《材料力学》第7章应力状态和强度理论习题解.
应力状态分析与强度理论-习题与答案
(A)受力构件横截面上各点的应力情况
(B)受力构件各点横截面上的应力情况
(C)构件未受力之前,各质点之间的相互作用力状况
(D)受力构件内某一点在不同横截面上的应力情况
2、一实心均质钢球,当其外表面迅速均匀加热,则球心O点处的应力状态是()
(A)单向拉伸应力状态(B)平面应力状态
(A)铸铁为塑性材料
(B)铸铁在三向压应力状态下产生塑性变形
(C)铸铁在单向压应力作用下产生弹性变形
(D)材料剥脱
7、混凝土立方试块在作单向压缩试验时,若在其上、下表面上涂有润滑剂,则试块破坏时将沿纵向裂开,其主要原因是()
(A)最大压应力(B)最大剪应力
(C)最大伸长线应变(D)存在横向拉应力
8、一中空钢球,内径d=20cm,内压p=15Mpa,材料的许用应力 =160Mpa,则钢球壁厚t只少是()
(A)t=47㎜(B)t=2.34㎜
(C)t=4.68㎜(D)t=9.38㎜
9、将沸水注入厚玻璃杯中,有时玻璃杯会发生破裂,这是因为()
(A)热膨胀时,玻璃杯环向线应变达到极限应变,从内、外壁同时发生破裂
(B)玻璃材料抗拉能力弱,玻璃杯从外壁开始破裂
(C)玻璃材料抗拉能力弱,玻璃杯从内壁开始破裂
(D)水作用下,玻璃杯从杯底开始破裂
因圆柱与钢筒之间的空隙 ,而 > ,故圆柱受钢筒弹性约束。设柱与筒之间的作用力为p,则铝柱中各点处主应力为
钢筒中各点处主应力为
设铝柱和钢筒的径向应变分别为 ,变形协变条件为
即
于是
得
p=2.74Mpa
故钢筒周向应力为
即
得
所以则其相当应力为
由于 <0.5
材料力学第五版 第七章 应力状态 答案
第七章应力状态与强度理论一、教学目标和教学内容1.教学目标通过本章学习,掌握应力状态的概念及其研究方法;会从具有受力杆件中截取单元体并标明单元体上的应力情况;会计算平面应力状态下斜截面上的应力;掌握平面应力状态和特殊空间应力状态下的主应力、主方向的计算,并会排列主应力的顺序;掌握广义胡克定律;了解复杂应力状态比能的概念;了解主应力迹线的概念。
掌握强度理论的概念。
了解材料的两种破坏形式(按破坏现象区分)。
了解常用的四个强度理论的观点、破坏条件、强度条件。
掌握常用的四个强度理论的相当应力。
了解莫尔强度理论的基本观点。
会用强度理论对一些简单的杆件结构进行强度计算。
2.教学内容○1应力状态的概念;○2平面应力状态分析;○3三向应力状态下的最大应力;○4广义胡克定律•体应变;○5复杂应力状态的比能;⑥梁的主应力•主应力迹线的概念。
讲解强度理论的概念及材料的两种破坏形式。
讲解常用的四个强度理论的基本观点,并推导其破坏条件从而建立强度计算方法。
介绍几种强度理论的应用范围和各自的优缺点。
简单介绍莫尔强度理论。
二、重点难点重点:1、平面应力状态下斜截面上的应力计算,主应力及主方向的计算,最大剪应力的计算。
2、广义胡克定律及其应用。
难点:1、应力状态的概念,从具体受力杆件中截面单元体并标明单元体上的应力情况。
2、斜截面上的应力计算公式中关于正负符号的约定。
3、应力主平面、主应力的概念,主应力的大小、方向的确定。
4、广义胡克定律及其应用。
5 强度理论的概念、常用的四个强度理论的观点、强度条件及其强度计算。
6 常用四个强度理论的理解。
7 危险点的确定及其强度计算。
三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
四、建议学时10学时五、讲课提纲1、应力状态的概念所谓“应力状态”又称为一点处的应力状态(state of stresses at a given point),是指过一点不同方向面上应力的集合。
材料力学 第07章 应力状态分析与强度理论
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
工程力学c材料力学部分第七章 应力状态和强度理论
无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学典型例题及解析7.应力应变状态典型习题解析
应力、应变状态分析典型习题解析1 已知矩形截面梁,某截面上的剪力F S =120 kN 及弯矩m kN 10⋅=M 。
绘出表示1、2、3及4点应力状态的微体,并求出各点的主应力。
b = 60 mm ,h = 100 mm 。
解题分析:从图中可分析1、4点是单向应力状态,2点在中性轴上为纯剪切应力状态,31取平行和垂直与梁横截面的六个平面,构成微体。
则各点处的应力状态如图示。
2、梁截面惯性矩为点微体上既有正应力又有切应力。
解:、画各点处微体的应力状态图计算各点处主应力4843333m 1050012m 10100(106012−−−×=×××==)bh I z 1点处弯曲正应力(压应力)MPa 100Pa 10100m10500m 1050m N 101064833−=×=×××⋅×==−−z I My σ1点为单向压缩受力状态,所以021==σσ,MPa 1003−=σ2点为纯剪切应力状态,MPa 30Pa 1030m10100602N1012036263=×=×××××=−τ(向下)容易得到,MPa 301=σ,02=σ,MPa303−=σ3点为一般平面应力状态弯曲正应力MPa50Pa 1050m 10500m 1025m N 101064833=×=×××⋅×==−−z I My σ弯曲切应力σ14τ2F S =120 kN题图1中性轴324hστ25 mm 31b M =10 kN·mσ3150 mm 1MPa 5.22Pa 1050.22m10500m 1060m 105.372560N 101206483393*S =×=××××××××==−−−zz bI S F τMPa6.8MPa6.58Pa)10522()2Pa 1050(2Pa 1050)2(22626622minmax −=×+×±×=+−±+=x y x yx τσσσσσσ所以 MPa 6.581=σ,02=σ,MPa 6.83−=σ4点为单向拉伸应力状态,拉伸正应力的大小与1点相等。
《材料力学》第7章-应力状态和强度理论-习题解讲课教案
第七章 应力状态和强度理论 习题解[习题7-1] 试从图示各构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。
[习题7-1(a )]解:A 点处于单向压应力状态。
224412d F d F F A N A ππσ-=-==[习题7-1(b )]解:A 点处于纯剪切应力状态。
3316161d T d T W T P A ππτ-===MPa mm mm N 618.798014.310816336=⨯⋅⨯⨯=[习题7-1(b )]解:A 点处于纯剪切应力状态。
0=∑AM04.028.02.1=⨯--⨯B R )(333.1kN R B =)(333.1kN R Q B A -=-=MPa mmN A Q A 417.01204013335.15.12-=⨯⨯-=⨯=τB 点处于平面应力状态MPamm mm mm N I y M zB B 083.21204012130103.0333.1436=⨯⨯⨯⋅⨯⨯==σMPa mm mm mmN b I QS z zB 312.0401204012145)3040(1333433*-=⨯⨯⨯⨯⨯⨯-==τ[习题7-1(d )]解:A 点处于平面应力状态MPa mm mm N W M zA A 064.502014.3321103.39333=⨯⨯⋅⨯==σMPa mm mm N W T PA 064.502014.3161106.78333=⨯⨯⋅⨯==τ [习题7-2] 有一拉伸试样,横截面为mm mm 540⨯的矩形。
在与轴线成045=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。
试求试样所受的轴向拉力F 。
解:AFx =σ;0=y σ;0=x τ 004590cos 90sin 20x yx τσστ+-=A F 2045=τ 出现滑移线,即进入屈服阶段,此时,1502045≤=AFτ kN N mm mm N A F 6060000540/30030022==⨯⨯==[习题7-3] 一拉杆由两段沿n m -面胶合而成。
7材料力学课后题答案
(二)作图题与计算题: 1、在图示各单元体中,试用解析法和图解法求斜截面 ab 上的应力。应力的单位 为 MPa。
A)
A) 解: σ x =70MPa , σ y = − 70MPa , τ x =0 , α
B)
= 30o
σα =
cos 2α − τ x sin 2α 2 2 70 + ( −70 ) 70 − ( −70 ) = + cos(2 × 30°) − 0 × sin(2 × 30°) 2 2 = 35MPa + sin 2α + τ x cos 2α 2 70 − ( −70 ) = sin(2 × 30°) + 0 × cos(2 × 30°) 2 = 60.62MPa
解 : σ 1 = σ t = 550MPa , σ 2 = σ z = 420MPa ,
σ 3 = σ r = −350MPa σ r3 = σ 1 − σ 3 = 900MPa
σ r4 =
1⎡ 2 2 2 ( σ 1 − σ 2 ) + (σ 2 − σ 3 ) + (σ 3 − σ 1 ) ⎤ ⎣ ⎦ 2 = 842.56MPa
第七章应力状态(训练题)答案 (一)填空与改错题: 1、有 一 个 主 应力不为零时称为单向应力状态;当有 二 个 主 应力 不为零时称为二向应力状态或 平面 应力状态; 当 三 个 主 应力都不 为零时称为三向应力状态或 空间 应力状态; 2、构件受力如图所示,图A)的危险点在 固定端(如考虑自重),应力状态为 F 单向 应力状态,应力大小为( σ = ) ;图B)的危险点在 BC段表面,应力 π 2 d 4 2M e 状态为 纯剪切应力状态,应力大小为( τ max = ) ;图C)的危险点在 固定 π 3 d 16 Fl 端 上 下 边 缘 , 应 力 状 态 为 二 向 应 力 状 态 , 应 力 大 小 为 ( σ max = , π 3 d 32 Me ) ;图D)的危险点在 轴表面 ,应力状态为 二向 应力状态,应力 τ max = π 3 d 16 Me F 大小为( σ max = , τ max = ) 。 π 2 π 3 d d 4 16
德州学院,材料力学,期末试题7章习题讲解
德州学院,材料⼒学,期末试题7章习题讲解第七章⼒和应变分析强度理论 §7.1应⼒状态概述1.过受⼒构件内⼀点,取截⾯的不同⽅位,这⼀点在各个⾯上的(D ). (A )正应⼒相同,切应⼒不同;(B )正应⼒不同,切应⼒相同;(C )正应⼒和切应⼒都相同;(D )正应⼒和切应⼒都不同。
2.关于单元体的描述,下列正确的是A(A )单元体的三维尺⼨必须是微⼩的;(B )单元体是平⾏六⾯体;(C )单元体必须是正⽅体;。
(D )单元体必须有⼀对横截⾯。
3.对于图⽰承受轴向拉伸的锥形杆上的A 点,哪⼀种应⼒状态是正确的Dxτxx4.在单元体的主平⾯上()。
(A )正应⼒⼀定最⼤;(B )正应⼒⼀定为零;(C)切应⼒⼀定最⼩;(D )切应⼒⼀定为零。
§7.2⼆向应⼒状态实例1. Q235钢制成的薄壁圆筒形蒸汽锅炉,壁厚δ,内径D ,蒸汽压⼒p ,试计算锅炉壁内任意⼀点处的三个主应⼒。
注:薄壁圆筒受⼒均匀,因此,任意点的应⼒状态均相同。
1.求⽔平⽅向上的正应⼒σx2.求竖直⽅向上的正应⼒σy3.求垂直于纸⾯⽅向上的正应⼒σz 薄壁圆筒与纸⾯垂直⽅向上的σz 为零.总结:薄壁圆筒的三个主应⼒为:薄壁圆筒为两向应⼒状态注意事项:1.注意单位配套使⽤;2. 纵向截⾯上正应⼒是横截⾯正应⼒的两倍;3.按规定排列正应⼒。
课本215页例7.1如下由Q235钢制成的蒸汽锅炉,壁厚δ=10mm,内径D=1m,蒸汽压⼒p=3MPa,试计算锅炉壁内任意⼀点处的三个主应⼒。
经分析,薄壁圆筒为两向应⼒状态2. 圆球形容器的壁厚为δ,内径为D,内压为p,求容器内任意⼀点的应⼒。
注:薄壁圆球受⼒均匀,因此,任意点的应⼒状态均相同。
1.求⽔平⽅向上的正应⼒σx2.求竖直⽅向上的正应⼒σy3.求垂直于纸⾯⽅向上的正应⼒σz薄壁圆筒与纸⾯垂直⽅向上的σz为零.球形薄壁容器的三个主应⼒为:受内压的球形薄壁容器为⼆向应⼒状态§7.3 ⼆向应⼒状态分析——解析法⼆向应⼒状态下,单元体各⾯上应⼒分量皆为已知,如下图所⽰:求垂直于xy平⾯的任意斜截⾯ef上的应⼒及主应⼒和主平⾯⼀.符号规定1.正应⼒正负号规定2.切应⼒正负号规定使微元或其局部顺时针⽅向转动为正;反之为负。
家电公司研发部资料材料力学习题答案(七)
第七章 应力状态和强度理论7-1 围绕受力构件内某点处取出的微棱柱体的平面图如图所示,已知该点处于平面应力状态,AC 面上的正应力σ=-14MPa ,切应力为零,试从平衡方程确定σx 和τx 值。
答:σx =37.9MPa ,τx =74.2MPa 解:利用公式求解x x x x x cos 2sin 222sin 2cos 22yyyαασσσσσατασστατα+-=+--=+代入数据得x x x x x 9292140.3430.94229200.940.3432σστστ+--=+⨯-⨯-=⨯+⨯σx =37.9MPa ,τx =74.2MPa7-2 试绘出图示水坝内A 、B 、C 三小块各截面上的应力(只考虑平面内受力情况)。
A: B: C:7-3 已知平面应力状态如图所示,已知σx =100MPa ,σy =40MPa,以及该点处的最大主应力σ1=120MPa ,试用应力圆求该点处的τx 及另外两个主应力σ2,σ3和最大剪应力τmax。
答:MPa,60,0MPa,20max 32===τσσx τ=40 MPa 解:由应力圆分析可得A BC题 7 - 2 图题 7 - 1 图111(100,),(40,),(,0)x x c D D C ττσ'-x 121004070MPa221207050MPa 705020MPayc c c r r σσσσσσσ++====-=-=∴=-=-=是平面应力状态3=0σ∴222x x 13max (100)40MPa120060MPa 22c r σττσστ∴=-+⇒=--===7-4 已知平面应力状态一点处互相垂直平面上作用有拉应力90MPa 和压应力50MPa ,这些面上还有剪应力,如果最大主应力为拉应力100MPa ,试求:(1) 上述面上的切应力; (2) 此平面上另一主应力; (3) 最大切应力平面上的正应力; (4) 最大切应力。
材料力学第五版第七节应力状态答案.doc
材料力学第五版第七节应力状态答案第七章应力状态与强度理论一、教学目标和教学内容1.教学目标通过本章学习,掌握应力状态的概念及其研究方法;会从具有受力杆件中截取单元体并标明单元体上的应力情况;会计算平面应力状态下斜截面上的应力;掌握平面应力状态和特殊空间应力状态下的主应力、主方向的计算,并会排列主应力的顺序;掌握广义胡克定律;了解复杂应力状态比能的概念;了解主应力迹线的概念。
掌握强度理论的概念。
了解材料的两种破坏形式(按破坏现象区分)。
了解常用的四个强度理论的观点、破坏条件、强度条件。
掌握常用的四个强度理论的相当应力。
了解莫尔强度理论的基本观点。
会用强度理论对一些简单的杆件结构进行强度计算。
2.教学内容应力状态的概念;平面应力状态分析;三向应力状态下的最大应力;广义胡克定律体应变;复杂应力状态的比能;⑥梁的主应力主应力迹线的概念。
讲解强度理论的概念及材料的两种破坏形式。
讲解常用的四个强度理论的基本观点,并推导其破坏条件从而建立强度计算方法。
介绍几种强度理论的应用范围和各自的优缺点。
简单介绍莫尔强度理论。
二、重点难点重点1、平面应力状态下斜截面上的应力计算,主应力及主方向的计算,最大剪应力的计算。
2、广义胡克定律及其应用。
难点1、应力状态的概念,从具体受力杆件中截面单元体并标明单元体上的应力情况。
2、斜截面上的应力计算公式中关于正负符号的约定。
3、应力主平面、主应力的概念,主应力的大小、方向的确定。
4、广义胡克定律及其应用。
5 强度理论的概念、常用的四个强度理论的观点、强度条件及其强度计算。
6 常用四个强度理论的理解。
7 危险点的确定及其强度计算。
三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
四、建议学时10学时五、讲课提纲1、应力状态的概念所谓“应力状态”又称为一点处的应力状态(state of stresses at a given point),是指过一点不同方向面上应力的集合。
第7章 应力状态和强度理论 (答案)
7.1已知应力状态如图所示(单位:MPa ),试求:⑴指定斜截面上的应力; ⑵主应力;⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。
解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 030α=-(1)cos 2sin 2211.622x yx yxασσσσσατα+-=+-=sin 2cos 293.32x yx MPa ασστατα-=+=(2)max 261.82x yMPa σσσ+=+=min 38.22x yMPa σσσ+==MPa 8.2611=σ M P a2.382=σ 03=σ (3)13max 130.92MPa σστ-== 7.2扭矩m kN T ⋅=5.2作用在直径mm D60=的钢轴上,试求圆轴表面上任一点与母线成30=α方向上的正应变。
设E=200GPa, 0.3υ=。
解:表面上任一点处切应力为:max 59PTMPa W τ== 表面上任一点处单元体应力状态如图30sin 251MPa στα=-=-120sin 251MPa στα=-=()004303012013.310Eεσυσ-=-=⨯2σττ7.3用电阻应变仪测得空心钢轴表面某点与母线成45方向上的正应变4100.2-⨯=ε,已知转速min /120r,G=80GPa ,试求轴所传递的功率。
解:表面任一点处应力为max 9550PPP T n W W τ==max 9550P W nP τ∴=纯剪切应力状态下,045斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υεσυστ+=-=又()21EG υ=+ V 2G τε∴= 代入max 9550P W nP τ=,得109.4P KW =7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成60方向上的正应变460101.4-⨯=ε,E=200GPa ,0.3υ=,试求荷载P 。
材料力学第7章应力和应变强度理论.答案
y
xy
x
§7.3 二向应力状态分析—解析法-实例1 解:1) 斜面上的应力
x y x y cos 2 xy sin 2 2 2
9.02 MPa
60 40 60 40 cos( 60 ) 30 sin( 60 ) 2 2
Me A B D C Me y
Me wt
在圆轴表层取出单元体ABCD ,单元体各面上的应力为:
x
ABCD
x y 0, xy
§7.3 二向应力状态分析—解析法-实例2
2). 主应力大小及方向确定
max x y x y 2 xy min 2 2
§7.3 二向应力状态分析—解析法-实例1
3)主应力单元体:
y
3
xy
1
x
15 .5
§7.3 二向应力状态分析—解析法-实例2 例7.4: 分析圆轴扭转时的应力状态。
Me A B D
C
Me
§7.3 二向应力状态分析—解析法-实例2
解:1). 单元体的应力状态
圆轴扭转时,在横截面的边缘 处切应力最大,数值为:x y来自2y xy
min
x y 2 xy 2 2 48.3MPa
x y
2
x
1 68.3MP a, 2 0, 3 48.3MP a
§7.3 二向应力状态分析—解析法-实例1
确定主平面的方位:
y
1 ( x y ) sin 2 xy cos 2 2
§7.3 二向应力状态分析—解析法
确定正应力和切应力的极值及它们所在平面的位置
材料力学 第七章 应力状态与强度理论
取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2
cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2
x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2
应力状态和强度理论(答案)
7.1已知应力状态如图所示(单位:MPa ),试求:⑴指定斜截面上的应力; ⑵主应力;⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。
解:100x MPa σ=200y MPa σ=100x MPa τ=030α=-(1)cos 2sin 2211.622x yx yxασσσσσατα+-=+-=sin 2cos 293.32x yx MPa ασστατα-=+=(2)max 261.82x yMPa σσσ+==min 38.22x yMPa σσσ+==MPa 8.2611=σMPa 2.382=σ03=σ(3)13max 130.92MPa σστ-==7.2扭矩m kN T ⋅=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο30=α方向上的正应变。
设E=200GPa,0.3υ=。
解:表面上任一点处切应力为:max 59PTMPa W τ== 表面上任一点处单元体应力状态如图30sin 251MPa στα=-=-120sin 251MPa στα=-=()004303012013.310Eεσυσ-=-=⨯2σττ7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应变4100.2-⨯=ε,已知转速min /120r ,G=80GPa ,试求轴所传递的功率。
解:表面任一点处应力为max 9550PPP T n W W τ==max 9550P W nP τ∴=纯剪切应力状态下,045斜截面上三个主应力为:1στ=20σ=3στ=-由广义胡克定律 ()11311E E υεσυστ+=-=又()21E G υ=+Q V 2G τε∴= 代入max 9550P W nP τ=,得109.4P KW =7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο60方向上的正应变460101.4-⨯=οε,E=200GPa ,0.3υ=,试求荷载P 。
《材料力学》第7章-应力状态和强度理论-习题解
(↑); (↓)
K截面的弯矩与剪力:
;
K点的正应力与切应力:
;
故坐标面应力为:X( ,0),Y(0,— )
(最大正应力 的方向与 正向的夹角),故
[习题7—22]一直径为 的实心钢球承受静水压力,压强为 。设钢球的 , .试问其体积减小多少?
解:体积应变
=
[习题7-23]已知图示单元体材料的弹性常数 , 。试求该单元体的形状改变能密度。
解:坐标面应力X(70,21),Y(14,—21)
所画的圆变成椭圆,其中
(长轴)
(短轴)
[习题7—14]已知一受力构件表面上某点处的 , , ,单元体的三个面上都没有切应力.试求该点处的最大正应力和最大切应力。
解:最大正应力为 。最小正应力是 。
最大切应力是
[习题7—15]单元体各面上的应力如图所示。试用应力圆的几何关系求主应力及最大切应力。
解:左支座为A,右支座为B,左集中力作用点为C,右集中力作用点为D。
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
点,则C为应力圆的圆心。设圆心坐标为C( )
则根据垂直平线上任一点到线段段两端的距离相等
性质,可列以下方程:
解以上方程得: 。即圆心坐标为C(86,0)
应力圆的半径:
主应力为:
(2)主方向角
(上斜面A与中间主应力平面之间的夹角)
(上斜面A与最大主应力平面之间的夹角)
(3)两截面间夹角:
应力状态分析及强度理论习题讲解
2
50 80
F
G
30 60 30
O
B E C
1
A
(b)
= GE AE tan 30 (80 50) tan 30
=10 3 =17.3MPa 10 3 r 20MPa sin 60 3/2 = OB OA AB 80 2r 40MPa 所以 1 80MPa , 2 40MPa , 3 0
3)求主应力 15 1 2 2 1, 15 4 15 3 2 2 (-9.27)MPa 0 铸铁为脆性材料,抗拉与抗压强度不等,又 1 3 , 主应力中压力占优。 选第二强度理论
r 2 , 0.5
1 t
t
3)对中碳钢,虽为塑性材料,但比低碳钢塑性要差, 可选用第三强度理论。 1 2 2 2 r4 1 2 2 3 3 1 2 3 2 * 而强度条件 * 式在平面应力状态下(即应力分量 、 在同一平面内,见图(b))分别选用第三、四理论推 得的结果。
(a)
2
解:求主应力(可用应力圆法或解析法)
1 2 , 2 , 3
)对低碳钢,选第三理论或第四理论
r 1 3 3 , 0.333
3
1 2 2 2 r4 2 3 7 , 2 0.378 2)对铸铁,拉应力占优,选第一理论
答案:
D
四、计算
1.已知应力状态如图(a)所示,要求:1)用截面法求指定 截面上应力;2)用斜截面上应力公式校核;3)用应力圆 法校核。
40MPa
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章应力状态和强度理论习题解[习题7-1] 试从图示各构件中A点和B点处取出单元体,并表明单元体各面上的应力。
[习题7-1(a)]解:A点处于单向压应力状态。
224412dFdFFANAππσ-=-==[习题7-1(b)]解:A点处于纯剪切应力状态。
3316161dTdTWTPAππτ-===MPammmmN618.798014.310816336=⨯⋅⨯⨯=[习题7-1(b)]解:A点处于纯剪切应力状态。
=∑A M4.028.02.1=⨯--⨯BR)(333.1kNRB=AσAτ)(333.1kN R Q B A -=-=MPa mmN A Q A 417.01204013335.15.12-=⨯⨯-=⨯=τB 点处于平面应力状态MPamm mm mm N I y M zB B 083.21204012130103.0333.1436=⨯⨯⨯⋅⨯⨯==σMPa mm mm mmN b I QS z zB 312.0401204012145)3040(1333433*-=⨯⨯⨯⨯⨯⨯-==τ[习题7-1(d )]解:A 点处于平面应力状态MPa mm mm N W M zA A 064.502014.3321103.39333=⨯⨯⋅⨯==σMPa mm mm N W T PA 064.502014.3161106.78333=⨯⨯⋅⨯==τ [习题7-2] 有一拉伸试样,横截面为mm mm 540⨯的矩形。
在与轴线成045=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。
试求试样所受的轴向拉力F 。
解:AFx =σ;0=y σ;0=x τ 004590cos 90sin 20x yx τσστ+-=A F 2045=τ 出现滑移线,即进入屈服阶段,此时,1502045≤=AFτ kN N mm mm N A F 6060000540/30030022==⨯⨯==[习题7-3] 一拉杆由两段沿n m -面胶合而成。
由于实用的原因,图中的α角限于060~0范围内。
作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。
现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3,A τB τBσAτA σ且这一拉杆的强度由胶合缝强度控制。
为了使杆能承受最大的荷载F ,试问α角的值应取多大? 解:AFx =σ;0=y σ;0=x τ ατασσσσσα2sin 2cos 22x yx yx --++=][22cos 12cos 22σαασα≤+=+=A F A F A F ][22cos 1σα≤+A F][cos 2σα≤AFασ2cos ][AF ≤ασ2max,cos ][AF N = ατασστα2cos 2sin 2x yx +-=][43][2sin 2στατα=≤=A F ασ2sin ][5.1AF ≤ασ2sin ][5.1max,AF T =α(0)0.9 10 20 30 36.8833 40 50 60 N F m ax,(A ][σ) 1.000 1.031 1.132 1.333 1.563 1.704 2.420 4.000T F m ax,(A ][σ) 47.754 4.386 2.334 1.732 1.5621.523 1.523 1.732最大荷载随角度变化曲线0.0001.0002.0003.0004.0005.0000102030405060斜面倾角(度)Fmax,N,Fmax,TFmax,NFmax,T最大荷载随角度变化曲线0.0001.0002.0003.0004.0005.0000102030405060斜面倾角(度)Fmax,N,Fmax,TFmax,NFmax,T由以上曲线可知,两曲线交点以左,由正应力强度条件控制最大荷载;交点以右,由切应力强度条件控制最大荷载。
由图中可以看出,当060=α时,杆能承受最大荷载,该荷载为:A F ][732.1max σ=[习题7-4] 若上题中拉杆胶合缝的许用应力][5.0][στ=,而MPa 7][=τ,MPa 14][=σ,则α值应取多大?若杆的横截面面积为21000mm ,试确定其最大许可荷载。
解: 由上题计算得:ασ2max,cos ][AF N = ατασστα2cos 2sin 2x yx +-=][5.0][2sin 2στατα=≤=A Fασ2sin ][AF ≤ασ2sin ][max,AF T =α(0)0.9 10 20 26.565051 30 40 50 60 NF m ax,(A ][σ)1.000 1.031 1.132 1.2501.333 1.7042.4204.000TF m ax,(A ][σ)31.836 2.924 1.556 1.250 1.155 1.015 1.015 1.155由以上曲线可知,两曲线交点以左,由正应力强度条件控制最大荷载;交点以右,由切应力强度条件控制最大荷载。
由图中可以看出,当0565051.26=α时,杆能承受最大荷载,该荷载为: kN N mm mm N A F 5.17175001000/1425.1][25.122max ==⨯⨯==σ[习题7-5] 试根据相应的应力圆上的关系,写出图示单元体任一斜面n m -上正应力及切应力的计算公式。
设截面n m -的法线与x 轴成α角如图所示(作图时可设||||x y σσ>)。
解:坐标面应力:X (x σ,0);Y (y σ,0)设n m -斜面的应力为M (ασ,ατ)。
X 、Y 点 作出如图所示的应力圆。
由图中的几何关系可知:)(11N O O O NO --=-=ασ)2cos 22|(|ασσσσσyx yx x ---+-=)2cos 22(ασσσσσyx yx x ---+--=)2cos 222(ασσσσσyx yx x ---+--=ασσσσ2cos 22yx yx -++=ασσατα2sin 22sin yx OM -==[习题7-6] 某建筑物地基中的一单元体如图所示,MPa y 2.0-=σ(压应力),MPa x 05.0-=σ(压应力)。
试用应力圆求法线与x 轴成顺时针060夹角且垂直于纸面的斜面上的正应力及切应力,并利用习题7-5中得到的公式进行校核。
解:坐标面应力:X (-0.05,0);Y (-0.2,0)060-=α。
根据以上数据作出如图所示的应力圆。
图中比例尺为cm 1代表MPa 05.0。
按比例尺量得斜面的应力为:MPa 1625.0060-=-σMPa 065.0060-=-τ按习题7-5得到的公式计算如下:ασσσσσα2cos 22yx yx -++=MPa 1625.0)120cos(22.005.022.005.00600-=-+-+--=-σασστα2sin 2yx -=MPa 065.0)120sin(22.005.00600-=-+-=-τ作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7] 试用应力圆的几何关系求图示悬臂梁距离自由端为m 72.0的截面上,在顶面以下mm 40的一点处的最大及最小主应力,并求最大主应力与x 轴之间的夹角。
解:(1)求计算点的正应力与切应力MPa mmmmmm N bh My I My z 55.1016080401072.01012124363=⨯⨯⋅⨯⨯⨯===σ MPa mm mm mm N b I QS z z 88.0801608012160)4080(10104333*-=⨯⨯⨯⨯⨯⨯⨯-==τ (2)写出坐标面应力 X (10.55,-0.88)Y (0,0.88)(3) 作应力圆求最大与最小主应力,并求最大主应力与x 轴的夹角 作应力圆如图所示。
从图中按比例尺量得:MPa 66.101=σMPa 06.03-=σ 0075.4=α[习题7-8] 各单元体面上的应力如图所示。
试利用应力圆的几何关系求: (1)指定截面上的应力; (2)主应力的数值;(3)在单元体上绘出主平面的位置及主应力的方向。
[习题7-8(a )]解:坐标面应力:X (20,0);Y (-40,0)060=α。
根据以上数据作出如图所示的应力圆。
图中比例尺为cm 1代表MPa 10。
按比例尺量得斜面的应力为:MPa 250120-=σ, MPa 260120=τ;MPa 201=σ,MPa 403-=σ;000=α。
[习题7-8(b )]解:坐标面应力:X (0,30);Y (0,-30)030=α。
根据以上数据作出如图所示的应力圆。
图中比例尺为cm 1代表MPa 10。
按比例尺量得斜面的应力为:MPa 26060-=σ ,MPa 15060=τ;MPa 301=σ,MPa 303-=σ;0045-=α。
单元体图 应力圆(O.Mohr 圆) 主单元体图单元体图应力圆(O.Mohr 圆)主单元体图1σ3σ[习题7-8(c )]解:坐标面应力:X (-50,0);Y (-50,0)030=α。
根据以上数据作出如图所示的应力圆。
图中比例尺为cm 1代表MPa 20。
按比例尺量得斜面的应力为:MPa 50060-=σ ,0060=τ;MPa 502-=σ,MPa 503-=σ。
[习题7-8(d )]解:坐标面应力:X (0,-50);Y (-20,50)00=α。
根据以上数据作出如图所示的应力圆。
图中比例尺为cm 1代表MPa 20。
按比例尺量得斜面的应力为:MPa 40045=σ ,10045=τ;MPa 411=σ,MPa 02=σ,MPa 613-=σ;'003539=α。
[习题7-9] 各单元体如图所示。
试利用应力圆的几何关系求: (1)主应力的数值;(2)在单元体上绘出主平面的位置及主应力的方向。
[习题7-9(a )]解:坐标面应力:X (130,70);Y (0,-70)。
根据以上数据作出如图所示的应力圆。
图中比例尺为cm 1代表MPa 20。
按比例尺量得斜面的应力为:MPa 5.1601=σ,MPa 02=σ,MPa 5.303-=σ;'005623-=α。
单元体图应力圆(O.Mohr 圆)主单元体图单元体图应力圆(O.Mohr 圆)主单元体图2σ3σ[习题7-9(b )]解:坐标面应力:X (-140,-80);Y (0,80)。
根据以上数据作出如图所示的应力圆。
图中比例尺为cm 1代表MPa 40。
按比例尺量得斜面的应力为:MPa 0.361=σ,MPa 02=σ,MPa 1763-=σ;006.65=α。
[习题7-9(c )]解:坐标面应力:X (-20,-10);Y (-50,10)。