如何选择PCB板材
如何选择PCB板材
如何选择PCB板材PCB板是电子设备中非常重要的一个组成部分,选择合适的PCB板材料对于电子界来说非常重要,如何选择合适的PCB 板材也是一个值得深思熟虑的问题。
在选择PCB板材之前,首先需要了解不同材料之间的差异,以便做出明智的选择。
在选择PCB板材时,需要考虑以下因素:1.耐高温性能:在电路板上做焊接时需要进行高温处理,这就需要PCB板材具有足够的耐高温性能。
一些化学基材料,如聚酰亚胺(PI)和氰基丙烯酸酯(CEM)材料,具有出色的耐高温性能。
2.耐腐蚀性能:PCB板材在制造和使用过程中可能会受到化学物质的腐蚀,例如氨气、氢氟酸等。
这就需要选择具有耐腐蚀性能的材料,如玻璃纤维增强材料(FR4)和氰基丙烯酸酯(CEM)材料。
3.导热性能:在一些高功率电子设备中,需要通过散热器将热量传递到周围环境中。
此时需要选择具有良好导热性能的材料,如金属基板或陶瓷基板。
4.机械强度:在电子设备的制造和运输过程中可能会有不同程度的振动和冲击。
因此,需要选择具有较高机械强度的材料,如FR4和聚亚酰胺等。
5.EMI(电磁干扰):电子设备可能会对周围环境产生EMI 干扰,如电磁辐射和电磁波。
因此,需要选择具有较好EMI屏蔽性能的材料,例如金属基板。
以上是选择PCB板材的一些关键考虑因素,但实际应用时,还需要综合考虑更多因素,如成本、可靠性和生产加工工艺。
为了更好的帮助读者选择合适的PCB板材,我们接下来将对几种常见的PCB板材进行详细介绍:1.FR-4材料FR-4是一种玻璃纤维增强材料,广泛应用于PCB板材制造中。
FR-4材料的优点是价格便宜、可靠性高、性能稳定等。
其缺点是导热性能较差,不适用于高功率电子设备。
2.铝基板铝基板是一种导热性能良好的PCB板材,适用于高功率电子设备的散热要求。
铝基板的优点是导热性能好、重量轻、成本低等。
其缺点是可靠性略低。
3.陶瓷基板陶瓷基板具有导热性能和机械强度良好、稳定性高等优点,通常用于高频率和高功率应用。
PCB设计如何选择板材
PCB设计如何选择板材PCB设计如何选择板材(1)信号工作频率不同对板材要求不同。
(2)工作在1GHz以下的PCB可以选用FR4,成本低、多层压制板工艺成熟。
如信号入出阻抗较低(50欧姆),在布线时需要严格考虑传输线特性阻抗和线间耦合,缺点是不同厂家以及不同批生产的FR4板材掺杂不同,介电常数不同(4.2-5.4)且不稳定。
(3)工作在622Mb/s以上的光纤通信产品和1G以上3GHz以下的小信号微波收发信机,可以选用改性环氧树脂材料如S1139,由于其介电常数在10GHz时比较稳定、成本较低、多层压制板工艺与FR4相同。
如622Mb/s数据复用分路、时钟提取、小信号放大、光收发信机等处建议采用此类板材,以便于制作多层板且板材成本略高于FR4(高4分/cm2左右),缺点是基材厚度没有FR4品种齐全。
或者,采用RO4000系列如RO4350,但目前国内一般用的是RO4350双面板。
缺点是:这两种板材不同板厚品种数量不齐全,由于板厚尺寸要求,不便于制作多层印制板。
如RO4350,板材厂家生产的规格有10mil/20mil/30mil/60mil等四种板厚,而目前国内进口品种更少,因此限制了层压板设计。
(4)3GHz以下的大信号微波电路如功率放大器和低噪声放大器建议选用类似RO4350的双面板材,RO4350介电常数相当稳定、损耗因子较低、耐热特性好、加工工艺与FR4相当。
其板材成本略高于FR4(高6分/cm2左右)。
(5)10GHz以上的微波电路如功率放大器、低噪声放大器、上下变频器等对板材要求更高,建议采用性能相当于F4的双面板材。
(6)无线手机多层板PCB板材要求板材介电常数稳定度、损耗因子较低、成本较低、介质屏蔽要求高,建议选用性能类似PTFE(美国/欧洲等多用)的板材,或FR4和高频板组合粘接组成低成本、高性能层压板。
PCB电路板板材介绍
PCB电路板板材介绍1.FR4板材FR4是一种玻璃纤维增强热固性树脂材料,是最常用的PCB板材之一、它具有良好的电绝缘性能、机械强度高、耐热性好等特点。
FR4板材常用于一般电路板生产,如通用消费电子产品、工业自动化设备等。
FR4板材具有较好的耐高温性能,可用于高温环境下的应用。
2.高TG板材高TG板材是在常规FR4板材的基础上提高玻璃化转变温度(Tg),通常指超过170℃的板材。
高TG板材适用于对耐高温性能要求较高的应用场景,如汽车电子、航空航天等领域。
高TG板材具有较好的耐高温抗老化性能,能满足复杂环境下的工作要求。
3.高频板材高频板材是一种具有较低介电常数和介质损耗的特殊板材,适用于高频电路设计。
高频板材常用于无线通信设备、射频电路、雷达等领域。
高频板材具有较低的信号传输损耗和色散特性,能够实现高频信号的稳定传输。
4.金属基板金属基板是一种以金属作为基材的PCB板材。
常见的金属基板材料有铝基板、铜基板和钢基板等。
金属基板具有良好的散热性能、机械强度好等特点,常用于功率电子器件、LED灯等高功率应用领域。
5.聚酰亚胺板材聚酰亚胺(PI)板材是一种具有优异的高温耐性和电绝缘性能的特殊板材。
它具有较低的介质损耗和介电常数,适用于高频高速电路设计。
聚酰亚胺板材常用于航空航天、医疗器械等高要求的应用领域。
6.柔性基板柔性基板是一种用薄膜材料制成的电路板,可以实现弯曲和折叠。
柔性基板具有轻薄、小巧、可弯曲性好等特点,常用于移动设备、可穿戴设备等有特殊要求的产品中。
除了上述介绍的常见板材外,还有许多其他材料可用于制作PCB电路板,如石墨烯、新型纳米材料等,这些材料具有高导热性、高导电性等特点,有望应用于未来的电路板制造中。
总之,PCB电路板的板材选择是一个根据设计需求和应用场景来决定的过程。
不同的板材具有不同的特点和优势,设计人员需要根据具体情况进行选择,以确保电路板的性能和可靠性。
pcb板的材料
pcb板的材料PCB板的材料。
PCB板(Printed Circuit Board)是电子产品中不可或缺的部分,它承载着电子元件并提供了它们之间的连接。
PCB板的材料选择对于电子产品的性能和稳定性起着至关重要的作用。
在选择PCB板的材料时,需要考虑到电路的复杂性、工作环境、成本和可靠性等因素。
下面将介绍几种常见的PCB板材料及其特点。
首先,FR-4是最常见的PCB板材料之一。
它是一种玻璃纤维复合材料,具有优良的绝缘性能、耐热性和机械强度。
FR-4材料适用于大多数一般性的电子产品,如家用电器、通讯设备等。
它的成本相对较低,是许多电子产品制造商的首选。
除了FR-4,铝基板也是一种常用的PCB板材料。
铝基板具有良好的散热性能,适用于需要高功率和高密度电子元件的产品,如LED照明、汽车电子等。
铝基板的散热性能可以有效降低电子元件的工作温度,提高产品的稳定性和可靠性。
另外,还有一种叫做高频板的PCB材料。
高频板通常采用PTFE(聚四氟乙烯)或者PTFE玻璃纤维复合材料制成,具有优异的介电性能和高频特性。
这种材料适用于无线通讯、雷达系统等高频电子产品,能够有效减小信号传输时的损耗和干扰。
此外,金属基板也是一种常用的PCB板材料。
金属基板通常采用铝或铜作为基材,具有良好的导热性能和机械强度。
金属基板适用于需要高密度布线和散热要求较高的电子产品,如电源模块、电机驱动器等。
最后,还有一种叫做柔性电路板的PCB材料。
柔性电路板采用柔性基材,如聚酯薄膜或聚酰亚胺薄膜,具有良好的柔韧性和弯曲性能。
柔性电路板适用于需要弯曲安装的电子产品,如可穿戴设备、手机等。
综上所述,不同的PCB板材料具有不同的特点和适用范围。
在选择PCB板材料时,需要根据产品的特性和要求进行综合考虑,以确保电子产品具有良好的性能和稳定性。
同时,随着技术的不断发展,新型的PCB板材料也在不断涌现,为电子产品的设计和制造提供了更多的选择。
PCB板材特性参数详解
PCB板材特性参数详解1.厚度:PCB板材的厚度是指板材的整体厚度,常用单位是毫米或者英寸。
选择PCB板材时,需要考虑电路的复杂性和所需的机械强度。
2.热导率:PCB板材的热导率是指导热的能力。
高热导率可以提高电路板对热量的散热能力,降低电子元件的温度。
常见的PCB板材热导率范围为0.1-4.0W/m·K。
3. 热膨胀系数:PCB板材的热膨胀系数是指材料在温度变化时线膨胀或收缩的程度。
选择合适的热膨胀系数可以减少因温度变化导致的电路板破裂和变形。
常见 PCB 板材热膨胀系数范围为8-30 ppm/℃。
4.环保级别:PCB板材通常需要符合环保标准,如RoHS、REACH等,以确保没有有害物质对环境和使用者造成危害。
5.介电常数和介质损耗:PCB板材的介电常数和介质损耗是指材料对电磁波传导的能力。
高介质常数可以提高信号速度,而低介质损耗可以减少信号的衰减。
常见的介电常数范围为3-4,介质损耗范围为0.001-0.026. 表面电阻率:PCB板材的表面电阻率是指材料表面的电阻大小。
合适的表面电阻率可以降低电路板的串扰和静电积累。
常见的表面电阻率范围为10^6-10^12 Ω/sq。
7.扩散常数:PCB板材的扩散常数是指材料中的杂质元素扩散的能力。
高扩散常数可能导致电子元件与杂质元素的互相干扰,降低电路的可靠性和性能。
8.耐电子束辐照能力:PCB板材的耐电子束辐照能力是指在辐照过程中材料的耐受能力。
这在核电站等特殊环境中应该特别注意。
9.耐化学腐蚀性能:PCB板材对于化学腐蚀的耐受能力是指材料在不同化学环境下的稳定性。
选择耐化学腐蚀性能好的材料可以提高电路板的寿命和可靠性。
10.机械强度和刚度:PCB板材的机械强度和刚度是指材料对压力和机械应力的耐受能力。
高机械强度和刚度可以减少电路板的变形,提高电路板的可靠性。
以上是一些常见的PCB板材的特性参数。
选择合适的PCB板材对于电路的性能和可靠性至关重要。
PCB设计规范参考
PCB设计规范参考PCB(Printed Circuit Board)是电子产品中的一个重要组成部分,它是一个由导电路径、连接孔和电子元件组成的板子,用来连接和支持电子元件。
设计一个高质量的PCB对于电子产品的性能和可靠性至关重要。
以下是PCB设计规范的参考内容。
1.PCB板材选择:选择适用于具体电子产品的PCB板材。
常见的PCB板材有FR-4、高频板、金属基板等。
根据电子产品的特性、工作环境和成本要求等因素,选择合适的PCB板材。
2.导线宽度和间距:根据所需的电流和信号频率,选择适当的导线宽度和间距。
确保导线宽度和间距符合电气参数要求,以避免电流过载和信号受干扰。
3.元件布局:合理布局电子元件,使得电路拓扑简洁清晰,降低电磁干扰和信号互联干扰的可能性。
将信号源、信号处理电路和高频电路等分开布局,避免互相干扰。
4.元件安装:按照规范正确安装电子元件,确保引脚与PCB焊盘的精确对位。
避免引脚弯曲、错位或者失联,以确保良好的电气连接和机械稳定性。
5.地线设计:合理规划地线连接,确保PCB上所有元件都能够正确接地。
地线布局要优化,最小化地线长度和回路面积,以降低电磁干扰和噪声。
6.电源分布:确保电源线路的布线和分布符合电压和功率要求。
电源线路要避免交叉,将高功率和低功率线路分开布置,以防止相互干扰。
7.阻抗控制:对于高频和高速信号,要进行阻抗控制。
通过选择适当的板厚、导线宽度和材料等参数,实现合适的阻抗匹配,以避免信号失真和反射。
8.引脚分配和标记:为电子元件正确分配引脚,按照规范进行标记。
引脚标记应与电子元件封装、原理图和顶层布局符合。
确保读者可以轻松理解和识别。
9.单边和双边布线:根据电路的复杂性和布局需求,选择适合的单边或双边布线。
对于高密度布线,可以考虑使用多层PCB来提高布线密度,减小板子尺寸。
10.标准化和文件生成:遵循标准规范设计PCB,生成符合要求的Gerber文件(包括钻孔文件、贴片文件等),以便于制造商生产和组装。
PCB板工艺设计规范
PCB板工艺设计规范PCB(Printed Circuit Board)板工艺设计规范是指在PCB设计与制作过程中需要遵守的一系列规范和标准。
下面将介绍一些常见的PCB板工艺设计规范。
1.PCB板材选择:PCB板材是PCB制作的基础,应根据电路设计要求和成本因素选择适当的材料。
常见的PCB板材有FR-4(玻璃纤维板)、FR-2(纸质基板)和金属基板等。
2.线宽与线距:PCB布线时,线宽和线距的选择受到制造工艺和电路要求的限制。
一般而言,线宽、线距的设计应符合PCB厂商的要求,尽量选择合适的数值,同时考虑信号完整性和阻抗匹配等要求。
3.阻抗控制:在高速电路设计中,阻抗控制是非常重要的。
设计师需要根据电路特性和信号传输要求,合理选择PCB板材、线宽和线距等参数,以确保阻抗匹配。
同时,在设计过程中还需考虑终端阻抗匹配和线路长度匹配。
4.过孔设计:PCB板设计中常用的连接方式是通过过孔实现的。
在过孔设计时,需要注意过孔尺寸、过孔通孔和过孔孔容等因素。
尺寸过大或过小都会影响PCB板的性能和可靠性,因此在设计中应保证过孔的合理布局和尺寸。
5.接地和分层:在高密度PCB设计中,接地和分层是非常重要的。
正确地布置接地和分层层次可以有效地减少电磁干扰和串扰。
设计时需要根据信号类型和敏感性,合理地划分信号层、地层和电源层,并且合理规划信号的走向。
6.焊盘设计:焊盘设计是PCB板工艺设计中的重要环节。
在焊盘设计中,需要考虑焊盘的尺寸、形状和数量。
合理的焊盘设计可以提高元件的焊接质量和可靠性。
7.线路布局:线路布局是PCB板工艺设计中的核心环节。
合理的线路布局可以确保信号的稳定传输,减少信号跨越和串扰的问题。
在布局时要避免长线与短线相交,尽量采用直线布线和90度转角。
8.引脚排列:元件引脚排列的合理性直接影响到PCB板的布局和元件的方便性。
在引脚排列时要尽量避免交叉引脚和交错引脚,以减少信号干扰和布线困难。
9.文档和标记:总之,PCB板工艺设计规范是确保PCB设计和制作过程顺利进行的重要依据。
PCB基板材料选型与工艺要求
PCB基板材料选型与工艺要求1. 引言PCB(Printed Circuit Board,印刷电路板)是电子产品中不可或缺的一个组成部分,它承载着电子元器件并提供电气连接和机械支持。
PCB的性能与质量直接影响着整个电子产品的可靠性和性能表现。
本文将重点讨论PCB基板材料的选型和相关工艺要求,帮助读者理解如何选择合适的材料,提高PCB的质量。
2. PCB基板材料选型PCB基板材料的选型是PCB设计过程中的关键步骤之一。
合适的基板材料能够满足电路板的性能和可靠性要求。
以下是一些常用的基板材料及其特点:•FR-4基板:FR-4是一种玻璃纤维增强的环氧树脂材料,具有良好的绝缘性能、机械强度和热稳定性。
FR-4基板广泛用于一般电子产品中,价格适中且性能稳定可靠。
•CEM-3基板:CEM-3是一种玻璃纤维增强的环氧树脂材料,与FR-4相比,CEM-3的导热性能更好。
因此,CEM-3基板常用于高温工作环境下的电子产品中。
•铝基板:铝基板是一种以铝合金为基材的PCB材料,具有良好的散热特性。
铝基板广泛应用于LED照明产品和高功率电子设备中。
•陶瓷基板:陶瓷基板具有良好的高频特性和高温稳定性,常用于高频电子产品和微波电路中。
•高频复合材料:高频复合材料是一种特殊的PCB基板材料,具有优异的高频性能和低传输损耗。
高频复合材料广泛应用于通信设备和雷达系统中。
在选择PCB基板材料时,需要根据具体应用的要求综合考虑电气性能、机械强度、耐热性和成本等因素。
3. PCB基板工艺要求除了选择适合的基板材料外,合适的PCB基板工艺也至关重要。
以下是一些常用的PCB基板工艺要求:•线路布局:合理的线路布局是保证电路性能和可靠性的关键。
在布局过程中,需要注意信号和电源之间的隔离,充分考虑信号传输的路径和长度匹配,避免信号串扰和晶体管饱和等问题。
•封装和焊接:PCB的封装和焊接工艺直接影响着电子元器件的可靠性和连接质量。
合适的封装和焊接工艺包括:选择合适的焊膏和焊垫材料、控制焊接温度和时间、避免过渡力度和过度变形等。
PCB基板材质的选择
PCB基板材质的选择1.镀金板(ElectrolyticNi/Au)2.OSP板(OrganicSolderabilityPreservatives)3.化银板(ImmersionAg)4.化金板(ElectrolessNi/Au,ENIG)5.化锡板(ImmersionTin)6.喷锡板1.镀金板镀金板制程成本是所有板材中最高的,但是目前现有的所有板材中最稳定,也最适合使用于无铅制程的板材,尤其在一些高单价或者需要高可靠度的电子产品都建议使用此板材作为基材。
2.OSP板OSP制程成本最低,操作简便,但此制程因须装配厂修改设备及制程条件且重工性较差因此普及度仍不佳,使用此一类板材,在经过高温的加热之后,预覆于PAD上的保护膜势必受到破坏,而导致焊锡性降低,尤其当基板经过二次回焊后的情况更加严重,因此若制程上还需要再经过一次DIP制程,此时DIP端将会面临焊接上的挑战。
3.化银板虽然”银”本身具有很强的迁移性,因而导致漏电的情形发生,但是现今的“浸镀银”并非以往单纯的金属银,而是跟有机物共镀的”有机银”因此已经能够符合未来无铅制程上的需求,其可焊性的的寿命也比OSP板更久。
4.化金板此类基板最大的问题点便是”黑垫”(BlackPad)的问题,因此在无铅制程上有许多的大厂是不同意使用的,但国内厂商大多使用此制程。
5.化锡板此类基板易污染、刮伤,加上制程(FLUX)会氧化变色情况发生,国内厂商大多都不使用此制程,成本相对较高。
6.喷锡板因为cost低,焊锡性好,可靠度佳,兼容性最强,但这种焊接特性良好的喷锡板因含有铅,所以无铅制程不能使用。
另有”锡银铜喷锡板”由于大多数都不使用此制程,故特性资料取的困难。
PCB电路板板材介绍
PCB电路板板材介绍PCB电路板(Printed Circuit Board)是电子产品中常见的一种基础组成部件,用于连接和支持电子元器件,并传递电信号和电能。
PCB电路板的性能和质量直接影响到整个电子产品的性能和可靠性,其中板材是PCB电路板的核心部分。
本文将介绍PCB电路板的常见板材及其特点。
1.硬质板材硬质板材是最常见的PCB电路板材料之一,其主要成分是玻璃纤维布与环氧树脂树脂的复合材料。
硬质板材具有良好的机械性能、热稳定性和电气性能,因此特别适合用于制作复杂的多层PCB电路板。
硬质板材根据其玻璃纤维布的厚度,可分为FR-4、FR-5等等级,FR-4是最常用的硬质板材。
硬质板材的主要优点是高强度、良好的耐热性和耐腐蚀性。
2.软质板材软质板材相对于硬质板材而言,其玻璃纤维布的厚度较薄。
软质板材通常采用聚酰亚胺(Polyimide)树脂作为基材。
聚酰亚胺软质板材具有良好的耐高温性能、柔韧性和耐化学性能,因此在一些特殊应用场景中非常适用,如高温环境下的电子产品、柔性电子产品等。
软质板材的主要优点是良好的柔韧性、较低的介电常数和介电损耗。
3.金属基板金属基板是将铜箔与金属基材复合而成的材料。
金属基板通常采用铝基或铜基材料。
金属基板的主要优点是良好的散热性能和机械强度,因此广泛应用于需要高功率和高可靠性的电子产品中,如LED照明产品、汽车电子产品等。
金属基板的主要缺点是制造工艺复杂,成本较高。
4.杂质基板杂质基板是以纯纸质或玻璃纤维纸质为基材的一种特殊PCB板材。
其主要应用于一些低成本、低性能要求的电子产品中,如普通计算机键盘、游戏手柄等。
杂质基板的主要优点是制造成本低、易于加工。
除了以上介绍的常见板材外,还有一些特殊用途的板材,如陶瓷基板、高频板等,其具有特殊的性能和特点,适用于一些特定的应用场景。
在选择PCB板材时,需要根据具体的应用需求、成本要求和性能要求来进行选择。
综上所述,PCB电路板的板材是其性能和可靠性的关键因素。
PCB电路板板材介绍
PCB电路板板材介绍PCB电路板(Printed Circuit Board),是电子元件的支撑体和互联体,通过对电子元件的固定和连接,实现电路功能的组装和传导。
PCB电路板有着重要的作用,因此选择适当的板材对于设计和性能至关重要。
在选择电路板板材时,我们需要考虑几个主要因素:导电性、热导性、机械强度、化学稳定性和成本。
各种不同的板材在这些方面都有各自的特点和优势,下面就对一些常用的板材进行介绍。
1.FR-4板材FR-4电路板是目前最常见的电路板板材,它使用玻璃纤维作为增强材料,有着很好的机械性能和耐高温性能。
它的导热性较差,适用于一般的低频电路设计。
FR-4板材还具有较好的化学稳定性和成本效益。
2. 高导热板材(Aluminum PCB)高导热板材使用铝作为导热介质,具有优异的导热性能。
它适用于高功率和高频电路设计,可以有效地散热。
高导热板材还具有较好的机械强度和耐腐蚀性能。
3.聚酰亚胺(PI)板材聚酰亚胺是一种高温和高性能的板材,具有较好的电气绝缘性和机械强度。
它适用于高频和高速电路设计,还具有较好的化学稳定性和耐温性能。
聚酰亚胺板材广泛应用于航空航天、军事和汽车电子等领域。
4. 高频板材(Rogers板材)高频板材是一种专门设计用于高频电路的板材,其特点是具有较低的损耗因子和较高的介电常数。
高频板材可以提供更好的信号传输和抗干扰能力,适用于微波通信和无线网络等应用。
5.陶瓷板材陶瓷板材具有优异的绝缘和导热性能,适用于高频和高功率电路设计。
它具有较好的耐高温性能和化学稳定性,但成本较高。
陶瓷板材广泛应用于雷达、微波通信和功率放大器等高性能电子领域。
在选择电路板板材时,我们需要根据具体的应用需求和成本预算来进行选择。
不同的板材具有不同的特点和价值,通过合理地选择和搭配,可以实现更好的电路设计和性能优化。
同时,在选择板材的过程中,还需要与供应商进行合作和沟通,了解板材的质量和产能等方面的信息,以确保电路板的稳定性和可靠性。
PCB板材质选择及工艺要求
PCB板材质选择及工艺要求PCB板材质的选择是PCB设计中非常重要的一环。
不同的板材材质可以影响到电路板的性能、可靠性和成本等方面。
在PCB板材质的选择过程中,需要考虑电路板的工作环境、频率和功耗等因素。
下面将对PCB板材质的选择及工艺要求进行详细讨论。
一、PCB板材质选择要考虑的因素1.工作环境PCB板的工作环境可以分为室内和室外两种。
在室内环境下,选择一般的FR-4材质即可。
而在室外环境下,由于面临更恶劣的气候条件,需要选择具有更高阻燃性和耐候性能的材料。
2.频率对于高频电路,需要选择较低的介电常数材料,以降低信号的传输损耗。
常用的高频材料有BT、PTFE和射频(RF)材料等。
3.功耗对于高功耗电路,需要选择具有较高导热性能的材料,以便有效地散热并防止电路过热损伤。
常用的导热材料有金属基板和陶瓷基板等。
4.成本材料的选择还需考虑成本因素。
一般来说,FR-4是一种性能和价格均衡的材料,适用于大多数一般应用。
而对于高性能系统,可能需要选择更贵的高频或导热材料。
二、常用的PCB板材质1.FR-4FR-4是一种常用的玻纤增强聚合物基板材料,具有良好的电气特性和机械强度。
它具有较高的介电常数和介电损耗,适用于大多数一般应用。
2.高频材料高频材料具有较低的介电常数和介电损耗,适用于高频电路和微波应用。
常见的高频材料有BT、PTFE和射频(RF)材料等。
3.金属基板金属基板是由铝基板或铜基板和绝缘层组成的,具有良好的导热特性。
它适用于高功耗电路和散热要求较高的应用。
4.陶瓷基板陶瓷基板具有良好的导热性能和高温稳定性,适用于高功耗和高温环境下的应用。
常见的陶瓷材料有铝氧化物(Al2O3)和氮化铝(AlN)等。
三、PCB板的工艺要求1.层压工艺层压板是将多层电路板通过热压技术合成的。
在层压工艺中,需要确保各层之间的电气连接和机械强度。
同时,还需要控制层压板的板厚和层压压力,以保证工艺的稳定性。
2.阻焊工艺阻焊是在PCB表面覆盖一层绿色或其他颜色的胶粘剂,以保护电路板并提高焊接效果。
PCB常用板材参数性能
PCB常用板材参数性能PCB(Printed Circuit Board,印刷电路板)是一种用于连接和支持电子元件的基础材料。
选择适合的板材对 PCB 的性能和可靠性有着重要影响。
下面是一些常用 PCB 板材的参数和性能分析。
1.FR4板材-表面平整度:FR4板材具有表面平整度高的特点,适用于高精度和高频率应用。
-机械强度:FR4板材具有较高的机械强度,可以满足大多数应用的要求。
-热膨胀系数:FR4板材的热膨胀系数相对较高,需要注意在热循环条件下的稳定性。
-导热性能:FR4板材的导热性能较差,不适合在高功率应用中使用。
2.高频板材-介电常数:高频板材具有低介电常数,可以降低信号传输时的衰减和反射。
-损耗因子:高频板材具有低损耗因子,可以提高高频信号的传输效率。
-热膨胀系数:高频板材的热膨胀系数低,可以提高在热循环条件下的稳定性。
3. 金属基板(Metal Core PCB)-热传导性能:金属基板具有较好的热传导性能,适用于高功率和热敏应用。
-机械强度:金属基板的机械强度较高,可以提供更好的机械支撑。
-导热系数:金属基板的导热系数较高,可以快速地将热量分散。
-电磁屏蔽性能:金属基板具有较好的电磁屏蔽性能,适用于电磁干扰较严重的环境。
4. 柔性板材(Flex PCB)-可弯曲性:柔性板材具有较好的柔性和可弯曲性,适用于复杂形状和空间受限的应用。
-机械强度:柔性板材相对较薄,机械强度较低,需要注意在装配过程中的保护和处理。
-抗电弧性能:柔性板材具有较好的抗电弧性能,适用于高频和高速信号传输。
5.高温板材-耐高温性能:高温板材可以在较高温度下保持稳定性,并具有较好的耐高温特性。
-热膨胀系数:高温板材的热膨胀系数较低,可以提高在高温循环条件下的稳定性。
-导热性能:高温板材具有较好的导热性能,适用于高功率和高温应用。
综上所述,选择适合的PCB板材是确保电路板性能和可靠性的重要因素。
不同的应用场景需要考虑不同的参数和性能特点,以提供最佳的解决方案。
pcb板材的基本参数
pcb板材的基本参数pcb板材的基本参数1. 引言在现代电子领域中,印制电路板(Printed Circuit Board,PCB)扮演着至关重要的角色。
PCB的质量和性能直接影响着成品电子产品的稳定性和可靠性。
而PCB板材的选择是确保PCB性能最关键的环节之一。
本文将深入探讨PCB板材的基本参数,以帮助读者更全面、深入地了解PCB设计和制造过程。
2. PCB板材的种类PCB板材根据材料种类可以分为多种类型,如FR-4、金属基板(Metal Core Board)、聚酰亚胺板(Polyimide)、陶瓷基板(Ceramic)等。
不同的应用场景和技术需求决定了不同类型的PCB 板材的选择。
而不同的PCB板材又具有各自独特的特性和参数。
3. PCB板材的常见参数(1)导电性能:PCB板材的导电性能直接影响着PCB的信号传输和电气性能。
导电性能可以用于衡量材料的导电能力,并通过电阻率(Ω/m)或电导率(S/m)来表示。
常见的导电性能参数有表面电导率和体积电导率,用于评估PCB板材的导电性能。
(2)介电性能:PCB板材的介电性能决定了材料的绝缘能力和容纳信号传输的能力。
介电性能通常使用介电常数(Dielectric Constant)和介电损耗(Dielectric Loss Tangent)来衡量。
介电常数表示材料在电场中相对于真空的相对能力。
而介电损耗则表示材料在电场中能量损耗的能力。
(3)尺寸稳定性:对于PCB制造而言,尺寸稳定性是至关重要的。
材料的线膨胀系数(Coefficient of Thermal Expansion,CTE)和尺寸变化率可以用来评估PCB板材在不同温度下的尺寸变化程度。
选择具有低CTE值的板材可以确保PCB的稳定性和可靠性。
(4)耐高温性能:PCB板材在电子产品工作温度范围下的稳定性对于产品的寿命和性能至关重要。
耐高温性能可以通过玻璃化转变温度(Tg)和热分解温度(Td)来评估。
如何选择PCB板材
如何选择PCB板材随着电子技术的发展,各种电子设备的使用越来越普遍,而PCB(Printed Circuit Board,印制电路板)就是电子装置中不可或缺的一个重要组成部分。
PCB板材的质量直接影响电子设备的性能,因此如何选择PCB板材就成为了电子工程师需要重视和研究的问题。
PCB板材根据材料的性质和用途可以分为多种,主要分为有机基板、无机基板和特种基板等,其中有机基板广泛应用于大多数电子设备中。
那么如何才能选择到适合自己的PCB板材呢?1、性能优良首先选择的PCB板材最重要的一点就是要有良好的性能,也就是说要确保该板杆的机械强度、导热性、电气绝缘性、耐腐蚀性以及耐高温等能符合电子设备的实际需求。
这就需要对所需的性能进行详细的分析和测试,如果需要在环境中使用,还需要考虑其耐候性。
2、板材厚度PCB板材的厚度是一个非常重要的考虑因素,在不同的应用场合中,板材厚度需求不同,选择适合自己的板材厚度可以确保PCB板在不同的负载容量下都能得到均衡的性能表现,从而确保电子产品的运行稳定性。
3、材料的热扩散性PCB板材的材料热扩散系数不同,对导热、散热有非常大的影响,因此选择适合使用的板材需要考虑该材料的热扩散性,确保在高温环境下也能保证电子设备的正常运轶。
4、板材的耐腐蚀性PCB板材的环境和使用条件不同,可能面临不同的有害物质或者化学物质的腐蚀,因此在选择PCB板材的时候,要优先考虑板材的耐腐蚀性,确保其在各种应用场合下都能得到良好的使用表现。
5、板材的成本选择PCB板材的时候,自然还要考虑板材的成本,每种不同材质的PCB板材都有不同的价格,需要在性能和成本之间做出平衡。
了解不同材料型号的价格以及性能可以帮助电子工程师减少研发成本,并确保产品成本能控制在预算范围内。
通过以上几点考虑,可以选择适合自己的PCB板材,并确保可以达到最好的效果。
同时,还需要注意的是,不同材料的板材具有不同的制作工艺和加工难度,因此在选择板材的同时,还要考虑自己的加工能力和设备以及资金状况,确保选择的板材也可以得到快速和优质的加工处理。
激光雷达pcb板材选用标准 -回复
激光雷达pcb板材选用标准-回复激光雷达(PCB)板材选用标准激光雷达是一种广泛应用于自动驾驶、智能交通、无人机和工业测绘等领域的高精度测距技术设备。
其中,PCB(Printed Circuit Board,印刷电路板)是激光雷达中的重要组成部分,起到支持和连接电子元器件的作用。
在选择合适的PCB板材时,我们需要考虑以下几个标准:1. 热性能(Thermal Performance):激光雷达工作时会产生大量的热量,所以选用具有良好热性能的PCB板材非常重要。
热性能主要包括导热系数、热阻和热容等指标。
较高的导热系数可以有效地将热量传导出去,降低元器件的工作温度;较低的热阻可以减少热量在PCB板材内部的积聚,避免温度过高造成元器件损坏;适当的热容可以帮助平衡热量分布,提高整个系统的热稳定性。
2. 电性能(Electrical Performance):激光雷达的功能需要依赖复杂的电路设计和信号传输。
因此,选用电性能良好的PCB板材对于保障系统的稳定性和可靠性非常重要。
电性能主要涉及介电常数、介质损耗、击穿电压以及绝缘电阻等指标。
较低的介电常数和介质损耗可以减少信号的传输损耗和噪音,提高激光雷达的灵敏度;较高的击穿电压和绝缘电阻可以增强PCB板材的绝缘能力,避免发生电气故障和短路。
3. 机械性能(Mechanical Performance):激光雷达在使用过程中会经受较多的机械应力和振动,因此选用具有良好机械性能的PCB板材可以提高系统的抗震性和耐用性。
机械性能主要包括弯曲强度、拉伸强度、耐疲劳性和耐冲击性等指标。
较高的弯曲强度和拉伸强度可以防止PCB 板材由于应力过大而产生弯曲和断裂;良好的耐疲劳性和耐冲击性可以确保PCB板材在长期使用中不易受到损坏。
4. 环保性能(Environmental Performance):现今社会对于环保要求越来越高,选用无毒、无害的PCB 板材是非常重要的。
环保性能主要包括RoHS指令限制物质、耐高温、耐潮湿和耐腐蚀等指标。
pcb工艺标准
PCB工艺标准一、PCB尺寸与层数1.PCB尺寸:PCB(Printed Circuit Board)板的尺寸根据实际应用需求而确定。
一般来说,PCB板的最大尺寸为400mm x 400mm,最小尺寸为1mm x 1mm。
2.PCB层数:PCB板的层数根据信号的复杂性和电源分布的需求来确定。
常见的PCB层数从2层到8层不等。
二、PCB材料选择1.基材:PCB板常用的基材包括FR4、CEM-1、铝基板等。
FR4是一种较为常用的材料,具有高绝缘、耐高温、耐化学腐蚀等优点。
CEM-1具有较高的机械强度和刚性,适用于高密度和多层PCB。
铝基板具有高导热、轻量化等特点,适用于大功率电子器件。
2.铜箔:PCB板上的导电层是由铜箔构成,铜箔的厚度和材料质量对PCB的性能有重要影响。
一般来说,厚度为18μm的普通铜箔应用较为广泛。
三、表面处理标准1.镀金处理:镀金层可以提高PCB板的耐腐蚀性和导电性能。
常见的镀金处理包括镀镍金和镀锡金。
2.化学镍金处理:化学镍金是一种环保且性能优良的表面处理方式,可以提高PCB板的可焊性和耐腐蚀性。
3.有机可焊性涂覆:在PCB板的表面涂覆一层有机可焊性涂层,可以提高PCB板的可焊性和耐腐蚀性。
四、IPC标准IPC(International Electrical Manufacturers Association)标准是美国电子电路与互联技术制造商协会制定的标准,旨在确保PCB制造的质量和可靠性。
IPC标准包括IPC-6012(印制板通用规范)、IPC-6013(印制板组装通用规范)等。
五、PCB尺寸标准1.标准尺寸:PCB板的尺寸标准根据实际应用需求而确定,常见的标准尺寸包括50mm x 50mm、100mm x 100mm、200mm x 200mm等。
2.非标尺寸:对于一些非标尺寸的PCB板,需要根据具体应用需求进行定制化生产。
非标尺寸的PCB板需要在生产前进行图纸设计和审核,以确保满足实际应用的要求。
如何选择pcb 板材.doc
、如何选择PCB 板材?选择PCB板材必须在满足设计需求和可量产性及成本中间取得平衡点。
设计需求包含电气和机构这两部分。
通常在设计非常高速的PCB 板子(大于GHz 的频率)时这材质问题会比较重要。
例如,现在常用的FR -4 材质,在几个GHz 的频率时的介质损(dielectric loss)会对信号衰减有很大的影响,可能就不合用。
就电气而言,要注意介电常数(dielectric constant)和介质损在所设计的频率是否合用。
2、如何避免高频干扰?避免高频干扰的基本思路是尽量降低高频信号电磁场的干扰,也就是所谓的串扰(Crosstalk)。
可用拉大高速信号和模拟信号之间的距离,或加ground guard/shunt traces 在模拟信号旁边。
还要注意数字地对模拟地的噪声干扰。
3、在高速设计中,如何解决信号的完整性问题?信号完整性基本上是阻抗匹配的问题。
而影响阻抗匹配的因素有信号源的架构和输出阻抗(output impedanc e),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。
解决的方式是靠端接(termination)与调整走线的拓朴。
4、差分布线方式是如何实现的?差分对的布线有两点要注意,一是两条线的长度要尽量一样长,另一是两线的间距(此间距由差分阻抗决定)要一直保持不变,也就是要保持平行。
平行的方式有两种,一为两条线走在同一走线层(side-by-side),一为两条线走在上下相邻两层(over-under)。
一般以前者side-by-side 实现的方式较多。
5、对于只有一个输出端的时钟信号线,如何实现差分布线?要用差分布线一定是信号源和接收端也都是差分信号才有意义。
所以对只有一个输出端的时钟信号是无法使用差分布线的。
6、接收端差分线对之间可否加一匹配电阻?接收端差分线对间的匹配电阻通常会加, 其值应等于差分阻抗的值。
这样信号品质会好些。
7、为何差分对的布线要靠近且平行?对差分对的布线方式应该要适当的靠近且平行。
PCB材料的选择
PCB材料的选择一、PCB板材选购原则:1)对于—般的电子产品,采用FR4环氧玻璃纤维基板,2)对于使用环境温度较高或挠性电路板,采用聚酰亚胺玻璃纤维基板,3)对于高频电路,则需要采用聚四氟乙烯玻璃纤维基板;4)对于散热要求高的电子产品,应采用金属基板。
二、选择PCB材料时应考虑的因素:(1) 应适当选择玻璃化转变温度(Tg)较高的基材,Tg应高于电路工作温度。
(2) 要求热膨胀系数(CTE)低。
由于X、Y和厚度方向的热膨胀系数不一致,容易造成PCB变形,严重时会造成金属化孔断裂和损坏元件。
(3) 要求耐热性高。
一般要求PCB能有250℃/50S的耐热性。
(4) 要求平整度好。
SMT的PCB翘曲度要求<0.0075mm/mm。
(5) 电气性能方面,高频电路时要求选择介电常数高、介质损耗小的材料。
绝缘电阻,耐电压强度,抗电弧性能都要满足产品要求。
三、关于金属散热基板:目前有铝基板和铜基板,作为专业制造的金属基板的厂家,建议大家采用性价比高的铝基板。
铜基板与铝基板的价格相差很多,虽然铜基板在热的传导性方面是比铝要好一些,但其成本与重量比铝高得多了,所以最好用铝基板。
另一方面目前在大功率灯具上有很多厂家采用温控方法,也就是说在铝基板可能产生最高温的地方加一温控开关,并设定其温度值(比如说65度左右),当此处温度高于该值时马上降电流。
虽然灯光暗一些,但一般人可能不会去注意这些,故该办法还是可行的。
四、在国内常见的板材品牌有:生益、建滔、海港、宏仁、国纪、合正、南亚、松下,日立,招远金宝,铜陵华瑞,斗山,吉高,贝格斯(铝基)GETEK,ISOLA,NECLO,Rogers(罗杰斯)、Taconic、ARLLONPOLYCLAD,NETEC长春ccp-3400 ccp-8400斗山 ds-7106 ds-1107a ds-1108住友 sq4187松下 r8700 r8500长兴 etl-xpc-801建滔/日滔 kh/KB五、基材:基材普遍是以基板的绝缘部分作分类,常见的原料为电木板、玻璃纤维板,以及各式的塑胶板。
PCB基板材料选型与工艺要求
PCB基板材料选型与工艺要求1. 引言PCB(Printed Circuit Board)是电子产品中的重要组成部分,用于提供电子元器件的连接和支持。
PCB基板材料的选型和工艺要求对于电子产品的性能和可靠性具有至关重要的影响。
本文将介绍常见的PCB基板材料选型和工艺要求,并讨论它们对电子产品的影响。
2. PCB基板材料选型2.1 常见的PCB基板材料•FR-4•FR-2•CEM-1•CEM-3•高频材料2.2 FR-4材料FR-4是目前应用最广泛的PCB基板材料之一。
它具有良好的绝缘性能、机械性能和热稳定性。
此外,FR-4材料还具有较高的耐湿热性能和较低的吸湿性能,适用于大多数电子产品的制造。
2.3 高频材料高频材料主要用于制造高频电路,如无线通信设备和雷达系统。
它具有较低的介电损耗和较高的信号传递速度,以满足高频电路对信号传输速度和稳定性的要求。
2.4 材料选择考虑因素在选择PCB基板材料时,需要考虑以下因素: - 工作环境(温度、湿度等) -电路复杂度和频率 - 成本和可供性3. PCB基板工艺要求3.1 常见的PCB制造工艺•印制线路板(PWB)制造工艺•孔加工工艺•过孔冶金工艺•焊接工艺•表面贴装工艺3.2 印制线路板制造工艺印制线路板制造工艺主要包括以下步骤: 1. 前期工作(电路设计、光绘制版)2. 合成基板(层压) 3. 特殊工序(开槽、抛光等) 4. 印制工序(阻焊、跳线) 5. 电测和排序3.3 孔加工工艺孔加工工艺主要包括以下步骤: 1. 钻孔:用钻头在基板上钻出需要的孔洞。
2. 清孔:除去钻孔产生的碎屑和污染物。
3. 镍金冶金:在孔壁上涂上一层镍金,以提高导电性和耐腐蚀性。
3.4 焊接工艺焊接工艺主要包括以下步骤: 1. 覆盖焊工艺:将熔化的焊锡覆盖在焊接点上,形成焊盖。
2. 浸渡焊工艺:将焊脚浸入熔化的焊锡中进行焊接。
3. 波峰焊工艺:通过一个波浪状的焊锡池,将焊接点浸泡在焊锡中进行焊接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择PCB板材必须在满足设计需求和可量产性及成本中间取得平衡点。
设计需求包含电气和机构这两部分。
通常在设计非常高速的PCB板子(大于GHz的频率)时这材质问题会比较重要。
例如,现在常用的FR-4材质,在几个GHz的频率时的介质损(dielectric loss)会对信号衰减有很大的影响,可能就不合用。
就电气而言,要注意介电常数(dielectric constant)和介质损在所设计的频率是否合用。
2、如何避免高频干扰?避免高频干扰的基本思路是尽量降低高频信号电磁场的干扰,也就是所谓的串扰(Crosstalk)。
可用拉大高速信号和模拟信号之间的距离,或加ground guard/shunttraces在模拟信号旁边。
还要注意数字地对模拟地的噪声干扰。
3、在高速设计中,如何解决信号的完整性问题?信号完整性基本上是阻抗匹配的问题。
而影响阻抗匹配的因素有信号源的架构和输出阻抗(output impedance),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。
解决的方式是靠端接(termination)与调整走线的拓朴。
4、差分布线方式是如何实现的?差分对的布线有两点要注意,一是两条线的长度要尽量一样长,另一是两线的间距(此间距由差分阻抗决定)要一直保持不变,也就是要保持平行。
平行的方式有两种,一为两条线走在同一走线层(side-by-side),一为两条线走在上下相邻两层(over-under)。
一般以前者side-by-side实现的方式较多。
5、对于只有一个输出端的时钟信号线,如何实现差分布线?要用差分布线一定是信号源和接收端也都是差分信号才有意义。
所以对只有一个输出端的时钟信号是无法使用差分布线的。
6、接收端差分线对之间可否加一匹配电阻?接收端差分线对间的匹配电阻通常会加, 其值应等于差分阻抗的值。
这样信号品质会好些。
7、为何差分对的布线要靠近且平行?对差分对的布线方式应该要适当的靠近且平行。
所谓适当的靠近是因为这间距会影响到差分阻抗(differential impedance)的值, 此值是设计差分对的重要参数。
需要平行也是因为要保持差分阻抗的一致性。
若两线忽远忽近, 差分阻抗就会不一致,就会影响信号完整性(signal integrity)及时间延迟(timing delay)。
8、如何处理实际布线中的一些理论冲突的问题1). 基本上, 将模/数地分割隔离是对的。
要注意的是信号走线尽量不要跨过有分割的地方(moat), 还有不要让电源和信号的回流电流路径(returning currentpath)变太大。
2). 晶振是模拟的正反馈振荡电路, 要有稳定的振荡信号, 必须满足loop gain与phase的规范, 而这模拟信号的振荡规范很容易受到干扰, 即使加ground guard traces可能也无法完全隔离干扰。
而且离的太远, 地平面上的噪声也会影响正反馈振荡电路。
所以, 一定要将晶振和芯片的距离进可能靠近。
3).确实高速布线与EMI的要求有很多冲突。
但基本原则是因EMI所加的电阻电容或ferrite bead, 不能造成信号的一些电气特性不符合规范。
所以, 最好先用安排走线和PCB叠层的技巧来解决或减少EMI的问题, 如高速信号走内层。
最后才用电阻电容或ferrite bead的方式, 以降低对信号的伤害。
9、如何解决高速信号的手工布线和自动布线之间的矛盾?现在较强的布线软件的自动布线器大部分都有设定约束条件来控制绕线方式及过孔数目。
各家EDA公司的绕线引擎能力和约束条件的设定项目有时相差甚远。
例如, 是否有足够的约束条件控制蛇行线(serpentine)蜿蜒的方式, 能否控制差分对的走线间距等。
这会影响到自动布线出来的走线方式是否能符合设计者的想法。
另外,手动调整布线的难易也与绕线引擎的能力有绝对的关系。
例如, 走线的推挤能力,过孔的推挤能力, 甚至走线对敷铜的推挤能力等等。
所以, 选择一个绕线引擎能力强的布线器, 才是解决之道。
10、关于test coupon。
test coupon是用来以TDR (Time Domain Reflectometer) 测量所生产的PCB板的特性阻抗是否满足设计需求。
一般要控制的阻抗有单根线和差分对两种情况。
所以,test coupon上的走线线宽和线距(有差分对时)要与所要控制的线一样。
最重要的是测量时接地点的位置。
为了减少接地引线(ground lead)的电感值,TDR探棒(probe)接地的地方通常非常接近量信号的地方(probe tip),所以,test coupon上量测信号的点跟接地点的距离和方式要符合所用的探棒。
11、在高速PCB设计中,信号层的空白区域可以敷铜,而多个信号层的敷铜在接地和接电源上应如何分配?一般在空白区域的敷铜绝大部分情况是接地。
只是在高速信号线旁敷铜时要注意敷铜与信号线的距离,因为所敷的铜会降低一点走线的特性阻抗。
也要注意不要影响到它层的特性阻抗,例如在dual stripline的结构时。
12、是否可以把电源平面上面的信号线使用微带线模型计算特性阻抗?电源和地平面之间的信号是否可以使用带状线模型计算?是的,在计算特性阻抗时电源平面跟地平面都必须视为参考平面。
例如四层板:顶层-电源层-地层-底层,这时顶层走线特性阻抗的模型是以电源平面为参考平面的微带线模型。
13、在高密度印制板上通过软件自动产生测试点一般情况下能满足大批量生产的测试要求吗?一般软件自动产生测试点是否满足测试需求必须看对加测试点的规范是否符合测试机具的要求。
另外,如果走线太密且加测试点的规范比较严,则有可能没办法自动对每段线都加上测试点,当然,需要手动补齐所要测试的地方。
14、添加测试点会不会影响高速信号的质量?至于会不会影响信号质量就要看加测试点的方式和信号到底多快而定。
基本上外加的测试点(不用线上既有的穿孔(via or DIP pin)当测试点)可能加在线上或是从线上拉一小段线出来。
前者相当于是加上一个很小的电容在线上,后者则是多了一段分支。
这两个情况都会对高速信号多多少少会有点影响,影响的程度就跟信号的频率速度和信号缘变化率(edge rate)有关。
影响大小可透过仿真得知。
原则上测试点越小越好(当然还要满足测试机具的要求)分支越短越好。
15、若干PCB组成系统,各板之间的地线应如何连接?各个PCB板子相互连接之间的信号或电源在动作时,例如A板子有电源或信号送到B板子,一定会有等量的电流从地层流回到A板子(此为Kirchoff current law)。
这地层上的电流会找阻抗最小的地方流回去。
所以,在各个不管是电源或信号相互连接的接口处,分配给地层的管脚数不能太少,以降低阻抗,这样可以降低地层上的噪声。
另外,也可以分析整个电流环路,尤其是电流较大的部分,调整地层或地线的接法,来控制电流的走法(例如,在某处制造低阻抗,让大部分的电流从这个地方走),降低对其它较敏感信号的影响。
16、两个常被参考的特性阻抗公式:a.微带线(microstrip)Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB板材质的介电常数(dielectric constant)。
此公式必须在0.1<(W/H)<2.0及1<(Er)<15的情况才能应用。
b.带状线(stripline)Z=[60/sqrt(Er)]ln{4H/[0.67π(T+0.8W)]} 其中,H为两参考平面的距离,并且走线位于两参考平面的中间。
此公式必须在W/H<0.35及T/H<0.25的情况才能应用。
17、差分信号线中间可否加地线?差分信号中间一般是不能加地线。
因为差分信号的应用原理最重要的一点便是利用差分信号间相互耦合(coupling)所带来的好处,如flux cancellation,抗噪声(noise immunity)能力等。
若在中间加地线,便会破坏耦合效应。
18、刚柔板设计是否需要专用设计软件与规范?可以用一般设计PCB的软件来设计柔性电路板(Flexible Printed Circuit)。
一样用Gerber格式给FPC厂商生产。
由于制造的工艺和一般PCB不同,各个厂商会依据他们的制造能力会对最小线宽、最小线距、最小孔径(via)有其限制。
除此之外,可在柔性电路板的转折处铺些铜皮加以补强。
软板的检验标准通常依据IPC601319、适当选择PCB与外壳接地的点的原则是什么?选择PCB与外壳接地点选择的原则是利用chassis ground提供低阻抗的路径给回流电流(returning current)及控制此回流电流的路径。
例如,通常在高频器件或时钟产生器附近可以借固定用的螺丝将PCB的地层与chassis ground做连接,以尽量缩小整个电流回路面积,也就减少电磁辐射。
20、电路板DEBUG应从那几个方面着手?就数字电路而言,首先先依序确定三件事情:确认所有电源值的大小均达到设计所需。
有些多重电源的系统可能会要求某些电源之间起来的顺序与快慢有某种规范。
确认所有时钟信号频率都工作正常且信号边缘上没有非单调(non-monotonic)的问题。
确认reset信号是否达到规范要求。
这些都正常的话,芯片应该要发出第一个周期(cycle)的信号。
接下来依照系统运作原理与bus protocol来debug。
21、在电路板尺寸固定的情况下,如果设计中需要容纳更多的功能,就往往需要提高PCB的走线密度,但是这样有可能导致走线的相互干扰增强,同时走线过细也使阻抗无法降低,请介绍在高速(>100MHz)高密度PCB设计中的技巧?在设计高速高密度PCB时,串扰(crosstalk interference)确实是要特别注意的,因为它对时序(timing)与信号完整性(signal integrity)有很大的影响。
以下提供几个注意的地方:1). 控制走线特性阻抗的连续与匹配。
2). 走线间距的大小。
一般常看到的间距为两倍线宽。
可以透过仿真来知道走线间距对时序及信号完整性的影响,找出可容忍的最小间距。
不同芯片信号的结果可能不同。
3). 选择适当的端接方式。
4). 避免上下相邻两层的走线方向相同,甚至有走线正好上下重迭在一起,因为这种串扰比同层相邻走线的情形还大。
5). 利用盲埋孔(blind/buried via)来增加走线面积。
但是PCB板的制作成本会增加。
在实际执行时确实很难达到完全平行与等长,不过还是要尽量做到。
除此以外,可以预留差分端接和共模端接,以缓和对时序与信号完整性的影响。