汽车总布置人机工程学
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
6、视野校核
汽车总布置人机工程学
6、视野校核
汽车总布置人机工程学
6、视野校核
汽车总布置人机工程学
6、视野校核
汽车总布置人机工程学
6、视野校核
汽车总布置人机工程学
6、视野校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
5、人体坐姿校核
汽车总布置人机工程学
人机工程学是20 世纪70 年代初迅速发展起来的一 门新兴学科,它从人的生理和心理出发,研究人-机- 环境 相互关系和相互作用的规律,并使人—机系统工作效能 达到最佳。在汽车车身设计中应用人体工程学,就是以 人(驾驶员、乘客) 为中心,研究车身设计(包括布置和设 备等) 如何适应人的需要,创造一个舒适的、操纵轻便 的、可靠的驾驶环境和乘坐环境,即设计一个最佳的人 —车—环境系统。
汽车总布置人机工程学
3、汽车人机工程的相关标准
国内标准
汽车总布置人机工程学
3、汽车人机工程的相关标准
国外标准
汽车总布置人机工程学
4、汽车人机工程关键硬点定义
汽车总布置人机工程学
4、汽车人机工程关键硬点定义
汽车总布置人机工程学
汽车设计中的人机工程学
汽车设计中的相关应用
NO.1 确定汽车造型的硬点尺寸 NO.2 确定汽车内部空间尺寸 NO.7 汽车乘坐安全性(主动、被动安全性) NO.3 校核驾驶员的最佳坐姿 NO.8 汽车舒适性(噪音、振动、乘坐空间和温度) NO.4 校核操纵方便性 NO.9 汽车使用方便性
NO.5 校核视野
NO.10 汽车装配保养方便性 NO.6 校核上下车方便性 NO.11 轿车娱乐性(收音机、CD、DVD机等) NO.12 轿车外形观赏性(车型样式、色彩等) 注:其中前6项与轿车总布置关系最大,直接需要总布置进行设计和校核。
关于就脚控制件的布置方面批准车辆的统一规定
8
人体坐姿校核
校核目的 在整车布置设计的过程中,为了能尽量降低驾驶员的疲劳程度,通过对人体的生理结构进行 研究而得到人体的舒适驾驶姿势,这是在总布置设计中必须遵守的依据,同时本着提高车内空 间利用率、满足外造型和整车尺寸原则,进行人性化的最优化设计。 校核内容 驾驶员SAE95%人体坐姿舒适性校核 后排乘员SAE95%人体坐姿舒适性校核 驾驶员SAE5%人体坐姿舒适性校核 引用标准 SAE J1100-2005 Motor Vehicle Dimensions(汽车尺寸) SAE J826-2002 H点机械和设计工具规程和规格 SAE J4002-2005 H点机械和设计工具规程和规格 SAEJ1517-1998 驾驶员选择的座椅位置 SAE J1052-2002 汽车驾驶员及乘员头部位置
6
各国相关标准
美国汽车工程师学会标准(SAE):
SAE J1100-2005 Motor Vehicle Dimensions(汽车尺寸) SAE J826-2002 H点机械和设计工具规程和规格 SAE J4002-2005 H点机械和设计工具规程和规格 SAEJ1517-1998 驾驶员选择的座椅位置 SAE J1052-2002 汽车驾驶员及乘员头部位置 SAE J941-2002 汽车驾驶员眼点位置 SAE J1050-2003 驾驶员视野的描述和测量 SAE J287-2007 驾驶员手控制区域 SAE J1138-1999 乘用车多用途车和总重量不超过100001b 的货车的驾驶员手操作位置设计标准
车辆人机工程
车辆总布置人机工程设计的一般步骤
第五个步骤:
对整车的安全性进行校核,校核内容包括 车内外凸出物的校核、安全带的校核、安 全气囊的布置、上下车方便性等方面。
驾驶员眼椭圆与视野设计
驾驶员眼椭圆
汽车行驶时80%以上的交通信息是由驾驶
员视觉得到的,驾驶员的视觉通道是最重 要的信息通道。
驾驶员眼椭圆与视野设计
驾驶员的手伸及界面及操作件的合理布置
驾驶员的手伸及界面及操作件的合理布置
检验步骤如下: (1)测量出欲检验汽车驾驶室的以下几项尺寸:
Hz,D,Wx,Wz,α,β,γ与手伸及界面有关的驾驶室尺寸;
(2)根据标准中给出的驾驶室尺寸综合因子G的计算公式算出G 值;
(3)算出手伸及界面及界面前后方向上基准面HR离踵点的距离
百分位
百分位表示人体的某项基础数据对于使用对象中有百分 之几的人可适用,它是人体工程学中一条基本的设计原 则。百分位最简单分为三档: 第5 百分位、第50 百分位、第95 百分位。 有时,由于地域辽阔、自然环境复杂、人体差异较大等 原因,百分位的档数需要适当增多。 车身设计中一般采用5 %、50 %和95 人体尺寸。
C)蓄电池充电状况的显示信号; D)安装在仪表板上或转向柱上的自动变速杆的档位的显示 装置。 以上显示信号显示区的其余部分,在头部转动时应是可见 的。
驾驶员的手伸及界面及操作件的合理布置
(3)以下信号指示器的照明区应在至少为18mm2的一个单独区域内, 且在头部不转动情况下应能见到 A)制动器; C)转向指示器; E)驻车制动器; B)前照灯远光; D)紧急报警器; F)安全带指示器;
;
垂直方向视角应能看见最后 H点后方60m出的交通情况。
汽车总布置设计-人机工程
校核内容
驾驶员SAE95%人体坐姿舒适性校核 后排乘员SAE95%人体坐姿舒适性校核 驾驶员SAE5%人体坐姿舒适性校核
引用标准
SAE J1100-2005 SAE J826-2002 SAE J4002-2005 SAEJ1517-1998 SAE J1052-2002 Motor Vehicle Dimensions(汽车尺寸) H点机械和设计工具规程和规格 H点机械和设计工具规程和规格 驾驶员选择的座椅位置 汽车驾驶员及乘员头部位置
E点
“E点”指驾驶员眼睛的中心,用于评估A柱妨碍视野的程度。
直接视野视点
参考IDG标准,用于校核A、B、C柱直接视野障碍角度的视点,相对驾驶员R点的坐标为 (0,0,635)。
16
四、人体坐姿校核
校核目的
在整车布置设计的过程中,为了能尽量降低驾驶员的疲劳程度,通过对人体的生理结构进行研 究而得到人体的舒适驾驶姿势,这是在总布置设计中必须遵守的依据,同时本着提高车内 空间利用率、满足外造型和整车尺寸原则,进行人性化的最优化设计。
13
三、人机工程关键硬点定义
眼椭圆大小
14
三、人机工程关键硬点定义
眼椭圆位置
其中:具有离合踏板时t=1,无离合踏板时t=0 L1:加速踏板参考点(PRP)X坐标 L6:速踏板参考点到方向盘中心水平距离 H30:R点到踵点垂直距离 W20:R点Y坐标 H8:驾驶员踵点(AHP)Z坐标
15
三、人机工程关键硬点定义
25
四、人体坐姿校核
驾驶员SAE5%人体坐姿舒适性校核 轿车驾驶员人体坐姿舒适推荐值
代码 尺寸名称 舒适参考范围 250-405 —— 20-30 95-115 —— 100-145 87-110
汽车设计中的人机工程学:驾驶舒适性与便捷性
汽车设计中的人机工程学:驾驶舒适性与便捷性现代汽车设计不仅仅注重外观和性能,还强调驾驶舒适性与便捷性。
这其中一个重要的方面就是人机工程学。
人机工程学是一门科学,研究如何在人类使用产品或系统时优化互动界面,以提高用户体验。
在汽车设计中,人机工程学的原则可以应用于提升驾驶员的舒适性和驾驶操作的便捷性。
一、座椅设计在汽车设计中,座椅是直接接触驾驶员身体的部件,因此它的设计对于驾驶舒适性至关重要。
座椅的舒适性取决于其人体工程学设计,包括座椅形状、材料选择、头枕和支撑等。
合适的座椅设计可以减少驾驶员在长时间驾驶中的疲劳感,提高驾驶舒适性。
二、仪表盘和控制面板布局汽车仪表盘和控制面板的布局需要符合人机工程学原则,以提供便捷性和易用性。
在设计仪表盘时,需要将常用的控制按钮放置在驾驶员容易触及和操作的位置上,以减少驾驶员的注意力转移。
此外,使用清晰易读的指示器和显示器也可以提高驾驶员的操作便捷性。
三、操控性与人机界面操控性是指驾驶员操作汽车时的手感和反馈感。
人机界面则是指驾驶员操作汽车时与汽车系统进行互动的方式,如方向盘、油门和刹车踏板等。
良好的操控性和人机界面设计可以使驾驶员更加轻松地控制汽车,并提高驾驶的安全性和舒适性。
四、噪音和振动控制在汽车设计中,噪音和振动对于驾驶舒适性的影响不容忽视。
合适的隔音材料和减震措施可以降低汽车内部和外部噪音的传递,提供一个安静和舒适的驾驶环境。
此外,减少汽车的振动也对驾驶员的舒适性具有重要意义。
五、人机交互技术应用随着科技的发展,人机交互技术在汽车设计中得到了广泛的应用。
例如,触摸屏、语音识别和手势控制等技术可以使驾驶员更加方便地操作车辆和访问汽车系统。
这些技术的应用不仅提高了驾驶员的便捷性,也增强了驾驶员与汽车之间的互动体验。
综上所述,人机工程学在汽车设计中扮演着重要的角色,关乎驾驶员的驾驶舒适性和操作便捷性。
通过合理的座椅设计、仪表盘和控制面板布局、操控性和人机界面的优化、噪音和振动的控制,以及人机交互技术的应用,汽车设计师可以为驾驶员提供更好的驾驶体验。
第4章 基于人机工程学的车身布置设计
第4章 基于人机工程学的车身布置设计 4.3 车身内部人机设计辅助工具
4.3.1 H点装置 H点装置(H Piont Device)是车身布置和测量的重要工具,对于进行驾驶 室人机工程学设计和参数测量、辅助进行驾驶室内部基准点的定位具有重要 意义。
车身布置设计时,应将人—车—路作为一个系统来研究,既要充分考虑 人的因素,如人体尺寸、人的生理和心理特性、人的习惯等;又要充分考虑 道路交通特性。
根据人体的测量尺寸、生理结构和感知特点甚至心理特点,确定驾驶的最 舒适姿势、座椅的形状、仪表板的布置、方向盘的形式及它们之间的相互位 置关系,校核操纵轻便性、乘坐舒适性、上下车方便性、视野性等。
SAE J826 HPM-Ⅱ型H点测量装置
汽汽车车车车身身结构结与构设与计设多计媒体教学系统
第4章 基于人机工程学的车身布置设计
2.H点设计工具
SAE J826的H点设计工具
汽汽车车车车身身结构结与构设与计设多计媒体教学系统
第4章 基于人机工程学的车身布置设计
3.H点装置上的基准点 (1)H点 是H点装置上躯干与大腿的铰接点,在不同场合其表现形式也不 同。 1)设计H点 它是借助HPD按一定程序建立的H点,用以表达设计乘坐位置。 2)乘坐参考点SgRP 对指定乘坐位置而言,这是一个特殊的设计H点,它 具有以下特点: ① 是车辆设计过程的初期就定义的重要参考点。 ② 虽然行程可调节座椅在其H点调节轨迹上有许多设计H点,但只有唯一一 点定义为SgRP。 ③ 驾驶员的SgRP可用于定位一些布置工具,用来定义了许多关键尺寸。 3)实际H点 它是将HPM按规定步骤安放在实车指定乘坐位置座椅上时, 所测得的H点。
第4章 基于人机工程学的车身布置设计 视野性
人体工程学在车辆设计中的应用
人体工程学在车辆设计中的应用人体工程学是一门关于人类身体与机器人设备、工作环境、产品设计等相互关系的学科。
它研究如何使人在使用机器人设备或工作环境中更加舒适、高效和安全。
在现代汽车设计中,人体工程学起着重要的作用。
通过合理运用人体工程学原理,车辆制造商可以提高驾乘者的舒适度、安全性和操作便利性。
本文将深入探讨人体工程学在车辆设计中的应用。
人体工程学应用于汽车座椅设计。
座椅是驾乘者与汽车之间直接接触的部分,其设计质量直接影响驾乘者的舒适度。
人体工程学研究驾驶员和乘客的身体尺寸、姿势和运动,以确定最佳的座椅设计。
例如,调整座椅的高度、倾斜角度、腿部支撑等,以确保驾驶员的腰部和膝盖不会过度疲劳。
人体工程学还研究座椅材料和填充物的选择,以提供足够的支撑和舒适性。
人体工程学在汽车控制面板和操纵杆设计中起着重要的作用。
车辆的控制面板和操纵杆设计直接影响驾驶员对汽车的操控能力。
人体工程学研究驾驶员的视线和手部运动,以确定控制面板和操纵杆的最佳位置和形状。
例如,人体工程学可以帮助确定方向盘、刹车和油门踏板的位置和尺寸,以确保驾驶员能够轻松操作,减少驾驶疲劳和失误。
人体工程学在汽车安全设备设计中也发挥着重要的作用。
汽车安全系统的设计目标是最大程度地减少事故的发生,并保护驾驶员和乘客的生命安全。
人体工程学研究驾驶员和乘客在事故中的受伤方式,以确定最佳的安全系统设计。
例如,研究表明,保持驾驶员和乘客的正常坐姿有助于减少事故时颈椎和脊椎的伤害。
基于这一发现,车辆制造商可以采用人体工程学原理设计出更加合适的头枕和安全带系统,以保护驾乘者的颈部和背部。
人体工程学在车辆外观设计中也扮演着重要的角色。
车辆外观设计决定了车辆的形象和品牌识别度。
人体工程学研究驾驶员和乘客对汽车外观的审美感知和兴趣点,以确定最佳的外观设计。
例如,人体工程学可以帮助确定车身线条的流畅度和曲线的平滑度,以提高车辆外观的吸引力和流线型性能。
总结起来,人体工程学在车辆设计中发挥着重要的作用。
浅谈整车总布置DMU校核
浅谈整车总布置DMU校核整车总布置DMU校核是一种基于数字化技术的设计方法,可以使设计师在设计整车布局时可以快速地进行评估和对比设计方案的优劣。
这种校核方法在汽车制造行业中被广泛使用。
整车总布置DMU校核包括多个方面的校核,以下是其中的主要校核:1. 空间校核:通过将各个部件、系统的三维CAD模型共享,可以在虚拟环境中进行整车布置的空间校核。
空间校核主要是为了验证各个部件在车身内的布置是否合理,以及检查不同部件之间的冲突和干涉情况,避免设计时出现空间上的问题。
2. 人机工程学:整车总布置DMU校核可以通过各种手段,例如天线覆盖面积、人类工程学等来优化驾驶员的认知、操作和驾驶体验。
这种校核方法主要是为了保证车辆的人机工程学符合人类的生理需求,方便驾驶员使用车辆。
3. 强度校核:在整车总布置DMU校核中,设计师需要考虑车身的强度和安全性。
这种校核包括分析车身的结构和材料来保证车身的刚度和抗撞性,通过模拟各种比例载荷下的变形和应力来检查车身设计的结果是否符合标准。
4. 风洞校核:风洞校核是车辆设计中必要的一步。
通过在虚拟环境中进行风流场分析来优化车辆的气动性能,这种校核可以说明车辆在不同速度下的行驶情况,帮助设计师理解车流线和起伏以及风压的分布,以便进行车辆设计的优化。
整车总布置DMU校核是一种高效的设计方法,可以大大缩短设计周期和降低错误率。
这种方法已经广泛应用于汽车制造行业,成为车辆设计的重要组成部分。
整车总布置DMU校核不仅可以优化车辆设计,还可以提高整车的生产效率和质量。
通过虚拟环境,整车厂商可以在没有实际生产车辆的情况下,进行生产线的布置和工艺分析,以便提高生产效率。
此外,在整车制造过程中,还可以利用DMU校核来分析装配过程,并验证各组件的匹配性和装配性,以确保制造出符合标准、具有良好质量的整车。
这种校核方法并不是只具有汽车制造行业可以采用,而是可以运用在其他的制造业中。
此外,整车总布置DMU校核还可以支持车辆的后期服务和维护。
汽车设计中的人机工程学研究
汽车设计中的人机工程学研究在现代社会,汽车已经成为人们生活中不可或缺的一部分。
随着科技的不断进步和人们对舒适性、安全性及便利性要求的提高,汽车设计中的人机工程学愈发受到重视。
人机工程学旨在研究人、机器及其工作环境之间的相互关系和相互作用,以实现系统的高效、舒适和安全。
在汽车设计领域,运用人机工程学原理可以优化车内空间布局、驾驶操作界面、座椅舒适度等方面,从而提升驾驶者和乘客的体验。
汽车座椅的设计是人机工程学在汽车领域的重要应用之一。
一个好的汽车座椅应当能够为驾驶者和乘客提供良好的支撑,减轻长时间乘坐带来的疲劳感。
座椅的形状、尺寸和材质都需要经过精心考量。
座椅的靠背角度和高度应可调节,以适应不同身材的人群。
同时,座椅的坐垫长度和宽度也要合适,能够均匀地支撑腿部,避免局部压力过大。
此外,座椅的材质应具有良好的透气性和吸湿性,以保持舒适的坐感。
驾驶操作界面的设计也是人机工程学研究的重点。
仪表盘、中控台、方向盘等部件的布局和操作方式应符合人体的生理特征和操作习惯。
仪表盘上的信息显示要清晰易读,重要的信息如车速、转速、油量等应位于显眼位置。
中控台的按键和旋钮应易于操作,避免驾驶者在操作时分散注意力。
方向盘的握感要舒适,其直径和转向力度也要适中,以保证驾驶者能够轻松准确地控制车辆的行驶方向。
车内空间的布局同样离不开人机工程学的指导。
车门的开启角度和门槛高度要方便乘客上下车,尤其是对于老年人和儿童。
车内的头部空间、腿部空间和肩部空间要足够宽敞,以避免乘客感到压抑和局促。
此外,储物空间的设计也要合理,方便乘客存放物品。
人机工程学还在汽车的视野设计方面发挥着重要作用。
良好的视野对于行车安全至关重要。
挡风玻璃的尺寸和形状应能够提供广阔的前方视野,减少盲区。
后视镜的位置和角度应经过精心调整,确保驾驶者能够清晰地观察到车辆后方和侧方的情况。
A 柱的设计也需要在保证车身结构强度的前提下,尽可能减小对视野的遮挡。
除了舒适性和便利性,人机工程学在汽车的安全性设计方面也有着不可替代的作用。
基于人机工程学的轿车车身总布置设计
垂 直距离z95和z5(座椅垂直调节升程 H58=z5- z95),可计算得 到 座 椅 水 平 调 节 行 程 L23=x95 - x5。 最 终 可 确 定 座 椅 行 程 调 节 范 围 如 图 2b 所 示 。
图 2 驾 驶 员 座 椅 位 置 和 行 程 调 节 的 确 定 方 法
图 1 驾 驶 员 适 宜 乘 坐 姿 势
同的数值,便可方 便 地 得 到 眼 椭 圆 和 头 廓 包 络 面 新的位置坐标以及不同百分位的三维眼椭圆和头 廓包络面模型,从 而 进 行 不 同 尺 寸 下 模 型 的 分 析 与 对 比 ,确 定 最 佳 的 数 值 ,这 样 大 大 降 低 了 建 模 的 工 作 量 ,提 高 了 工 作 效 率 。
1.2 驾 驶 员 座 椅 位 置 和 行 程 调 节 的 确 定 驾驶员座椅的位 置 是 通 过 座 椅 参 考 点 SgRP
点来确定的。SgRP 点 是 座 椅 制 造 厂 规 定 的 设 计 基准点,考虑到座 椅 的 所 有 调 节 形 式 (水 平、垂 直 和 倾 斜 调 节 ),座 椅 参 考 点 确 定 了 在 正 常 驾 驶 或 乘 坐 的 最 后 位 置 ,它 表 示 当 95th 百 分 位 的 人 体 模 型 按规定摆放在座椅上时,实际 H 点应与座椅参考 点 SgRP 重合。驾驶员座椅位置和行程调节的确 定方法如图2所示。为满足大多数驾驶员乘坐需 求,参考 SAE 标准的 H 点位置曲线模型,如图2a 所示,在模型中通过选取 95th百分位与 5th 百 分 位的 H 点位置曲线来确定座椅的行程调节(这里 仅考虑水平和 垂 直 调 节)范 围,其 H 点 位 置 曲 线 的数学模型为: x97.5 =936.6+0.613 879z-0.001 862 47z2, x95 =913.7+0.672 316z-0.001 955 30z2, x90 =885.0+0.735 374z-0.002 016 50z2, x50 =793.7+0.903 387z-0.002 255 18z2, x10 =715.9+0.968 793z-0.002 286 74z2,
汽车人机校核(总布置)
多学科交叉
在此添加您的文本16字
结合心理学、人机工程学、设计美学等多个学科的理论和 方法,提高人机校核的全面性和准确性。
在此添加您的文本16字
虚拟现实与仿真技术
在此添加您的文本16字
利用虚拟现实和仿真技术,构建更加真实、全面的模拟环 境,以便更准确地预测和评估人机交互的效果。
THANK YOU
汽车人机校核(总布置)
目
CONTENCT
录
• 人机校核概述 • 人体模型介绍 • 驾驶员人机校核 • 乘员人机校核 • 行人保护人机校核 • 总结与展望
01
人机校核概述
人机校核的定义和目的
定义
人机校核是对汽车内部空间、驾驶员和乘客的操作界面以及车辆 外部环境进行评估的过程,以确保驾驶员和乘客在使用过程中的 舒适性和安全性。
02
人体模型介绍
人体模型的选择
静态人体模型
用于评估汽车内部空间和座椅设计的合理性,确保 乘客的舒适性和安全性。
动态人体模型
用于模拟汽车行驶过程中乘客的姿态和行为,预测 可能出现的碰撞和伤害风险。
人体模型比例
选择与实际人体比例相符合的人体模型,以便更准 确地模拟乘客在汽车内的行为和姿态。
人体模型的参数
案例二
某轿车车型的人机校核。针对不同体型乘员进行校核,发现某一体型乘员在车内坐姿不舒适,经过调整座椅设计, 提高了该体型乘员的舒适性。
05
行人保护人机校核
行人保护人机校核的内容
头部碰撞区域校核
校核发动机罩、前挡风玻璃、前保险杠等部 位是否会对行人的头部造成严重伤害。
脚部碰撞区域校核
校核前保险杠、前格栅等部位是否会对行人 的脚部造成严重伤害。
人机工程在汽车总布置设计中的应用分析
人机工程在汽车总布置设计中的应用分析基于汽车的人机工程学所研究的对象主要是人—车—环境系统,目的在于对驾驶舱内部的环境和舒适性加以改善,保证驾驶者在驾驶过程中的舒适、安全与高效,因此,工作人员需要从视野校核、坐姿校核、应用校核等方面出发,结合人机工程学的具体内容,对汽车内部空间加以布置,保证人—车—环境系统所具有的性能能够得到最优化的展示。
标签:人机工程;汽车;总布置设计;应用汽车生产商必须对人机工程的合理运用给予足够的重视,尤其是在汽车布置设计工作中,只有依靠人机工程才能生产出更加适合人们驾驶的汽车,赢得更多消费者的喜爱,不断提升自身的竞争能力,取得更高的经济效益。
1汽车布置的概述1.1定义作为需要反复调整、协调并且整合的过程,汽车布置工作往往贯穿于汽车设计与开发的始终。
在汽车布置的过程中,工作人员需要关注的内容包括使用是否方便、汽车的布置与生产是否合理,只有保证对上述要求的高度满足,才能获得与实际要求相符合的汽车尺寸、质量和性能参数,也才能制定科学、高效的设计方案,为下一步工作的开展提供便利。
1.2要求汽车概念设计工作和汽车布置工作开展的时间段大体重合,在对汽车进行布置的过程中,工作人员需要明确对严格遵循以下要求:其一,从驾驶者的角度出发,保证汽车在操纵便利程度、驾驶舒适程度和安全性能等方面与驾驶者具有的需求相符合,这是人机工程学最核心的设计原则;其二,保证对汽车零部件进行保养和维修时的方便性;其三,在保证汽车行驶过程中稳定性的基础上,提高汽车的经济性;其四,以满足市场和驾驶者所具有需求为前提,对汽车内部空间和整体重量进行降低;其五,根据汽车的规格和用途对附件进行选择,保证汽车的通用化、平台化与标准化。
2对汽车生产中人机工程设计相关内容2.1对汽车人机工程设计工作中主要任务汽车的设计和开发工作的核心为人性化,即必须以人为中心进行。
只有这样设计出来的汽车才能提升驾驶人员驾车的舒适性、便捷性,并且还能让驾驶人员在驾车过程中不容易产生疲劳,提升行车的安全性和稳定性。
汽车机械制造中的人机工程学设计
汽车机械制造中的人机工程学设计在汽车制造领域中,人机工程学设计起着至关重要的作用。
它将人的需求和能力纳入到汽车的设计过程中,以提升驾驶员和乘客的安全性、舒适性和便利性。
本文将探讨汽车机械制造中的人机工程学设计的重要性和应用。
1. 汽车座椅设计人机工程学在汽车座椅设计中发挥着关键作用。
座椅的设计应考虑到人体工程学原理,以确保乘坐者的身体姿势、脊椎支持和乘坐舒适度。
合适的座椅设计可以有效减少驾驶员长时间驾驶造成的疲劳和不适感,提高驾驶员的专注度和驾驶效率。
2. 操作控制板布局在汽车驾驶室的设计中,操作控制板布局需要根据人机工程学原理进行合理规划。
各种按钮、开关和显示屏的位置和布局应当方便驾驶员的操作和观察,减少驾驶员的视线离开道路的时间。
使用人机工程学设计的控制板布局可以提高驾驶员的反应速度和操作准确性,从而提高驾驶安全性。
3. 仪表盘设计仪表盘是驾驶员获取车辆信息的主要界面,因此仪表盘设计的合理性至关重要。
人机工程学要求仪表盘上的信息显示清晰易读,不影响驾驶员的注意力和视线,同时避免信息过多导致驾驶员分散注意力。
合理的仪表盘设计可以帮助驾驶员快速获取所需信息,提升驾驶体验和安全性。
4. 室内照明设计室内照明设计是人机工程学在汽车机械制造中的另一个重要方面。
合适的照明设计可以提供良好的驾驶环境,保证室内的适当亮度,并避免灯光的反射和折射对驾驶员视线的干扰。
此外,适当的照明设计还可以营造舒适的驾驶氛围,提升乘坐者的舒适度和乘坐体验。
5. 控制装置的设计汽车的控制装置设计也需要考虑人机工程学的原则。
例如,方向盘的直径和握把的材质应当符合人手的生理特征,从而提供舒适的握持感和操控稳定性。
制动踏板和油门踏板的位置和形状应当符合人腿部的运动特点,以实现精确和灵敏的操作等。
通过合理的控制装置设计,驾驶员可以更加轻松地操作汽车,提升驾驶的舒适性和安全性。
总结:人机工程学设计在汽车机械制造中的重要性不可忽视。
合理的汽车座椅设计、操作控制板布局、仪表盘设计、室内照明设计以及控制装置的设计都能够提升汽车驾驶的舒适性、安全性和便利性。
汽车设计中的人机工程学考虑
汽车设计中的人机工程学考虑在汽车设计中,人机工程学是一个至关重要的考虑因素。
人机工程学是研究人类与机器交互的学科,旨在改善人类的工作效率、安全性和舒适度。
在汽车设计中应用人机工程学的原则,有助于提升驾驶员和乘客的体验,减少驾驶误差,提高整体交通安全性。
首先,汽车的控制与仪表板布局是人机工程学考虑的核心。
控制器和按钮的布局应该简洁明确,以方便驾驶员操作。
应该根据人体工程学的原则,将最常用的控制元素放在最容易到达的位置,以避免驾驶员的分散注意力。
此外,驾驶员安全席位的设计也是人机工程学的重要考虑因素之一。
驾驶员座椅应具备调节性和支持性,以适应不同身高和体型的驾驶员。
座椅的支持功能有助于减轻长时间驾驶造成的疲劳感和不适感。
另外,座椅应该设计符合人体工程学的曲线,以提供最佳的支持和舒适度。
此外,视觉和听觉因素也在汽车设计中扮演着重要的角色。
为了确保安全驾驶和减少驾驶者疲劳,汽车设计师应考虑到可视化和声音反馈的重要性。
例如,仪表板上的仪表和指示灯应设计成易于辨认,并且给予明确的反馈。
同时,车辆的灯光和声音信号也应充分考虑到驾驶者的可辨识度和反应时间。
在驾驶员的注意力和集中力方面,人机工程学可以为设计师提供指导。
例如,在汽车设计中应考虑到驾驶员眼睛的移动范围,以最大程度地减少驾驶员的注意力转移。
此外,驾驶员的乘坐姿势和仪表板之间的距离也是需要考虑的因素,因为不良的姿势可能会导致颈部和背部的不适。
此外,与智能系统的集成也是现代汽车设计中的趋势。
考虑到驾驶员的舒适度和安全性,汽车设计师应该关注于智能驾驶助手系统的可用性。
这些系统应该易于使用和理解,并且应该提供足够的信息,以帮助驾驶员做出明智的决策。
最后,人机工程学在乘客区域的设计中也起着重要的作用。
乘客区域的座椅和娱乐系统应该考虑到乘客的舒适度和娱乐需求。
此外,应提供足够的腿部空间和储存空间,以增加乘客的舒适性。
在汽车设计中,人机工程学的考虑是为了改善驾驶员和乘客的体验,提高交通安全性。
汽车人机工程-总布置资料文档
汽车)
Hale Waihona Puke M3>9座,GVW> 5000kg,载客
M2/M3中,<16座为小型客车
中型以上载客汽车。 A3
黄 客车:≥20座(不
牌 含驾驶员),车身
长度≥6m;
A1
核载10人以上的城市公共汽 车
大型载客汽车
商用
N1
GVW≤3500kg,载 车辆 货
——
3500kg< N2 GVW≤12000kg,
载货
——
-设计性分类 SAE J1100 汽车尺寸,为统一汽车空间尺寸的比较进行分类
-其他分类 术语及定义 GB/T3730.1-2001,市场的分类
5.4 设计工作的步骤 先整体、后局部、再细节 产品项目描述书
-控制文件 唯一性 启动性 动态性 -受控内容 -文件化控制 5.5 设计验证 验证的必要性 验证的方法
- 多方案 方案可能是排他的也可能是互补的 - 有约束 技术的 /经济的/ 法规的 /环境的/部件货源(供应商)
设计原则Design Criteria 的确立
6
7
车身承载型式
8
总布置设计如何开展?
整车长(mm)
?
整车宽(mm)
?
整车高(mm)
?
轴距(mm)
?
前悬(mm)
?
后悬(mm)
?
前轮距(mm)
第一辆产 品车制造
主题和工程 设计的选择
计划和项目定义
产品设计和开发
产品开 发过程
工艺设计和开发 产品验证和确认 工艺验证和确认
产品开 发阶段
概念选 择阶段
批准阶段
反馈、评估和纠正措施
项目样 车阶段
汽车人机工程学 (2)
汽车人机工程学引言汽车人机工程学是研究汽车与人机交互的多学科领域,主要涉及人类工程学、心理学、计算机科学和汽车工程等方面的知识。
随着科技的不断进步,人们对汽车的需求也越来越多样化,因此人机工程学在汽车设计和生产中起着至关重要的作用。
本文将探讨汽车人机工程学的基本概念、应用和未来的发展方向。
基本概念汽车人机工程学旨在提高汽车的人机交互效果,使驾驶者更加舒适和安全地操控汽车。
它涉及的主要概念和原理如下:人类工程学人类工程学是研究人与机械系统相互作用的科学,将人的生理和心理特征与机械系统的设计原则相结合。
在汽车人机工程学中,人类工程学的原理被应用于汽车仪表盘、座椅、操纵杆等部件的设计,以提高驾驶者的舒适度和操作便利性。
心理学心理学在汽车人机工程学中扮演着重要的角色。
通过研究驾驶者的认知和决策过程,可以了解他们对车辆信息和操作的感知和处理能力。
这些心理学原理被用于设计仪表盘显示界面、车辆警示和提示系统,以及驾驶员信息反馈等方面,以提高驾驶者的注意力和反应时间。
计算机科学随着计算机科学的发展,汽车人机工程学中的计算机技术也得以广泛应用。
计算机技术被用于设计交互界面、智能驾驶系统和车载娱乐系统等。
通过人机界面的设计和优化,可以实现更方便的操作和更智能化的驾驶体验。
汽车工程汽车工程是汽车人机工程学的重要组成部分。
了解汽车的结构和性能特点,可以更好地理解驾驶者与汽车之间的交互关系。
在设计汽车人机界面时,需要考虑车辆的操控性能、安全性和舒适度等因素。
应用汽车人机工程学的应用广泛存在于汽车制造业和汽车技术研发领域,其具体应用如下:1.车辆仪表盘设计:根据人类工程学原理,优化仪表盘布局和显示,以提供准确而易于理解的车辆信息。
2.车辆警示和提示系统:通过心理学原理,设计警示和提示系统,提醒驾驶者注意车辆的安全状况。
3.驾驶员信息反馈:通过计算机技术,设计反馈系统,及时向驾驶员提供操作指导和建议。
4.车辆人机交互界面设计:结合人类工程学和计算机科学原理,设计易于操作和高效的界面,提供更好的驾驶体验。