier spacing,the estimate result with the typical algorithms mentioned above may be -0.467of the sub-carrier spacing.The strategy to avoid the above problem in P.H.Moose algorithm is to reduce the length of the DFT and use larger carrier spacing,degrading the overall system performance.A second-order IIR filtering can be used to solve this problem [49].C.Fine Decimal Carrier Frequency OffsetAfter correction based on the coarse decimal CFO estima-tion,the residual decimal CFO in data streams may be reduced to only 1%,and then the fine decimal CFO estimation deals with the residual CFO.The typical algorithm was also proposed by P.H.Moose [47].However,it suffered a problem of poor band-width ef ficiency.In fact,pilots embedded in the OFDM symbols can be utilized to do the fine decimal CFO.D.Carrier Frequency Offset Control ModelIt is necessary to have a control module to coordinate the operations of the integer CFO,the coarse decimal CFO and the fine decimal CFO [48].As shown in Fig.3,this module consists of two modes:the acquisition mode and the trackingmode.After the estimation on the integerpartand fine dec-imalpartin frequency domain,the counter value COUN will increase or decrease depending on whether the valueofis larger than a constant A (set by the system per-formance requirement,forexample,).The value of COUN decides whether it is in the tracking or the acquisition mode.Performance and detailed analysis on this control model is presented in [50]showing excellent performance in estima-tion,tracking and correction of CFO.E.Carrier Frequency Offset in the Burst Packet Mode There is no stringent requirement on acquisition time in the continuous systems such as DAB,DVB-T [2]and DMB-T [14],averaging method or filtering over many OFDM symbols can be adopted to increase estimation accuracy,where it is appro-priate to adopt those methods based on CP or pilots.Some lit-eratures make use of the null sub-carriers for power detection to estimate the CFO [51].However,for systems in the burst packet mode,repetitive structure is often utilized with,no differ-ence either between these null sub-carriers or the idle time be-tween neighboring blocks.Those methods,therefore,are inap-propriate in the burst packet mode.Because of the short duration time of packets,it has more stringent requirement on synchro-nization acquisition time (i.e.,acquisition done within a single OFDM symbol).Besides the requirement on estimation accu-racy,fast convergence is also needed.The accuracy of the CFO estimation in time domain,nonfeed back synchronization model are equally important to these systems and,the synchronization should be established only in time domain [13],[48].(a)(b)Fig. 4.Constellation variation due to the sampling clock offset.Total sub-carriers N=2048,cyclic prefix L=128,64-QAM modulation, normalized sampling clock offset is1ppm,after200OFDM symbols.Other factors follow DVB-T standard[2].V.S AMPLING C LOCK S YNCHRONIZATIONThe sampling clock errors are mainly from the mismatch of the crystal oscillators between the transmitter and the re-ceiver.Other factors such as multi-path fading,noise distur-bance,symbol timing estimation errors may also contribute to the sampling clock offset(SCO).The sampling clock errors will negatively influence the symbol timing synchronization.For ex-ample,assume1ppm sampling clock offset in2K mode with a GIB of512samples in DVB-T[2],the FFT window will move one sample around every400symbols.The higher the sam-pling clock offset,the more the influence on the symbol timing synchronization.Fig.4shows signal constellation variation due to the sam-pling clock offset.It is obvious that the larger the SCO,the more severe the distortion.Detailed analysis on the effects of sampling clock offset on symbol timing is presented in[52].In order to analyze the effects of SCO on the system performance in a more explicit way,SCO is divided into two parts:the sam-pling clock phase offset and the sampling clock frequency offset [17],[20],[53],[54].Effects of the sampling clock phase offset is similar to that of the symbol timing offset,leading to the signal phase distortion;while the sampling clock frequency offset in-troduces ICI.By defining Inter-Sample-Interference,effects of the sampling clock offset on system performance could be ana-lyzed deeply[55].The synchronous sampling and the asynchronous sampling are two different kinds of methods for the sampling clock syn-chronizations[56]–[58].1)Timing algorithms are usually used in the synchronoussystems to control both phase and frequency of a V oltageControl Crystal Oscillator(VCXO)[53],[59]–[61].Compared to the asynchronous digital sampling systems,it has large timingfluctuation due to high-level phasenoises.The need of the analog circuits makes it inconve-nient for the system integration[62].2)An independent oscillator is often exploited for samplingin an all-digital system.Timing algorithms are used tocontrol NCO(Numerical Control Oscillator)and then usethe NCO output to control the interpolatorfilter.BER per-formance of the asynchronous system in[54],[62]showsthat the asynchronous systems are more sensitive to CFOthan the synchronous puter simulations in[63]demonstrate that unrealistic interpolator may causecyclic tracking errors in asynchronous systems,whichnever occurs in the synchronous systems.The estimated sampling clock offset and decimal part of symbol timing error may be considered as an adjusting variable when we do sampling clock synchronization.This sampling clock adjusting variable is derived in frequency domain and then fed back to time domain to adjust digital oscillator,guar-anteeing the stability of the loop control circuit.VI.J OINT E STIMATION A LGORITHMSSome algorithms can be utilized for the joint estimation of all the synchronization errors including the symbol timing,the carrier frequency and the sampling clock offsets.Algorithms mentioned in the former sections such as[7]–[9],[47],are the typical algorithms to do the joint estimation of symbol timing and decimal CFO.The decimal CFO estimation utilizing the de-tected phase of the received frequency-domain complex data in the pilot sub-carriers or training symbols,is to be performed after the estimation of symbol timing errors.However,just as we have analyzed in Section IV-B,they all have stringent require-ment on the symbol timing synchronization.Some new joint es-timation algorithms are proposed recently[64],[65],in[64], the proposed algorithm with a weighted least squares technique generates offset estimates with minimum RMS errors.Multiple received OFDM symbols as an observation interval are utilized in[65],both of which are less sensitive to the symbol timing errors.The joint estimation and tracking of symbol timing and sam-pling clock errors are presented in[17],[53].The main problem。
2016年中国移动LTE中级优化培训-LTE技术原理
Lesson12主题:LTE技术原理时间:2016.08.04-08.05主讲:王智慧教材:《技术原理及未来热点概述》(华为、纸质),P53要点:一、LTE关键技术与特性1、设计目标:“三高、两低、一平”(1)三高:高峰值速率、高频谱效率、高移动性(2)两低:低时延、低成本(3)一平:基于分组交换的扁平化架构●较3G信道减少,用户面和高层信令取消专用信道,全部采用共享信道。
(物理层仍然保留了PDCCH和PUCCH信道,仅用于传输L1和L2层信令,如:调度、功控等,不承载高层信令)●无线网络时延:用户面< 10ms,控制面< 100ms。
2、高阶调制和AMC(自适应调制编码)(1)高阶调制:64QAM,6阶;(2)AMC:根据无线信道变化,选择不同的调制和编码方式;a)调制自适应:BPSK(仅PHICH)、QPSK(2阶)、16QAM(4阶)、64QAM(6阶);b)编码自适应:增减冗余编码,即信道编码。
●n阶调制即该调制方式有2的n次方个星座点,即可以采用2的n次方种波形。
阶数越高,每个星座点能够写到的信息量就越大。
(1)MIMO的两种模式a)复用模式(TM3):空间复用,不同天线发送不同信号,提升峰值速率;b)分集模式(TM2):不同天线发送相同信号,提升覆盖。
(2)MIMO传输方式●当前网络采用TM2、3、8自适应。
●前三项都是覆盖和小区平均吞吐率●只有空间复用才能同时提升系统容量、增加小区峰值吞吐率和增加小区平均吞吐率。
4、CA:载波聚合(1)R10提出,TR36.913;(2)最高支持5 x 20MHz = 100MHz;(3)需要Cat6以上终端支持;(4)分类:a)带内连续载波聚合;b)带内非连续载波聚合;c)带间载波聚合。
●目前网络支持:双载波、三载波。
5、OFDM:正交频分复用●相对FDM、TDM、CMD,实际OFDM是FDM的一种。
(1)发射端:IFFT;接收端:FFT;(2)各载波相互交叠,通过正交性实现有效传输;(3)优点:a)频谱效率高;b)对抗频选衰落;(4)缺点:a)频偏敏感;b)PARP高。
异构无线系统中的无线资源管理技术研究(信息与通信工程专业优秀论文)
最后对全文进行总结,并指出今后需要进一步研究的工作。
关键词:异构分层无线系统,呼叫接入控制(CAC),切换,流量均衡(LB), 服务质量(QoS)
II 知识水坝@pologoogle为您整理
华中科技大学博士学位论文
Abstract
With the rapid development of wireless communications, the various wireless networks will coexist. In order to relize the final goal of future wireless communications, accommodate mobile users increased enormously and offer multimedia traffic services with high quality, different wireless networks overlaid each other must be integrated to cooperate and form an uniform heterogeneous system. The radio resource management is a key technology and a research hotspot in the heterogeneous system. It includes many sub-areas such as call access control, handoff control, layer selection, load control, power control, packet schedule, capacity analysis and so on. The call access control (CAC) of bidirectional call-overflow, handoff, load control and others are emphatically studied in this thesis.
6G超大规模MIMO技术导读
专题:6G 超大规模MIMO 技术特邀策划人 章嘉懿㊀㊀工学博士,北京交通大学电信学院教授,博士生导师,国家级青年人才计划入选者㊁德国洪堡学者㊁IEEE 通信学会亚太地区杰出青年学者㊁爱思唯尔 中国高被引学者 ㊁全球前2%顶尖科学家㊁国际电信联盟青年科学家㊁中国科协青年人才托举工程入选者㊁中国电子学会优秀科技工作者㊂主要研究方向:多天线传输理论与方法㊂在国际顶级期刊和会议上发表学术论文100余篇,谷歌学术引用7000余次㊂荣获中国电子学会自然科学一等奖㊁教育部自然科学二等奖㊁IEEE ICC 最佳论文奖㊂担任IEEE JSAC㊁IEEE WCM㊁IEEE TCOM㊁IEEE TWC 等编委,‘无线电通信技术“编委㊁‘信号处理“青年编委,中国电子学会智慧交通信息工程分会副秘书长㊁IMT-2030智能超表面任务组副组长㊁中国电子学会青年科学家俱乐部会员㊁中国通信学会青年工作委员会委员㊁‘中兴通讯技术“杂志社促进产学研合作青年专家委员会委员㊂内容导读㊀㊀面向2030+,6G 将实现太比特峰值速率㊁微秒级时延和超广域覆盖㊂为了实现这些指标需求,超大规模多天线(MIMO)技术将在未来的6G 空口无线传输中作为最重要的关键技术之一㊂超大规模MIMO 是在现有大规模MIMO 基础上的进一步演进㊂通过部署超大规模的天线阵列,应用新材料,引入新的工具,超大规模MIMO 技术可以获得更高的频谱效率㊁更灵活的网络覆盖㊁更高的定位精度㊁更高的能量效率等㊂超大规模MIMO 的信道呈现出近场和非平稳等新特点,传统的信号处理技术无法适用,引入人工智能技术将有助于充分发挥超大规模MIMO 技术的潜力㊂超大规模MIMO 具备在三维空间内进行波束调整的能力,从而在提供地面覆盖之外,还可以提供非地面覆盖㊂然而,目前相关技术的研究还处于起步阶段,距离技术成熟与商用还面临着电磁信息论㊁信道测量与建模㊁网络架构㊁信号处理㊁资源管理㊁平台样机开发等方面的诸多挑战㊂鉴于上述情况,为了更好地将我国超大规模MIMO 领域的最新研究成果介绍给读者,进一步满足实际国情和6G 发展需求,探索面向6G 的超大规模MIMO 科学规律㊁技术突破和实际应用,加快网络强国建设,我们组织了本专题㊂针对超大规模MIMO 系统中的极化域信道估计调整,‘超大规模MIMO 系统中稀疏度自适应的极化域信道估计“提出了一种基于压缩感知的自适应极化域稀疏度同步正交匹配追踪(Adaptive Polar-domain Simultaneous Orthogonal Matching Pursuit,AP-SOMP)算法㊂AP-SOMP 算法利用信道相关度设计合理的判决准则来估计极化域信道稀疏度,从而在极化域信道稀疏度未知的情况下完成信道估计㊂该算法有效地克服了传统算法对信道稀疏度的依赖,具有更强的实用性㊂仿真结果表明,AP-SOMP 算法在归一化均方误差性能表现上优于传统的P-SOMP 算法,且算法复杂度并未明显增加㊂针对未来6G 中用户的业务流量呈现多样性的特点,‘具有用户QoS 要求的无小区mMIMO 系统最优下行功率分配策略“考虑了一个在保证时延敏感用户服务质量(Quality-of-Service,QoS)的前提下,最大化用户最小速率的优化问题,通过优化每个接入点的功率分配系数,求解优化问题得到最优解㊂通过数值仿真将所提出的优化算法求出的最优功率分配系数与均匀功率分配基准算法求得功率分配系数进行了对比,实验结果表明所提出算法在各种指标下均优于对比实验㊂超大规模天线阵列的孔径增加使阵列近场区域扩大,原有研究中的远场假设不再成立,对于ELAA 近场通信,应该建立正确的近场模型进行研究㊂基于此,‘6G超大规模天线阵列近场通信的波束赋形设计“建立了近场球面波信号模型并提出了ELAA 近场MIMO通信系统模型㊂通过进行波束赋形设计优化近场通信的可达和速率㊂为了突出正确近场通信模型的重要性,对比了原有远场平面波假设下的波束赋形设计在近场通信中的性能㊂此外,考虑到ELAA的硬件开销,设计了相位提取-迫零(Phase Extraction Zero-Forcing,PE-ZF)混合波束赋形方法㊂结果表明基于近场正确建模的波束赋形设计拥有最佳的和速率,同时提出的PE-ZF混合波束赋形方法拥有良好的性能,验证了ELAA近场通信波束赋形设计的重要性㊂针对基于均匀平面阵列的超大规模MIMO系统,‘基于离散面阵的超大规模MIMO近场性能分析“首先推导出近场有效自由度的解析表达式,然后得到信道容量的解析表达式㊂通过仿真,验证了所得表达式的准确性,同时揭示了通信距离和天线阵列尺寸等关键因素对超大规模MIMO系统近场通信性能的影响机理㊂‘基于电磁信息论的多用户超大规模MIMO的互信息研究“利用随机场对多个连续孔径超大规模MIMO之间的近场通信进行建模,推导了多用户干扰和不同噪声情况下多用户超大规模MIMO系统的互信息表达式,相比传统离散分析方法有更高的准确度,同时分析了离散点数㊁噪声功率等关键因素对超大规模MIMO系统互信息的影响㊂此外,基于模型探究了信号波长,噪声功率与互信息收敛时最大离散点数之间的关系,为XL-MIMO系统信号处理算法的设计提供了一定参考㊂超大规模MIMO可以大幅度提升未来通信系统的性能,如超高的频谱效率和空间分辨率㊁超低时延等㊂不同于现有研究工作主要关注于近场通信或远场通信,‘面向超大规模MIMO的混合远近场通信“考虑更加实际的混合远近场通信场景,即通信系统中同时存在近场和远场用户㊂具体来说,首先介绍超大规模MIMO系统中考虑混合远近场通信范式的重要性;然后简要介绍混合远近场通信的信道建模,并指出混合远近场通信场景中固有的关键特征,即能量扩散效应;随后详细介绍三种典型的混合远近场通信场景:混合远近场的干扰分析㊁无线信能同传㊁物理层安全,针对上述典型场景,详尽地指出其在混合远近场通信中相较于近场通信/远场通信的根本区别和面临的关键设计难题;最后总结了混合远近场通信中仍需关注和亟待解决的开放性问题㊂综上所述,本专题全方位地展示了超大规模MIMO相关技术,内容涵盖电磁信息论㊁信道估计㊁波束赋形㊁性能分析㊁混合远近场通信㊁物理层安全㊁无线性能同传等多方面相关技术㊂希望本专题能够对广大读者了解和研究超大规模MIMO提供有益的启示㊁参考和借鉴,共同搭建起开放的超大规模MIMO技术交流平台,促进我国超大规模MIMO领域技术的发展㊂最后,感谢编辑部各位老师在征稿通知发布㊁论文评审与意见汇总㊁论文定稿㊁编辑修改及出版所付出的努力和汗水;感谢专题评审专家及时㊁耐心㊁细致的评审工作;衷心感谢各位作者的辛勤工作和精心撰稿!。
《2024年基于深度学习的无线通信(FM)语音增强的研究》范文
《基于深度学习的无线通信(FM)语音增强的研究》篇一一、引言随着无线通信技术的快速发展,FM(调频)广播作为传统的音频传输方式,其语音质量与传输效率日益受到关注。
然而,由于无线通信环境的复杂性和多变性,FM广播中常常出现语音信号的失真、干扰和噪声等问题,影响了用户的收听体验。
因此,基于深度学习的无线通信(FM)语音增强技术的研究显得尤为重要。
本文旨在探讨基于深度学习的无线通信(FM)语音增强的研究现状、方法及挑战,以期为相关研究提供参考。
二、研究背景及意义随着深度学习技术的发展,其在无线通信(FM)语音增强领域的应用逐渐成为研究热点。
通过深度学习技术,可以有效地对无线通信中的语音信号进行降噪、去干扰和增强,从而提高语音的清晰度和可懂度。
该技术对于提高FM广播的音质、提升用户体验具有重要意义,同时也为无线通信技术的发展提供了新的思路和方法。
三、研究现状及方法(一)研究现状目前,基于深度学习的无线通信(FM)语音增强技术已经成为研究热点。
研究者们通过构建各种深度学习模型,如循环神经网络(RNN)、卷积神经网络(CNN)和生成对抗网络(GAN)等,对无线通信中的语音信号进行降噪和增强。
这些模型能够有效地提取语音信号中的特征信息,降低噪声和干扰对语音的影响。
(二)研究方法1. 数据集:构建包含无线通信(FM)语音信号的数据集,包括带噪声和不带噪声的语音样本。
2. 模型构建:根据无线通信(FM)语音的特点,构建适合的深度学习模型,如RNN、CNN或GAN等。
3. 模型训练:利用构建的数据集对模型进行训练,优化模型的参数,提高模型的性能。
4. 模型评估:通过对比模型处理前后的语音信号质量,评估模型的性能和效果。
四、技术研究及实现(一)技术研究在基于深度学习的无线通信(FM)语音增强技术中,关键技术包括特征提取、降噪算法和模型优化等。
特征提取是提取语音信号中的关键信息,为后续的降噪和增强提供基础;降噪算法是利用深度学习模型对带噪声的语音信号进行降噪处理;模型优化则是通过调整模型的参数和结构,提高模型的性能和泛化能力。
LTE-Advanced标准中一种基于反向重算的低存储容量Turbo码译码器结构设计
LTE-Advanced标准中一种基于反向重算的低存储容量Turbo码译码器结构设计詹明;文红;伍军【摘要】In the LTE-Advanced standards,to satisfy the low-power dissipation requirement in mobile scenarios,a decoder with small memory size has attracted extensive attention.By decomposing the trellis diagramof the adopted turbo code,this paper proposes a memory reduced decoding architecture based on reverse recalculation.A modified Jacobian logarithm is specially investigated for the reverse recalculation,and the reverse recalculation in logarithmic domain and the realization structure are also presented.It shows that at the price of low redundant calculation complexity,the memory size is reduced by 50%,while the decoding performance is very close to that of the Log-MAP algorithm.The proposed decoding scheme is superior to other decoding architectures in terms of dummy computation complexity,memory size and decoding performance.%在LTE-Advanced标准中,为满足移动环境下的低功耗要求,低存储容量的译码器结构设计引起了广泛关注.本文在分解Turbo码网格图的基础上,研究了前向状态度量的反向重算方法,提出了一种基于反向重算的低存储容量译码器结构设计方案.在Log-MAP算法下研究了一种适合反向重算的修正雅可比对数式实现方法,推导了反向重算的数学表达式,并给出了实现结构.结果表明,所涉及的反向重算译码结构,以很小的冗余计算为代价将存储容量降低了50%,译码性能非常接近Log-MAP算法,在冗余计算复杂度、存储容量和译码性能指标上具有更好的均衡性.【期刊名称】《电子学报》【年(卷),期】2017(045)007【总页数】9页(P1584-1592)【关键词】LTE-Advanced标准;Turbo码;MAP算法;低存储容量译码器结构【作者】詹明;文红;伍军【作者单位】西南大学电子信息工程学院,重庆 400715;电子科技大学通信抗干扰技术国家级重点实验室,四川成都 611731;上海交通大学网络空间安全学院,上海200240【正文语种】中文【中图分类】TN911.22Turbo码逼近Shannon极限的纠错性能[1],因而在无线通信系统中得到了广泛的应用.目前,Turbo码已为LTE-Advanced标准所采用[2,3],以保证高速、可靠的数据传输.LTE-Advanced标准中定义了Turbo码,而没有定义译码器,因此,Turbo码译码器设计成了业界的热点研究内容.在Turbo码译码器结构设计的研究中,误码率(Bit Error Rate,BER)、吞吐率(Throughput)和功耗(Power Dissipation)是三个同等重要的指标[4~6].为获得满意的BER性能,Turbo译码器实现主要采用对数域最大后验概率算法[7](Maximum a Posteriori Probability Algorithm in Logarithmic Domain:Log-MAP).由于该算法自身的属性,译码器中需要大容量的状态度量缓存(State Metric Cache,SMC).在采用Turbo码的无线接收机中,译码器功耗占整个接收机功耗的一半左右,而译码器功耗的50%以上用于对SMC的访问操作;进一步地,大容量的SMC使得译码器芯片面积较大,增加了芯片的静态漏电流功耗[5,8,9].因此,降低SMC容量,是低功耗Turbo码译码器结构设计研究中的重要内容.随着微电子技术的发展,深度亚微米技术使得算术运算的功耗远小于对SMC访问操作所需的功耗[9].以增加冗余计算为代价,代替对SMC的访问操作,是一个非常有效的低存储容量译码器结构设计策略.根据降低存储容量方式的不同,可分为两类:一类是采用反向计算的设计,D S Lee等提出了状态度量的反向计算试探设计方案[9],只有那些被认为不能反向计算的状态度量值才会存放在SMC中,并设置特殊的标志寄存器做识别.另一类是采用变换法的设计,L C Hung等提出了基-4追溯计算法[10],将8个状态度量值转换为6个差值度量和2个比特的符号位,SMC容量降低了20%;M Martina等人研究了Wash-Hadamard变换法[11],将状态度量压缩变换为位宽更小的值,SMC容量降低了约50%.然而,反向计算试探设计方案硬件开销大,引入了过多的冗余计算量,在低信噪比(Signal to Noise Ratio,SNR)时尤为明显.基于Wash-Hadamard的变换法虽然降低了更多的SMC容量,但本质上属于有损压缩,BER性能有一定损失,且冗余计算复杂度较高.为在冗余计算复杂度、SMC容量、以及BER性能之间取得更为理想的均衡性,本文以LTE-Advanced标准中的Turbo码为研究对象,将其译码网格图做分解,提出了一种前向度量后向重算的译码器结构设计方法.研究表明,在每个译码时刻的8个前向状态度量中,有4个不需要存储在SMC中.当需要这4个未存储的前向状态度量时,它们可以在后向状态度量递归计算的同时,被重新计算出来.为保证理想的BER性能,提出了一种适合反向重算的雅可比对数式(二变量的max*函数)简化计算方法,并推导了这种简化max*函数的反向计算.以简单的加法、移位和比较操作,给出了max*函数简化计算和反向计算的实现结构,使得冗余计算复杂度较低,BER性能与Log-MAP算法非常接近.LTE-Advanced标准中,Turbo码编码器如图1(a)所示,其中s1、s2和s3为移位寄存器状态.设k为时序,uk∈{0,1}为输入信息位,则系统位校验位构成码率1/3的编码序列[3].令s1s2s3的十进制数为分量编码器的状态,编码网格图如图1(b)所示.编码序列经二进制相移键控调制后,通过噪声方差为σ2的高斯白噪声信道,则对应的接收机输出软比特序列为以对应的未交织序列分量译码器为例,Log-MAP译码算法的数学表达式如式(1)表示.其中属于{-1,+1},分量编码器状态s的下标j∈{0,1,…,7},sj,k表示第k个时序的第j个状态,Lc=2/σ2;为分支度量和分别为前向和后向状态度量;和分别为uk=z,z∈{0,1}时的先验概率对数似然比(Log-Likelihood Ratio,LLR),后验概率LLR和外信息值.雅可比对数式max*(x1,x2)函数的定义如式(2)所示[12].max*(x1,x2)=ln(exp(x1)+exp(x2))3.1 基于网格图分解的反向重算考察图1(b)和式(1b)中的计算.从前向的递归可知由以及对应的分支度量计算得到.如果从相反的计算方向来看可由以及相应的分支度量计算得到.分析的反向计算,则可以将8个状态分为{0,2,5,7}和{1,3,4,6}两个部分,网格图分解如图2所示.因此,在,j2∈{0,1,…7}前向递归计算中,可以只将存储在SMC中,式(1d)需要来计算后验概率LLR时,这4个值可以利用存储在SMC中的以及相应的分支度量重新计算出来,而不必存储在SMC中.基于以上分析,可知在式(1b)中的具体计算可由式(3)代替,其中m1∈{2,7,0,5},m2∈{3,6,1,4}.再反向重算解得如式(4)所示,其中,m3∈{4,1,6,3},m4∈{1,3,4,6}.3.2 低存储容量的译码器结构Turbo类译码器原理图由交织/解交织器和两个软输入软输出(Soft In and Soft Out,SISO)分量译码器构成[13,14].设N为译码窗口宽度和分别为前向和后向状态度量的初始值(即当前译码窗口的边界度量值).基于第3.1节的论述,图3(a)给出了一种低存储容量的SISO译码器结构设计方案,与经典的译码器相比,本文设计方案有两点不同:(1)后进先出(Last In and First Out:LIFO)的SMC中只存储了状态s下标j2∈{1,3,4,6}的前向状态度量;(2)在后验概率LLR计算模块前,额外插入了一个模块用于反向重算j2∈{0,2,5,7}的前向状态度量.由于反向重算与后向状态度量递归计算的方向一致,且都需要同一时刻的分支度量因此后向状态度量递归计算模块与反向重算模块可并行工作,译码器工作时序见图3(b)所示.4.1 常规的简化max*函数实现方式反向重算分析考察第3.1节中的反向重算原理,为分析方便,式(3)从左至右依次设各个状态度量值、分支度量值为y、x1、c1、x2和c2,将式(3)改写成式(5)的形式.因此,式(4)也可统一表达为式(6)的形式.反向重算归结为在式(5)的约束条件下,已知y、x2、c2和c1,求解x1.根据式(1),max*函数是Log-MAP算法中最重要的译码操作.为避免式(2)中复杂的指数和对数计算,雅可比对数式都采取了近似计算的方式.以一定的误码率损失为代价,换取降低译码复杂度的好处,学者们提出了多种简化的max*函数实现方法[15~17].不同的简化实现方法,式(5)计算出来的值y不尽相同;为得到可靠的反向重算结果,式(6)的反向重算实现方式与采用的简化max*函数是一一对应的.研究表明,以译码复杂度、占据的芯片面积和BER性能为考察指标,文献[12]中提出的max*函数简化实现方法有明显的优势.结合式(5),这种简化的max*函数如式(7)所示.设d2为任意值,以包含x1的变量d1为考察对象,d1-d2为横坐标,y-d2为纵坐标,式(5)的精确计算和式(7)的简化近似计算如图4所示.分析图4可知,文献[12]中简化的max*函数实现,本质为对光滑曲线的四折线逼近.当d1-d2≥-2时,x1可在该区间内求解;而当d1-d2<-2时,d1因太小而在1区间内被忽略掉,无法求解x1.详细讨论文献[15~17]中的max*函数实现方式,都存在类似地情况.4.2 适合反向重算的max*函数实现基于第4.1节的分析,需构造一个新的雅可比对数式简化计算方法,它能确保任何条件下,d1都不会被忽略.为此,提出了如式(8)所示的max*函数简化计算方法. 设则式(8)有两个校正函数:f1(x)=ln(1+e-x)和f2(x)=ln(1+ex).为便于低复杂度实现和反向重算,采用折线对校正函数做逼近,如式(9)所示.与精确值相比,校正函数的折线近似比较见图5.进一步地,由式(9)的近似计算,结合式(7),式(8)可被近似写为式(10).当d1=d2时,由式(10)表达式解得y=d2+0.6875.可知当y-d2≤0.6875时,有d2≥d1,校正函数f1(x)的近似被用于计算max*函数;而当y-d2>0.6875时,则有d2<d1,校正函数f2(x)的近似被用于计算max*函数.因此,分两种情况推导x1的反向重算过程.(1)当y-d2≤0.6875时,由式(10)得到y的具体计算式:y=d2+max{-0.5x+0.6875,-0.125x+0.40625,-0.0078125x+0.0625}注意到此时x=d2-d1,代入式(11)中:①当y=d2-0.5x+0.6875时,解得d1=2y-d2-1.375,再代入d1=x1+c1:②当y=d2-0.125x+0.40625时,同理可得:③当y=d2-0.0078125x+0.0625时,可得:(2)当y-d2>0.6875时,由式(10)得到y的具体计算式:①当y=d2+0.75x+0.6875时,x=d1-d2,可得:②当y=d2+x时,可得:综合上述两种情况,将式(12)、(13)和(14),以及式(16)、(17)分别写成统一的数学表达式,则反向重算x1的精确表达式如式(18)所示.4.3 修正max*函数及反向重算实现结构在Turbo类译码器的实现中,状态度量采用了(10,3)的二进制量化方案[19]((q,f)中q是量化总比特数,f是小数位比特数),即可保证较好的BER性能.式(11)提出的修正max*函数实现方式,其参数经过优化,采用简单的移位、加法和比较操作即可完成.度量差值x的最大右移比特数为7,小于量化方案中度量值的总比特数.式(18)能精确的重新计算出x1,但式(16)中存在乘1/3的操作,为避免复杂的乘法操作,将1/3修改为0.25+0.0625+0.03125(即0.34375).仿真表明,替换对BER性能的影响很小(请参见5.3分析).根据以上分析,给出了修正max*函数实现方式和其反向重算的实现结构图,分别如图6、图7所示.5.1 冗余计算的复杂度分析低存储容量Turbo码译码器结构设计研究中[4,9,10,18,19],学者们在状态度量值(前向或后向)递归计算模块后边,插入了一个模块将状态度量值其变换压缩为占据SMC容量更小的变换值;而在SMC之后,又增加了一个重构解压模块计算原状态度量值.本文的设计方案中,通过修正状态度量递归计算中必须的max*函数实现方式引入反向重算,因而在状态度量递归计算模块之后不需要插入冗余计算,使得译码器结构更为简单,如图8所示.图8(b)中的反向重算模块,采用简单的比较、移位、加法和相应的控制单元即可完成(图7).表1统计了图6修正max*函数实现结构和图7反向重算实现结构的计算复杂度.需要指出的是,修正max*函数实现是译码算法中必须的操作,因而表1中所对应的操作不属于冗余计算复杂度.本文选择降低SMC容量相同的沃尔什-哈达玛变换[11](Walsh-Hadamard Transform,WHT)设计方案为比较对象.该方案设计引入了WHT变换、量化压缩和对应的解压缩、WHT反变换等复杂操作,其计算复杂度如表2所示.每个译码时刻,表1中的反向重算需执行4次,而表2中的量化压缩、解压缩等操作需执行8次.因此,本设计方案引入了较低的冗余计算复杂度.5.2 SMC容量比较Turbo译码器的硬件实现中,SMC容量是决定整体功耗的关键点.为便于分析,以基-4追溯计算[10]和基于WHT变换的状态度量压缩译码器设计方案为比较对象.对于LTE-Advanced标准中的Turbo码,图1(b)表明每个译码时刻有8个前(后)向状态度量值.在基-4追溯计算设计方案中,将8个状态度量值转化为6个同位宽的差值度量和4个比特的符号位,将SMC容量降低了20%.基于WHT变换的状态压缩设计方案,采用了最大值Log-MAP(Max-Log-MAP)译码算法,对状态度量值做WHT变换后,再做非均匀量化处理,使得变换值位宽为5比特,将SMC容量降低了50%.本文的反向重算译码器结构设计方案,每个译码时刻只需将4个状态度量值存储在SMC中,且不必做变换压缩等冗余计算,SMC容量降低了50%.比较结果如表3所示.5.3 BER性能仿真根据文献[2]构造码率1/3的LTE-Advanced标准Turbo码,研究不同数据帧长条件下的BER性能.仿真采用了并行窗译码结构,译码窗口宽度N=40,迭代次数为8,各种度量值的量化方案如表4[9~11,13,19];为改善BER性能,仿真中外信息值乘上一个度量因子δ[15],研究了基于Max-Log-MAP算法的WHT变换压缩结构设计方案,Log-MAP算法和本文反向重算译码器结构设计方案的BER性能.结果表明,不同帧长条件下,本文所提设计方案BER性能非常接近Log-MAP算法,且较基于Max-Log-MAP算法的WHT变换设计方案提高了约0.2dB.图9给出了帧长800和1440两种典型情况的BER性能比较.本文基于反向重算的译码器结构设计方案,采用了逼近误差很小的修正max*函数实现方法(图5).仿真中式(16)中的1/3被替换为0.25+0.0625+0.03125,引入了约3%的误差.分析式(4)重算可知由以及对应的分支度量重算得到,不存在误差递归传播的缺陷;式(18)中存在选择操作,3%的误差仅在0.6875<y-d2<2.75的特定条件下才被引入,使得本文设计方案具有非常接近Log-MAP算法的BER性能.进一步地,随着SNR的增加,重算误差对BER性能的相对影响随之减小,逐渐变得更接近Log-MAP算法.综合以上分析,基于反向重算的译码器结构设计方案,较已有设计方案的结构更为简单,引入的冗余计算复杂度低.SMC容量降低效果明显优于基-4追溯计算的设计方案,与采用WHT的状态度量变换压缩设计方案相同,但引入冗余计算复杂度低,在BER性能上有约0.2dB的优势.以BER性能,冗余计算复杂度和SMC容量为考察指标,本文基于反向重算的译码器结构设计方案,具有明显的总体优势.在Turbo类译码器的实现中,降低SMC容量是减小译码器整体功耗的一个重要策略.本文针对LTE-Advanced标准中的Turbo码译码器,在分解其译码网格图的基础上,通过分析现有max*函数简化实现方式的缺陷,针对性地研究了一种修正max*函数实现方式和反向重算实现结构,给出了对应的低存储容量译码器结构设计方案,并详细分析了该方案的冗余计算复杂度、SMC容量以及BER性能.结果表明,本文提出的译码器结构设计方案,较已有报到的低存储容量译码器结构设计方案更为简单,引入的反向重算模块计算复杂度低,SMC容量减小了50%,译码性能较最优的Log-MAP算法只有很小降低.文红(通信作者) 女,1969年生于成都,博士、教授、博士生导师,目前主要从事无线通信可靠和安全的交叉学科研究,开展LDPC码、物理层安全通信、喷泉编码、物理层无条件秘密通信领的研究.E-mail:*****************.cn伍军男,1979年生于湖南湘潭,上海交通大学网络空间安全学院副研究员,主要研究领域为:工物联网信息安全、控系统信息安全、下一代互联网安全、云计算技术及其安全、大数据技术及其安全等.詹明男,1975生于河南新县,博士、副教授、硕士生导师,研究方向为信道编码理论与技术、无线传感器网络、超高性能工业无线控制.【相关文献】[1]Berrou C,Glavieux A,Thitimajshima P.Near Shannon limit error-correcting coding and decoding:turbo-codes[A].International Conference on Communications1993[C].Geneva,Switzerland:IEEE Computer Society,1993.1064-1070.[2]3GPP TS 36.212 v11.3.0,3rd Generation partnership project:Multiplexing and Channel Coding (Release 11)[S].[3]3GPP TS 36.212 v9.2.0,3rd Generation partnership project:Multiplexing and Channel Coding (Release 9)[S].[4]Yoo I,Kim B,Park I C.Tail-overlapped SISO decoding for high-throughput LTE-Advanced turbo decoders[J].IEEE Transactions on Circuits and Systems-I:RegularPapers,2014,61(9):2711-2720.[5]Liu H S,Diguet J P,Jego C,et al.Energy efficient turbo decoder with reduced state metric quantization[A].Workshop on Signal Processing Systems 2007[C].Shanghai,China:IEEE Computer Society,2007.237-242.[6]Lin J S,Shieh M D,Liu C Y,et al.Efficient high-parallel turbo decoder for 3GPP LTE-Advanced[A].International Symposium on VLSI Design,Automation and Test2015[C].Hsinchu,Taiwan:IEEE Computer Society,2015.1-4.[7]Papaharalabos S,Sweeney P,Evans B G.Constant Log-MAP algorithm for duo-binary turbo codes[J].Electronics Letters,2006,42(12):709-710.[8]Schurgers C,Catthoor F,Engels M.Memory optimization of MAP turbo decoder algorithms[J].IEEE Transactions on VLSI Systems,2001,9(2):305-312.[9]Lee D S,Park I C.Low-power Log-MAP decoding based on reduced metric memory access[J].IEEE Transactions on Circuits and Systems-I:Regular Papers,2006,53(6):1244-1253.[10]Lin C H,Chen C Y,Wu A Y.Low-power memory-reduced traceback MAP decoding for double-binary convolutional Turbo decoder[J].IEEE Transactions on Circuits and Systems-I:Regular Papers,2009,56(5):1005-1016.[11]Martina M,Masera G.State metric compression techniques for turbo decoder architectures[J].IEEE Transactions on Circuits and Systems,2011,58(5):1119-1128.[12]Papaharalabos S,Mathiopoulos P T,Masera G,et al.On optimal and near-optimal turbo decoding using generalized max* operator[J].IEEE CommunicationsLetters,2009,13(7):522-524.[13]Lin C H,Wei C C.Efficient window-based stopping technique for double-binary turbo decoding[J].IEEE Communications Letters,2013,17(1):169-172.[14]Belfanti S,Roth C,Gautschi M,et al.A 1Gbps LTE-Advanced turbo-decoder ASIC in65nm CMOS[A].Symposium on VLSI Circuits 2013[C].Kyoto,Japan:IEEE Computer Society,2013.284-285.[15]Vogt J,Finger A.Improving the max-log-MAP turbo decoder[J].ElectronicsLetters,2000,36(23):1937-1938.[16]Classon B,Blankenship K,Desai V.Channel coding for 4G systems with adaptive modulation and coding[J].IEEE Wireless Communications,2002,9(4):8-13.[17]Wang H,Yang H W,D C Yang.Improved Log-MAP decoding algorithm for turbo-like codes[J].IEEE Communications Letters,2006,10(3):186-188.[18]Zhan M,Wu J,Zhou L,et al.A memory access decreased decoding scheme for double binary convolutional Turbo code[J].IEICE Transactions on Fundamentals,2013,E96-A(8):1812-1816.[19]Lin C H,Chen C Y,A Y Wu.Area-efficient scalable MAP processor design for high-throughput multi-standard convolutional turbo decoding[J].IEEE Transactions on VLSI Systems,2011,19(2):305-318.。
545-NR调制方案要求及评估
NR调制方案要求及评估在LTE中,已经有针对不同速率目标的调制方案,包括在微站增强中引入上行256QAM的高阶调制,以及在eMTC/NB-IoT中引入低PAPR调制。
仅依靠LTE中使用的调制方案或其直接扩展可以满足NR需求吗?例如,高达1024QAM调制在实现问题(例如EVM)方面受到允许的频谱效率的限制。
对于mMTC,LTE中使用的极低阶调制将导致频谱效率低,特别是当支持大量设备时,这将导致gNB和UE 的能效性能降低。
调制方式的选择取决于业务需求,这里重点讨论了5G网络中三种不同业务需求1.eMBB(Enhanced Mobile Broadband):更高的数据速率(例如,包括TCP在内的应用层为5-10 Gbps)、高频谱效率和低延迟(例如,1-2 ms的广域ARQ/HARQ 延迟)2.mMTC(massive Machine Type Communications):改进的链路预算、低设备复杂度、长设备电池寿命3.URLLC(Ultra Reliable Low Latency Communications):高可靠性(包错误率范围:1e-5和1e-9)和低延迟(从几毫秒降到<1ms)此外,在5G中,由于用例场景和需求的不同,mmWave和综合接入回程(IAB:integrated access and backhaul)也是不同调制支持的重要用例。
高峰值数据速率的调制和MIMO顺序要求为了支持高峰值数据速率,eMBB和mmWave都需要高阶MIMO和高阶调制。
图1显示了峰值数据速率与带宽缩放图的一些示例,作为峰值调制顺序和MIMO 流数量的函数关系(在TDD eMBB场景的峰值数据速率情况下假设约40%的总PHY/MAC开销)。
可以看出,为了获得5~10Gbps甚至更高的峰值数据速率,对于200MHz~300MHz的总带宽,应该考虑高阶调制256QAM~1024QAM和高阶MIMO(4~8个流)。
无线流媒体自适应链路层HARQ控制策略
无线流媒体自适应链路层HARQ控制策略
靳勇;乐德广;白光伟;王军元
【期刊名称】《计算机测量与控制》
【年(卷),期】2010(018)003
【摘要】无线网络动态的信道特性、高误码率和带宽有限等特点,使得在无线环境下为实时流媒体传输提供QoS保证面临更大的挑战;提出了一种用于无线实时流媒体传输的自适应链路层HARQ控制策略,针对不同的信道状况动态选择混合ARQ 方案;该策略采用跨层设计的方法,在应用层采用自适应FEC策略,在视频源数据和冗余数据之间动态分配网络带宽;数学分析和仿真验证表明,该策略能使接收方获得最大的可播放帧率,有效地提高流媒体传输的可靠性和实时性.
【总页数】4页(P559-561,564)
【作者】靳勇;乐德广;白光伟;王军元
【作者单位】常熟理工学院,计算机科学与工程学院,江苏,常熟,215500;常熟理工学院,计算机科学与工程学院,江苏,常熟,215500;南京工业大学,计算机科学与技术系,江苏,南京,210009;中国航天科工集团八五一一研究所,江苏,南京,210007
【正文语种】中文
【中图分类】TP273
【相关文献】
1.基于跳数的WSN自适应链路层差错控制策略 [J], 靳勇;乐德广;白光伟
2.基于Kalman滤波的无线流媒体自适应混合FEC/ARQ控制策略 [J], 白光伟;靳
勇;张芃
3.多跳无线传感器网络自适应链路层FEC/ARQ控制策略 [J], 靳勇;乐德广;白光伟;常晋义
4.无线传感器网络自适应链路层FEC控制策略 [J], 靳勇;乐德广;白光伟
5.支持区分服务的自适应链路层HARQ控制策略 [J], 靳勇;白光伟
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The author is with Marvell Semiconductor, Sunnyvale, CA 94089 USA (e-mail: nkravi@).
Digital Object Identifier 10.1109/TCOMM.2003.815080
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 8, AUGUST 2003
1313
Adaptive Channel Partitioning and Modulation for Linear Time-Varying Channels
Ravi Narasimhan, Member, IEEE
Abstract—We present a novel channel partitioning and modulation technique for linear time-varying (LTV) channels using adaptive bases of localized complex exponentials. We show that localized complex exponentials are approximate eigenfunctions of underspread LTV channels. A basis of localized complex exponentials that approximately diagonalizes the LTV channel is selected adaptively by the receiver during a training period. The basis selection process is equivalent to matching the support intervals of the localized complex exponentials to the rate of the channel time variation. The receiver sends information regarding the selected basis to the transmitter which modulates the subsequent data stream in this basis. The adaptive modulation technique performs significantly better than conventional orthogonal frequency-division multiplexing systems for rapidly varying LTV channels such as time-frequency-selective mobile radio channels.
Index Terms—Best basis methods, mobile communications, orthogonal frequency-division multiplexing (OFDM), timefrequency analysis, wavelets.
I. INTRODUCTION
Many LTV channels encountered in practice satisfy the underspread property [5]. Optimal precoding for underspread LTV channels is described in [6] using approximate singular functions. This method assumes perfect channel knowledge is available a priori at the transmitter. In [7], nonorthogonal pulses are used in multicarrier modulation for underspread channels. In this technique, the transmit and receive pulses, which are different, satisfy a biorthogonality condition. The lack of orthogonality represents a compromise between the performance in additive white Gaussian noise (AWGN) and the performance in a time-varying channel. Furthermore, the design of the pulses requires knowledge of the channel scattering function, i.e., the channel statistics. Another paper [8] uses the wavelet decomposition for modulation. This method selects the resolution depth and the dimension of the wavelet subspace assuming knowledge of the channel scattering function.
I N A DIGITAL communication system, the data symbols are the coefficients of a linear combination of basis functions that forms the modulated signal. Channel partitioning techniques select basis functions that diagonalize the communication channel operator, and thereby, reduce the channel operator to a set of independent scalar multiplications. The channel partitioning thus allows individual data symbols to be detected independently. For a general discrete-time channel, optimal channel partitioning requires a singular value decomposition (SVD) of the channel matrix. In vector coding, the data symbols are modulated and demodulated using the left and right singular vectors [1]. Vector coding requires knowledge of the channel matrix at the transmitter. For linear time-invariant (LTI) channels, orthogonal frequency-division multiplexing (OFDM) achieves near-optimal channel partitioning without channel knowledge at the transmitter by the insertion of a cyclic prefix. The channel matrix then becomes circulant; thus, the data symbols are modulated by the eigenvectors of a circulant matrix, which are given by the discrete Fourier transform (DFT). For linear time-varying (LTV) channels, the DFT does not diagonalize the channel matrix. Furthermore, vector coding cannot be used in practice for rapidly varying LTV channels since the channel can change significantly before the channel state information can be obtained at the transmitter.