2010广东省初中终考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。
int BPGraph (AdjMatrix g)
//判断以邻接矩阵表示的图g是否是二部图。
{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合)
int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。
int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组
for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合
Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1
while(f {v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号 if (!visited[v]) {visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中 for (j=1,j<=n;j++) if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列 else if (s[j]==s[v]) return(0);} //非二部图 }//if (!visited[v]) }//while return(1); }//是二部图 [算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。 2、(4分)(2014?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为() A. 608×108 B. 60.8×109 C. 6.08×1010 D. 6.08×1011 3、如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设 = , = ,那么 = _________ (结果用、表示). 4、五百零三万七千写作(),7295300省略“万”后面的尾数约是()万。 5、(4分)(2014?上海)据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为() A. 608×108 B. 60.8×109 C. 6.08×1010 D. 6.08×1011 6、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。 void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度 {BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点 int i,top=0,tag[],longest=0; while(p || top>0) { while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下 if(tag[top]==1) //当前结点的右分枝已遍历 {if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度 if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;} //保留当前最长路径到l栈,记住最高栈顶指针,退栈 } else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下 }//while(p!=null||top>0) }//结束LongestPath 7、一个长为12厘米的长方形的面积比边长是12厘米的正方形面积少36平方厘米。这个长方形的宽是多少厘米? 8、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。 #define true 1 #define false 0 typedef struct node {datatype data; struct node *llink,*rlink;} *BTree; void JudgeBST(BTree t,int flag) // 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。 { if(t!=null && flag) { Judgebst(t->llink,flag);// 中序遍历左子树 if(pre==null)pre=t;// 中序遍历的第一个结点不必判断 else if(pre->data else{flag=flase;} //不是完全二叉树 Judgebst (t->rlink,flag);// 中序遍历右子树 }//JudgeBST算法结束