2018-2019学年高中数学2.2直接证明与间接证明2.2.1.2分析法课件新人教A版选修2-2
数学:2.2.1《直接证明与间接证明-综合法和分析法》PPT课件(新人教选修2-2)
P1 P2
P2 P3
…
得到一个明显 成立的结论
例:设a,b,c为一个三角形的三
边,且s2=2ab,s 试证s<2a
1 = (a + b + c), 2
例:如图,SA⊥平面ABC,AB⊥BC,过A作SB 的垂线,垂足为E,过E作SC的垂线,垂足 S 为F,求证 AF⊥SC
证明:要证AF⊥SC 只需证:SC⊥平面AEF 只需证:AE⊥SC 只需证:AE⊥平面SBC 只需证:AE⊥BC 只需证:BC⊥平面SAB 只需证:BC⊥SA 只需证:SA⊥平面ABC
F E
A
B
C
因为:SA⊥平面ABC成立 所以. AF⊥SC成立
π 例. 已知α, β≠ kπ+ (k Z),且 2 sinθ+ cosθ= 2sinα sinθcosθ= sin β 1 - tan α 1 - tan β 证: 求 = . 2 2 1 + tan α 2(1 + tan β)
新课标人教版课件系列
《高中数学》
选修2-2
2.2.1《直接证明与间接证 明-综合法和分析法》
教学目标
结合已经学过的数学实例,了解直接证明的两 种基本方法:分析法和综合法;了解分析法和 综合法的思考过程、特点. 教学重点:会用综合法证明问题;了解综合法 的思考过程. 教学难点:根据问题的特点,结合综合法的思 考过程、特点,选择适当的证明方法.
Q P1
P1 P2
2 2 2
P2 P3
…
得到一个明显 成立的结论
也可以是经过 证明的结论
例:已知数列{an}的通项an>0,(n∈N*),它 的前n项的和记为sn,数列{s2n}是首项为3, 公差为1的等差数列. (1)求an与sn的解析式; (2)试比较sn与3nan(n∈N*),的大小.
2018-2019学年高中数学 第二章 推理与证明 2.2 直接证明与间接证明 2.2.2 反证法优质新人教A版选修1-2
所以 f(x)在(a,b)内至少存在一个零点,设零点为 m, 则 f(m)=0,
假设 f(x)在(a,b)内还存在另一个零点 n,即 f(n)=0, 则 n≠m.
若 n>m,则 f(n)>f(m),即 0>0,矛盾; 若 n<m,则 f(n)<f(m),即 0<0,矛盾.
因此假设不正确,即 f(x)在(a,b)内有且只有一个零 点.
(2)归谬——由“反设”作为条件,经过一系列正确 的推理,得出矛盾;
(3)存真——由矛盾结果断定反设错误,从而肯定原 结论成立.
1.思考判断(正确的打“√”,错误的打“×”) (1)反证法属于间接证明问题的方法.( ) (2)反证法的证明过程既可以是合情推理也可以是一 种演绎推理.( ) (3)反证法的实质是否定结论导出矛盾.( )
解析:(1)对,反证法是间接证明问题的方法. (2)错,反证法是演绎推理,不是合情推理. (3)对,根据反证法的概念知说法正确. 答案:(1)√ (2)× (3)√
2.应用反证法推出矛盾的推导过程中要把下列哪些
作为条件使用( )
①结论的否定,即假设;②原命题的条件;③公理、
定理、定义等;④原命题的结论.
类型 2 用反证法证明“唯一性”命题 [典例 2] 若函数 f(x)在区间[a,b]上的图象连续不断 开,f(a)<0,f(b)>0,且 f(x)在[a,b]上单调递增,求证: f(x)在(a,b)内有且只有一个零点. 证明:由于 f(x)在[a,b]上的图象连续不断开,且
f(a)<0,f(b)>0,即 f(a)·f(b)<0,
∴n-1 为奇数,这与 n 为奇数矛盾. ∴f(x)=0 无整数根.
归纳升华 1.证题的关键是根据 f(0),f(1)均为奇数,分析出 a, b,c 的奇偶情况,并应用.
高中数学人教A版选修2-2(课时训练):2.2 直接证明与间接证明2.2.1 pdf版含答案
2 ∴ a2+b2≥ 2 (a+b)成立.
当 a+b>0 时,用分析法证明如下:
2 要证 a2+b2≥ 2 (a+b),
[ ] 2
a+b
只需证( a2+b2)2≥ 2
2,
1
即证 a2+b2≥2(a2+b2+2ab),即证 a2+b2≥2ab.
∵a2+b2≥2ab 对一切实数恒成立,
2 ∴ a2+b2≥ 2 (a+b)成立.综上所述,不等式得证.
条件的结构特点去转化结论,得到中间结论 Q;根据结论的结构特点去转化条件,得到中
间结论 P;若由 P 可推出 Q,即可得证.
跟踪演练 3 设实数 a,b,c 成等比数列,非零实数 x,y 分别为 a 与 b,b 与 c 的等差中项,
要点一 综合法的应用
例 1 在△ABC 中,三个内角 A、B、C 对应的边分别为 a、b、c,且 A、B、C 成等差数列,
a、b、c 成等比数列,求证:△ABC 为等边三角形.
证明 由 A、B、C 成等差数列,有 2B=A+C.
①
因为 A、B、C 为△ABC 的内角,所以 A+B+C=π.
②
π
由①②,得 B=3.
11 1 a+b≥2 ab>0,
( )1 1 + ∴(a+b) a b ≥4.
11 又 a+b=1,∴a+b≥4.
1 1 a+b a+b b a
ba
·
法三 a+b= a + b =1+a+b+1≥2+2 a b=4.当且仅当 a=b 时,取“=”号.
要点二 分析法的应用
2 例 2 设 a,b 为实数,求证: a2+b2≥ 2 (a+b). 证明 当 a+b≤0 时,∵ a2+b2≥0,
规律方法 用分析法证明不等式时应注意
高中数学2.2直接证明与间接证明2.2.1.1综合法课件新人教A版选修2_2
题型一
题型二
题型三
题型四
利用综合法证明不等式问题
【例 2】 已知 a,b,c 是正实数,且 a+b+c=1. 分析:解答本题的关键是从基本不等式入手,利用同向不等式相 加而得证. 证明:(1)∵a
1 , ������ 3
2
求证:(1)a2+b2+c2≥3 ; (2) ������ + ������ + ������ ≤ 3.
*
3 3 2������������-1 ∴当 n∈N ,且 n≥2 时,bn= 2 ������(������n − 1) = 2 ·������ +3. ������-1 1 1 1 ∴bnbn-1+3bn=3bn-1.∴ ������ − ������ = 3. ������ ������-1 1 1 ∴数列 ������ 是首项为1,公差为 3 的等差数列. ������
【做一做】 命题“函数f(x)=x-xln x在区间(0,1)内是增函数”的证 明过程“对函数f(x)=x-xln x求导,得f'(x)=-ln x,当x∈(0,1)时,f'(x)=-ln x>0,故函数f(x)在区间(0,1)内是增函数”应用了 的证明 方法. 解析:本命题的证明,利用已知条件和导数与函数单调性的关系 证得了结论,应用了综合法的证明方法. 答案:综合法
第1课时 综合法
1.了解直接证明的一种基本方法——综合法. 2.理解综合法的思考过程、特点,会用综合法证明数学问题.
综合法
定义 利用已知条件和某些 数学定义、 公理、 定理 等,经过一系列的推理 论证,最后推导出所要 证明的结论成立,这种 证明方法叫做综合法 推证过程 P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →…→ Qn⇒Q (P 表示已知条件、已有的定义、公理、定理 等,Q 表示所要证明的结论) 特点 顺推证 法 或由因 导 果法
高中数学第二章推理与证明2.2直接证明与间接证明2.2.1
探究三 综合法证明立体几何问题
[典例 3] 如图,在四棱锥 P-ABCD 中,PA⊥底面 ABCD,AB⊥ AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是 PC 的中点. (1)证明:CD⊥AE; (2)证明:PD⊥平面 ABE. [证明] (1)在四棱锥 P-ABCD 中, ∵PA⊥底面 ABCD,CD⊂平面 ABCD, ∴PA⊥CD. ∵AC⊥CD,PA∩AC=A,∴CD⊥平面 PAC. 又∵AE⊂平面 PAC,∴CD⊥AE.
由(1)知,a3=λ+1. 令 2a2=a1+a3,解得 λ=4. 故 an+2-an=4,由此可得 {a2n-1}是首项为 1,公差为 4 的等差数列,a2n-1=4n-3; {a2n}是首项为 3,公差为 4 的等差数列,a2n=4n-1. 所以 an=2n-1,an+1-an=2. 因此存在 λ=4,使得数列{an}为等差数列.
1.已知 x>0,y>0 且 x+y=1, 求证:(1+1x)(1+1y)≥9. 证明:因为 x>0,y>0,1=x+y≥2 xy, 所以 xy≤14. 所以(1+1x)(1+1y)=1+1x+1y+x1y =1+x+ xyy+x1y=1+x2y≥1+8=9.
探究二 综合法证明数列问题 [典例 2] 设数列{an}的前 n 项和为 Sn,满足(3-m)Sn+2man=m+3(n∈N*).其中 m 为常数,且 m≠-3,m≠0. (1)求证:{an}是等比数列. (2)若数列{an}的公比 q=f(m),数列{bn}满足 b1=a1,bn=32f(bn-1)(n∈N*,n≥2),求证: {b1n}为等差数列.
课时作业
综推证过程
特点
利用 已知条件 和某些数学 P⇒Q1 → Q1⇒Q2
高中数学第二章推理与证明2.2直接证明与间接证明2.2.1综合法与分析法课件新人教B版选修2_2
������+������
������
������
解析:因为 x>0,y>0,
������ ������ 所以 1+������ + 1+������
>
������ ������ + 1+������+������ 1+������+������
=
������+������ . 1+������+������
题型一
题型二
题型三
分析法 【例题2】 如图,SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E, 过E作SC的垂线,垂足为F,求证:AF⊥SC.
分析:本例所给的已知条件中,垂直关系较多,我们不容易确定 如何在证明中使用它们,因而用综合法比较困难.这时,可以从结论 出发,逐步反推,寻求使要证结论成立的充分条件.
题型一
题型二
题型三
证明:要证AF⊥SC,只需证SC⊥平面AEF,只需证AE⊥SC(因为 EF⊥SC),只需证AE⊥平面SBC,只需证AE⊥BC(因为AE⊥SB),只需 证BC⊥平面SAB,只需证BC⊥SA(因为AB⊥BC).由SA⊥平面ABC可 知,上式成立.所以AF⊥SC. 反思 在分析法证明中,从结论出发的每一个步骤所得到的判断都 是结论成立的充分条件,最后一步归结到已被证明了的事实.因此, 从最后一步可以倒推回去,直到结论,但这个倒推过程可以省略.
证明与推理有哪些联系与区别? 剖析:(1)联系:证明过程其实就是推理的过程.就是把论据作为 推理的前提,应用正确的推理形式,推出论题的过程.一个论证可以 只含一个推理,也可以包含一系列的推理;可以只用演绎推理,或只 用归纳推理,也可以综合运用演绎推理和归纳推理,所以证明就是 推理,是一种特殊形式的推理. (2)区别:①从结构上看,推理包含前提和结论两部分,前提是已知 的,结论是根据前提推出来的;而证明是由论题、论据、论证三部 分组成的.论题相当于推理的结论,是已知的,论据相当于推理的前 提.
20182019学年高中数学第2章推理与证明2.2直接证明与间接证明2.2.2间接证明讲义含解析苏教版选修22201904163
2.2.2 间接证明1.问题:在今天商品大战中,广告成了电视节目中的一道美丽的风景线,几乎所有的广告商都熟谙这样的命题变换艺术.如宣传某种食品,其广告词为:“拥有的人们都幸福,幸福的人们都拥有”.该广告词实际说明了什么?提示:说的是:“不拥有的人们不幸福”.2.已知正整数a,b,c满足a2+b2=c2.求证:a,b,c不可能都是奇数.问题1:你能利用综合法和分析法给出证明吗?提示:不能.问题2:a、b、c不可能都是奇数的反面是什么?还满足条件a2+b2=c2吗?提示:都是奇数.若a、b、c都是奇数,则不能满足条件a2+b2=c2.1.间接证明不是直接从原命题的条件逐步推得命题成立,这种不是直接证明的方法通常称为间接证明.反证法就是一种常用的间接证明方法,间接证明还有同一法、枚举法等.2.反证法(1)反证法证明过程反证法证明时,要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题),用反证法证明命题“若p则q”的过程可以用下面的框图表示:→→→(2)反证法证明命题“若p则q”的步骤①反设——假设命题的结论不成立,即假定原结论的反面为真.②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.1.反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法.2.可能出现矛盾的四种情况:(1)与题设矛盾;(2)与反设矛盾;(3)与公理、定理或已被证明了的结论矛盾;(4)在证明过程中,推出自相矛盾的结论.用反证法证明否定性命题[例1] 已知平面上四点,没有三点共线,求证:以每三点为顶点的三角形不可能都是锐角三角形.[思路点拨] 本题证明的命题是否定性命题,解答时先假设四个三角形都是锐角三角形,再分情况去推出矛盾.[精解详析] 假设以每三点为顶点的四个三角形都是锐角三角形,记这四个点为A、B、C、D,考虑△ABC,点D的位置分为在△ABC之内或之外两种情况.(1)如果点D在△ABC之内(如图(1)),根据假设围绕点D的三个角都是锐角,其和小于270°,这与一个周角等于360°矛盾.(2)如果点D在△ABC之外(如图(2)),根据假设∠A,∠B,∠C,∠D都小于90°,这和四边形内角之和等于360°矛盾.综上所述.原结论成立.[一点通] (1)结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题称为否定性命题,此类问题正面比较模糊,而反面比较具体,适于应用反证法.(2)反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中:第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属“间接解题方法”.1.实数a、b、c不全为0等价于________(填序号).①a,b,c全不为0;②a,b,c中最多只有一个为0;③a,b,c中只有一个不为0;④a,b,c中至少有一个不为0.解析:“不全为0”等价于“至少有一个不为0”.答案:④2.如图,正方体ABCD-A1B1C1D1中,点M是A1D1的中点,点N是CD的中点,用反证法证明直线BM与直线A1N是两条异面直线.解:假设直线BM与A1N共面.则A1D1?平面A1BND1,且平面A1BND1∩平面ABCD=BN,由正方体特征知A1D1∥平面ABCD,故A1D1∥BN,又A1D1∥BC,所以BN∥BC.这与BN∩BC=B矛盾,故假设不成立.所以直线BM与直线A1N是两条异面直线.3.已知三个正数a,b,c成等比数列,但不成等差数列,求证:,,不成等差数列.证明:假设,,成等差数列,则+=2,即a+c+2=4b,而b2=ac,即b=,∴a+c+2=4,所以(-)2=0.即=,从而a=b=c,与a,b,c不成等差数列矛盾,故,,不成等差数列.用反证法证明惟一性命题[例2] 求证:两条相交直线有且只有一个交点.[思路点拨] “有且只有一个”的否定分两种情况:“至少有两个”、“一个也没有”.[精解详析] 假设结论不成立,则有两种可能:无交点或不只有一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.[一点通] 证明“有且只有一个”的问题,需要证明两个命题,即存在性和惟一性.当证明结论以“有且只有”“只有一个”“惟一存在”等形式出现的命题时,由于反设结论易于导出矛盾,所以用反证法证其惟一性就较为简单明了.4.证明方程2x=3有且仅有一个根.证明:∵2x=3,∴x=log23,这说明方程有一个根.下面用反证法证明方程2x=3的根是惟一的,假设方程2x=3有两个根b1、b2(b1≠b2),则2b1=3,2b2=3.两式相除得:2b1-b2=1.如果b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.如果b1-b2<0,则2b1-b2<1,这与2b1-b2=1相矛盾.因此b1-b2=0,则b1=b2,这就同b1≠b2相矛盾.如果方程的根多于两个,同样可推出矛盾.故2x=3有且仅有一个根.5.求证:过平面外一点有且只有一条直线和这个平面垂直.解:已知P?平面α.求证:过点P和平面α垂直的直线b有且只有一条.证明:(1)存在性:∵P?平面α,由立体几何知识知:过点P能作出一条直线与平面α垂直,故直线b存在.(2)惟一性:假设过点P还有一条直线c与平面α垂直.由b⊥α,c⊥α,得b∥c,这与b∩c=P矛盾,故假设不存在,因此直线b惟一.综上所述,过平面外一点有且只有一条直线和这个平面垂直.用反证法证明“至多”、“至少”型命题[例3] 已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.[思路点拨] 本题要证a、b、c、d中至少有一个是负数,具体有一个负数?两个负数?三个负数?还是四个负数?都有可能,谁是负数也都有可能.所以正面证明很复杂,可考虑用反证法.[精解详析] 假设a、b、c、d都不是负数,即a≥0,b≥0,c≥0,d≥0.∵a+b=c+d=1,∴b=1-a≥0,d=1-c≥0.∴ac+bd=ac+(1-a)(1-c)=2ac-(a+c)+1=(ac-a)+(ac-c)+1=a(c-1)+c(a-1)+1.∵a(c-1)≤0,c(a-1)≤0.∴a(c-1)+c(a-1)+1≤1,即ac+bd≤1.与ac+bd>1相矛盾.∴假设不成立.∴a、b、c、d中至少有一个是负数.[一点通] (1)对于否定性命题或结论中出现“至多”“至少”“不可能”等字样时,常用反证法.(2)常用的“原结论词”与“反设词”归纳如下表:原结论词至少有一个至多有一个至少有n个至多有n个反设词一个也没有(不存在) 至少有两个至多有n-1个至少有n+1个6.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能都大于.证明:假设(1-a)b,(1-b)c,(1-c)a都大于.∵a,b,c∈(0,1),∴1-a>0,1-b>0,1-c>0,∴≥>=.同理>,>.三式相加,得++>,即>,矛盾.所以(1-a)b,(1-b)c,(1-c)a不能都大于.7.用反证法证明:若函数f(x)在区间[a,b]上是增函数,那么方程f(x)=0在区间[a,b]上至多只有一个实数根.证明:假设方程f(x)=0在区间[a,b]上至少有两个根,设α,β为其中的两个实根.因为α≠β,不妨设α<β,又因为函数f(x)在区间[a,b]上是增函数,所以f(α)<f(β).这与f(α)=0=f(β)矛盾.所以方程f(x)=0在区间 [a,b]上至多只有一个实根.1.反证法证明的适用情形(1)一些基本命题、基本定理;(2)易导出与已知矛盾的命题;(3)“否定性”命题;(4)“惟一性”命题;(5)“必然性”命题;(6)“至多”“至少”类命题;(7)涉及“无限”结论的命题.2.用反证法证明问题应注意以下三点(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必然罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.一、填空题1.命题“,中至多有一个小于2”的反设为________.答案:,都小于22.(山东高考改编)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是____________________.解析:至少有一个实根的否定是没有实根.答案:方程x3+ax+b=0没有实根1.用反证法证明命题“若a2+b2=0,则a,b全为0(a、b为实数)”,其反设为____________________.解析:“a,b全为0”即是“a=0且b=0”,因此它的反设为“a≠0或b≠0”.答案:a,b不全为04.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.解析:由反证法的一般步骤可知,正确的顺序应为③①②.答案:③①②5.用反证法证明命题“若x2-(a+b)x+ab≠0,则x≠a且x≠b”时,应假设为________.解析:对“且”的否定应为“或”,所以“x≠a且x≠b”的否定应为“x=a或x=b”.答案:x=a或x=b二、解答题6.(陕西高考)设{an}是公比为q的等比数列.(1)推导{an}的前n项和公式;(2)设q≠1,证明数列{an+1}不是等比数列.解:(1)设{an}的前n项和为Sn,当q=1时,Sn=a1+a1+…+a1=na1;当q≠1时,Sn=a1+a1q+a1q2+…+a1qn-1,①qSn=a1q+a1q2+…+a1qn,②①-②得,(1-q)Sn=a1-a1qn,∴Sn=,∴Sn=(2)证明:假设{an+1}是等比数列,则对任意的k∈N*,(ak+1+1)2=(ak+1)(ak+2+1),a+2ak+1+1=akak+2+ak+ak+2+1,aq2k+2a1qk=a1qk-1·a1qk+1+a1qk-1+a1qk+1,∵a1≠0,∴2qk=qk-1+qk+1.∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故{an+1}不是等比数列.7.设f(x)=x2+ax+b,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.证明:假设|f(1)|<,|f(2)|<,|f(3)|<,则有于是有由①、②得-4<a<-2,④由②、③得-6<a<-4.⑤④、⑤显然相互矛盾,所以假设不成立,所以原命题正确.8.已知P?直线a.求证:过点P和直线a平行的直线b有且只有一条.证明:(1)存在性:∵P?直线a,∴点P和直线a确定一个平面α.由平面几何知识知:在平面α内过点P能作出一条直线与直线a平行,故直线b存在.(2)惟一性:假设过点P还有一条直线c与a平行.∵a∥b,a∥c,∴b∥c,这与直线b、c有共点P矛盾.故假设不存在,因此直线b惟一.综上所述,过直线外一点有且只有一条直线和这条直线平行.。
2.2直接证明与间接证明(4课时)
2.2
直接证明与间接证明
2.2.2
反证法
问题提出
1.综合法和分析法的基本含义分别 是什么? 综合法:利用已知条件和某些数学定义、 公理、定理、性质、法则等,经过一系 列的推理论证,最后推导出所证结论成 立. 分析法:从所证结论出发,逐步寻求使 它成立的充分条件,直到归结为判定一 个显然成立的条件(已知条件、定义、 公理、定理、性质、法则等)为止.
2
2
2
9 4
例4 求证:面积为1的三角形不能被 面积小于2的平行四边形所覆盖.
D P
E N F B
C
K
M
A
流程:
P Þ Q1 Q1 Þ Q 2 Q 2 Þ Q 3
„
Qn Þ Q
2.分析的基本含义和思维流程分别 是什么?
含义:从所证结论出发,逐步寻求使它成 立的充分条件,直到归结为判定一个显 然成立的条件(已知条件、定义、公理、 定理、性质、法则等)为止. 流程: Q Ü P1 P1 Ü P2 P2 Ü P3 …
大前提:已知的一般原理; 小前提:所研究的特殊情况;
结 论:根据一般原理,对特殊情况做 出判断.
3.合情推理所得结论的正确性是需要 证明的,演绎推理的实施也需要具体的 操作方法,因此,从理论上获取证明数 学命题的基本方法,是我们需要进一步 学习的内容.
探究(一):综合法
思考1:对于不等式
a(b + c ) + b(c + a )
2.2
2.2.1
直接证明与间接证明
综合法和分析法
问题提出
1 5730 p 2
t
1.合情推理的主要作用和思维过程是 什么?
作用:提出猜想,发现结论; 过程:从具体问题出发→观察、分析、 比较、联想→归纳、类比→提出猜想.
2018-2019学年高二数学苏教版选修2-2讲义:第2章 2.2 2.2.1 直接证明
_2.2直接证明与间接证明2.2.1直接证明[对应学生用书P26]1.若实数a,b满足a+b=3,证明:2a+2b≥4 2.证明:因为2a+2b≥22a·2b=22a+b,又a+b=3,所以2a+2b≥223=4 2.故2a+2b≥42成立.问题1:本题利用什么公式?提示:基本不等式.问题2:本题证明顺序是什么?提示:从已知到结论.2.求证:3+22<2+7.证明:要证明3+22<2+7,由于3+22>0,2+7>0,只需证明(3+22)2<(2+7)2,展开得11+46<11+47,只需证明6<7,显然6<7成立.所以3+22<2+7成立.问题1:本题证明从哪里开始?提示:从结论开始.问题2:证题思路是什么?提示:寻求上一步成立的充分条件.1.直接证明(1)直接从原命题的条件逐步推得命题成立,这种证明通常称为直接证明.(2)直接证明的一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒…⇒本题结论.2.综合法和分析法1.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立.2.分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[对应学生用书P27][例1] 已知a ,b ,c ∈R ,且a +b +c =1,求证:a 2+b 2+c 2≥13.[思路点拨] 从已知条件出发,结合基本不等式,即可得出结论. [精解详析] ∵a 2+19≥2a3,b 2+19≥2b 3,c 2+19≥2c 3,∴⎝⎛⎭⎫a 2+19+⎝⎛⎭⎫b 2+19+⎝⎛⎭⎫c 2+19≥23a +23b +23c=23(a +b +c )=23. ∴a 2+b 2+c 2≥13.[一点通] 综合法证明问题的步骤第一步:分析条件,选择方向.仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题思路.第二步:转化条件、组织过程,把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化.组织过程时要有严密的逻辑,简洁的语言,清晰的思路.第三步:适当调整,回顾反思.解题后回顾解题过程,可对部分步骤进行调整,有些语言可做适当的修饰,反思总结解题方法的选取.1.设a ,b ,c 为不全相等的正数,且abc =1, 求证:1a +1b +1c >a +b +c .证明:∵a >0,b >0,c >0,且abc =1, ∴1a +1b +1c=bc +ca +ab . 又bc +ca ≥2bc ·ca =2abc 2=2c , 同理bc +ab ≥2b ,ca +ab ≥2a . ∵a 、b 、c 不全相等.∴上述三个不等式中的“=”不能同时成立. ∴2(bc +ca +ab )>2(c +a +b ), 即bc +ca +ab >a +b +c , 故1a +1b +1c>a +b +c .2.(1)如图,证明命题“a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥b ,则a ⊥c ”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).解:(1)证明:法一:如图,过直线b 上任一点作平面π的垂线n ,设直线a ,b ,c ,n 的方向向量分别是a ,b ,c ,n ,则b ,c ,n 共面.根据平面向量基本定理,存在实数λ,μ使得c =λb +μn ,则a·c =a·(λb +μn )=λ(a·b )+μ(a·n ),因为a ⊥b ,所以a·b =0, 又因为aπ,n ⊥π,所以a·n =0,故a·c =0,从而a ⊥c .法二:如图,记c ∩b =A ,P 为直线b 上异于点A 的任意一点,过P 作PO ⊥π,垂足为O ,则O ∈c . ∵PO ⊥π,a π,∴直线PO ⊥a . 又a ⊥b ,b平面P AO ,PO ∩b =P ,∴a ⊥平面P AO .又c平面P AO ,∴a ⊥c . (2)逆命题为:a 是平面π内的一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a ⊥c ,则a ⊥b .逆命题为真命题.[例2] 已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b.[思路点拨] 本题条件较为简单,结论比较复杂,我们可以从要证的结论入手,一步步探求结论成立的充分条件,即用分析法.[精解详析] 要证明(a -b )28a <a +b 2-ab <(a -b )28b 成立,只需证(a -b )24a <a +b -2ab <(a -b )24b成立,即证(a -b )24a <(a -b )2<(a -b )24b成立.只需证a -b 2a <a -b <a -b 2b 成立.只需证a +b 2a <1<a +b2b成立, 即证a +b <2a 且a +b >2b , 即b <a .∵a >b >0,∴b <a 成立.∴(a -b )28a <a +b 2-ab <(a -b )28b成立.[一点通] 在已知条件较为简单,所要证的问题较为复杂,无从入手的情况下,我们可从结论入手逆推,执果索因,找到结论成立的条件,注明必要的文字说明,再用综合法写出步骤.3.若P =a +a +7,Q =a +3+a +4,a ≥0,求证:P <Q . 证明:要证P <Q ,主要证P 2<Q 2, 只要证2a +7+2a (a +7)<2a +7+2(a +3)(a +4),即证a 2+7a <a 2+7a +12, 即证0<12. 因为0<12成立, 所以P <Q 成立.4.已知a 、b 是正实数,求证:a b +ba≥ a +b . 证明:要证a b +ba≥ a +b , 只需证a a +b b ≥ab (a +b ). 即证(a +b -ab )(a +b )≥ab (a +b ), 即证a +b -ab ≥ab . 也就是要证a +b ≥2ab .因为a ,b 为正实数,所以a +b ≥2ab 成立, 所以a b +ba≥ a +b .[例3] 已知0<a ≤1,0<b ≤1,0<c ≤1, 求证:1+ab +bc +ca a +b +c +abc≥1.[思路点拨] 因为0<a ≤1,0<b ≤1,0<c ≤1,所以要证明1+ab +bc +caa +b +c +abc ≥1成立,可转化为证明1+ab +bc +ca ≥a +b +c +abc 成立.[精解详析] ∵a >0,b >0,c >0, ∴要证1+ab +bc +ca a +b +c +abc≥1,只需证1+ab +bc +ca ≥a +b +c +abc , 即证1+ab +bc +ca -(a +b +c +abc )≥0. ∵1+ab +bc +ca -(a +b +c +abc ) =(1-a )+b (a -1)+c (a -1)+bc (1-a ) =(1-a )(1-b -c +bc )=(1-a )(1-b )(1-c ), 又a ≤1,b ≤1,c ≤1, ∴(1-a )(1-b )(1-c )≥0,∴1+ab +bc +ca -(a +b +c +abc )≥0成立, 即证明了1+ab +bc +caa +b +c +abc≥1.[一点通] (1)较为复杂问题的证明如单纯利用分析法和综合法证明较困难,这时可考虑分析法、综合法轮流使用以达到证题目的.(2)综合法和分析法的综合应用过程既可先用分析法再用综合法,也可先用综合法再用分析法,一般无具体要求,只要达到证题的目的即可.5.在△ABC 中,三个内角A 、B 、C 成等差数列.求证:1a +b +1b +c =3a +b +c .证明:要证1a +b +1b +c =3a +b +c,只需证a +b +c a +b +a +b +c b +c =3,即c a +b +a b +c=1,只需证c (b +c )+a (a +b )(a +b )(b +c )=1,即a 2+c 2+ab +bcb 2+ab +ac +bc=1.下面证明:a 2+c 2+ab +bcb 2+ab +ac +bc =1.∵A +C =2B ,A +B +C =180°, ∴B =60°. ∴b 2=a 2+c 2-ac .∴a 2+c 2+ab +bcb 2+ab +ac +bc =a 2+c 2+ab +bca 2+c 2-ac +ab +ac +bc =1. 故原等式成立.6.若a ,b ,c 是不全相等的正数.求证:lg a +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .证明:要证lga +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c 成立,即证lg ⎝⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(abc )成立,只需证a +b 2·b +c 2·c +a 2>abc 成立,∵a +b 2≥ab >0,b +c 2≥bc >0,c +a2≥ca >0, ∴a +b 2·b +c 2·c +a 2≥abc >0,(*) 又∵a ,b ,c 是不全相等的正数,∴(*)式等号不成立, ∴原不等式成立.1.综合法是由因导果,步骤严谨,逐层递进、步步为营,书写表达过程是条理清晰、形式简洁,宜于表达推理的思维轨迹、缺点是探路艰难,不易达到所要证明的结论.2.分析法是执果索因,方向明确、利于思考,便于寻找解题思路.缺点是思路逆行、叙述繁琐、表述易出错.3.在解决一个问题时,我们常常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论P1;根据原结论的特点去寻求使结论成立的条件,寻找到条件P2;当由P1可以推出P2时,结论得证.[对应学生用书P29]一、填空题1.在△ABC中,A>B是sin A>sin B的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:在△ABC中,由正弦定理得asin A=bsin B.又∵A>B,∴a>b,∴sin A>sin B反之,若sin A>sin B,则a>b,∴A>B∴A>B是sin A>sin B的充要条件.答案:充要2.设n∈N,则n+4-n+3________n+2-n+1(判断大小).解析:要证n+4-n+3<n+2-n+1,只需证n+4+n+1<n+3+n+2,只需证(n+4+n+1)2<(n+2+n+3)2,即2n+5+2(n+4)(n+1)<2n+5+2(n+2)(n+3).只需证(n+1)(n+4)<(n+2)(n+3),只需证(n+1)(n+4)<(n+2)(n+3),即n2+5n+4<n2+5n+6,即4<6即可.而4<6成立,故n+4-n+3<n+2-n+1.答案:<3.如果a a+b b>a b+b a,则实数a,b应满足的条件是________.解析:a a+b b>a b+b a⇔a a-a b>b a-b b⇔a (a -b )>b (a -b ) ⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b4.若三棱锥S -ABC 中,SA ⊥BC ,SB ⊥AC ,则S 在底面ABC 上的射影为△ABC 的________.(填重心、垂心、内心、外心之一)解析:如图,设S 在底面ABC 上的射影为点O ,∴SO ⊥平面ABC ,连接AO ,BO , ∵SA ⊥BC ,SO ⊥BC , ∴BC ⊥平面SAO , ∴BC ⊥AO .同理可证,AC ⊥BO . ∴O 为△ABC 的垂心. 答案:垂心5.已知函数f (x )=10x ,a >0,b >0,A =f ⎝⎛⎭⎫a +b 2,B =f ()ab ,C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为________.解析:由a +b 2≥ab ≥2ab a +b,又f (x )=10x 在R 上是单调增函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≥f ()ab ≥f ⎝ ⎛⎭⎪⎫2ab a +b , 即A ≥B ≥C . 答案:A ≥B ≥C 二、解答题6.已知函数f (x )=log 2(x +2),a ,b ,c 是两两不相等的正数,且a ,b ,c 成等比数列,试判断f (a )+f (c )与2f (b )的大小关系,并证明你的结论.解:f (a )+f (c )>2f (b ).证明如下:因为a ,b ,c 是两两不相等的正数,所以a +c >2ac .因为b 2=ac ,所以ac +2(a +c )>b 2+4b , 即ac +2(a +c )+4>b 2+4b +4, 从而(a +2)(c +2)>(b +2)2. 因为f (x )=log 2(x +2)是增函数, 所以log 2(a +2)(c +2)>log 2(b +2)2, 即log 2(a +2)+log 2(c +2)>2log 2(b +2). 故f (a )+f (c )>2f (b ).7.已知a >0,用分析法证明: a 2+1a 2-2>a +1a-2.证明:要证 a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a +1a+ 2.因为a >0,故只需证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a+22, 即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+2 2⎝⎛⎭⎫a +1a +2, 从而只需证2a 2+1a2≥ 2⎝⎛⎭⎫a +1a , 只需证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2, 即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.8.(江苏高考改编)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中 c 为实数.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *).证明:由c =0,得b n =S nn =a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,22 即⎝⎛⎭⎫a+d22=a⎝⎛⎭⎫a+32d,化简得d2-2ad=0.因为d≠0,所以d=2a.因此,对于所有的m∈N*,有S m=m2a.从而对于所有的k,n∈N*,有S nk=(nk)2a=n2k2a=n2S k.。
高中数学2.2直接证明与间接证明2.2.1综合法与分析法教案文新人教A版选修2-2(2021学年)
安徽省宿松县2016-2017学年高中数学2.2 直接证明与间接证明2.2.1 综合法与分析法教案文新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省宿松县2016-2017学年高中数学2.2 直接证明与间接证明 2.2.1综合法与分析法教案文新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省宿松县2016-2017学年高中数学 2.2直接证明与间接证明 2.2.1 综合法与分析法教案文新人教A版选修2-2的全部内容。
2。
2.1综合法与分析法理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果。
③ 练习:已知a ,b,c是全不相等的正实数,求证3b c a a c b a b ca b c +-+-+-++>。
④ 出示例2:在△AB C中,三个内角A 、B 、C的对边分别为a 、b、c ,且A 、B 、C成等差数列,a、b 、c 成等比数列。
求证:为△ABC 等边三角形。
分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系?→ 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习:① ,A B 为锐角,且tan tan 3tan tan 3A B A B ++=,求证:60A B +=。
(提示:算tan()A B +)② 已知,a b c >> 求证:114.a b b c a c +≥---3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q. 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题。
2019_2020学年高中数学第二章推理与证明2.2直接证明与间接证明2.2.1综合法和分析法讲义新人教A版选修2_2
2.2.1 综合法和分析法1.直接证明从题目的条件或结论出发,根据已知的定义、定理、公理等,通过推理直接推导出所要证明的结论,这种证明方法称为直接证明.常用的直接证明方法有综合法和分析法.2.综合法(1)定义:一般地,利用□01已知条件和某些数学□02定义、□03定理、□04公理等,经过一系列的□05推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. (2)框图表示:用P 表示已知条件,已有的定义、公理、定理等,Q 表示所要证明的结论,则综合法可用框图表示为:P ⇒Q 1Q 1⇒Q 2Q 2⇒Q 3…Q n ⇒Q3.分析法定义:一般地,从要证明的□06结论出发,逐步寻求使它成立的□07充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(□08已知条件、□09定理、□10定义、□11公理等)为止,这种证明方法叫做分析法.框图表示:用Q 表示要证明的结论,则分析法可用框图表示为:Q ⇐P 1P 1⇐P 2P 2⇐P 3…得到一个明显成立的条件综合法与分析法的比较1.判一判(正确的打“√”,错误的打“×”) (1)综合法是执果索因的逆推证法.( ) (2)分析法的推理过程要比综合法优越.( )(3)综合法的推理过程实际上是寻找它的必要条件.( ) 答案 (1)× (2)× (3)√ 2.做一做(1)证明不等式a +1-a <a -1-a -2(a ≥2)成立所用的最适合的方法是________. (2)在不等式“a 2+b 2≥2ab ”的证明中:因为a 2+b 2-2ab =(a -b )2≥0所以a 2+b 2≥2ab ,该证明用的方法是________.(3)角A ,B 为△ABC 内角,A >B 是sin A >sin B 的________条件(填“充分”“必要”“充要”或“既不充分又不必要”).答案 (1)分析法 (2)综合法 (3)充要探究1 综合法的应用例1 已知a ,b 是正数,且a +b =1,求证:1a +1b≥4.[证明] 证法一:∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1ab≥4.证法二:∵a ,b 是正数,∴a +b ≥2ab >0,1a +1b ≥21ab>0,∴(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4.又a +b =1,∴1a +1b≥4.证法三:1a +1b=a +b a +a +b b =1+b a +ab+1≥2+2b a ·ab=4. 当且仅当a =b 时,取“=”号.[结论探究] 本例已知条件不变,求证:⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b ≥254.[证明] ∵a +b =1,a >0,b >0, ∴a +b ≥2ab ,∴0<ab ≤14,∴⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b -254=a 2+1a ·b 2+1b -254 =4a 2b 2-33ab +84ab =1-4ab 8-ab4ab≥0.∴⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b ≥254. 拓展提升利用综合法证明问题的步骤(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等. (2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程. 特别地,根据题目特点选取合适的证法可以简化解题过程.【跟踪训练1】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝⎛⎭⎪⎫π4+B =a .求证:B -C =π2.证明 由b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a 及正弦定理得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,即sin B ⎝⎛⎭⎪⎫22si nC +22cos C -sin C ⎝ ⎛⎭⎪⎫22si nB +22cos B =22,整理得 sin B cos C -cos B sin C =1,即sin(B -C )=1.又0<B ,C <3π4,所以B -C =π2.探究2 分析法的应用例2 设a ,b 为实数,求证: a 2+b 2≥22(a +b ).[证明] (1)当a +b ≤0时,∵a 2+b 2≥0, ∴ a 2+b 2≥22(a +b ). (2)当a +b >0时,用分析法证明如下: 要证a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎢⎡⎦⎥⎤22a +b 2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab ,∵a 2+b 2≥2ab 对一切实数恒成立, ∴ a 2+b 2≥22(a +b )成立. 综上所述,不等式得证. 拓展提升(1)分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.(2)分析法证明不等式的思维是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式.(3)用分析法证明数学命题时,一定要恰当地用好“要证”“只需证”“即证”等词语.【跟踪训练2】 在锐角三角形ABC 中,用分析法证明:t anA ·t anB >1. 证明 要证明t anA ·t anB >1,只需证明si nA ·si nB cos A ·cos B >1.因为A ,B 为锐角,所以cos A >0,cos B >0.只需证明cos A ·co s B <si nA ·si nB ,只需证明cos A ·cos B -si nA ·si nB <0,即cos(A +B )<0.因为C 为锐角,且A +B =π-C ,所以A +B 为钝角, 所以cos(A +B )<0成立,所以t anA ·t anB >1. 探究3 综合法与分析法的综合应用 例3 已知a ,b 是正实数,求证:a b +ba≥ a +b . [证明] 证法一:(分析法) 要证a b +ba≥a +b ,只要证a a +b b ≥ab (a +b ),即证(a +b -ab )(a +b )≥ab (a +b ), 即证a +b -ab ≥ab . 也就是要证a +b ≥2ab . 显然a +b ≥2ab 成立,故a b +ba≥ a +b . 证法二:(综合法,因为左边是分式型,利用基本不等式x +1x≥2(x >0)使左边向整式型过渡)方法一:∵a b +b +ba +a ≥2ab ·b +2ba·a =2a +2b ,当且仅当a =b 时取等号,∴a b +ba≥ a +b . 方法二:∵⎝⎛⎭⎪⎫a b +b a (a +b )=a +b +a a b +b b a≥a +b +2a a b ·b ba=a +b +2ab =()a +b 2,当且仅当a =b 时取等号,∴a b +ba≥a +b . 拓展提升实际解题时,用分析法思考问题,寻找解题途径,用综合法书写解题过程,或者联合使用分析法与综合法,即从“欲知”想“已知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,找到沟通已知条件和结论的途径.【跟踪训练3】 已知a ,b ,c 是互不相等的正实数,求证:b +c -aa+ a +c -b b +a +b -cc>3. 证明 证法一:(分析法) 要证b +c -a a +a +c -b b +a +b -cc>3, 只需证明b a +c a-1+c b +a b-1+a c +b c-1>3, 即证b a +c a +c b +a b +a c +b c>6,而事实上,由a ,b ,c 是互不相等的正实数, ∴b a +a b >2,c a +a c >2,c b +b c>2, ∴b a +c a +c b +a b +a c +b c>6,∴b +c -a a +a +c -b b +a +b -cc>3得证. 证法二:(综合法) ∵a ,b ,c 不相等,∴b a 与a b ,c a 与a c ,c b 与b c 不相等. ∴b a +a b>2,c a +a c>2,c b +b c>2. 三式相加得b a +c a +c b +a b +a c +b c>6,∴⎝ ⎛⎭⎪⎫b a +c a -1+⎝ ⎛⎭⎪⎫c b +a b -1+⎝ ⎛⎭⎪⎫a c +b c-1>3,即b +c -a a +a +c -b b +a +b -cc>3.1.综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题.综合法是一种“由因到果”的证明方法.2.分析法是指从需证的问题出发,分析出使这个问题成立的充分条件,使问题转化为判断条件是否具备,其特点可以描述为“执果索因”,即从未知看需知,逐步靠拢已知.分析法的书写形式一般为“因为……,为了证明……,只需证明……,即……,因此,只需证明……,因为……成立,所以……结论成立”.3.有些不等式的证明,需一边分析一边综合,称之为分析综合法.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系.分析的终点是综合的起点,综合的终点又成为进一步分析的起点.1.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是( ) A .a >b >c B .b >c >a C .c >a >b D .a >c >b答案 A 解析 a =13+2,b =16+5,c =17+6,∵0<3+2<6+5<7+6,∴13+2>16+5>17+6,∴a >b >c .2.若a >1,0<b <1,则下列不等式中正确的是( ) A .b a >1 B .a b<1 C .log b a >0 D .log a b <0 答案 D解析 ∵a >1,0<b <1,∴f (x )=b x 为R 上的减函数.∴f (a )=b a <b <1. 同理a b>1,log b a <0,log a b <0.3.当a ∈________时,函数f (x )=x 2-2(a -1)x +3在[5,+∞)上是增函数. 答案 (-∞,6]解析 因为f (x )=x 2-2(a -1)x +3在[5,+∞)上是增函数,所以a -1≤5,解得a ≤6. 4.设a >0,b >0,c >0,若a +b +c =1,则1a +1b +1c的最小值为________.答案 9解析 根据条件可知,欲求1a +1b +1c的最小值.只需求(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c 的最小值,因为(a +b +c )·⎝ ⎛⎭⎪⎫1a +1b +1c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9(当且仅当a =b =c时取“=”).5.设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8.证明 ∵a >0,b >0,a +b =1, ∴1=a +b ≥2ab ,∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·2·1ab+4=8(当且仅当a =b 时取“=”号).∴1a +1b +1ab≥8.。