山东省济宁市 2018年中考模拟数学试题(一)含答案

合集下载

2018年山东省济宁市九年级中考数学模拟试卷(5月份)(PDF 解析版)

2018年山东省济宁市九年级中考数学模拟试卷(5月份)(PDF 解析版)

2018年山东省济宁市九年级中考数学模拟试卷(5月份)一、选择题(每小题只有一个选项,每小题3分,共30分)1.化简的结果是()A.±4B.4C.2D.±2【分析】根据平方运算,可得算术平方根.解:化简的结果是4,故选:B.【点评】本题考查了算术平方根,平方运算是求算术平方根的关键.2.下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线不能相等D.正方形的对角线相等且互相垂直【分析】根据菱形,平行四边形,正方形的性质定理判断即可.解:菱形的对角线不一定相等,A错误;平行四边形不是轴对称图形,是中心对称图形,B错误;正方形的对角线相等,C错误;正方形的对角线相等且互相垂直,D正确;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.若式子在实数范围内有意义,则x的取值范围是()A.x>1B.x>﹣1C.x≥1D.x≥﹣1【分析】直接利用二次根式有意义的条件分析得出答案.解:式子在实数范围内有意义,则x﹣1>0,解得:x>1.故选:A.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.解:△=b2﹣4ac=12﹣4×1×(﹣2)=9,∵9>0,∴原方程有两个不相等的实数根.故选:A.【点评】本题主要考查判断一元二次方程有没有实数根主要看根的判别式△的值.△>0,有两个不相等的实数根;△=0,有两个相等的实数根;△<0,没有实数根.5.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20B.15C.10D.5【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选:D.【点评】本题考查了菱形的性质和等边三角形的判定.6.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10B.14C.10或14D.8或10【分析】先将x=2代入x2﹣2mx+3m=0,求出m=4,则方程即为x2﹣8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是底边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.解:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选:B.【点评】此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.7.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4B.4.5C.5D.5.5【分析】直接根据平行线分线段成比例定理即可得出结论.解:∵直线a∥b∥c,AC=4,CE=6,BD=3,∴=,即=,解得DF=4.5.故选:B.【点评】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.8.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.x2=21B.x(x﹣1)=21C.x2=21D.x(x﹣1)=21【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=.即可列方程.解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.9.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD =45°;④△GBE∽△ECH.其中,正确的结论有()A.4个B.3个C.2个D.1个【分析】由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE 和△ECH不相似,即可判断④.解:∵四边形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,则HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵∴△GAE≌△CEF(SAS),∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;故选:C.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.【分析】借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k﹣x;根据相似三角形的判定与性质即可解决问题.解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴,∴,∴=,∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF∴△AED的周长为4k,△BDF的周长为5k,∴△AED与△BDF的相似比为4:5∴CE:CF=DE:DF=4:5.故选:B.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的判定与性质(用含有k的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.二、填空题(每小题3分,共15分)11.已知点M(1,2)在反比例函数的图象上,则k=2.【分析】把点M(1,2)代入反比例函数y=求出k的值即可.解:∵点M(1,2)在反比例函数y=的图象上,∴2=,即k=2.故答案为:2.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.12.已知,则=3.【分析】依据,即可得出b=a,进而得出==3.解:∵,∴b=a,∴==3,故答案为:3.【点评】本题主要考查了比例的性质,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.13.若方程x2+(m2﹣1)x+1+m=0的两根互为相反数,则m=﹣1.【分析】根据“方程x2+(m2﹣1)x+1+m=0的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于m的等式,解之,再把m的值代入原方程,找出符合题意的m的值即可.解:∵方程x2+(m2﹣1)x+1+m=0的两根互为相反数,∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,该方程无解,∴m=1不合题意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合题意),∴m=﹣1,故答案为:﹣1.【点评】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.14.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC 边上的一动点,则DN+MN的最小值是10.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BNBD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为10.【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用.15.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形AB4C4C3的面积为.【分析】根据已知和矩形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律即可求得第4个矩形的面积.解:∵四边形ABCD是矩形,∴AD⊥DC,∴AC===,∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,∵矩形ABCD的面积=2×1=2,∴矩形AB1C1C的面积=,依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4∴矩形AB2C2C1的面积=∴矩形AB3C3C2的面积=,按此规律第4个矩形的面积为,故答案为:.【点评】本题考查了作图﹣相似变换,矩形的性质,勾股定理,解此题的关键是能根据相似多边形的性质求出的结果、得出规律.三、解答题(本大题满分55分,解答要写出必要的文字说明或推演步骤)16.(5分)计算:(﹣)﹣﹣|﹣3|【分析】首先取绝对值以及化简二次根式和利用二次根式乘法运算去括号,进而合并同类项得出即可.解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣)=﹣6.【点评】此题主要考查了二次根式的混合运算,正确掌握运算法则是解题关键.17.(6分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.18.(6分)已知,关于x的一元二次方程(k﹣1)x2+x+3=0有实数根,求k的取值范围.【分析】根据二次项系数非零、被开方数非负及根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可求出k的取值范围.解:∵关于x的一元二次方程(k﹣1)x2+x+3=0有实数根,∴,解得:0≤k≤且k≠1.∴k的取值范围为0≤k≤且k≠1.【点评】本题考查了根的判别式、二次根式以及一元二次方程的定义,根据二次项系数非零、被开方数非负及根的判别式△≥0,列出关于k的一元一次不等式组是解题的关键.19.(7分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高(1)△ACD与△ABC相似吗?为什么?(2)AC2=AB•AD成立吗?为什么?【分析】(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,再进行变形即可.解:(1)△ACD与△ABC相似,理由是:∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB•AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB•AD.【点评】本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽∠ABC是解此题的关键.20.(7分)如图,在边长为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.【分析】(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.解:(1)如图所示:;(2)如图所示:;(3)如图所示:△CC1C2的面积为×3×6=9.【点评】本题考查了平移的性质,位似的性质,三角形的面积公式的应用,能根据性质的特点进行画图是解此题的关键,考查了学生的动手操作能力.21.(7分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?【分析】此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.解:设每台冰箱应降价x元,每件冰箱的利润是:(2400﹣2000﹣x)元,卖(8+×4)件,列方程得,(2400﹣2000﹣x)(8+×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.【点评】此题考查基本数量关系:每一台冰箱的利润×每天售出的台数=每天盈利.22.(8分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=BC′;(2)若AB=2,BC=1,求AE的长.【分析】(1)连结AC、AC′,根据矩形的性质得到∠ABC=90°,即AB⊥CC′,根据旋转的性质即可得到结论;(2)根据矩形的性质得到AD=BC,∠D=∠ABC′=90°,根据旋转的性质得到BC′=AD′,AD=AD′,证得BC′=AD′,根据全等三角形的性质得到BE=D′E,设AE=x,则D′E=2﹣x,根据勾股定理列方程即可得到结论.解:(1)连结AC、AC′,∵四边形ABCD为矩形,∴∠ABC=90°,即AB⊥CC′,∵将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四边形ABCD为矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E与△C′BE中,,∴△AD′E≌△C′BE,∴BE=D′E,设AE=x,则D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾股定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【点评】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.23.(9分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P 从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发,运动时间为t(s).(1)当t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为8cm2?【分析】(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角两种情况,利用相似三角形对应边成比例列式求解即可;(2)过点P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根据三角形的面积公式列出方程求解即可.解:(1)∵点A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵点P的速度是每秒1个单位,点Q的速度是每秒1个单位,∴AQ=t,AP=10﹣t,①∠APQ是直角时,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP是直角时,△AQP∽△AOB,∴,即,解得t=,综上所述,t=秒时,△APQ与△AOB相似;(2)如图,过点P作PC⊥OA于点C,则PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面积=×t×(10﹣t)=8,整理,得:t2﹣10t+20=0,解得:t=5+>6(舍去),或t=5﹣,故当t=5﹣s时,△APQ的面积为8cm2.【点评】本题主要考查了相似三角形的判定与性质、三角形的面积以及一元二次方程的应用能力,根据对应边成比例两相似三角形的判定分类讨论是解题的关键.。

2018年山东济宁中考第一次模拟数学试题及答案 精品

2018年山东济宁中考第一次模拟数学试题及答案 精品

山东济宁2018年中考数学第一次模拟试题一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.|-3|的倒数是()A.-3 B. C.3 D.2.据有关资料显示,2018年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示()A.2.02×10 B.202×10 C.2.02×10 D.2.02×103.在算式“”的“□”中填上运算符号,使结果最大,这个运算符号是()A.加号 B.减号 C.乘号 D.除号4.下列计算正确的是A.a+a=2a B.b3·b3=2b3C.a3÷a=a3D.(a5)2=a75.已知是二元一次方程组的解,则的算术平方根为()A.±2 B.C.2 D. 46.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=,则△PAB的面积y关于的函数图像大致是()7.下列说法正确的是( )A.商家卖鞋,最关心的是鞋码的中位数B.365人中必有两人阳历生日相同C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定8.如图,正比例函数y1=k1x和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是( )A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>1二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)9.如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆半径r=1,阴影部分的面积记作S2,则S1 S2(用“>”、“<”或“=”填空).10.若关于的不等式组有实数解,则的取值范围是.11.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧的长为 cm.12.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,则y与x之间的函数关系式为13.若(x1,y1)•(x2,y2)=x1x2+y1y2,则(4,5)•(6,8)= .14.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4② S2+S4= S1+ S3③若S3=2 S1,则S4=2 S2④若S1= S2,则P点在矩形的对角线上其中正确的结论的序号是(把所有正确结论的序号都填在横线上).三、解答题(本大题共7个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.(本题12分,每题6分)(1).计算:(2).解方程:;16.(本题12分,每题6分)(1).如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0)(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5).若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.(2).在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题...,并给予证明.题设:______________;结论:________.(均填写序号)证明:17.(本题14分,每题7分)(1).直线与反比例函数 (x>0)的图像交于点A,与坐标轴分别交于M、N两点,当AM=MN时,求k的值.(2).某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.18.(本题10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P.求证:(1)D是BC的中点;(2)△BEC ∽△ADC;(3)AB× CE=2DP×AD.19.(本题10分)某中学七年级学生共450人,其中男生250人,女生200人。

济宁市兖州市2018年中考数学一模试卷(有答案)

济宁市兖州市2018年中考数学一模试卷(有答案)

2018年山东省济宁市兖州市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分共30分)1.(3分)﹣2的倒数是()A.﹣ B.C.﹣2 D.22.(3分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.63.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠34.(3分)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1 B.π+2 C.π﹣1 D.π﹣25.(3分)如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或76.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥47.(3分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.8.(3分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60n mile B.60n mile C.30n mile D.30n mile9.(3分)已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤110.(3分)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,)C.(,)D.(,4)二、填空题(本大题共5小题,每小题3分,满分共15分)11.(3分)世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为.12.(3分)分解因式:8a2﹣2=.13.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数(单位:分)及方差s2如下表所示:.14.(3分)如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是.15.(3分)将从1开始的连续自然数按以下规律排列:则2018在第行.三、解答题(本大题共7小题,满分55分)16.(5分)计算:(3﹣π)0﹣6cos30°+.17.(7分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.18.(7分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.19.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?20.(8分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.21.(9分)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.22.(11分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.2018年山东省济宁市兖州市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分共30分)1.(3分)﹣2的倒数是()A.﹣ B.C.﹣2 D.2【解答】解:﹣2的倒数是﹣.故选:A.2.(3分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.3.(3分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选:D.4.(3分)如图,正方形ABCD内接于半径为2的⊙O,则图中阴影部分的面积为()A.π+1 B.π+2 C.π﹣1 D.π﹣2【解答】解:连接AO,DO,∵ABCD是正方形,∴∠AOD=90°,AD==2,圆内接正方形的边长为2,所以阴影部分的面积= [4π﹣(2)2]=(π﹣2)cm2.故选:D.5.(3分)如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选:D.6.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16 B.q>16 C.q≤4 D.q≥4【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.7.(3分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:C.8.(3分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60n mile B.60n mile C.30n mile D.30n mile【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=×60=30n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=60n mile,故选:B.9.(3分)已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1【解答】解:3(3x﹣a)=x﹣3,9x﹣3a=x﹣3,8x=3a﹣3∴x=,由于该分式方程有解,令x=代入x﹣3≠0,∴a≠9,∵该方程的解是非负数解,∴≥0,∴a≥1,∴a的范围为:a≥1且a≠9,故选:C.10.(3分)如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,)C.(,)D.(,4)【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.二、填空题(本大题共5小题,每小题3分,满分共15分)11.(3分)世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为 6.7×106.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.12.(3分)分解因式:8a2﹣2=2(2a+1)(2a﹣1).【解答】解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).13.(3分)学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数(单位:分)及方差s2如下表所示:丙.【解答】解:∵乙、丙同学的平均数比甲、丁同学的平均数大,∴应从乙和丙同学中选,∵丙同学的方差比乙同学的小,∴丙同学的成绩较好且状态稳定,应选的是丙同学;故答案为:丙.14.(3分)如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是(﹣2,).【解答】解:由题意得:△A′OB′与△AOB的相似比为2:3,又∵B(3,﹣2)∴B′的坐标是[3×,﹣2×],即B′的坐标是(﹣2,);故答案为:(﹣2,).15.(3分)将从1开始的连续自然数按以下规律排列:则2018在第45行.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.三、解答题(本大题共7小题,满分55分)16.(5分)计算:(3﹣π)0﹣6cos30°+.【解答】解:原式=1﹣6×+3﹣2=﹣1.17.(7分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表(1)m=8,n=3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为144°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.18.(7分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.19.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【解答】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.20.(8分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【解答】解:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴A C=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,=AC•BE=×4×2=4,∴S△ABC即△ABC的面积为4.21.(9分)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).22.(11分)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=c2+2c+c,解得c=﹣3或c=0(舍去),∴c=﹣3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵直线BE经过点B(3,0),E(1,﹣4),∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为(0,﹣2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,n2﹣4n),R点的坐标为(n,n2﹣4n),N点的坐标为(n,n2﹣2n﹣3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴时,NQ取最小值1.此时Q点的坐标为.综上可知存在满足题意的点Q,其坐标为或.。

2018年济宁市中考数学试题及答案

2018年济宁市中考数学试题及答案

绝密☆启用并使用完毕前 试卷类型A
济宁市二○一四年高中段学校招生考试
数 学 试 题
第I卷(选择题 共30分)
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一
项符合题目要求.
1. 实数1,-1,-2
1,0,四个数中,最小的数是 A.0 B.1 C .- 1 D.-
21 2. 化简ab ab 45+-的结果是
A. -1
B. a
C. b
D. ab -
3.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是
A .两点确定一条直线
B .垂线段最短
C .两点之间线段最短
D .三角形两边之和大于第三边
4.
函数y =x 的取值范围是 A .x ≥0
B .1x ≠-
C .0x >
D .x ≥0且1x ≠- 5.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是
A. 102cm
B. 102πcm
C. 202cm
D.202πcm
6.从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是
A.样本容量越大,样本平均数就越大
B.样本容量越大,样本的方差就越大
C.样本容量越大,样本的极差就越大
D.样本容量越大,对总体的估计就越准确.
7.如果0,0 b a ab +,那么下面各式:①
b a b a =,②1=⋅a b b a ,③b b a ab -=÷,。

济宁2018年中考数学真题附含答案解析

济宁2018年中考数学真题附含答案解析

济宁市二0一八年高中段学校招生考试数学试题注意事项:1.本试卷分第I卷和第I1卷两部分,共6页.第1卷为选择题,30分,第1卷为非选择题,70分;共100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名,准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第1卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动必须先用橡皮擦干净,再改涂其它答案.4,在答第11卷时,必须使用0.5毫米黑色签字笔在答题卡上书写,务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第|卷(选择题共30分)一.选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求3的值是1.√−1A.1B.-1C.3D.-32.为贯彻落实党中央、因务院关于推进城乡义务教育体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米.其中186000000用科学计数法表示是( )A.1.86x108B.186x106C.1.86x109D.0.186x1093.下列运算正确的是A.a8÷a4 =a2B.(a2)2=a4C.a2·a3=a6 D,a2+a2 =2a44.如图,点B,C,D 在⊙O上,若∠BCD=130º,则∠B0D的度数是A.50ºB.60ºC.80ºD.100º5.多项式4a-a3分解因式的结果是A.a(4-a2)B.a(2-a)(2+a)C.a(a-2)(a+2)D.a(2-a)26.如图,在平面直角坐标系中,点A.C在x轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC先绕点C顺时针旋转90”,再向右平移3个单位长度,则变换后点A的对应点坐标是( )A.(2.2)B.(1,2)C.(-1,2)D.(2,-1)7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5B.中位数是5C.平均数是6D.方差是3.68.如图,在五边形ABCDE中,∠A+∠B+∠C=300º,DP,CP分别平分∠EDC,∠BCD,则∠P的度數是A.50ºB.55ºC.60ºD.65º9.-个几何体的三视图如图所示,则该几何体的表面积是(A.24+2πB.16+4πC.16+8πD.16+12π10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )第Ⅱ卷(非选择题共70分)二、填空题:本大题共5小题,每小题3分,共15分.11.若二次根式√x−1在实数范围内有意义,则x的取值范围是 .12.在平面直角坐标系中,已知一次函数y=-2x+1的图像经过P1(x1, y1),P2(x2,y2)两点,若x1<x2则y1____y2上(填“>”“<” 或“=”).13.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF.请你添加一个条件使△BED与△FDE全等.14.如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60º的方向上,从B站测得船C在北偏东30º的方向上,则船C到海岸线l的距离是 km.(x>0)图像上一点,直线y=kx+b过点A并且与15.如图,点A是反比例函数y=4x两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是 .三、解答题:本大题共7小题共55分.16. (6分)化简: (y+2)(y-2)-(y-1)(y+5)17. (7分)某校开展研学旅行活动,准备去的研学基地有 A (曲阜)、B (梁山)、C (汶上)、D (泗水),每位学生只能选去一个地方,王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总人数,并补全条形统计图:(2)求D (泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.18. (7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具:①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分AB).(1)在图1中,请你画出用T型尺找大圆圆心的示意图(保留作图痕迹,不写画法):(2)如图2,小华说:“我只用一个直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒5大圆两交点M,N之间的距离,就可求出环形花坛的面积.”如果测得MN=10m,请你求出这个环形花坛的面积.19. (7分)“绿水青山就是金山银山”,为保护生态环境,A. B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是名少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000 元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20、(8分)如图,在正方形ABCD中,点E、F分别是边AD、BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G,(1)猜想DG与CF的数量关系,并证明你的结论:(2)过点H作MN//CD,分别交AD, BC于点M, N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.21. (9分)知识背景当a>0月x>0时,因为(√x−√a√x )2≥0,所以x−2√a+ax≥0,从而x+ax≥2√a,(当x=√a时取等号)设函数y=x+ax(a>0, x>0), 由上述结论可知,当x=√a时,该函数有最小值为2√a.应用举例已知函数y1=x(x>0)与函数y2=4x (x>0),则当x=√4=2时,y1+y2=x+4x有最小值为2√4=4.解决问题(1)已知函数y1=x+3(x>-3)与函数y2=(x+3)2+9(x>-3),当x取何值时,y2y1有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下部分:一是设备的安装调试费用,共400元;二是设备的租赁使用费用,每天200元:三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001,若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?22. (11分)如图,已知抛物线y=ax2+bx+c(a≠0),经过点A (3.0), B (-1,0),C (0.-3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M.求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C. Q, P为顶点的四边形是平行四边形?若存在,求点P的坐标:若不存在,请说明理由.参考答案选择题1-5 BABDB 6- -10 ADCDC填空题11.x≥1;12.>;13.EF=BD (∠B=∠EFD或∠BED=∠EDF);14.√3;15.2√3-2三、解答题16.原式=-4y+117. (1)总人数: 50人;图略;(2)圆心角度数100.8º;(3) P=1;38. (1)作图略(2) 25π平方米9. (1)清理养鱼网箱人均支出费用2000元,清理捕鱼网箱人均费用3000元: (2)设m人清理养鱼网箱,则(40-m) 人清理捕鱼网箱由题意得:2000m + 3000(40-m)≤102000m<40-m 解得: 18≤m< 20故两种方案,方案一: 18人清理养鱼网箱,22人清理捕鱼网箱;方案二: 19人清理养鱼网箱,21人清理捕鱼网箱.20. (1) DG=-CF,利用相似证明即可;(2)周长最小值: 2√26+1021. (1)当x=0时,有最小值6.(2)当x=700时,租赁使用成本最低,最低为201.4元.22. (1) y=x2-2x-3;(2)M(−35,−65)(3) P1(2,-3);P2(1+√7,3);P3(1-√7,3).。

2018年山东省济宁市曲阜市中考数学一模试卷-有答案

2018年山东省济宁市曲阜市中考数学一模试卷-有答案

2018年山东省济宁市曲阜市中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)下列实数中,无理数为()A.0.2 B.C.D.22.(3分)下列计算结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x3)23.(3分)如图,AB∥CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为()A.20°B.30°C.40°D.50°4.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱5.(3分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|<|b|B.a>﹣b C.b>a D.a>﹣26.(3分)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.3,1.3 C.1.4,1.35 D.1.4,1.37.(3分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等实数根,则k 的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k>﹣1且k≠08.(3分)如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m,旗杆底部与平面镜的水平距离为16m.若小明的眼睛与地面距离为1.5m,则旗杆的高度为(单位:m)()A.B.9 C.12 D.9.(3分)已知直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是()A.y=﹣x+8 B.y=﹣x+8 C.y=﹣x+3 D.y=﹣x+310.(3分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)不等式2x+1>0的解集是.12.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.13.(3分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.14.(3分)如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为.15.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0其中正确的是.三、解答题:本大题共7小题,共55分.16.(6分)先化简,再求值:(+)÷﹣,其中a=2+.17.(6分)如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.18.(7分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.19.(8分)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.20.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?21.(9分)【阅读学习】刘老师提出这样一个问题:已知α为锐角,且tanα=,求sin2α的值.小娟是这样解决的:如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα==.易得∠BOC=2α.设BC=x,则AC=3x,则AB=x.作CD⊥AB于D,求出CD=(用含x的式子表示),可求得sin2α==.【问题解决】已知,如图2,点M、N、P为圆O上的三点,且∠P=β,tanβ=,求sin2β的值.22.(11分)如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连接BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.(1)求抛物线的解析式;(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连接PC,PB,△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标;若不能,请说明理由.2018年山东省济宁市曲阜市中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.【解答】解:是无理数.故选:C.2.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.3.【解答】解:∵AB∥CD,∴∠BCD=∠B=50°,又∵∠BCD是△CDE的外角,∴∠E=∠BCD﹣∠D=50°﹣20°=30°.故选:B.4.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.5.【解答】解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选:C.6.【解答】解:∵这组数据中1.4出现的次数最多,∴在每天所走的步数这组数据中,众数是1.4;该班同学年龄的中位数是:(1.3+1.3)÷2=1.3∴在每天所走的步数这组数据中,众数和中位数分别是1.4、1.3.故选:D.7.【解答】解:根据题意得k≠0且△=22﹣4k×(﹣1)>0,所以k>﹣1且k≠0.故选:D.8.【解答】解:∵根据入射角与反射角相等可知,∠CED=∠AEB,故Rt△CDE∽Rt△AEB,∴=,即=,解得AB=12m.故选:C.9.【解答】解:当x=0时,y=﹣x+8=8,即B(0,8),当y=0时,x=6,即A(6,0),所以AB=AB′=10,即B′(﹣4,′0),因为点B与B′关于AM对称,所以BB′的中点为(,),即(﹣2,4)在直线AM上,设直线AM的解析式为y=kx+b,把(﹣2,4);(6,0),代入可得y=﹣x+3.故选:C.10.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选:B.二、填空题:本大题共5小题,每小题3分,共15分.11.【解答】解:原不等式移项得,2x>﹣1,系数化为1,得,x>﹣.故答案为x>﹣.12.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.13.【解答】解:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB(答案不唯一).故答案为:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.14.【解答】解:如图,连接DO,∵CD是⊙O切线,∴OD⊥CD,∴∠ODC=90°,而AB是⊙O的一条直径,AC=3BC,∴AB=2BC=OC=2OD,∴∠C=30°,∴∠AOD=120°∴OD=CD,∵CD=,∴OD=BC=1,∴的长度==,故答案为:.15.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,而x=﹣1时,y>0,即a﹣b+c>0,∴a+2a+c>0,所以④错误.故答案为:①②③三、解答题:本大题共7小题,共55分.16.【解答】解:原式=[+]•﹣=[+]•﹣=•﹣=﹣=﹣,当a=2+时,原式=﹣=﹣=﹣.17.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.在△OBE与△ODF中,∴△OBE≌△ODF(AAS).∴BO=DO.(2)解:∵EF⊥AB,AB∥DC,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°.∴AE=GE∵BD⊥AD,∴∠ADB=∠GDO=90°.∴∠GOD=∠G=45°.∴DG=DO,∴OF=FG=1,由(1)可知,OE=OF=1,∴G E=OE+OF+FG=3,∴AE=3.18.【解答】解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°=144°,故答案为:144;(3)列表得:“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.19.【解答】解:如图作PC⊥AB于C.由题意∠A=64°,∠B=45°,PA=120,在Rt△APC中,sinA=,cosA=,∴PC=PA•sinA=120•sin64°,AC=PA•cosA=120•cos64°,在Rt△PCB中,∵∠B=45°,∴PC=BC,∴PB==≈153.∴AB=AC+BC=120•cos64°+120•sin64°≈120×0.90+120×0.44≈161.答:BP的长为153海里和BA的长为161海里.20.【解答】解:(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有,解得.答:甲种商品的销售单价900元,乙种商品的销售单价600元;(2)设销售甲种商品a万件,依题意有900a+600(8﹣a)≥5400,解得a≥2.答:至少销售甲种商品2万件.21.【解答】解:【阅读学习】∵S △ABC =AB•CD=AC •BC ,∴CD===x .∵AB=x ,∴OC=AB=x ,∴sin2α===.故答案为x ,;【问题解决】如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作MH ⊥NO 于H . 在⊙O 中,∠NMQ=90°.∵∠Q=∠P=β,OM=ON ,∴∠MON=2∠Q=2β.∵tanβ=,∴设MN=k ,则MQ=2k ,∴NQ=.∴OM=NQ=.∵,∴.∴MH=.在Rt △MHO 中,sin2β=sin ∠MON=.22.【解答】解:(1)由题意得,解得,∴抛物线的解析式为y=﹣x2+3x+4.(2)如图1所示:由题意可知:C点坐标为(0,4),∴△BOC为等腰直角三角形,且∠BOC为直角.∵以P,C,F为顶点的三角形与△OBC相似∴△PCF为等腰直角三角形,又CF⊥直线l,∴PF=CF.设P(t,﹣t2+3t+4)(t>0),则CF=t,PF=|(﹣t2+3t+4)﹣4|=|t2﹣3t|.∴t=|t2﹣3t|,∴t2﹣3t=±t,解得t=0(舍去),t=2或t=0(舍去),t=4.∴点P的坐标为(2,6)或(4,0).(3)如图2所示:连接EC.设点P的坐标为(a,﹣a2+3a+4).则OE=a,PE=﹣a2+3a+4,EB=4﹣a.∵C(0,4),B(4,0),∴直线BC的解析式为y=﹣x+4.=OB•PE=×4(﹣a2+3a+4),S△CEB=EB•OC=×4×(4﹣a),∵S四边形PCEB=S四边形PCEB﹣S△CEB=2(﹣a2+3a+4)﹣2(4﹣a)=﹣2a2+8a=﹣2(a﹣2)2+8.∴S△PBC∵a=﹣2<0,∴当a=2时,△PBC的面积S有最大值.∴P(2,6),△P BC的面积的最大值为8.。

2018年山东省济宁市中考数学试卷含答案

2018年山东省济宁市中考数学试卷含答案

B.中位数是 5
C.平均数是 6
D.方差是 3.6
8.如图,在五边形 ABCDE 中,A B E 300 ,DP、CP 分别平分 EDC 、BCD ,
则 P 的度数是
()
A.50°
B.55°
C.60°
9.一个几何体的三视图如图所示,则该几何体的表面积是
D.65° ()
A. 24 2
绝密★启用前

山东省济宁市 2018 年初中学业水平考试
数学
(本试卷满分 100 分,考试时间 120 分钟)

第Ⅰ卷(非选择题 共 30 分)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有 一项是符合题目要求的)
1. 3 1 的值是 卷
A.1
B. 1
(1)求该班的总人数,并补全条形统计图.
(2)求 D(泗水)所在扇形的圆心角度数;
(3)该班班委 4 人中,1 人选去曲阜,2 人选去梁山,1 人选去汶上,王老师要从这
4 人中随机抽取 2 人了解他们对研学基地的看法,请你用列表或画树状图的方法,求

所抽取的 2 人中恰好有 1 人选去曲阜,1 人选去梁山的概率.


(1)在图 1 中,请你画出用 T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法); (2)如图 2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积, 具
体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点 M,N 之间的距离, 就可求出环形花坛的面积,如果测得 MN=10m,请你求出这个环形花坛的面积.
两坐标轴分别交于点 B,C,过点 A 作 AD x 轴,垂足为 D,连接 DC,若 △BOC 的

2018年数学中考(山东省)模拟考试题(附答案)

2018年数学中考(山东省)模拟考试题(附答案)

2018年数学中考模拟试题选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1 . 2018的相反数是A .2018B.-2018C.20181 D.201812近几年来,我市加大教育信息化投入,投资221000000元,初步完成了济宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖。

将221000000用科学高数法表示为(A. 22.1×107B. 2.21×108C. 2.21×109D.0.221×10103.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为()A .60°B .50°C .120°D .130°4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)3 3.54 4.5 人数1121A .中位数是4,平均数是 3.75B .众数是4,平均数是 3.75C .中位数是4,平均数是 3.8D .众数是2,平均数是 3.85.在函数y=中,自变量x 的取值范围是()A .x >0B . x ≥-4C . x≥-4且x ≠0D. x >0且≠-4 6.如图,在底边BC 为2,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为()A .2+B .2+2C .4D .37.京剧脸谱、剪纸等图案蕴含着简洁美、对称美,下列选取的图片中既是轴对称图形又是中心对称图形的是()。

2018年山东省济宁市中考数学试卷(含答案与解析)

2018年山东省济宁市中考数学试卷(含答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山东省济宁市2018年初中学业水平考试数 学(本试卷满分100分,考试时间120分钟)第Ⅰ卷(非选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)( )A.1B.1-C.3D.3-2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部 署,教育部会同有关部门近五年来共新建、改扩建校舍186 000 000平方米,其中数据186 000 000用科学记数法表示是( )A.81.8610⨯B.618610⨯C.91.8610⨯D.90.18610⨯ 3.下列运算正确的是( )A.842a a a ÷=B.224a a =()C.236•a a a =D.2242a a a +=4.如图,点B ,C ,D 在⊙O 上,若130BCD ∠=︒,则BOD ∠的度数是( )A.50°B.60°C.80°D.100° 5.多项式34a a -分解因式的结果是( )A.24a a -()B.(2)(2)a a a -+C.22a a a -+()()D.22a a -()6.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为10(-,),2AC =.将Rt ABC △先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A.2,2()B.1,2()C.1,2(-)D.2,1-()7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A.众数是5B.中位数是5C.平均数是6D.方差是3.68.如图,在五边形ABCDE 中,300A B E ∠+∠+∠=︒,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数是( )A.50°B.55°C.60°D.65° 9.一个几何体的三视图如图所示,则该几何体的表面积是( )A.242π+B.164π+C.168π+D.1612π+10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页)数学试卷 第4页(共28页)A B C D第Ⅱ卷(非选择题 共70分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填写在题中的横线上) 11.若二次根式1x +在实数范围内有意义,则x 的取值范围是 .12.在平面直角坐标系中,已知一次函数21y x =-+的图象经过111,P x y ()、222,P x y ()两点,若12x x <,则1y 2y .(填“>”“<”“=”) 13.在ABC △中,点E ,F 分别是边AB ,AC 的中点,点D 在BC 边上,连接 DE ,DF ,EF ,请你添加一个条件 ,使BED △与FDE △全等.14.如图,在一笔直的海岸线l 上有相距2km 的A ,B 两个观测站,B 站在A 站的正东方向上,从A 站测得船C 在北偏东60°的方向上,从B 站测得船C 在北偏东30°的方向上,则船C 到海岸线l 的距离是 km .15.如图,点A 是反比例函数4y x=(0x >)图象上一点,直线y kx b =+过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD x ⊥轴,垂足为D ,连接DC ,若BOC△的面积是4,则DOC △的面积是 .三、解答题(本大题共7小题,共55分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分6分)化简:(2)(2)1)(5)y y y y +--+-(17.(本小题满分7分)某校开展研学旅行活动,准备去的研学基地有A (曲阜)、B (梁山)、C (汶上),D (泗水),每位学生只能选去一个地方,王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示). (1)求该班的总人数,并补全条形统计图. (2)求D (泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.18.(本小题满分7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 EF ;③T 型尺(CD 所在的直线垂直平分线段AB ).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共28页)数学试卷 第6页(共28页)(1)在图1中,请你画出用T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法); (2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积, 具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M ,N 之间的距离,就可求出环形花坛的面积,如果测得MN=10 m ,请你求出这个环形花坛的面积.19.(本小题满分7分)“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表: 村庄 清理养鱼网箱人数/人 清理捕鱼网箱人数/人 总支出/元 A 15 9 57 000 B 10 16 68 000 (1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的 人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20.(本小题满分8分)如图,在正方形ABCD 中,点E ,F 分别是边AD ,BC 的中点,连接DF ,过点E 作EH DF ⊥,垂足为H ,EH 的延长线交DC 于点G . (1)猜想DG 与CF 的数量关系,并证明你的结论;(2)过点H 作MN CD ∥,分别交AD ,BC 于点M ,N ,若正方形ABCD 的边长为10,点P 是MN 上一点,求PDC △周长的最小值.21.(本小题满分9分)知识背景当0a >且0x >时,因为20a x x ⎛⎫- ⎪ ⎪⎝⎭≥,所以20a x a x -+≥,从而2ax a x +≥(当x a =时取等号).设函数(0,0)ay x a x x=+>>,由上述结论可知:当x a =时,该函数有最小值为2a .应用举例已知函数为10=x y x (>)与函数204x y x =(>),则当42x ==时,124y y x x+=+有最小值为24=4.解决问题(1)已知函数为133y x x =+(>﹣)与函数22(3)39x x y =++(>﹣),当x 取何值时,21y y 有最小值?最小值是多少? (2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x 天,则当x 取何值时,该设备平均每天的租货使用成本最低?最低是多少元?22.(本小题满分11分)如图,已知抛物线20y ax bx c a =++≠()经过点30A (,),1,0B (-),0,3C (-). (1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.数学试卷 第7页(共28页)数学试卷 第8页(共28页)山东省济宁市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B1=-.故选B .【考点】立方根 2.【答案】A【解析】解:将186 000 000用科学记数法表示为:81.8610⨯.故选:A . 【考点】科学计数法 3.【答案】B【解析】解:A.864a a a ÷=,故此选项错误;B.224()a a =,故原题计算正确;C.235•a a a =,故此选项错误;D.2222a a a +=,故此选项错误;故选:B . 【考点】整式的运算 4.【答案】D【解析】解:圆上取一点A ,连接AB ,AD , ∵点A 、B ,C ,D 在⊙O 上,130BCD ∠=︒, ∴50BAD ∠=︒,∴100BOD ∠=︒,故选:D .【考点】圆周角定理和圆心角定理 5.【答案】B【解析】解:()324422a a a a a a a -==-+(-)().故选:B . 【考点】因式分解 6.【答案】A【解析】解:∵点C 的坐标为1,0(-),2AC =, ∴点A 的坐标为()3,0-,5 / 14如图所示,将Rt ABC △先绕点C 顺时针旋转90°,则点A′的坐标为1,2(-), 再向右平移3个单位长度,则变换后点A′的对应点坐标为2,2(),故选:A .【考点】旋转和平移 7.【答案】D【解析】解:A.数据中5出现2次,所以众数为5,此选项正确;B.数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 平均数为75351056++++÷=(),此选项正确;D 方差为22221[()()()()76562361065]5.6⨯+⨯++=----,此选项错误;故选:D . 【考点】众数、中位数、平均数和方差 8.【答案】C【解析】解:∵在五边形ABCDE 中,300A B E ∠+∠+∠=︒, ∴240ECD BCD ∠+∠=︒,又∵DP 、CP 分别平分EDC BCD ∠∠、, ∴120PDC PCD ∠+∠=︒,∴CDP △中,180()18012060P PDC PCD ∠=︒-∠+∠=︒-︒=︒. 故选:C .【考点】五边形的内角和、角平分线的性质、三角形的内角和定理 9.【答案】D【解析】解:该几何体的表面积为1122244+224121622⨯+⨯+⨯⨯=+πππ,故选:D . 【考点】几何体的三视图、根据三视图求几何体的表面积 10.【答案】C【解析】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C .数学试卷 第11页(共28页)数学试卷 第12页(共28页)【考点】探索规律第Ⅱ卷二、填空题 11.【答案】1x ≥∴10x -≥, 解得1x ≥. 故答案为:1x ≥.【考点】二次根式有意义的条件 12.【答案】>【解析】解:∵一次函数21y x =+-中20k =-<, ∴y 随x 的增大而减小, ∵12x x <, ∴12y y >.故答案为>.【考点】一次函数的增减性 13.【答案】D 是BC 的中点【解析】解:当D 是BC 的中点时,BED FDE △≌△ ∵E ,F 分别是边AB ,AC 的中点, ∴EF BC ∥,当E ,D 分别是边AB ,BC 的中点时,ED AC ∥, ∴四边形BEFD 是平行四边形, ∴BED FDE △≌△,故答案为:D 是BC 的中点.【考点】三角形的中位线定理、全等三角形的判定 14.【解析】解:过点C 作CD AB ⊥于点D ,根据题意得:906030CAD ∠=︒-︒=︒,903060CBD ∠=︒︒=︒-, ∴30ACB CBD CAD ∠=∠∠=︒-, ∴CAB ACB ∠=∠, ∴2km BC AB ==,在Rt CBD △中,•602CD BC sin =︒=.7 / 14. 【考点】解直角三角形15.【答案】2【解析】解:设4A(a )(a 0)a,>,∴4AD a=,OD a =,∵直线y kx b =+过点A 并且与两坐标轴分别交于点B ,C ,∴0,C b (),(,)0bB k-,∵BOC △的面积是4, ∴11422BOCbSOB OC b k=⨯=⨯⨯==4, ∴28b k =,∴28b k =①∴AD x ⊥轴, ∴OC AD ∥, ∴BOC BDA △∽△, ∴OB OCBD AD =, ∴4b b k b a ka=+, ∴24a k ab +=②,联立①②得,4ab =--4ab =,∴11222DOCSOD OC ab ===数学试卷 第15页(共28页)数学试卷 第16页(共28页)故答案为2-.【考点】求三角形的面积、利用几何图形的等量关系求一次函数的解析式、求图象交点的坐标 三、解答题16.【答案】解:原式2245541y y y y y =++=+原式--﹣-【解析】解:原式2245541y y y y y =++=+原式--﹣-17.【答案】解:(1)该班的人数为165032%=人,则B 基地的人数为5024%12⨯=人,补全图形如下:(2)D (泗水)所在扇形的圆心角度数为14360=100.850︒⨯︒ (3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为41=123. 【解析】(1)该班的人数为165032%=人,则B 基地的人数为5024%12⨯=人,补全图形如下:(2)D (泗水)所在扇形的圆心角度数为14360=100.850︒⨯︒9 / 14(3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为41=123. 18.【答案】解:(1)如图点O 即为所求;(2)设切点为C ,连接OM ,OC . ∵MN 是切线, ∴OC MN ⊥, ∴5CM CN ==,∴22225OM OC CM ==-, ∴22••25S OM OC πππ==圆环-. 【解析】(1)如图点O 即为所求;(2)设切点为C ,连接OM ,OC . ∵MN 是切线, ∴OC MN ⊥, ∴5CM CN ==,∴22225OM OC CM ==-, ∴22••25S OM OC πππ==圆环-.19.【答案】解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得:15957000101668000x y x y +=⎧⎨+=⎩,解得:20003000x y =⎧⎨=⎩,答:清理养鱼网箱的人均费用为2 000元,清理捕鱼网箱的人均费用为3 000元;数学试卷 第19页(共28页)数学试卷 第20页(共28页)(2)设m 人清理养鱼网箱,则40m (-)人清理捕鱼网箱, 根据题意,得:20003000(40)10200040m m m m+-⎧⎨-⎩≤<,解得:1820m ≤<, ∵m 为整数,∴18m =或19m =,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 【解析】(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得:15957000101668000x y x y +=⎧⎨+=⎩,解得:20003000x y =⎧⎨=⎩,答:清理养鱼网箱的人均费用为2 000元,清理捕鱼网箱的人均费用为3 000元; (2)设m 人清理养鱼网箱,则40m (-)人清理捕鱼网箱, 根据题意,得:20003000(40)10200040m m m m +-⎧⎨-⎩≤<,解得:1820m ≤<,∵m 为整数,∴18m =或19m =,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 20.【答案】解:(1)结论:2CF DG =. 理由:∵四边形ABCD 是正方形,∴AD BC CD AB ===,90ADC C ∠=∠=︒, ∵DE AE =,∴2AD CD DE ==, ∵EG DF ⊥, ∴90DHG ∠=︒,∴90CDF DGE ∠+∠=︒,90DGE DEG ∠+∠=︒, ∴CDF DEG ∠=∠, ∴DEG CDF △∽△,∴12DG DE CF DC == ∴2CF DG =.(2)作点C 关于NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时PDC △的周长最短.周长的最小值CD PD PC CD PD PK CD DK =++=++=+.由题意:10CD AD ==,5ED AE ==,52DG =,EG =5DE DG DH EG ==∴2EH DH == ∴2DH EHHM DE==, ∴1DM CN NK ===,在Rt DCK △中,DK ===∴PCD △的周长的最小值为10+【解析】(1)结论:2CF DG =.理由:∵四边形ABCD 是正方形,∴AD BC CD AB ===,90ADC C ∠=∠=︒,∵DE AE =,∴2AD CD DE ==,∵EG DF ⊥,∴90DHG ∠=︒,∴90CDF DGE ∠+∠=︒,90DGE DEG ∠+∠=︒,∴CDF DEG ∠=∠,∴DEG CDF △∽△, ∴12DG DE CF DC == ∴2CF DG =.(2)作点C 关于NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时PDC △的周长最短.周长的最小值CD PD PC CD PD PK CD DK =++=++=+.由题意:10CD AD ==,5ED AE ==,52DG =,EG =5DE DG DH EG ==∴2EH DH == ∴2DH EH HM DE==,∴1DM CN NK ===,在Rt DCK △中,DK ===∴PCD △的周长的最小值为10+21.【答案】解:(1)221(3)99(3)33y x x y x x ++==++++, ∴当933x x +=+时,21y y 有最小值, ∴0x =或6-(舍弃)时,有最小值6=.(2)设该设备平均每天的租货使用成本为w 元. 则24902000.0014900.001200x w x x x++==++, ∴当4900.001x x=时,w 有最小值, ∴700x =或700-(舍弃)时,w 有最小值,最小值201.4=元.22.【答案】解:(1)把(3,0)A ,(1,0)B -,(0,3)C -代入抛物线解析式得:93003a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩解得:123a b c =⎧⎪=-⎨⎪=-⎩,则该抛物线解析式为223y x x =--;(2)设直线BC 解析式为3y kx =-,把1,0B (-)代入得:30k -=-,即 3k =-,∴直线BC 解析式为33y x =--,∴直线AM 解析式为 13y x m =+ 把3,0A()代入得:10m +=,即1m =-,∴直线AM 解析式为1 13y x =-,联立得:33113y x y x =--⎧⎪⎨=-⎪⎩, 解得:3565x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则36(,)55M --. (3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,分两种情况考虑:设,0Q x (),2(,23)P m m m --, 当四边形BCQP 为平行四边形时,由(1,0)B -,(0,3)C -,根据平移规律得:10003223x m m m -+=++=+,---,解得:1m =2x =,当m =时,2238233m m -=+-=-,即 (1P ;当1m =时,2238233m m --=+=-,即(1P ;当四边形BCPQ 为平行四边形时,由(1,0)B -,(03)C ,-,根据平移规律得:10m x +=+-,202330m m +--=-+,解得:0m =或2,当0m =时,0,3P -()(舍去);当2m =时,(2,3)P -,综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为((1或(1或(23),-.【解析】(1)把(3,0)A ,(1,0)B -,(0,3)C -代入抛物线解析式得: 93003a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩解得:123a b c =⎧⎪=-⎨⎪=-⎩,则该抛物线解析式为223y x x =--;(2)设直线BC 解析式为3y kx =-,把1,0B (-)代入得:30k -=-,即 3k =-,∴直线BC 解析式为33y x =--,∴直线AM 解析式为 13y x m =+ 把3,0A()代入得:10m +=,即1m =-, ∴直线AM 解析式为1 13y x =-,联立得:33113y x y x =--⎧⎪⎨=-⎪⎩, 解得:3565x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则36(,)55M --. (3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,分两种情况考虑:设,0Q x (),2(,23)P m m m --, 当四边形BCQP 为平行四边形时,由(1,0)B -,(0,3)C -,根据平移规律得:10003223x m m m -+=++=+,---,解得:1m =2x =,当m =时,2238233m m -=+-=-,即 (1P ;当1m =时,2238233m m --=+=-,即(1P ;当四边形BCPQ 为平行四边形时,由(1,0)B -,(03)C ,-,根据平移规律得:10m x +=+-,202330m m +--=-+,解得:0m =或2,当0m =时,0,3P -()(舍去);当2m =时,(2,3)P -,综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为((1或(1或(23),-.。

(真题)2018学年济宁市中考数学试卷(附答案)

(真题)2018学年济宁市中考数学试卷(附答案)

山东省济宁市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题3 分,共30 分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.)A.1 B.﹣1 C.3 D.﹣3【解答】解:-1.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点 C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中 5 出现 2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题 3 分,共15 分。

2018年山东省济宁市中考数学试卷(含答案解析)

2018年山东省济宁市中考数学试卷(含答案解析)

山东省济宁市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题 3 分,共30 分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.)A.1 B.﹣1 C.3 D.﹣3【解答】.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍 186000000 平方米,其中数据 186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将 186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点 B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50° B.60° C.80° D.100°【解答】解:圆上取一点 A,连接 AB,AD,∵点 A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式 4a﹣a3 分解因式的结果是()A.a(4﹣a2) B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点 A,C 在 x 轴上,点 C 的坐标为(﹣1,0),AC=2.将 Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2) B.(1,2) C.(﹣1,2)D.(2,﹣1)【解答】解:∵点 C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将 Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为 7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是 5 B.中位数是 5 C.平均数是 6 D.方差是 3.6【解答】解:A、数据中 5 出现 2 次,所以众数为 5,此选项正确; B、数据重新排列为3、5、5、7、10,则中位数为 5,此选项正确; C、平均数为(7+5+3+5+10)÷5=6,此选项正确; D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形 ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°【解答】解:∵在五边形 ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为 2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题3 分,共15 分。

济宁市2018中考数学试题含答案(word版)

济宁市2018中考数学试题含答案(word版)

济宁市二0一八年高中段学校招生考试数学试题注意事项:1.本试卷分第I 卷和第Ⅱ卷两部分,共6页.第1卷为选择题,30分,第I 卷为非选择题,70分;共100分,考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名,准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第I 卷时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动必须先用橡皮擦干净,再改涂其它答案.4,在答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写,务必在题号所指示的答题区域内作答. 5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤. 6.考试结束后,将本试卷和答题卡一并交回.第|卷(选择题共30分)一.选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求1的值是 ( ) A .1 B .-1 C .3 D .-32.为贯彻落实党中央、国务院关干推进城多义务教育一体化发展的部署,教育部会同有关部门近五4年来共新建、改扩建校舍186000000平方米。

其中186000000用科学计数法表示是( ) A .1.86×109B .186×106C .1.86×109D .0.186x 1093.下列运算正确的是()A .842÷a a a = B .()224a a = C .236·a a a = D . 224+2a a a = 4.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是 A .50° B .60° C .80° D .100° 5.多项式4a -a 3分解因式的结果是() A .()24a a- B . a (2-a )(2+a ) C .a (a -2)(a +2) D . ()22a a-6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点点A的对应点坐标是()A.(2.2)B.(1.2)C.(-12) D(2,-1)7.在一次数学答题比赛中,五位同学答对题目的个数分别为7.5,3,5,10.则关于这组数据的说法不正前的是()A.众数是5 B.中位数是5 C,平均数是6 D方差是3.68.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是A.50°B.55°C.60°D.65°9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+πB.16+4πC.16+8πD.16+12π10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()DCAB第Ⅲ卷(非选择题共70分)二、填空题:本大题共5小题,每小题3分,共15分。

【精编】山东省济宁市2018年中考数学试题(含解析)

【精编】山东省济宁市2018年中考数学试题(含解析)

山东省济宁市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题3 分,共30 分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.A.1 B.﹣1 C.3 D.﹣3【解答】.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50° B.60° C.80° D.100°【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点C 顺时针旋转90°,再向右平移3 个单位长度,则变换后点A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)【解答】解:∵点C 的坐标为(﹣1,0),AC=2,∴点A 的坐标为(﹣3,0),如图所示,将Rt△ABC 先绕点C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6【解答】解:A、数据中5 出现2 次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°【解答】解:∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.二、填空题:本大题共5 小题,每小题3 分,共15 分。

山东省济宁市2018年中考数学试题(word版含解析)

山东省济宁市2018年中考数学试题(word版含解析)

省市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题 3 分,共30 分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.31 的值是()A.1B.﹣1 C.3D.﹣32.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000 平方米,其中数据186000000 用科学记数法表示是()A.1.86×107B.186×106C.1.86×108D.0.186×109.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a44.如图,点B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50°B.60°C.80°D.100°5.多项式4a﹣a3 分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)26..如图,在平面直角坐标系中,点A,C 在x 轴上,点C 的坐标为(﹣1,0),AC=2.将Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.68.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50°B.55°C.60°D.65°9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()二、填空题:本大题共 5 小题,每小题 3 分,共15 分。

济宁市2018中考数学试题含答案(word版)

济宁市2018中考数学试题含答案(word版)
1.3பைடு நூலகம்1的值是()
A1B-1C.3D-3
2•为贯彻落实党中央、国务院关干推进城多义务教育一体化发展的部署,教育部会同有关部门近五4年
来共新建、改扩建校舍186000000平方米。其中186000000用科学计数法表示是()
3.下列运算正确的是()
第川卷(非选择题共70分) 、填空题:本大题共5小题,每小题3分,共15分。
11•若二次根式.x-7在实数范围内有意义,则x的取值范是。
12.在平面直角坐标系中,已知一次函数y=-2x+1的图像经过P1(X1y1,), 21(X2,y2)两点,若X1<X2
则y1y2(填“> “”“v”或“=)
13,在厶ABC中,点E, F分别是边AB AC的中点,点D在BC边上,连接DE DF, EF,请你添加一个条
干净,再改涂其它答案.
4.在答第n卷时,必须使用0.5毫米黑色签字笔在答题卡上书写,务必在题号所指示的答题区域内作答.
5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤
6.考试结束后,将本试卷和答题卡一并交回.
第|卷(选择题共30分)
一.选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有 一项符合题目要求
三、解答题:本大题共7小题共55分.
16.(6分)化简:(y+2)(y-2)-(y-1)(y+5)
17.(7分)某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上)、D(泗水),每
件使^BED与△FDE全等。
14•如图,在一笔直的海岸线上有相距2km的A. B两个观测站,B站在A站的正东方向上,从A站测得船
C在北偏东60°的方向上,从B站测得船c在北偏东30°的方向上,则船C到海线I的距离是

山东省济宁市金乡县2018年中考数学模拟试卷含答案解析

山东省济宁市金乡县2018年中考数学模拟试卷含答案解析

山东省济宁市金乡县2018届数学中考模拟试卷一、单选题1.一元二次方程x(x﹣1)=0的解是()A. x=0B. x=1C. x=0或x=﹣1 D. x=0或x=1【答案】D【考点】解一元二次方程﹣因式分解法【解析】【解答】解:方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故选:D.【分析】方程利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.2.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A既不是轴对称图形,也不是中心对称图形,故不符合题意;B不是轴对称图形,但是中心对称图形,故不符合题意;C是轴对称图形,但不是中心对称图形,故不符合题意;D即是轴对称图形,也是中心对称图形,故符合题意.故答案为: D.【分析】轴对称图形是指图像沿某一直线对折,两部分能完全重合;中心对称图形是指图形沿某一点旋转后两部分完全重合。

根据定义可知D符合题意。

3.下列随机事件的概率,既可以用列举法求得,又可以用频率估计获得的是()A. 某种幼苗在一定条件下的移植成活率B. 某种柑橘在某运输过程中的损坏率C. 某运动员在某种条件下“射出9环以上”的概率D. 投掷一枚均匀的骰子,朝上一面为偶数的概率【答案】D【考点】列表法与树状图法,利用频率估计概率【解析】【解答】A.某种幼苗在一定条件下的移植成活率,只能用频率估计,不能用列举法;故不符合题意;B.某种柑橘在某运输过程中的损坏率,只能用列举法,不能用频率求出;故不符合题意;C.某运动员在某种条件下“射出9环以上”的概率,只能用频率估计,不能用列举法;故不符合题意;D.∵一枚均匀的骰子只有六个面,即:只有六个数,不是奇数,便是偶数,∴能一一的列举出来,∴既可以用列举法求得,又可以用频率估计获得概率;故符合题意.故答案为:D.【分析】(1)幼苗的移植具有一定的破坏性、且环境、气候影响较大,所以不能用列举法;(2)因为柑橘在某运输过程中气候、环境的影响,所以不能用列举法;(3)因为运动员的射击次数越多,越接近概率,所以可用频率估计,若用列举法,不准确;(4)一枚均匀的骰子只有六个面,奇数和偶数各占一半,所以既可以用列举法求得,又可以用频率估计获得概率。

最新-山东省济宁市微山县2018届中考数学一模试卷含答

最新-山东省济宁市微山县2018届中考数学一模试卷含答

2018年山东省济宁市微山县中考数学一模试卷一.选择题1.在实数﹣2,6,0,1中,最小的实数是()A.﹣2 B.6 C.0 D.12.下列运算正确的是()A.x2+x3=x5B.()2=C.x2•x3=x6D.(x2)3=x63.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.75°B.60°C.45°D.30°4.已知一组数据:1,3,2,6,3.下列关于这组数据的说法,不正确的是()A.方差是1.8 B.众数是3 C.中位数是3 D.平均数是35.“五一”节即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%.那么乙种商品单价是()A.2元B.2.5元C.3元D.5元6.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣,当水面离桥拱顶的高度DO是2m时,这时水面宽度AB为()A.﹣10m B.﹣5m C.5m D.10m7.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A. B.C.D.8.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.109.如图,AB是半圆O(的)直径,半径OC⊥AB,连线AC,∠CAB的平分线AD分别交OC于点E,交于点D,连接CD、OD.以下结论错误的是()A.AC∥OD B.CD2=CE•CO C.S△ADC=2S△DOE D.AC=2CD10.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个或5个B.4个或5个C.5个或6个D.6个或7个二.填空题11.雾霾已经成为现在在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.0000025米的颗粒物,将0.0000025用科学记数法表示为.12.若式子在实数范围内有意义,则a的取值范围是.13.若二次函数y=mx2+(m﹣2)x+的图象与x轴有交点,那么m的取值范围为.14.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的高h等于.15.如图,双曲线y=(k≠0)经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为10,则k的值是.三.解答题16.先化简再求值:(+),其中x的值为x2+2x﹣3=0的解.17.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.18.李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了名同学;(2)C类女生有名,D类扇形圆心角的度数为,请将条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.19.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B 商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?20.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=,求出⊙O的半径和BE的长;(3)连接CG,在(2)的条件下,求的值.21.材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边形叫梯形的腰,连接梯形两腰中心的线段叫梯形的中位线,梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1)在梯形ABCD中,AD∥BC.∵E、F是AB、CD的中点,∴EF∥AD∥BC,EF=(AD+BC).材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2)在△ABC中,∵E是AB的中点,EF∥BC,∴F是AC的中点.请你运用所学知识,结合上述材料,解答下列问题.如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°(1)求证:EF=AC;(2)若OD=3,OC=5,求MN的长.22.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)当点P运动到什么位置时,△BPC的面积最大?求出此时P点的坐标和△BPC的最大面积;(3)连接PO、PC,并把△POC沿CO翻折,得到四边形POP1C,那么是否存在点P,使四边形POP1C 为菱形?若存在,直接写出此时点P的坐标;若不存在,请说明理由.2018年山东省济宁市微山县中考数学一模试卷参考答案与试题解析一.选择题1.在实数﹣2,6,0,1中,最小的实数是()A.﹣2 B.6 C.0 D.1【考点】实数大小比较.【分析】根据有理数大小比较的法则比较即可.【解答】解:在实数﹣2,6,0,1中,最小的实数是﹣2.故选:A.【点评】本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.2.下列运算正确的是()A.x2+x3=x5B.()2=C.x2•x3=x6D.(x2)3=x6【考点】分式的乘除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据分式的乘方、同底数幂的乘法、幂的乘方,即可解答.【解答】解:A、x2•x3=x5,故错误;B、,故错误;C、x2•x3=x5,故错误;D、正确;故选:D.【点评】本题考查了分式的乘方、同底数幂的乘法、幂的乘方,解决本题的关键是熟记分式的乘方、同底数幂的乘法、幂的乘方.3.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.75°B.60°C.45°D.30°【考点】平行线的性质;三角形的外角性质.【分析】根据三角板可得:∠2=60°,∠5=45°,然后根据三角形内角和定理可得∠2的度数,进而得到∠4的度数,再根据三角形内角与外角的关系可得∠2的度数.【解答】解:由题意可得:∠2=60°,∠5=45°,∵∠2=60°,∴∠3=180°﹣90°﹣60°=30°,∴∠4=30°,∴∠1=∠4+∠5=30°+45°=75°.故选A.【点评】此题主要考查了三角形内角和定理,三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.已知一组数据:1,3,2,6,3.下列关于这组数据的说法,不正确的是()A.方差是1.8 B.众数是3 C.中位数是3 D.平均数是3【考点】方差;算术平均数;中位数;众数.【分析】先把数据由小到大排列为1,3,2,6,3,然后根据算术平均数、中位数和众数的定义得到数据的算术平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.【解答】解:数据由小到大排列为1,2,3,3,6,它的平均数为=3,数据的中位数为3,众数为3,数据的方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(6﹣3)2]=2.8.故选A.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,关键是根据平均数,中位数和众数的定义解答.5.“五一”节即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%.那么乙种商品单价是()A.2元B.2.5元C.3元D.5元【考点】二元一次方程组的应用.【分析】设甲商品的单价是x元,乙商品的单价是y元,根据“甲商品的数量+乙商品的数量=260”和“已知甲种商品单价比乙种商品单价高20%”列出方程组.【解答】解:设甲商品的单价是x元,乙商品的单价是y元,依题意得:.解得,即甲商品的单价是2.5元,乙商品的单价是3元,故选:B.【点评】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.6.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣,当水面离桥拱顶的高度DO是2m时,这时水面宽度AB为()A.﹣10m B.﹣5m C.5m D.10m【考点】二次函数的应用.【分析】根据题意,把y=﹣4直接代入解析式即可解答.【解答】解:根据题意,当y=﹣2时,有﹣2=﹣,解得:x=±5,∴A(﹣5,﹣2),B(5,﹣2),∴所有水面宽度AB=2×5=10m.故选:D.【点评】本题考查了点的坐标的求法及二次函数的实际应用,此题为数学建模题,借助二次函数解决实际问题.7.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A. B.C.D.【考点】反比例函数与一次函数的交点问题;在数轴上表示不等式的解集.【分析】根据两函数的交点坐标,结合图象即可求出x的范围,再在数轴上表示出来,即可得出选项.【解答】解:∵正比例函数y1与反比例函数y2相交于点E(﹣1,2),∴根据图象可知当y1>y2>0时x的取值范围是x<﹣1,∴在数轴上表示为:,故选A.【点评】本题考查了一次函数与反比例函数的交点问题和在数轴上表示不等式的解集的应用,关键是求出x的范围.8.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【专题】计算题.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.9.如图,AB是半圆O(的)直径,半径OC⊥AB,连线AC,∠CAB的平分线AD分别交OC于点E,交于点D,连接CD、OD.以下结论错误的是()A.AC∥OD B.CD2=CE•CO C.S△ADC=2S△DOE D.AC=2CD【考点】相似三角形的判定与性质;圆周角定理.【分析】根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可得到A 正确,过点O作OG⊥AC,再根据直角三角形斜边大于直角边可证D错误;利用相似三角形的判定与性质以及等腰直角三角形的性质得出即可C正确;根据相似三角形的性质即可得到B正确.【解答】证明:∵AB是半圆直径,∴AO=OD,∴∠OAD=∠ADO,∵AD平分∠CAB交弧BC于点D,∴∠CAD=∠DAO=∠CAB,∴∠CAD=∠ADO,∴AC∥OD,∴故A选项正确.如图1,过点O作OG⊥AC,∵OG⊥AC,∴,∵半径OC⊥AB于点O,∴==,∴AG=GC=CD,∴AC<2CD,∴故D选项错误.如图2,过点E作EM⊥AC于点M,∵AO=CO,AO⊥CO,∴∠CAO=∠ACO=45°,∴CM=ME,∵AD平分∠CAB分别交OC于点E,EO⊥AO,EM⊥AC,∴ME=EO,∴CM=ME=EO,∴CE=ME=EO,由①得:∵AC∥OD,∴△ACE∽△DOE,∴=,∴=()2=2,∴S△AEC=2S△DEO;故C错误,∵OC⊥AB,OA=OC,∴△AOC为等腰直角三角形,∴∠DOB=∠COD=∠BAC=45°,∵∠ADC与∠AOC都对,∴∠ADC=∠AOC=45°,∴∠ADC=∠COD,又∠OCD=∠DCE,∴△DCE∽△OCD,∴,即CD2=CE•OC,故B正确.【点评】此题考查了圆周角定理,圆心角、弧及弦之间的关系,以及相似三角形的判定与性质,熟练掌握圆周角定理是解本题的关键.10.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个或5个B.4个或5个C.5个或6个D.6个或7个【考点】由三视图判断几何体.【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选A.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.11.雾霾已经成为现在在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.0000025米的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6.故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若式子在实数范围内有意义,则a的取值范围是a≥1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式的分母不等于零且二次根式的被开方数是非负数,据此列出关于a的不等式组,通过解该不等式组来求a的取值范围.【解答】解:依题意得:,解得a≥1.故答案是:a≥1.【点评】本题考查了二次根式有意义的条件和分式有意义的条件.关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.13.若二次函数y=mx2+(m﹣2)x+的图象与x轴有交点,那么m的取值范围为m且m≠0.【考点】二次函数图象上点的坐标特征.【分析】二次函数图象与x轴有交点,则△=b2﹣4ac≥0,且m≠0,列出不等式则可.【解答】解:由题意知:,解得m且m≠0,故答案为m且m≠0.【点评】该题考查函数图象与坐标轴的交点判断,当△=b2﹣4ac>0时图象与x轴有两个交点;当△=b2﹣4ac=0时图象与x轴有一个交点;当△=b2﹣4ac<0时图象与x轴没有交点.14.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的高h等于20cm.【考点】圆锥的计算.【分析】由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径,利用勾股定理求得高即可.【解答】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm.h==20cm,故答案是:20cm.【点评】本题考查的知识点是圆锥的表面积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.15.如图,双曲线y=(k≠0)经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为10,则k的值是24.【考点】反比例函数系数k的几何意义.【分析】过点A作AC⊥x轴于点C,则AC∥MN,故可得出△OAC∽△OMN,由相似三角形的性质可知OC:OM=AC:MN=OA:ON,再由OA=2AN可知OA:ON=2:3,设A(a,b),可用a、b表示出N点坐标,设点B(a,y),点A与点B都在反比例函数y=的图象上可用a、b表示出B点坐标,再由OA=2AN,△OAB的面积是5可得出△NAB的面积,△ONB的面积,故可得出ab 的值,进而得出k的值.【解答】解:过点A作AC⊥x轴于点C,则AC∥MN,∴△OAC∽△OMN,∴OC:OM=AC:MN=OA:ON,∵OA=2AN,即OA:ON=2:3,∵设A(a,b),∴OC=a,AC=b,∴OM=a,MN=b,∴N点坐标为(a,b),设点B(a,y),∵点A与点B都在反比例函数y=的图象上,∴k=ab=a•y,∴y=b,即B(a,b),∵OA=2AN,△OAB的面积是10,∴△NAB的面积是5,∴△ONB的面积=10+5=15,∴NB•OM=15,×(b﹣b)×a=15,∴ab=24,∴k=24.故答案为:24.【点评】本题考查的是反比例函数综合题,涉及到相似三角形的判定与性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特点等知识,难度适中.三.解答题16.先化简再求值:(+),其中x的值为x2+2x﹣3=0的解.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式=[+]•=[+]•=•=,解方程得:x1=﹣3,x2=1将x=﹣3代入原式=,x=1使原式无意义.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)运用AAS证明△ABD≌△CAE;(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.【解答】证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.【点评】本题主要考查了三角形全等的判定与性质,矩形的判定与性质以及平行四边形的判定与性质,难度不大,比较灵活.18.李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了20名同学;(2)C类女生有3名,D类扇形圆心角的度数为36°,请将条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数;(2)利用(1)中求得的总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数以及D类所占的圆心角的度数;(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【解答】解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生,故答案为:20;(2)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),360°,故答案为:3;36°;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值;(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B 商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.①求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?【考点】二次函数的应用;二元一次方程组的应用.【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出关于x,y的方程即可;②把函数关系式配方即可得到结果.【解答】解:(1)根据题意得:,解得:;(2)①由题意得:y=(x﹣20)【100﹣5(x﹣30)】∴y=﹣5x2+350x﹣5000,②∵y=﹣5x2+350x﹣5000=﹣5(x﹣35)2+1125,=1125,∴当x=35时,y最大∴销售单价为35元时,B商品每天的销售利润最大,最大利润是1125元.【点评】此题主要考查了二次函数的应用以及用配方法求出最大值,准确分析题意,列出y与x之间的二次函数关系式是解题关键.20.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)若CF=3,cosA=,求出⊙O的半径和BE的长;(3)连接CG,在(2)的条件下,求的值.【考点】圆的综合题.【分析】(1)首先连接OD,由D是BC中点,OC=OA,易得OD是△ABC的中位线,可得OD∥AB,又由DE⊥AB,可得DE⊥OD,即可证得直线EF是⊙O的切线;(2)由OD∥AB,易得∠COD=∠A,又由CF=3,cosA=,设⊙O的半径为R,可得=,则可求得⊙O的半径,则可求得AB的长,继而求得答案;(3)首先连接CG,易证得CG∥EF,然后由平行线分线段成比例定理,求得答案.【解答】(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD∥AB,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;(2)解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=2,∴AB=2OD=4.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=4﹣=;(3)解:连接CG,则∠AGC=90°,∵DE⊥AB,∴∠AEF=90°,∴CG∥EF,∴====.【点评】此题属于圆的综合题.考查了切线的判定与性质、三角形中位线的性质、平行线分线段成比例定理以及三角函数等知识.注意准确作出辅助线是解此题的关键.21.材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边形叫梯形的腰,连接梯形两腰中心的线段叫梯形的中位线,梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1)在梯形ABCD中,AD∥BC.∵E、F是AB、CD的中点,∴EF∥AD∥BC,EF=(AD+BC).材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2)在△ABC中,∵E是AB的中点,EF∥BC,∴F是AC的中点.请你运用所学知识,结合上述材料,解答下列问题.如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°(1)求证:EF=AC;(2)若OD=3,OC=5,求MN的长.【考点】四边形综合题.【分析】(1)由AD∥BC且∠DBC=30°可知∠ADC=30°,OA=AD;同理可得出OC=BC;由AC=OA+OC=(AD+BC)结合给定的材料一即可证明结论成立;(2)结合(1)可知OA=AD,OC=BC,在直角△AOD中由已知条件可求出OA的长度,根据边与边之间的关系可得出线段ON的长度,由MN∥AD可得出∠OMN=30°,MN=2ON,代入ON 的长度即可得出结论.【解答】(1)证明:∵AD∥BC,∴∠ADO=∠DBC=30°.在Rt△AOD中,∠ADO=30°,∴OA=AD.同理:OC=BC.∴AC=OA+OC=AD+BC=(AD+BC).∵E、F分别为AB、CD的中点,∴EF=(AD+BC),∴EF=AC.(2)解:由(1)得:在Rt△AOD和Rt△BOC中,OA=AD,OC=BC,∵OD=3,OC=5,∴OA=OD•tan30°=3.∵AD∥EF,∴∠ADO=∠OMN=30°,∴ON=MN.∵EF∥BC,且E为线段AB中点,∴EN为△ABC中位线,∴AN=AC=(OA+OC)=4,∴ON=AN﹣OA=4﹣3=1,∴MN=2ON=2.【点评】本题考查了梯形中位线的性质、平行线的性质、三角形中位线定理以及特殊角的三角函数,解题的关键:(1)找出AC=OA+OC=(AD+BC);(2)根据边角关系求出ON的长度.本题属于中档题,难度不大,解决该类型题目时,利用给定材料中梯形中位线的性质结合边角关系寻找相等的量.22.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)当点P运动到什么位置时,△BPC的面积最大?求出此时P点的坐标和△BPC的最大面积;(3)连接PO、PC,并把△POC沿CO翻折,得到四边形POP1C,那么是否存在点P,使四边形POP1C 为菱形?若存在,直接写出此时点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)直接把B(3,0)、C(0,﹣3)代入y=x2+bx+c可得到关于b、c的方程组,解方程组求得b=﹣2,c=﹣3,则二次函数的表达式为y=x2﹣2x﹣3;(2)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得P′E的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)作OC的垂直平分线交直线BC下方的抛物线于点P,则PO=PC,根据翻折的性质得OP′=OP,CP′=CP,易得四边形POP′C为菱形,又E点坐标为(0,﹣),则点P的纵坐标为﹣,再把y=﹣代入y=x2﹣2x﹣3可求出对应x的值,然后确定满足条件的P点坐标.【解答】解:(1)把B(3,0)、C(0,﹣3)代入y=x2+bx+c,得,解得,∴这个二次函数的表达式为y=x2﹣2x﹣3;(2)如图1,作PF⊥x轴于F点,交BC于E点,BC的解析式为y=x﹣3,设E(m,m﹣3),P′(m,m2﹣2m﹣3).P′E=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m=﹣(m﹣)2+,S△BCP′=S△BEP′+S CEP′=P′E×FB+EP′•OF=EP′•OB=×3[﹣(m﹣)2+]=×3×=,当m=时,S最大m2﹣2m﹣3=﹣,此时P′(,﹣);(3)存在.理由如下:作OC的垂直平分线交直线BC下方的抛物线于点P,垂足为点E,如图2,则PO=PC,∵△POC沿CO翻折,得到四边形POP′C,∴OP′=OP,CP′=CP,∴OP′=OP=CP′=CP,∴四边形POP′C为菱形,∵C点坐标为(0,﹣3),∴E点坐标为(0,﹣),∴点P的纵坐标为﹣,把y=﹣代入y=x2﹣2x﹣3得x2﹣2x﹣3=﹣,解得x=,∵点P在直线BC下方的抛物线上,∴x=,∴满足条件的点P的坐标为(,﹣).【点评】本题考查了二次函数综合题:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物=;线,其顶点式为y=a(x﹣)2+,抛物线的对称轴为x=﹣,当a>0,y最小值=;利用面积的和差得出二次函数是解题关键,又利用了二次函数的性质;当a<0,y最,大值对于特殊四边形的判定与性质以及勾股定理要熟练运用.。

山东省济宁市金乡县2018届中考数学模拟试题一

山东省济宁市金乡县2018届中考数学模拟试题一

九年级模拟数学试题(一)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分; 共100分.考试时间为120分钟.2.答第Ⅰ卷前务必每题选出答案后,都必须用2B 铅笔把答题纸上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案.3.答第Ⅱ卷时,将密封线内的项目填写清楚,在题号所示答题区域作答,答题作图时,先用2B 铅笔试画,无误后用黑色签字笔描黑.4.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程、或演算步骤.第I卷(选择题 共30分)一、选择题:本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一个符合题意要求.1. °sin 60的值等于( )A. 1 B .2 C .22D .212. 某红外线遥控器发出的红外线波长为0.00000094m ,用科学记数法表示这个数是( ) A .9.4×10﹣7mB .9.4×107mC .9.4×10﹣8mD .9.4×108m3. 下列计算正确的是( )A .5210a a =() B .1644x x x ÷= C .224236a a a += D .333•2b b b = 4. 为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是( )A .随机抽取100位女性老人B .随机抽取100位男性老人C .随机抽取公园内100位老人D .在城市和乡镇选10个点,每个点任选5位老人 5. 一元二次方程2660x x --=配方后可化为( )A .2(3)15x +=B .2(3)15x -= C. 2(3)3x -= D .2(3)3x += 6. 将下列多项式分解因式,结果中不含因式x ﹣1的是( ) A .x 2﹣1 B .x (x ﹣2)+(2﹣x ) C .x 2﹣2x+1D .x 2+2x+17. 如图,将ABC ∆绕点B 顺时针旋转°60得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,则下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =8. 如图,⊙O 的半径OD 垂直于弦AB ,垂足为点C ,连接AO 并延长交⊙O 于点E ,连接BE ,CE .若AB=8,CD=2,则△BCE 的面积为( )A .12B .15C .16D .18第7题图 第8题图 第9题图9. 如图,在△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A. B. C. D.10. 已知函数221y ax ax =--(a 是常数,0a ≠),下列结论正确的是( )A .当=1a 时,函数图象经过点(-1,1)B .当=-2a 时,函数图象与x 轴没有交点C. 若0a <,函数图象的顶点始终在x 轴的下方 D .若0a >,则当1x ≥时,y 随x 的增大而增大第Ⅱ卷 (非选择题 共70分)二、填空题:本大题共5小题,每小题3分,共15分.11.函数y =中自变量x 的取值范围是____________.12.已知2x =是关于x 的方程1(1)2a x a x +=+的解,则a 的值是____________.13. 如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的正切值是 .第13题图 第14题图14. 如图,小明自制一块乒乓球拍,正面是半径为8cm 的⊙O ,其中∠AOB=90°,弓形ACB (阴影部分)粘贴胶皮,则胶皮面积为 2cm .15. 规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算.现有如下的运算法则:log a a n =n ,log N M=N M n n log log (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=2log 5log 1010,则log 1001000= .三、解答题:本大题共7个小题,共55分. 16. 先化简,再求值:(本题满分5分)2214(1)1a a a a --÷--,其中a 是整数,且﹣3<a <317.(本题满分7分)近年来,我县教体局在全县各中小学开展“大阅读”活动,某校计划再购进一批图书,丰富学生的课外阅读.为了解学生对课外阅读的需求情况,学校对学生所喜爱的读物:A .文学,B .艺术,C .科普,D .生活,E .其他,进行了随机抽样调查(规定每名学生只能选其中一类读物),并将调查结果绘制成以下不完整的统计图表人数(1)a = ,b = ;(2)如果全校有2500名学生,请你估计全校有多少名学生喜爱科普读物;(3)学校从喜爱科普读物的学生中选拔出2名男生和3名女生,并从中随机抽取2名学生参加科普知识竞赛,请你用树状图或列表法求出恰好抽到一名男生和一名女生的概率. 18. (本题满分8分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知ABC △三个顶点分别为A (1-,2)、B (2,1)、C (4,5).(1)画出ABC △关于x 轴对称的111A B C △;(2)以原点O 为位似中心,在x 轴的上方画出222A B C △,使222A B C △与ABC △位似,且位似比为2,并求出222A B C △的面积.19. (本题满分8分)寒假期间小明到某服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种服装每件进价80元,乙种服装每件进价60元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件?(2)服装店经理在销售中发现:甲种服装平均每天可售出20件,每件盈利40元.经市场调查发现:如果每件甲种服装降价4元,那么平均每天就可多售出8件,要想平均每天销售甲种服装盈利1200元,那么每件甲种服装应降价多少元? 20.(本题满分8分)如图,已知AB 是⊙O 的直径,点C,D 在⊙O 上,点E 在⊙O 外,作直线AE ,且∠EAC=∠D=60°. (1)求∠ABC 的度数;(2)求证:直线AE 是⊙O 的切线; (3)若BC=4,求劣弧AC 的长.21. (本题满分8分) 【问题探究】下面是小芸和小娟一起探究函数4y x x=+的图象与性质的过程: (1) 函数4y x x=+的自变量x 的取值范围是 ; (2)在下列四个函数图象中,函数4y x x=+的图象大致是 ;(3)对于函数4y x x=+,求当x 0>时,y 的取值范围. 请将下列求解过程补充完整. 解:∵x 0>A B∴()2224y xx=+=+=+【问题解决】(4) 已知函数295x xy x+-=(x >0),则y 的取值范围为 .22. (本题满分11分) 如图,抛物线213222y x x =-++与x 轴交于点A ,B ,与y 轴交于点C,连接AC 、BC . (1)试求A ,B ,C 的坐标;(2)将△ABC 绕AB 中点M 旋转180°,得到△BAD . ①求点D 的坐标;②判断四边形ADBC 的形状,并说明理由;(3)在抛物线的对称轴上是否存在点P ,使△BMP 与△BAD 相似?若存在,请直接写出所有满足条件的P 点的坐标;若不存在,请说明理由.九年级数学试题参考答案及评分标准一、选择题:每小题3分,满分30分二、填空题:本题共5小题,每题3分,共15分 11. x ≥-1 12.45 13. 12 14. (48π+32) 15. 32三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤. 16.(本题满分5分)解:原式=2aa + 3分 把1a =-代入2aa +得原式= -1 5分17. (本题满分7分)解:(1)80,64 2分(2)2500×=750名. 3分答:估计全校约有750名学生喜爱科普读物. 4分 (3)列表得:﹣﹣﹣或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种, 6分 所以P (恰好抽到一男一女)=123=205. 7分解:(1)如图所示,△A 1B 1C 1就是所求三角形; 3分 (2)如图所示,△A 2B 2C 2就是所求三角形; 6分=8×10﹣12×6×2﹣12×4×8﹣12×6×10=28. 8分19. (本题满分8分)解:(1)设购进甲种服装x 件,由题意可知: 80x+60(100﹣x )≤7500,解得:x ≤75, 又甲种服装不少于65件, 所以65≤x ≤75,答:甲种服装最多购进75件; 3分 (2)设每件甲服装应降价为x 元,根据题意 列方程,得(40﹣x )(20+4x×8)=1200, 4分 整理,得x 2﹣30x+200=0,解得: x 1=10,x 2=20, 6分 当x=10时,销售量为20+4x×8=40(件). 当x=20时,20+4x×8=60(件). 则每件甲服装应降价10元,此时销售量是40件或每件甲服装应降价20元,此时销售量是60件. 8分证明:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠ABC=∠D=60°; 2分 (2)∵AB 是⊙O 的直径,∴∠ACB=90°. ∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°, 即BA ⊥AE ,∴AE 是⊙O 的切线; 5分 (3)如图,连接OC ,∵∠ABC=60°, ∴∠AOC=120°, 的长为 21. (本题满分8分)解:(1)0x ≠ 2分(2)C 4分 (3)解:∵x 0>∴()2224y x 4x=+=+=+ 5分分 (4)1y ≥ 8分 22. (本题满分11分) 解:(1)当y=0时,0=﹣12x 2+32x+2, 解得:x 1=﹣1,x 2=4,则A (﹣1,0),B (4,0), 2分 当x=0时,y=2,故C (0,2); 3分(2)①过点D 作DE ⊥x 轴于点E ,∵将△ABC 绕AB 中点M 旋转180°,得到△BAD , ∴DE=2,AO=BE=1,OM=ME=1.5,∴D (3,﹣2); 5分 ②∵将△ABC 绕AB 中点M 旋转180°,得到△BAD , ∴AC=BD ,AD=BC ,∴四边形ADBC 是平行四边形,∵, AB=5, ∴AC 2+BC 2=AB 2, ∴△ACB 是直角三角形, ∴∠ACB=90°,∴四边形ADBC 是矩形; 7分(3)存在点P :(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5). 11分 参考答案 由题意可得:BD=,AD=2,则12BD AD =,当△BMP ∽△ADB 时,12PM BD BM AD ==, 可得:BM=2.5, 则PM=1.25, 故P (1.5,1.25), 当△BMP 1∽△ABD 时, P 1(1.5,﹣1.25), 当△BMP 2∽△BDA 时, 可得:P 2(1.5,5), 当△BMP 3∽△BDA 时, 可得:P 3(1.5,﹣5),综上所述:点P 的坐标为:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山东省济宁市 数学中考模拟试题(一)
一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分) 1 . 2018的相反数是
A .2018 B.-2018 C.20181
D.20181
2近几年来,我市加大教育信息化投入,投资221000000元,初步完成了济宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖。

将221000000用科学高数法表示为( )
A. 22.1×107
B. 2.21×108
C. 2.21×109
D. 0.221×1010
3.如图,已知直线a 、b 被直线c 所截.若a ∥b ,∠1=120°,则∠2的度数为( ) A .60° B .50° C .120° D .130°
4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) 动时间(A .中位数是4,平均数是3.75 B .众数是4,平均数是3.75
C .中位数是4,平均数是3.8
D .众数是2,平均数是3.8
5.在函数y=中,自变量x 的取值范围是( )
A .x >0
B . x ≥-4
C . x ≥-4且x ≠0 D. x >0且≠-4 6.如图,在底边BC 为2,腰AB 为2的等腰三角形ABC 中,DE 垂直
平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )
A .2+
B .2+2
C .4
D .3
7.京剧脸谱、剪纸等图案蕴含着简洁美、对称美,下列选取的图片中既是轴对称图形又是中心对称图形的是( )
8.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,
点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()
A. (0,0)
B.(1,)
C.(,)
D.(,)
9.如图是某几何体的三视图,则该几何体的全面积等于()
A.112B.136 C.124 D.84
10.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(-2,-2)都是“平衡点”.当-1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()
A.0≤m≤1B.-3≤m≤1C.-3≤m≤3D.-1≤m≤0
二、填空题(本题共5小题,每小题3分,共15分)
11.计算:()﹣2+(π﹣3)0﹣=.
12.若代数式与的值相等,则x=_______.
13.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC=
14.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角
形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有个三角形(用含字母n的代数式表示).
15如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=.
三、解答题(本大题共7小题,共55分)
16.(本小题满分7分)
(1)先化简再求值:a(1-4a)+(2a+1)(2a-1),其中a=4.
(2)如果实数x、y满足方程组,求代数式(+2)÷.
17某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
18..如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3时,求线段DH的长.
19.(8分)某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i=,且O、A、D在同一条直线上.求:(1)楼房OB的高度;
(2)小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)
的整数.结合函数的图象回答:当自变量x满足什么条件时,y2>y1?
20.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.
(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?
(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?
(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
21如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.
(1)求证:AB是圆的切线;
(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.
22如图,抛物线y=-x2+x+2与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点. 设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,点B,点C的坐标;
(2)求直线BD的解析式;
(3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD 是平行四边形;
(4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
参考答案
一.1 B 2 B 3 A 4 C 5. C 6 B 7 D 8 9 C 10 B
二.11. 2 12. 4 13. 110° 14 4n-3 15. 6
三。

16 (1)原式=a-4a2+4a2-1=a-1.
当a=4时,
原式=a-1=4-1=3.
(2)原式=•(x+y)+2•(x+y)=xy+2x+2y,
方程组,
解得:,
当x=3,y=﹣1时,原式=﹣3+6﹣2=1.
17.解:(1)10÷20%=50,
所以本次抽样调查共抽取了50名学生;
(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);
补全条形图如图所示:
(3)700×=56,
所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.
18.解:(1)BD=CF.
理由如下:由题意得,∠CAF=∠BAD=θ,
在△CAF和△BAD中,

∴△CAF≌△BAD,
∴BD=CF;
(2)①由(1)得△CAF≌△BAD,
∴∠CFA=∠BDA,
∵∠FNH=∠DNA,∠DNA+∠NAD=90°,
∴∠CFA+∠FNH=90°,
∴∠FHN=90°,即BD⊥CF;
②连接DF,延长AB交DF于M,
∵四边形ADEF是正方形,AD=3,AB=2,
∴AM=DM=3,BM=AM﹣AB=1,
DB==,
∵∠MAD=∠MDA=45°,
∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,∴△DMB∽△DHF,
∴=,即=,
解得,DH=.
19解:(1)在Rt△ABO中,∠BAO=60°,OA=200.∵tan60°=,
即,
∴OB=OA=200(m).
(2)如图,过点C作CE⊥BO于E,CH⊥OD于H.
则OE=CH,EC=OH.
根据题意,知i==,
可设CH=x,AH=2x.
在Rt△BEC中,∠BCE=45°,
∴BE=CE,
即OB﹣OE=OA+AH.
∴200﹣x=200+2x.
解得x=.
在Rt△ACH中,
∵AC2=AH2+CH2,
∴AC2=(2x)2+x2=5x2.
∴AC=x= [或](m).
答:高楼OB的高度为200m,小玲在山坡上走过的距离AC为m.20解:由题意得:
(1)50+x﹣40=x+10(元)
(2)设每个定价增加x元.
列出方程为:(x+10)(400﹣10x)=6000
解得:x1=10 x2=20
要使进货量较少,则每个定价为70元,应进货200个.
(3)设每个定价增加x元,获得利润为y元.
y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250 当x=15时,y有最大值为6250.
所以每个定价为65元时得最大利润,可获得的最大利润是6250元.。

相关文档
最新文档