【精选】第七章 方差分析(stata统计分析与应用)37
【STATA精品教程】第七章 方差分析
• ttest varname == # [if] [in] [, level(#)] • 命令格式2(通过样本的统计指标进行t检验):
• ttesti #obs #mean #sd #val [, level(#)] • 其中,#obs为样本容量,#mean为样本均值,#sd为标准差,#val为待检验数值,level为
值,level为置信度水平。
• Tte主s要t的选主项要选项如描下述 表7-1所示:
* by(groupvar) 通过定义组变量
unequal
非配对的数据含有不同变量
welch
使用Welch近似
level(#)
置信水平默认95%
• 【例7.1】使用文件“减肥.dta”的数据来对样本ttest命令的应用 进行说明。该例子是通过减肥茶前后的体重数据来评估减肥茶是 否有效果。本例要求用单样本t检验验证在服用减肥药之前,体 重的均值是否为90公斤。以及使用减肥药前后,体重是否有显著 变化。
置信度水平。
• 2、两样本t检验的Stata操作
• 两样本t检验的Stata操作有三种基本命令格式,如下所示: • 命令格式1(通过样本进行双变量t检验): • ttest varname1 == varname2 [if] [in], [options] • 命令格式2(通过样本进行分组t检验): • ttest varname [if] [in] , by(groupvar) [options] • 命令格式3(通过样本的统计指标进行t检验): • ttesti #obs1 #mean1 #sd1 #obs2 #mean2 #sd2 [, options] • 其中,#obs为样本容量,#mean为样本均值,#sd为标准差,#val为待检验数
方差分析及其在统计学中的应用
方差分析及其在统计学中的应用方差分析(Analysis of Variance, ANOVA)是一种统计分析方法,用于比较三个或三个以上的样本均值是否存在差异。
它通过分析数据的方差,评估不同因素对总体均值的影响,从而帮助研究者判断这些差异是否具有统计学上的显著性。
方差分析在统计学中具有重要的应用价值,本文将对其原理和应用进行详细介绍。
一、方差分析的原理方差分析是基于总体均值的分解原理进行的。
在进行方差分析时,要将总体的方差分解为两个部分:因子之间的方差和因子内的方差。
因子之间的方差反映了不同因素(例如处理组别)对总体均值的影响程度,而因子内的方差则反映了数据内部的个体差异。
通过比较这两个方差大小的差异,可以判断处理组别之间是否存在显著差异。
方差分析基于假设检验的思想。
研究者需要提出原假设(H0)和备择假设(H1),常见的原假设是各组别均值无差异,备择假设是至少有一组别的均值存在显著差异。
通过计算方差分析的统计量F值,并进行显著性检验,可以判断原假设是否成立。
二、方差分析的应用方差分析在统计学中有广泛的应用,下面将介绍其几个常见的应用领域。
1. 实验设计中的方差分析在实验设计中,方差分析被广泛应用于比较不同处理组别之间的均值差异。
通过方差分析,可以判断不同处理组别对实验结果的影响是否显著,进而比较各处理组别的效果,确定最佳处理方案。
例如,在农业实验中,研究人员可以通过方差分析来比较不同肥料处理对农作物产量的影响。
2. 医学研究中的方差分析医学研究中常常需要比较不同治疗方法或药物对疾病的疗效差异。
方差分析可以帮助研究人员分析不同治疗组别之间的均值差异是否显著,从而评估各种治疗方法的效果,并为临床决策提供科学依据。
例如,在药物临床试验中,研究人员可以通过方差分析来比较不同药物剂量对患者病情的改善程度。
3. 教育评估中的方差分析教育评估中常常需要比较不同教学方法或教材对学生学习成绩的影响。
方差分析可以帮助研究人员判断不同教学组别之间的均值差异是否显著,从而评估各种教学方法的有效性。
方差分析在统计学中的应用
方差分析在统计学中的应用统计学作为一门研究数据收集、处理和分析的学科,利用各种统计方法帮助我们更好地理解和解释数据。
其中,方差分析是一种常用的统计方法,用于比较两个或更多组之间的平均值是否存在显著差异。
在本文中,我们将探讨方差分析在统计学中的应用及其重要性。
一、方差分析的基本原理方差分析是一种比较组间差异的统计方法,它基于样本数据对总体的方差进行推断。
通过计算组内和组间的方差,并进行比较,我们可以判断不同组的均值是否存在显著差异。
方差分析的基本原理可归纳为以下几点:1. 总体的方差可由组间方差、组内方差和交互作用方差组成。
2. 若组间方差显著大于组内方差,则我们可以认为不同组的均值存在显著差异。
3. 方差分析可以帮助我们理解影响因素对总体的贡献度大小。
二、方差分析的分类根据实验或观察的设计形式,方差分析可以分为一元方差分析和多元方差分析两种类型。
1. 一元方差分析:适用于一个自变量和一个因变量的实验设计。
常见的一元方差分析包括单因素方差分析和重复测量方差分析。
2. 多元方差分析:适用于多个自变量和一个因变量的实验设计。
多元方差分析能够考察不同因素以及它们之间的交互作用对因变量的影响。
三、方差分析的应用领域方差分析在各个领域均有广泛的应用,以下为几个典型的应用领域:1. 医学研究:方差分析可以帮助医学研究人员比较不同治疗方法或药物对于疾病治疗效果的差异。
通过分析不同组别患者的数据,可以确定哪种治疗方法或药物在统计上存在显著的疗效。
2. 教育研究:方差分析可以用于教育研究中,比较不同教育方法对学生学习成绩的影响。
通过对学生进行分组并进行数据收集,可以找出影响学业成绩的重要因素。
3. 工程质量控制:方差分析可以用于工程领域中评估不同生产工艺或生产线的质量差异。
通过比较不同组别的数据,可以确定影响产品质量的关键因素,并进行相应的改进。
4. 市场调研:方差分析可应用于市场调研中,比较不同产品或服务在不同市场范围内的购买偏好。
第七章 方差分析
职称 高级工程师 工程师 高级工程师 助理工程师 助理工程师 无技术职称 无技术职称 无技术职称 工程师 助理工程师 高级工程师 工程师 助理工程师 工程师 助理工程师 助理工程师
文化程度 本科 专科 高中 高中 本科 高中 高中 高中 专科 本科 专科 专科 初中 本科 初中 初中 STATA从入门到精通
单样本t检验有两种用法。一是检验样本平均数是否显著地不同于某个假设值。二是检 验同一套观察值中的两个变量的统计指标是否显著地不同。这等价于两者的差值的平 均数是否等于零。 在Stata应用中使用ttest命令来完成,单样本ttest有两种命令格式: 命令格式1(通过样本进行t检验): ttest varname == # [if] [in] [, level(#)] 命令格式2(通过样本的统计指标进行t检验): ttesti #obs #mean #sd #val [, level(#)] 其中,#obs为样本容量,#mean为样本均值,#sd为标准差,#val为待检验数值, level为置信度水平。
表7-15 员工信息表
minority 0 0 0 0 0 0 0 0 educ 8 8 8 8 8 8 8 8 salary 15750 15900 16200 16650 16800 16950 17400 17700 beginsalar y 10200 10200 9750 9750 10200 10200 10200 10200 gender Female Female Female Female Female Female Female Female
本例中,我们检验大学生饮酒行为平均数是否会因为是否就业而有所变化。
Page 12
STATA从入门到精通
方差分析方法
方差分析方法方差分析是统计分析方法中,最重要、最常用的方法之一。
本文应用多个实例来阐明方差分析的应用。
在实际操作中,可采用相应的统计分析软件来进行计算。
1. 方差分析的意义、用途及适用条件1.1 方差分析的意义方差分析又称为变异数分析或F检验,其基本思想是把全部观察值之间的变异(总变异),按设计和需要分为二个或多个组成部分,再作分析。
即把全部资料的总的离均差平方和(SS)分为二个或多个组成部分,其自由度也分为相应的部分,每部分表示一定的意义,其中至少有一个部分表示各组均数之间的变异情况,称为组间变异(MS组间);另一部分表示同一组内个体之间的变异,称为组内变异(MS组内),也叫误差。
SS除以相应的自由度(υ),得均方(MS)。
如MS组间>MS组内若干倍(此倍数即F值)以上,则表示各组的均数之间有显著性差异。
方差分析在环境科学研究中,常用于分析试验数据和监测数据。
在环境科学研究中,各种因素的改变都可能对试验和监测结果产生不同程度的影响,因此,可以通过方差分析来弄清与研究对象有关的各个因素对该对象是否存在影响及影响的程度和性质。
1.2 方差分析的用途1.2.1 两个或多个样本均数的比较。
1.2.2 分离各有关因素,分别估计其对变异的影响。
1.2.3 分析两因素或多因素的交叉作用。
1.2.4 方差齐性检验。
1.3 方差分析的适用条件1.3.1 各组数据均应服从正态分布,即均为来自正态总体的随机样本(小样本)。
1.3.2 各抽样总体的方差齐。
1.3.3 影响数据的各个因素的效应是可以相加的。
1.3.4 对不符合上述条件的资料,可用秩和检验法、近似F值检验法,也可以经过变量变换,使之基本符合后再按其变换值进行方差分析。
一般属Poisson分布的计数资料常用平方根变换法;属于二项分布的百分数可用反正弦函数变换法;当标准差与均数之间呈正比关系,用平方根变换法又不易校正时,也可用对数变换法。
2. 单因素方差分析(单因素多个样本均数的比较)根据某一试验因素,将试验对象按完全随机设计分为若干个处理组(各组的样本含量可相等或不等),分别求出各组试验结果的均数,即为单因素多个样本均数。
应用统计方差分析
异常值处理
异常值的识别
方差分析对异常值较为敏感,少量异常值可 能导致分析结果偏离真实情况。因此,在进 行方差分析前,需要对数据进行异常值检测 和处理。
处理方法的选取
对于检测出的异常值,应根据具体情况选择 合适的处理方法。常见的处理方法包括删除 异常值、用中位数或平均数替代异常值等。
交互作用与协方差分析
R语言应用
开放性
R语言是一个开源项目,用 户可以自由获取和使用源代 码。
灵活性
R语言提供了丰富的函数库 和工具包,用户可以根据需 要自由组合。
高效性
R语言在处理大数据和复杂 模型方面表现优秀,能够提 高分析效率。
学术研究支持
R语言在学术界广泛使用, 许多统计和机器学习领域的 论文都是基于R语言实现的。
详细描述
双因素方差分析是用来比较两个分类变量对数值型因变量的交互作用。例如,比较不同品牌和型号手机的使用寿 命是否具有显著差异。
多因素方差分析
总结词
多因素方差分析用于比较多个分类变量对数值型因变量的影响。
详细描述
多因素方差分析是用来比较多个分类变量对数值型因变量的交互作用。例如,比较不同品牌、型号、 屏幕大小和操作系统的手机的使用寿命是否具有显著差异。
Python应用
通用性
高效性
丰富的库
人工智能支持
Python是一种通用的编程语 言,不仅适用于统计分析, 还可以用于数据清洗、数据
可视化等多个环节。
Python的语法简洁明了,运 行速度快,能够提高分析效
率。
Python拥有众多的第三方库 和工具包,如NumPy、
Pandas、SciPy等,可以满 足各种统计分析需求。
方差分析的统计量计算
方差分析——精选推荐
方差分析方差分析是R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用于:1、均数差别的显著性检验2、分离各有关因素并估计其对总变异的作用3、分析因素间的交互作用4、方差齐性检验。
1.单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量的各因素水平分组的均值之间的差异是否具有统计意义。
它检验由单一因素影响的几个(两个以上)彼此独立的组是否来自均值相同的总体。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA 过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态不能使用该过程而应该使用非参分析过程。
如果几个因变量之间彼此不独立,应该用Repeated Measures 命令调用GLM 过程。
1.1 单因素方差分析的示例下表为某职业病防治院对31 名石棉矿工中的石棉肺患者、可疑患者和非患者进行了用力肺活量(L)测定的数据,问三组石棉矿工的用力肺活量有无差别?新建变量g 标识三种患者,数值1 标识石棉肺患者,2 标识可疑患者,3标识非患者,用变量X 存放测量值由上表建立数据文件如图所示从Analyze —〉Compare Means —〉One-Way ANOVA 激活One-Way ANOVA 单因素方差分析对话框。
将变量肺活量[x] 移入Dependent List 独立列表栏将变量组别[g] 移入Factor 栏如图所示由上表可知方差来源于两部分,即组间Between Groups 和组内Within Groups 。
应用统计学方差分析课件
06
方差分析案例分析
案例一:不同品种水稻产量影响因素分析
总结词
通过对方差分析方法的应用,确定不同 品种水稻产量影响因素,为优化水稻种 植提供参考。
VS
详细描述
首先,收集不同品种水稻的产量数据,并 记录相关影响因素,如种植环境、施肥量 、灌溉方式等;然后,利用方差分析对这 些影响因素进行显著性检验,以确定对水 稻产量的主要影响因素及其影响程度;最 后,根据分析结果,提出优化水稻种植的 措施建议。
解读结果
整理并检查数据,确保 数据质量。
确定要比较的组别和要 检验的假设。
包括组别、样本数量、 平均值和方差等。
利用方差分析表中的数 据,计算F值并确定P值 。
根据P值和显著性水平, 判断是否拒绝原假设。
02
方差分析的数学模型与理论
数学模型
01
02
03
线性模型
方差分析基于线性模型, 将数据分为组间和组内两 部分,并假设这两部分是 独立且来自同一总体。
它是一种非常有用的工具,在科学、工程、商业等领域中,可以用于研究不同分组之间的差异,以及 确定这些差异是否显著。
方差分析的假设条件
01 每个样本都来自正态分布的总体。 02 每个总体方差都是相等的。 03 每个样本是随机独立抽取的。
方差分析的步骤
准备数据
建立假设
计算单因素方差分 析表
进行方差分析
案例三:不同品牌汽车油耗对比分析
总结词
通过应用方差分析方法,对比分析不同品牌 汽车的油耗性能,为消费者购车提供参考。
详细描述
收集市场上不同品牌汽车的油耗数据,并记 录相关车型信息,如排量、车重、风阻等; 利用方差分析对不同品牌汽车的油耗进行显 著性检验,分析各品牌汽车油耗性能的差异 程度;根据分析结果,为消费者提供购车参 考和建议。
方差分析的概念与应用
方差分析的概念与应用方差分析(Analysis of Variance,简称ANOVA)是一种统计分析方法,用于比较两个或两个以上样本均值是否存在显著差异。
通过对不同组之间的方差进行比较,判断样本均值之间是否存在显著性差异。
方差分析广泛应用于实验设计和数据分析中,是一种重要的统计工具。
一、方差分析的基本概念方差分析是一种用于比较多个总体均值是否相等的统计方法。
在进行方差分析时,我们通常将数据分为不同的组别,然后比较这些组别之间的均值差异是否显著。
方差分析的基本思想是通过比较组间变异与组内变异的大小,来判断总体均值是否存在显著差异。
在方差分析中,有三种不同的方差:1. 总体方差(Total Variance):所有数据点与总体均值之间的离差平方和。
2. 组间方差(Between-group Variance):各组均值与总体均值之间的离差平方和,反映了不同组别之间的差异。
3. 组内方差(Within-group Variance):各组内部数据点与各自组均值之间的离差平方和,反映了组内数据的离散程度。
二、方差分析的应用领域1. 实验设计:方差分析广泛应用于实验设计中,用于比较不同处理组之间的均值差异,判断实验处理是否显著。
2. 医学研究:在医学研究中,方差分析常用于比较不同药物治疗组的疗效差异,评估治疗效果的显著性。
3. 市场调研:在市场调研中,方差分析可用于比较不同产品或广告策略对消费者行为的影响,帮助企业制定营销策略。
4. 教育评估:在教育领域,方差分析可用于比较不同教学方法或教育政策对学生成绩的影响,评估教育改革效果。
三、方差分析的步骤进行方差分析时,通常需要按照以下步骤进行:1. 提出假设:明确研究问题,提出原假设(各组均值相等)和备择假设(至少有一组均值不相等)。
2. 收集数据:根据研究设计,收集各组数据。
3. 方差分析:计算总体方差、组间方差和组内方差,进行方差分析。
4. 判断显著性:通过计算F值,比较P值与显著性水平,判断各组均值是否存在显著差异。
方差分析理解ANOVA的原理
方差分析理解ANOVA的原理方差分析(Analysis of Variance,简称ANOVA)是一种统计方法,用于比较两个或两个以上样本均值之间的差异是否显著。
通过对不同组之间的方差进行比较,判断样本均值是否存在显著差异。
ANOVA的原理主要基于总体方差的分解和均值之间的比较,下面将详细介绍方差分析的原理及其应用。
一、总体方差的分解在进行方差分析之前,首先需要了解总体方差的分解。
总体方差可以分解为组内变异和组间变异两部分。
组内变异是指同一组内个体之间的差异,反映了个体之间的随机误差;组间变异是指不同组之间的差异,反映了不同组之间的均值差异。
总体方差的分解可以用以下公式表示:总体方差 = 组间变异 + 组内变异通过对总体方差进行分解,可以帮助我们理解不同来源的变异对总体方差的影响,从而进行均值比较。
二、方差分析的基本原理方差分析的基本原理是通过比较组间变异与组内变异的大小,判断样本均值之间是否存在显著差异。
如果组间变异显著大于组内变异,说明不同组之间的均值存在显著差异;反之,如果组间变异与组内变异的差异不显著,则说明不同组之间的均值差异不显著。
在进行方差分析时,需要计算各组的平方和、自由度、均方和F 值等统计量,然后通过F检验来判断均值之间的差异是否显著。
F值越大,说明组间差异相对于组内差异越显著,从而可以拒绝原假设,认为样本均值存在显著差异。
三、方差分析的应用方差分析广泛应用于实验设计和数据分析中,特别适用于多组数据的比较。
例如,在医学研究中,可以利用方差分析比较不同药物治疗组的疗效是否存在显著差异;在工程实验中,可以利用方差分析比较不同工艺参数对产品质量的影响等。
此外,方差分析还可以用于控制实验误差、优化实验设计、验证假设等方面。
通过对不同组之间的均值差异进行比较,可以帮助研究人员更好地理解数据背后的规律,从而做出科学合理的结论。
总之,方差分析作为一种重要的统计方法,通过对总体方差的分解和均值之间的比较,帮助我们理解不同组之间的差异是否显著。
应用统计学方差分析
应用统计学方差分析统计学方差分析(ANOVA)是一种常用的统计方法,用于比较三个或更多个群体之间的均值差异。
方差分析最初是由Fisher于1918年提出的,随后经过不断发展和完善,成为统计学中最重要的工具之一方差分析的基本原理是通过计算和比较组间变异与组内变异来判断各组均值是否存在显著差异。
具体来说,方差分析将总体的方差分解为组间方差和组内方差两部分,然后通过计算F值(组间方差与组内方差的比值)来进行判断。
如果F值大于一些临界值(一般为0.05),则认为组间存在显著差异。
方差分析在实际应用中非常广泛,可以用于研究多个群体之间的差异,比如不同药物的疗效比较、不同教学方法的效果比较、不同广告策略的影响比较等。
下面以药物疗效比较为例,介绍方差分析的应用过程。
假设我们有三种不同的药物A、B、C,我们希望知道它们对其中一种疾病的疗效是否存在显著差异。
我们随机选取了100名患者,将他们分为三组,每组分别接受不同的药物治疗。
治疗结束后,我们用一些指标来衡量患者的疗效。
首先,我们需要明确研究的假设。
在这个例子中,我们的原假设(H0)是三种药物的疗效没有显著差异,备择假设(Ha)是三种药物的疗效有显著差异。
然后,我们需要收集数据并进行分析。
假设我们得到的数据如下表所示:药物A:82787584798381778076药物B:75777673787779767578药物C:71697268677371707571我们可以计算组内方差和组间方差,然后计算F值。
具体的计算过程可以使用统计分析软件(如SPSS或R)来完成。
最后,我们需要进行假设检验。
假设设定显著性水平为0.05,对应的临界F值为3.89(根据自由度和显著性水平查表或使用软件计算)。
如果计算得到的F值大于3.89,则拒绝原假设,认为三种药物的疗效存在显著差异;如果F值小于3.89,则无法拒绝原假设,认为三种药物的疗效没有显著差异。
通过以上步骤,我们可以得出结论。
统计学——方差分析概念和方法
统计学——方差分析概念和方法方差分析是一种用于比较两个或多个样本均值之间差异的统计分析方法。
它主要用于分析一个因变量和一个或多个自变量之间的关系,并判断这些自变量对因变量的影响是否存在显著差异。
方差分析主要包括以下几个概念和方法:1.因变量和自变量:方差分析中,我们首先需要明确研究的因变量和自变量。
因变量是我们感兴趣的变量,我们想要比较的两个或多个样本均值;而自变量是我们认为对因变量有影响的变量,可以是类别变量(如性别、教育程度等)或连续变量(如年龄、收入等)。
2.假设检验:在进行方差分析之前,我们需要假设样本均值之间没有显著差异,即为零假设(H0)。
然后,我们通过方差分析来检验零假设是否成立。
3.方差分析的类型:根据自变量的个数和类型的不同,方差分析可以分为单因素方差分析、多因素方差分析和混合方差分析。
单因素方差分析适用于只有一个自变量的情况,多因素方差分析适用于含有多个自变量的情况,而混合方差分析适用于自变量同时包含类别变量和连续变量的情况。
4.方差分析表:方差分析表是用来总结方差分析结果的常用工具。
在方差分析表中,我们可以看到组间方差(组间均方)、组内方差(组内均方)、总体方差(总体均方)以及统计量F值。
通过比较F值与给定的显著性水平,我们可以判断不同样本均值之间是否存在显著差异。
5.假设检验的步骤:进行方差分析时,需要按照以下几个步骤进行假设检验:a.建立假设:H0(样本均值没有显著差异)和H1(至少有一组样本的均值存在显著差异);b.计算各个组的均值;c.计算组间方差和组内方差;d.计算统计量F值;e.判断结果:通过比较F值和临界值来判断是否拒绝零假设。
6. 方差分析的扩展:在方差分析中,我们可以进行一些扩展的分析,如多重比较和建模。
多重比较是用来判断哪些组之间存在显著差异,常用的方法有Tukey法、Duncan法和Scheffe法等。
建模则是通过增加其他变量(如交互效应)来更好地解释因变量的变化。
stata统计分析与应用笔记汇总
第一章:Stata概述:help和search都是查找文件的命令但help用于查找精确的命令,search是模糊查找。
还可使用help|contents 来分类查找第二章:数据管理:2.1变量和变量的取值:1.变量的命名:不能以数字开头,区分大小写,不能命名为系统变量名2.变量的取值类型:(1)字符型:字符变量存储格式是str⋕,str表示格式⋕表示该变量的存储最多可容纳的字符数(2)数值型数据:存储格式:byte.int.long.float.double.Stata默认将数字存储为浮点数据,而将计算结果存为双浮点数据。
(3)缺失数据:一般仅用“.”表示3.变量的显示:(1)数值变量的显示格式:a.普通格式有%w.dg, %w.dgc(g表示普通,w表示整个显示所占的字符数,d表示显示的数字中小数点后的位数,c是要求Stata给出带逗号“,”数字显示格式如12345显示为12,345)b.固定格式有%w.df, %w.dfc(f表示固定)c.科学指数法格式:%w.de, (e表示科学计数)(2)字符变量的显示格式:仅有一种%⋕s,%是提示符,#表示显示字符数,s表示字符变量显示格式,默认右对齐,后加“-”可改为左对齐。
(3)使用format命令变量显示格式:format varlist %fmt 或者 format %fmt varlist 4.变量的标签(1)添加数据集的标签使用: label data [“lable”](2)添加变量的标签使用:label variable varname [“lable”](3)label为变量数值添加标签的语法有两部分,先定义数值标签:label define lblname#“lable” [#“lable”](lblname是标签名称) 然后将定义好的数值标签添加到变量上:label values varlist [lblnamel.]2.2创建一个新的数据集1.关于数据集操作的基本命令(1)browse 和edit 命令:browse 用于打开数据浏览器,edit命令用于打开数据编辑器Edit [varlist] [if] [in]browse [varlist] [if] [in](if和in 用于选择需要的子集)(2)rename:rename old_varname new_varname(3)save命令:save [filename] [,save_options]([,save_options]可以指nolabel(不保存设定标签),replace(允许新文件覆盖原文件),all主要用于编程(4)describe:用于产生一个对数据集的简明总结格式:describe [varlist] [,memory_options](命令选项:simple,short,detail,fullnames)(5)list:用于显示变量的数值,其后可以跟需要显示的变量名称语法:list [varlist] [if] [in] [,options](命令选项包括:noobs(不显示观测值的数值),clean,separator,sepby,nolabel)(6)codebook:用于详尽地描述变量的内容,包括变量名称、标签、赋值。
PPT-第7章-异方差-计量经济学及Stata应用
第 7 章 异方差 现实的数据千奇百怪,常不符合古典模型的某些假定。从本章 开始,逐步放松古典模型的各项假定。
7.1 异方差的后果
“条件异方差”(conditional heteroskedasticity) ,简称“异方差” (heteroskedasticity),是违背球型扰动项假设的一种情形,即条件
因此, (K 1)F (n K )R2 p (n K )R 2 (7.10) 1 R2
在大样本下,(n K )R2 与nR2并无差别,故LM 检验与F 检验渐 近等价。
如认为异方差主要依赖被解释变量拟合值 yˆi ,可将辅助回归改 为
e2 yˆ error
i
1 2i
i
(7.11)
然后检验H0 : 2 0 (可使用 F 或 LM 统计量)。
ˆFWLS无资格参加 BLUE 的评选。
FWLS 的优点主要体现在大样本中。如果ˆ2是 2的一致估计,
i
i
则 FWLS 一致,且在大样本下比 OLS 更有效率。
FWLS 的缺点是必须估计条件方差函数ˆ2 (x ),而通常不知道条 ii
件方差函数的具体形式。
如果该函数的形式设定不正确,根据 FWLS 计算的标准误可能 失效,导致不正确的统计推断。
方差Var(i | X )依赖于i ,而不是常数 2。
在异方差的情况下:
(1)OLS 估计量依然无偏、一致且渐近正态。因为在证明这些性质 时,并未用到“同方差”的假定。
(2) OLS 估计量方差Var( βˆ | X )的表达式不再是 2 ( X X)1,因为 Var(ε | X ) 2I 。使用普通标准误的t 检验、F 检验失效。
stata方差分解
stata方差分解
Stata中的方差分解是一种用于分析变量之间方差的分解方法,它可以帮助我们理解变量之间的关系及其对总体方差的贡献程度。
在Stata中,我们可以使用vardecomp命令进行方差分解分析。
首先,我们需要明确要进行方差分解的变量,假设我们有一个
因变量Y和两个自变量X1和X2,我们想要了解它们对Y的方差贡
献的比例。
我们可以使用vardecomp命令进行计算。
语法通常是这
样的,vardecomp 变量名, by(分组变量)。
在这个命令中,我们需要指定要进行方差分解的变量名,以及
可选的分组变量。
如果我们有分组变量,Stata将会为每个分组计
算方差分解结果。
方差分解的结果会包括各个变量的方差贡献比例,以及误差项
的方差。
这可以帮助我们理解每个自变量对因变量方差的解释程度,以及误差项在整体方差中的比重。
除了vardecomp命令,Stata还提供了其他一些用于方差分解
的命令和函数,比如decompose命令和相关的函数。
这些命令和函
数可以帮助我们更深入地理解变量之间的关系和方差的分布情况。
总之,Stata中的方差分解分析是一种强大的工具,可以帮助研究人员深入理解变量之间的关系及其对总体方差的贡献程度。
通过合理使用相关命令和函数,我们可以得到全面而准确的方差分解结果,从而更好地理解数据的特征和变量之间的关联。
stata 方差结果解读
stata 方差结果解读
解读Stata的方差分析结果,主要关注以下几个关键点:
1. **样本数量(Number of obs)**:这是你的样本观测值数量,用于了解你的数据规模。
2. **F检验**:F检验用于检验方差分析中各组的总体方差是否相等。
F值越大,说明组间的方差越大,组内的方差越小。
3. **Prob>F**:这是F检验的显著性概率,如果这个值小于0.05,那么我们可以拒绝原假设(各组的总体方差相等),认为各组的总体方差不相等。
4. **R-squared(决定系数)**:这是相关系数的平方,表示模型解释的变差的比例。
一个完全的回归模型会得到1的R-squared值,意味着模型解释了所有的变差。
R-squared值越接近1,模型的拟合效果越好。
5. **Adj R-squared**:调整后的相关系数的平方,用于衡量模型的拟合优度。
与R-squared相比,Adj R-squared会随着变量的增加或减少而调整,以更准确地衡量模型的拟合优度。
6. **Root MSE**:均方根误差,表示预测值与实际值之间的平均偏差。
Root MSE越小,说明模型的预测越准确。
7. **SS(离差平方和)**:这是总偏差的来源,包括回归平方和(SSR)和残差平方和(SSE)。
回归平方和表示模型可以解释的偏差,而残差平方和表示模型无法解释的偏差。
结合这些关键点,你可以对Stata的方差分析结果进行详细的解
读。
第七章 方差分析stata统计分析与应用37 优质课件PPT文档22页
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来第七章 方差分析s源自ata统计分析与应用37 优质课件
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 6
STATA从入门到精通
【例7.2】使用文件“职工信息表.dta”的数据来对两独立样本ttest命令的应用进行说
明。表7-3给出了某厂职工的性别、年龄、职称及文化程度的信息。本例要求检验不同
性别的职工工资是否相同,使用的方法包括一般的t检验,消除同方差假定的t检验。
表7-3 某厂职工信息表
Page 3
STATA从入门到精通
2、两样本t检验的Stata操作
两样本t检验的Stata操作有三种基本命令格式,如下所示: 命令格式1(通过样本进行双变量t检验): ttest varname1 == varname2 [if] [in], [options] 命令格式2(通过样本进行分组t检验): ttest varname [if] [in] , by(groupvar) [options] 命令格式3(通过样本的统计指标进行t检验): ttesti #obs1 #mean1 #sd1 #obs2 #mean2 #sd2 [, options] 其中,#obs为样本容量,#mean为样本均值,#sd为标准差,#val为待检验
初中
Page 8
STATA从入门到精通
7.2 单因素方差分析
本节首先介绍单因素方差分析的原理,然后介绍实现单因素方差分析 的两个命令 oneway和 longway。
单因素方差分析用于比较多组样本的均数是否相同,并假定:每组的 数据服从正态分布,具有相同的方差,且相互独立。 单因素方差分析表
ttest varname == # [if] [in] [, level(#)]
命令格式2(通过样本的统计指标进行t检验):
ttesti #obs #mean #sd #val [, level(#)]
其中,#obs为样本容量,#mean为样本均值,#sd为标准差,#val为待检验数值, level为置信度水平。
数值,level为置信度水平。
Page 4
STATA从入门到精通
Ttest的主要选项如下表7-1所示:
主要选项 * by(groupvar) unequal welch level(#)
描述 通过定义组变量 非配对的数据含有不同变量 使用Welch近似 置信水平默认95%
【例7.1】使用文件“减肥.dta”的数据来对样本ttest命令的应用进 行说明。该例子是通过减肥茶前后的体重数据来评估减肥茶是否有效 果。本例要求用单样本t检验验证在服用减肥药之前,体重的均值是 否为90公斤。以及使用减肥药前后,体重是否有显著变化。
Page 9
STATA从入门到精通
Oneway命令的基本格式如下:
oneway response_var factor_var [if] [in] [weight] [, options]
主要选项
描述
boቤተ መጻሕፍቲ ባይዱferroni
bonferroni 多重比较检验
scheffe sidak tabulate [no]means [no]standard [no]freq
基本工资 1014 984 1044 866 848 824 824 824 859 827 1014 989 938 889 887 887
职称 高级工程师 工程师 高级工程师 助理工程师 助理工程师 无技术职称 无技术职称 无技术职称 工程师 助理工程师 高级工程师 工程师 助理工程师 工程师 助理工程师 助理工程师
部分数据如下表7-2 所示:
Page 5
STATA从入门到精通
表7-2 减肥茶服用前后体重对比表
喝减肥茶前体 重(公斤)
90 95 82 91 100 87 91 90 86 87 98 88 82 87
喝减肥茶后体 重(公斤)
63 71 79 73 74 65 67 73 60 76 71 72 75 62
男职工
42
29
男职工
33
30
女职工
44
887
助理工程师 初中
879
工程师
专科
867
助理工程师
初中
879
工程师
专科
879
工程师
专科
827
助理工程师
高中
847
助理工程师
初中
887
助理工程师
初中
867
助理工程师
高中
867
助理工程师
高中
830
助理工程师
专科
847
助理工程师
初中
827
助理工程师
高中
867
助理工程师
STATA从入门到精通
7.1 t检验的Stata基本命令
t检验是用于小样本(样本容量小于30)两个平均值差异程度的检验方法。它 是用t分布理论来推断差异发生的概率,从而判定两个平均数的差异是否显著。 t检验包括单样本t检验、两样本t检验,其中两样本t检验又包括配对样本t检 验和两独立样本t检验。
STATA 从入门到精通
第七章 方差分析
方差分析
方差分析是基于样本方差对总体均值进行 统计推断的方法,它是通过实验观察某一 种或多种因素的变化对实验结果是否带来 显著影响,进而鉴别各种因素的效应,从 而选取一种最优方案。
方差分析包括单因素方差分析、多因素方 差分析和协方差分析。
Page 2
文化程度 本科 专科 高中 高中 本科 高中 高中 高中 专科 本科 专科 专科 初中 本科 初中 初中
Page 7
STATA从入门到精通
17
男职工 51
18
男职工
43
19
女职工
50
20
男职工
35
21
男职工
37
22
男职工
37
23
男职工
39
24
女职工
49
25
女职工
53
26
女职工
50
27
男职工
36
28
1、单样本t检验的Stata操作
单样本t检验有两种用法。一是检验样本平均数是否显著地不同于某个假设值。二是检 验同一套观察值中的两个变量的统计指标是否显著地不同。这等价于两者的差值的平 均数是否等于零。
在Stata应用中使用ttest命令来完成,单样本ttest有两种命令格式:
命令格式1(通过样本进行t检验):
职工号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
性别 男职工 男职工 男职工 男职工 男职工 女职工 女职工 女职工 女职工 男职工 男职工 男职工 男职工 男职工 男职工 男职工
年龄 48 49 54 41 38 41 42 41 42 35 56 59 59 41 55 45