PMSM矢量控制_2011-09-15

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
High power output per frame size High torque inertia ratio High efficiency due to small rotor losses Very low torque ripple Structure inherently allows heat to be easily removed Zero speed sensorless operation possible with IPM motors Extended speed range operation for IPM using weak field
Modulated voltages Inv-Park
q axis

B
Voltage vector
vq vd
vα A
d ax i s r o t o r
f lu x a x is
θd
α
C
vα = vd cosθ d − v q sin θ d v β = vd sin θ d + v q cosθ d
Step1. Measure current already flowing in the motor
A
Texas Instruments
B C
Dave’s Motor Control Center
Controller with A/D
ia ib ic
ia + ib + ic = 0 ic = −ia − ib
Sensorless Control Technique
TI Dave’s Control Center
PMSM Sensorless Algorithms--- Based BEMF
PMSM 在两相静止坐标轴( 在两相静止坐标轴(Alpha, Beta)下数学模型
U sα U sβ Ψsα Ψ sβ d = Risα + Ψsα dt d = Rs isβ + Ψsβ dt = Ls isα + ΨM cos θ r = Ls isβ + ΨM sin θ r
Analog input handling • High-speed multichannel ADC for monitoring • Comparators for zerocrossing detection • Synchronized with motion system for accurate measurements
P
+ + -
Vq
θd
+
I

id iq ia ib ic
Forward Clark-Park Transform
I

d/dt
Phase C Current Calculation
θd
Control Diagram of a PMSM Variable Speed Control System Utilizing Field Oriented Control.
Phase A Phase B Phase C
B
A Blue arrows show axes of magnetism for each coil
C
How to Create a Rotating Magnet Field?
Stator coils spatially separated from each other by 120 degrees Drive with three-phase sinusoidal currents separated in phase by 120 degrees Three pulsating magnetic fields are generated on their respective magnetic axes A smoothly rotating magnetic vector is generated by synthesizing these vectors
Step2and3. D Axis and Q Axis PI Current Controller
i d (commanded) +
-
P
error(t)
+ +
vd
i d (measured)

I P
i q (commanded) + i q (measured)
-
error(t)
+ +
vq

I
The PI regulator is a good choice for current regulation
Step4. Space Vector Modulation
V3 = 010
Sector 2
V2 = 110
V4 = 011
α
T1• T1•V1
Sector 4
T2 •V 2
Sector 3
Vr
ef
V1 = 100
T
SWITCHING PERIOD
Sector 6 Sector 5
Vn
T1
Vn+1
1. 2. 3. 4.
M easure current already flow ing in the m otor. Com pare the measured current w ith the desired current, and generate gener ate an error signal. Am plify the error signal to generate a correction voltage. M odulate the correction voltage onto the m otor term inals.
PWM1 PWM2
PWM2 PWM1 PWM1 PWM2
Brush DC Motor
Texas Instruments
1 M easured Current
ADC1
Dave’s Motor Control Center
0.015
Commutator keeps rotor and stator fields properly aligned!
Orientation of Field for Max Torque
The green vector represents the stator flux vector which results from the sinusoidal currents being applied to the stator coils.
Flux angle correction e^ --- estimated bemf voltage Omega^el --- estimated motor speed theta^ --- estimated position angle
Omega^el
Stellaris Microcontrollers
N
Axis of rotor flux is fixed with respect to the rotor, i.e., it is “synchronous”.
(Reluctance torque assumed to be zero)
S
PMSM Motors Summary
Advantages
PMSM Sensorless Algorithms
v e^ z
SM Model Based sliding mode current observer
i^ + i e^
Slide mode gain +K -K
z
Low pass filter
theta
+ +
theta^
Flux angle calculator
ΨM R U sα di sα = − + + sin( ) i p p t ω ω s r r α dt Ls Ls Ls U sβ di sβ ΨM R ω ω = − − + cos( ) i p p t sβ r r dt L L Ls s s dθ r = pω r dt
Sensorless PMSM Field Oriented Control Solution Based on TI Cortex-M3
AEDS Team Technical Service Arrow
Steven Wang
Agenda
Permanent Magnet Synchronous Motor Field Oriented Control Realization Sensorless Control Technique Stellaris Microcontrollers PMSM Solution Demo Show Technical Support for Motor Control
Permanent Magnet Synchronous Motor
TI Dave’s Control Center
Permanent Magnet Synchronous Motor
Stator
Rotor
Permanent Magnet Rotor
SPMSM
IPMSM
Sinusoidal Winding Distribution
Extensive comm and realtime network options
Sophisticated motioncontrol system • High-speed PWMs • Deadband H/W for shoot-through protection • Fault input • Digital encoder/resolver inputs
TI Dave’s Control Center
Stellaris Microcontrollers - Made for Motion
High-performance, deterministic, realtime computer • Fast memories • Prioritized, vector interrupts Full system integration for compact size and costeffectiveness
Phase A shown
Stator winding density is sinusoidally distributed, thus creating a sinusoidally distributed flux density
Three Phases Winding Distribution
The Whole Scheme for the FOC
P
Commanded i d = 0 + Commanded i q + +
Vd
PMSM
Reverse Clark-Park Transform
Va Vb Vc
TI Dave’s Control Center
I P
(torque)

+ +
Commanded Rotor Speed + Rotor Speed
T2
Null
V5 = 001
V6 = 101
T0
T1 = T• T•m•SIN(60 - α) T2 = T• T•m•SIN(α) T0 = T - T1 - T2 m = desired modulation index α = desired angle between Vref and Vn
Field Oriented Control Realization
TI Dave’s Control Center
How to Control Torque on a DC motor?
+310V
2 D esired Current + E rror Signal
3
PI Controller
4
Clarke Transform

B
β
is
ic ib i a iα
C A
α
iα = ia
iβ =
1 3 b
i −
1 3 c
i
Park Transform
q axis

B
iq
is
id

C
axis x u l f r o t s i ro d ax
θd A
id = iα cosθ d + i β sin θ d iq = − i α sin θ d + i β cosθ d
R eα U sα disα = − i − + sα dt Ls Ls Ls eβ U sβ disβ R = − i sβ − + Ls Ls Ls dt dθ r = pω r dt
esα = − ΨM pωr sin( pωr t ) esβ = ΨM pωr cos( pωr t )
相关文档
最新文档