2018届高考物理二轮复习 专题五 动力学、动量和能量的观点的综合应用 学案(全国通用)
专题05 能量观点和动量观点在电磁学中的应用 【讲】-2023年高考物理二轮热点题型归纳(解析)
专题05能量观点和动量观点在电磁学中的应用【要点提炼】1.电磁学中的功能关系(1)电场力做功与电势能的关系:W 电=-ΔE p 电。
推广:仅电场力做功,电势能和动能之和守恒;仅电场力和重力及系统内弹力做功,电势能和机械能之和守恒。
(2)洛伦兹力不做功。
(3)电磁感应中的功能关系其他形式的能量――→克服安培力做功电能――→电流做功焦耳热或其他形式的能量2.电路中的电功和焦耳热(1)电功:W 电=UIt ;焦耳热:Q =I 2Rt 。
(2)纯电阻电路:W 电=Q =UIt =I 2Rt =U 2Rt ,U =IR 。
(3)非纯电阻电路:W 电=Q +E 其他,U >IR 。
(4)求电功或电热时用有效值。
(5)闭合电路中的能量关系电源总功率任意电路:P 总=EI =P 出+P 内纯电阻电路:P 总=I 2(R +r )=E 2R +r电源内部消耗的功率P 内=I 2r =P 总-P 出电源的输出功率任意电路:P 出=UI =P 总-P 内纯电阻电路:P 出=I 2R =E 2R(R +r )2P 出与外电阻R 的关系电源的效率任意电路:η=P出P总×100%=UE×100%纯电阻电路:η=RR+r×100%由P出与外电阻R的关系可知:①当R=r时,电源的输出功率最大为P m=E24r。
②当R>r时,随着R的增大输出功率越来越小。
③当R<r时,随着R的增大输出功率越来越大。
④当P出<P m时,每个输出功率对应两个外电阻R1和R2,且R1R2=r2。
3.动量观点在电磁感应中的应用(1)动量定理在电磁感应中的应用导体在磁场对感应电流的安培力作用下做非匀变速直线运动时,在某过程中由动量定理有:BL I1Δt1+BL I2Δt2+BL I3Δt3+…=m v-m v0通过导体横截面的电荷量q=I1Δt1+I2Δt2+I3Δt3+…得BLq=m v-m v0,在题目涉及通过电路横截面的电荷量q时,可考虑用此表达式。
热点专题系列(5) 动力学、动量和能量观点在力学中的应用
热点专题系列(五)动力学、动量和能量观点在力学中的应用热点概述:处理力学问题的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律)。
熟练应用三大观点分析和解决综合问题是本专题要达到的目的。
[热点透析]动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题。
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。
(3)动量观点:用动量定理和动量守恒观点解题,可处理非匀变速运动问题。
2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的动力学关系式,可用牛顿第二定律。
(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题。
(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和能量守恒定律(机械能守恒定律)去解决问题,但需注意所研究的问题是否满足守恒的条件。
(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量。
(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换,这种问题由于作用时间都极短,因此用动量守恒定律去解决。
(2020·湖北省七市州教科研协作体高三下学期5月联考)如图甲所示,在光滑水平面上有一小车,其质量M=2 kg,车上放置有质量m A=2 kg的木板A,木板上有可视为质点的物体B,其质量m B=4 kg。
已知木板A与小车间的动摩擦因数μ0=0.3。
A 、B 紧靠车厢前壁,A 的左端与小车后壁间的距离为x =2 m 。
现对小车施加水平向右的恒力F ,使小车从静止开始做匀加速直线运动,经过1 s 木板A 与车厢后壁发生碰撞,该过程中A 的速度—时间图象如图乙所示,已知重力加速度大小g =10 m/s 2,最大静摩擦力等于滑动摩擦力。
5.5动力学方法和能量观点的综合应用(解析版)
5.5动力学方法和能量观点的综合应用(解析版)5.5 动力学方法和能量观点的综合应用动力学方法和能量观点是物理学中非常重要的概念和方法。
它们在解决各种力学问题和能量转换问题中发挥着重要的作用。
本文将介绍动力学方法和能量观点的概念,并通过一系列具体例子解释其在解析问题中的综合应用。
一、动力学方法的概念和应用动力学方法是一种研究力学现象的方法,它主要涉及力、质点、运动和力学定律等内容。
通过使用牛顿第二定律、动量守恒定律和动量-时间定理等概念,我们可以解决很多力学问题。
例如,我们可以使用牛顿第二定律来计算物体的加速度。
根据该定律,物体的加速度与所受的力成正比,与物体的质量成反比。
通过求解这个力学模型,我们可以推断物体的加速度,并进一步分析它的运动状态。
此外,动力学方法还可以被应用于解决碰撞问题。
通过运用动量守恒定律和动量-时间定理,我们可以计算碰撞前后物体的速度、动量和能量变化。
这种分析方法在交通事故研究、运动员撞击分析等领域都有重要的应用。
二、能量观点的概念和应用能量观点是研究物理系统能量转化和守恒的观点。
根据能量守恒定律,一个系统的总能量在任何时刻保持不变。
能量观点可以被广泛应用于解决各种物理问题。
例如,我们可以使用能量观点来解析简谐振动问题。
在简谐振动的过程中,机械能由动能和势能组成。
通过计算系统在不同位置、不同时间点的动能和势能,我们可以分析系统的运动特性,例如振幅、周期和频率等。
此外,能量观点也适用于解析机械能转换问题。
通过应用能量转化公式,我们可以计算系统中的机械能的变化,进而分析能量的流向和转化过程。
这对于研究机械系统的效率和能量损耗等问题非常重要。
三、动力学方法和能量观点的综合应用动力学方法和能量观点是相互关联的,通过综合应用这两个方法,我们可以更全面地分析和解决物理问题。
例如,在解决物体自由落体问题时,我们可以同时使用动力学方法和能量观点。
根据牛顿第二定律,物体在受重力作用下的加速度为常数。
2018年高考物理二轮复习专题整合高频突破专题二功和能动量和能量2动量和能量观点的应用课件
答案 (1)ρv 0S
������02 (2) 2������
������2������ − 2 2 2 2������ ������0 ������
-61 2 3
解析 (1)设 Δt 时间内, 从喷口喷出的水的体积为 ΔV ,质量为 Δm, 则 Δm=ρΔV ① ΔV=v 0 SΔt ② 由①②式得, 单位时间内从喷口喷出的水的质量为
-41 2 3
1.(2017全国Ⅰ卷)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的 燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。在燃 气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力 可忽略)( A ) A.30 kg· m/s B.5.7×102 kg· m/s C.6.0×102 kg· m/s D.6.3×102 kg· m/s 解析 根据动量守恒定律得:0=Mv1-mv2,故火箭的动量与燃气的动 量等大反向。故p=Mv1=mv2=0.05 kg×600 m/s=30 kg· m/s。 考点定位:动量定理 命题能力点:侧重考查理解能力 解题思路与方法:以火箭和燃气为研究对象,在燃气喷出的瞬间动 量守恒。
-131 2 3
命题规律研究及预测 分析高考试题可以看出,高考命题突出动量定理、动量守恒定律、 碰撞模型的考查。动量守恒定律与运动学公式及动量守恒定律与 能量守恒定律的综合题也是考查的重点。题型一般为选择题。 在2018年的备考过程中要尤其注重动量守恒定律与能量守恒定 律的综合题的复习。
第2讲
动量和能量观点的应用
-2网络构建 要点必备
-3网络构建 要点必备
1.动量定理 (1)内容:物体在一个过程始末的动量变化量等于它在这个过程中 所受力的冲量。 (2)表达式:F·Δt=Δp=p'-p。 (3)矢量性:动量变化量的方向与合力的方向相同,可以在某一方向 上应用动量定理。 2.动量、动能、动量的变化量的关系 (1)动量的变化量:Δp=p'-p。 ������2 (2)动能和动量的关系: Ek= 。 2������ 3.动量守恒定律 (1)条件:系统不受外力或系统所受外力的矢量和为零。 m1v1'+m2v2' (2)表达式:m1v1+m2v2= 。 4.能量的观点:在涉及系统内能量的转化问题时,常用能量守恒定律。
2018版高考物理第2轮复习 专题二 能量和动量 第2讲 动量和能量观点的应用
1234567
解析 答案
5.(多选)如图1所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有
一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中
正确的是
A.男孩和木箱组成的系统动量守恒
B.小车与木箱组成的系统动量守恒
√C.男孩、小车与木箱三者组成的系统动量守恒
OM=2Rsin θ=38BE22g
12
解析 答案
(3)刚释放时,弹簧的弹性势能Ep.
答案
350E3q 81B2g
解析 弹开瞬间,由能量守恒可知 Ep=12mAv12+12mBv22
将(1)(2)各式代入得:Ep=38510BE23gq
12
解析 答案
模拟训练
2.如图5所示,质量mA=0.8 kg、带电量q=-4×10-3 C的A球用长l=0.8 m的不可 伸长的绝缘轻线悬吊在O点,O点右侧有竖直向下的匀强电场,场强E=5×103
直的、沿竖直方向的匀强磁场中,其磁感应强度B2的大小随时间t变化的关系 如图乙所示.(g取10 m/s2)
(1)求0~0.10 s线圈中的感应电动势大小.
答案 30 V
解析 由法拉第电磁感应定律 E=nΔΔΦt
得 E=nSΔΔBt2=30 V
1234
甲
乙
图7
解析 答案
(2)t=0.22 s时闭合开关K,若安培力远大于重力,细框跳起的最大高度h =0.20 m,求通过细杆CD的电荷量. 答案 0.03 C 解析 由牛顿第二定律 F=ma=mv-Δt0(或由动量定理 FΔt=mv-0),安培 力 F=IB1l,Δq=IΔt,v2=2gh,得 Δq=m B21lgh=0.03 C.
高中物理之动量观点解决力学问题,动量定理的运用、动量守恒定律的应用、动量和能量的综合应用
一、“解题快手”动量定理的应用题点(一) 应用动量定理解释生活中的现象[例1] 如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( )A .减小球的动量的变化量B .减小球对手作用力的冲量C .减小球的动量变化率D .延长接球过程的时间来减小动量的变化量[解析] 选C 篮球运动员接传来的篮球时,不能改变动量的变化量,A 、D 错误;根据动量定理,也不能改变冲量,B 错误;由于延长了作用时间,动量的变化慢了,C 正确。
题点(二) 应用动量定理求作用力和冲量[例2] (2015·重庆高考)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t+mg B.m 2gh t -mg C.m gh t +mg D.m gh t -mg[解析] 选A 方法一:设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma又v =at ,解得F =m 2ght +mg 。
方法二:由动量定理得(mg -F )t =0-m v ,得F =m 2gh t+mg 。
选项A 正确。
题点(三) 动量定理和F -t 图像的综合[例3] [多选](2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动。
F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零[解析] 选AB 法一:根据F -t 图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s 、0~2 s 、0~3 s 、0~4 s 内合外力冲量分别为2 N·s 、4 N·s 、3 N·s 、2 N·s ,应用动量定理I =m Δv 可知物块在1 s 、2 s 、3 s 、4 s 末的速率分别为1 m/s 、2 m/s 、1.5 m/s 、1 m/s ,物块在这些时刻的动量大小分别为2 kg·m/s 、4 kg·m/s 、3 kg·m/s 、2 kg·m/s ,则A 、B 项正确,C 、D 项错误。
(统考版)高考物理一轮复习 第六章 动量守恒定律 专题五 动力学、动量和能量观点的综合应用学生用书
专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
2018高考物理大一轮复习单元综合专题五动力学方法和能量方法综合应用课件
例 1
(2014· 上海)如图,水平地面上的矩形箱子内有一倾角
为θ 的固定斜面,斜面上放一质量为 m 的光滑球.静止时,箱 子顶部与球接触但无压力.箱子由静止开始向右做匀加速运动, 然后改做加速度大小为 a 的匀减速运动直至静止, 经过的总路程 为 s,运动过程中的最大速度为 v.
(1)求箱子加速阶段的加速度大小 a′. (2)若 a>gtanθ ,求减速阶段球受到箱子左壁和顶部的作用 力.
单元综合专题(五) 动力学方法和能量方法综合应用
要 点 综 述
一、动力学方法是应用牛顿运动定律,结合运动学规律研究 运动的方法.能量方法是应用动能定理、机械能守恒、能量守恒 定律和各种功能关系研究运动的方法.在高中物理中,动力学和 能量方法是解决运动问题的两个最基本方法,两个方法各有优 势,相互补充,解题时要适当选择,灵活转换.
(1)若 P 的质量为 m,求 P 到达 B 点时的速度的大小,以及 它离开圆轨道后落回到 AB 上的位置与 B 点之间的距离; (2)若 P 能滑上圆轨道,且仍能沿圆轨道滑下,求 P 的质量 的取值范围.
【答案】
(1) 6gl
2 2l
5 5 (2) m≤M< m 3 2
【解析】 (1)依题意, 当弹簧竖直放置, 长度被压缩至 l 时, 质量为 5m 的物体的动能为零,其重力势能转化为弹簧的弹性势 能.由机械能守恒定律,弹簧长度为 l 时的弹性势能为 Ep=5mgl ①
设 P 的质量为 M,到达 B 点时的速度大小为 vB,由能量守 恒定律得 1 Ep= MvB2+μMg·4l 2 联立①②式,取 M=m 并代入题给数据得 vB= 6gl ③ ②
若 P 能沿圆轨道运动到 D 点,其到达 D 点时的向心力不能 小于重力,即 P 此时的速度大小 v 应满足 mv2 -mg≥0 l ④
高考物理二轮复习 专题突破四 第2课时 动力学 动量和能量观点的综合应用课件
③
本 课 时
P 刚进入 P2 到 P1、P2、P 第二次等速时由能量守恒得 μ·2mg(2L+2x)=12×2mv0 2+12×2mv1 2-12×4mv2 2
④
栏 目 开
由③④得:x=3v20μ2g-L,Ep=m1v60
2
.
关
答案
1 (1)2v0
3 4v0
(2)3v20μ2g-L
mv0 2 16
如图 2 所示,质量为 m 的
(1)a 球与 b 球碰前瞬间的速度为多大?
(2)a、b 两球碰后,细绳是否会断裂?若细绳断裂,小球在 DE
水平面上的落点距 C 处的水平距离是多少?若细绳不断裂,小
球最高将摆多高?(小球 a、b 均视为质点)
解析 (1)设 a 球经 C 点时速度为 vC,由机械能守恒定律,mgh =12mvC2,
就是把多个物体看成一个整体(或系统).
题型 1 动量和能量的观点在力学中的应用
例 1 (2013·广东·35)如图 1,两块相同平板 P1、P2 置于光滑水
本
平面上,质量均为 m,P2 的右端固定一轻质弹簧,左端 A
课 时
与弹簧的自由端 B 相距 L,物体 P 置于 P1 的最右端,质量
栏
为 2m 且可看作质点.P1 与 P 以共同速度 v0 向右运动,与
量变化的方向与 合外力的冲量 方向相同,而物体在某
一时刻的动量方向跟合外力的冲量方向无必然联系.
动量定理公式中的 F 是研究对象所受的包括重力在内的
所有外力的 合力 ,它可以是恒力,也可以是变力,当 F
为变力时,F 应是合外力对作用时间的 平均值 .
本 2.动量守恒定律
课 时
(1)内容:一个系统不受外力或者所受外力之和为 零 ,这
全国2018届高考物理二轮复习专题二动量与能量第2讲动量观点和能量观点在电学中的应用学案
第2讲 动量观点和能量观点在电学中的应用知识必备1.静电力做功与路径无关。
若电场为匀强电场,则W =Fl cos α=qEl cos α;若是非匀强电场,则一般利用W =qU 来求。
2.静电力做的功等于电势能的变化,即W AB =-ΔE p 。
3.电流做功的实质是电场对移动电荷做功,即W =UIt =qU 。
4.磁场力又可分为洛伦兹力和安培力。
洛伦兹力在任何情况下对运动电荷都不做功;安培力可以做正功、负功,还可以不做功。
5.电磁感应中的能量问题(1)能量转化:其他形式的能量――→克服安培力做功电能 电能――→电流做功焦耳热或其他形式能 (2)焦耳热的三种求法: ①焦耳定律:Q =I 2Rt ②功能关系:Q =W 克服安培力 ③能量转化:Q =W 其他能的减少量,备考策略动量观点和能量观点在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,要抓住4点:(1)受力分析和运动过程分析是关键。
(2)根据不同的运动过程中各力做功的特点来选择相应规律求解。
(3)力学中的几个功能关系在电学中仍然成立。
(4)感应电动势是联系电磁感应与电路的桥梁,要做好“源”的分析,电磁感应产生的电功率等于内、外电路消耗的功率之和,这是能量守恒分析这类问题的思路。
功能关系在电学中的应用【真题示例】 (多选)(2017·全国卷Ⅲ,21)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图1所示,三点的电势分别为10 V 、17 V 、26 V 。
下列说法正确的是( )图1A.电场强度的大小为2.5 V/cmB.坐标原点处的电势为1 VC.电子在a 点的电势能比在b 点的低7 eVD.电子从b 点运动到c 点,电场力做功为9 eV解析 如图所示,设a 、c 之间的d 点电势与b 点电势相同,则ad dc =10-1717-26=79,所以d 点的坐标为(3.5 cm ,6 cm),过c 点作等势线bd 的垂线,电场强度的方向由高电势指向低电势。
2018届高考物理一轮复习专题动力学和能量观点的综合应用导学案1
动力学和能量观点的综合应用知识梳理考向一 多种运动的组合问题 角度1 直线运动与圆周运动的组合【真题示例1】 (2016·全国卷Ⅱ,25)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l 。
现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接。
AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示。
物块P 与AB 间的动摩擦因数μ=0.5。
用外力推动物块P ,将弹簧压缩至长度l ,然后放开P 开始沿轨道运动,重力加速度大小为g 。
图1(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围。
解析 (1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能。
由机械能守恒定律知,弹簧长度为l 时的弹性势能为E p =5mgl ①设P 到达B 点时的速度大小为v B ,由能量守恒定律得E p =12mv 2B +μmg (5l -l )②联立①②式,并代入题给数据得v B =6gl ③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足mv 2l-mg ≥0④ 设P 滑到D 点时的速度为v D ,由机械能守恒定律得12mv 2B =12mv 2D +mg ·2l ⑤ 联立③⑤式得v D =2gl ⑥v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出。
设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2⑦P 落回到AB 上的位置与B 点之间的距离为s =v D t ⑧联立⑥⑦⑧式得s =22l ⑨(2)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点时的速度不能小于零。
最新届二轮复习-动力学、动量和能量观点的综合应用-教案(全国通用)
专题定位本专题综合应用动力学、动量和能量的观点来解决物体运动的多过程问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.应考策略本专题在高考中主要以两种命题形式出现:一是综合应用动能定理、机械能守恒定律和动量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.由于本专题综合性强,因此要在审题上狠下功夫,弄清运动情景,挖掘隐含条件,有针对性的选择相应的规律和方法.1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三个基本观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).解题方略1.弹性碰撞与非弹性碰撞碰撞过程遵从动量守恒定律.如果碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞;如果碰撞过程中机械能不守恒,这样的碰撞叫做非弹性碰撞.2.应用动量守恒定律的解题步骤(1)明确研究对象(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列式求解;(5)必要时对结果进行讨论.例1如图1所示,光滑水平面上有一质量为m=1 kg的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m0=1 kg的物块,物块与上表面光滑的小车一起以v0=5 m/s的速度向右匀速运动,与静止在光滑水平面上、质量为M=4 kg的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.求:(1)碰撞结束时,小车与小球的速度;(2)从碰后瞬间到弹簧被压至最短的过程,弹簧弹力对小车的冲量大小.图1解析 (1)设碰撞后瞬间小车的速度大小为v 1,小球的速度大小为v ,由动量守恒及机械能守恒有: m v 0=M v +m v 1 12m v 20=12m v 21+12M v 2 解得v 1=m -Mm +M v 0=-3 m/s ,小车速度方向向左.v =2m m +Mv 0=2 m/s ,小球速度方向向右. (2)当弹簧被压缩到最短时,物块与小车有共同进度, 设小车的速度大小为v 2,根据动量守恒定律有: m 0v 0+m v 1=(m 0+m )v 2,解得v 2=1 m/s.设碰撞后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为I ,根据动量定理有I =m v 2-m v 1,解得I =4 N·s.答案 (1)小车:3 m/s ,方向向左 小球:2 m/s ,方向向右 (2)4 N·s预测1 (2016·全国乙卷·35(2))某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求: (1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度. 答案 (1)ρv 0S (2)v 202g -M 2g 2ρ2v 20S2解析 (1)在刚喷出一段很短的Δt 时间内,可认为喷出的水柱保持速度v 0不变. 该时间内,喷出水柱高度Δl =v 0Δt ① 喷出水柱质量Δm =ρΔV ②其中ΔV 为水柱体积,满足ΔV =ΔlS ③由①②③可得:喷泉单位时间内喷出的水的质量为 ΔmΔt=ρv 0S . (2)设玩具底面相对于喷口的高度为h由玩具受力平衡得F 冲=Mg ④ 其中,F 冲为水柱对玩具底面的作用力 由牛顿第三定律:F 压=F 冲⑤其中,F 压为玩具底面对水柱的作用力,v ′为水柱到达玩具底面时的速度 由运动学公式:v ′2-v 20=-2gh ⑥在很短Δt时间内,冲击玩具水柱的质量为ΔmΔm=ρv0SΔt⑦由题意可知,在竖直方向上,对该部分水柱应用动量定理(F压+Δmg)Δt=Δm v′⑧由于Δt很小,Δmg也很小,可以忽略,⑧式变为F压Δt=Δm v′⑨由④⑤⑥⑦⑨可得h=v202g -M2g2ρ2v20S2.解题方略1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.4.如含摩擦生热问题,则考虑用能量守恒定律分析.例2如图2所示,光滑水平面上有一质量M =4.0 kg的平板车,车的上表面是一段长L=1.5 m的粗糙水平轨道,水平轨道左侧连一半径R=0.25 m的四分之一光滑圆弧轨道,圆弧轨道与水平轨道在点O′处相切.现将一质量m=1.0 kg的小物块(可视为质点)从平板车的右端以水平向左的初速度v0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5,小物块恰能到达圆弧轨道的最高点A.取g=10 m/s2,求:图2(1)小物块滑上平板车的初速度v0的大小;(2)小物块与车最终相对静止时,它距点O′的距离.解析(1)平板车和小物块组成的系统在水平方向上动量守恒,设小物块到达圆弧轨道最高点A时,二者的共同速度为v1由动量守恒得:m v0=(M+m)v1①由能量守恒得:12m v 20-12(M +m )v 21=mgR +μmgL ② 联立①②并代入数据解得:v 0=5 m/s ③(2)设小物块最终与车相对静止时,二者的共同速度为v 2,从小物块滑上平板车,到二者相对静止的过程中,由动量守恒得: m v 0=(M +m )v 2④设小物块与车最终相对静止时,它距O ′点的距离为x ,由能量守恒得: 12m v 20-12(M +m )v 22=μmg (L +x )⑤ 联立③④⑤并代入数据解得:x =0.5 m. 答案 (1)5 m/s (2)0.5 m预测2 如图3所示,小球A 质量为m ,系在细线的一端,线的另一端固定在O 点,O 点到光滑水平面的距离为h .物块B 和C 的质量分别是5m 和3m ,B 与C 用轻弹簧拴接,置于光滑的水平面上,且B 物块位于O 点正下方.现拉动小球使细线水平伸直,小球由静止释放,运动到最低点时与物块B 发生正碰(碰撞时间极短),反弹后上升到最高点时到水平面的距离为h16.小球与物块均视为质点,不计空气阻力,重力加速度为g ,求碰撞过程中B 物块受到的冲量大小及碰后轻弹簧获得的最大弹性势能.图3答案 54m 2gh 15128mgh解析 设小球运动到最低点与物块B 碰撞前的速度大小为v 1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有: mgh =12m v 21解得:v 1=2gh设碰撞后小球反弹的速度大小为v 1′,同理有: mg h 16=12m v 1′2 解得:v 1′=2gh 4设碰撞后物块B 的速度大小为v 2,取水平向右为正方向,由动量守恒定律有: m v 1=-m v 1′+5m v 2 解得:v 2=2gh 4由动量定理可得,碰撞过程中B 物块受到的冲量大小为:I =5m v 2=54m 2gh碰撞后当B 物块与C 物块速度相等时轻弹簧的弹性势能最大,据动量守恒定律有 5m v 2=8m v 3据机械能守恒定律得:E pm =12×5m v 22-12×8m v 23 解得:E pm =15128mgh .解题方略力学规律选用的一般原则力学中首先考虑使用两个守恒定律,从两个守恒定律的表达式看出多项都是状态量(速度、位置),所以守恒定律能解决状态问题,不能解决过程(位移x,时间t)问题,不能解决力(F)的问题.(1)若是多个物体组成的系统,优先考虑使用两个守恒定律.(2)若物体(或系统)涉及到速度和时间,应考虑使用动量定理.(3)若物体(或系统)涉及到位移和时间,且受到恒力作用,应考虑使用牛顿运动定律.(4)若物体(或系统)涉及到位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,运用动能定理解决曲线运动和变加速运动问题特别方便.例3(2015·广东理综·36)如图4所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5 m,物块A以v0=6 m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1 m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m =1 kg(重力加速度g取10 m/s2;A、B视为质点,碰撞时间极短).图4(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 解析 (1)从A →Q 由动能定理得 -mg ·2R =12m v 2-12m v 2解得v =4 m/s >gR = 5 m/s 在Q 点,由牛顿第二定律得 F N +mg =m v 2R解得F N =22 N.(2)A 撞B ,由动量守恒得 m v 0=2m v ′ 解得v ′=v 02=3 m/s设摩擦距离为x ,则 -2μmgx =0-12·2m v ′2解得x =4.5 m ,所以k =xL=45.(3)AB 滑至第n 个光滑段上,由动能定理得-μ·2mgnL=12·2m v2n-12·2m v′2所以v n=9-0.2n m/s(n<45).答案(1)4 m/s22 N(2)45(3)v n=9-0.2n m/s(n<45)预测3如图5所示,内壁粗糙、半径R=0.4 m的四分之一圆弧轨道AB在最低点B与光滑水平轨道BC相切.质量m2=0.2 kg的小球b左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m1=0.2 kg的小球a自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B时对轨道的压力为小球a重力的2倍.忽略空气阻力,重力加速度g=10 m/s2.求:图5(1)小球a由A点运动到B点的过程中,摩擦力做的功W f;(2)小球a通过弹簧与小球b相互作用的过程中,弹簧的最大弹性势能E p;(3)小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小.答案(1)-0.4 J(2)0.2 J(3)0.4 N·s解析(1)小球由静止释放到最低点B的过程中,根据动能定理得:m1gR+W f=12m1v21,小球在最低点B,根据牛顿第二定律得:F N-m1g=m1v21R,联立可得:W f=-0.4 J.(2)小球a与小球b通过弹簧相互作用,达到共同速度v2时弹簧具有最大弹性势能,此过程中,由动量守恒定律:m1v1=(m1+m2)v2,由能量守恒定律:12m1v21=12(m1+m2)v22+E p联立可得:E p=0.2 J.(3)小球a与小球b通过弹簧相互作用的整个过程中,a球最终速度为v3,b球最终速度为v4,由动量守恒定律:m1v1=m1v3+m2v4,由能量守恒定律:12m1v21=12m1v23+12m2v24,根据动量定理有:I=m2v4,联立可得:I=0.4 N·s.专题强化练1.如图1所示,质量为m的b球用长为h的细绳悬挂于水平轨道BC的出口C处,质量也为m的小球a从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起,已知BC轨道距地面有一定的高度,悬挂b球的细绳能承受的最大拉力为2.8mg.试问:图1(1)a球与b球碰前瞬间的速度多大?(2)a、b两球碰后,细绳是否会断裂?(要求通过计算回答).答案(1)2gh(2)会断裂解析 (1)设a 球与b 球碰前瞬间的速度大小为v C ,由机械能守恒定律得mgh =12m v 2C ,解得v C =2gh ,即a 球与b 球碰前的速度大小为2gh . (2)设b 球碰后的速度为v ,a 、b 碰撞过程中动量守恒,则 m v C =(m +m )v ,故v =12v C =122gh ,假设a 、b 球碰撞后将一起绕O 点摆动,若小球在最低点时细绳拉力为F T ,则F T -2mg =2m v 2h解得F T =3mg ,F T >2.8mg , 故细绳会断裂,小球做平抛运动.2.如图2所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B 、C 的上表面相平且B 、C 不粘连,A 滑上C 后恰好能达到C 板的最右端,已知A 、B 、C 质量均相等,木板C 长为L ,求:图2(1)A 物体的最终速度; (2)A 在木板C 上滑行的时间. 答案 (1)3v 04 (2)4Lv 0解析 (1)设A 、B 、C 的质量为m ,B 、C 碰撞过程中动量守恒,设B 、C 碰后的共同速度为v 1,则m v 0=2m v 1,解得v 1=v 02,B、C共速后A以v0的速度滑上C,A滑上C后,B、C脱离,A、C相互作用的过程中动量守恒,设最终A、C的共同速度为v2,则m v0+m v1=2m v2,解得v2=3v04.(2)在A、C相互作用的过程中,根据机械能守恒有F f L=12m v20+12m v21-12·2m v22(F f为A、C间的摩擦力),代入解得F f=m v2016L.此过程中对C,根据动量定理有F f t=m v2-m v1,代入相关数据解得t=4L v.3.如图3所示,整个空间中存在竖直向上的匀强电场,经过桌边的虚线PQ与桌面成45°角,其上方有足够大的垂直纸面向外的匀强磁场,磁感应强度为B,光滑绝缘水平桌面上有两个可以视为质点的绝缘小球,A球对桌面的压力为零,其质量为m,电量为q;B球不带电且质量为km(k>7).A、B间夹着质量可忽略的火药.现点燃火药(此时间极短且不会影响小球的质量、电量和各表面的光滑程度).火药炸完瞬间A的速度为v0.求:图3(1)火药爆炸过程中有多少化学能转化为机械能;(2)A球在磁场中的运动时间;(3)若一段时间后A、B在桌上相遇,求爆炸前A球与桌边P的距离.答案 (1)k +12k m v 20 (2)3πm 2qB (3)2k -2-3π2(k +1)·m v 0qB解析 (1)设爆炸之后B 的速度大小为v B ,选向左为正方向,在爆炸前后由动量守恒可得:0=m v 0-km v BE =12m v 20+12km v 2B =k +12km v 20 (2)由A 球对桌面的压力为零可知重力和电场力等大反向,故A 球进入电场中将会做匀速圆周运动,如图所示则T =2πm qB有几何知识可得:粒子在磁场中运动了34个圆周 则t 2=3πm 2qB(3)由0=m v 0-km v B 可得:v B =v 0k由q v 0B =m v 20R 知,R =m v 0qB设爆炸前A 球与桌边P 的距离为x A ,爆炸后B 运动的位移为x B ,时间为t B则t B =x A v 0+t 2+R v 0x B =v B t B由图可得:R =x A +x B联立上述各式解得:x A=2k-2-3π2(k+1)·m v0qB.4.如图4所示,在水平面上有一弹簧,其左端与墙壁相连,O点为弹簧原长位置,O点左侧水平面光滑.水平段OP长为L=1 m,P点右侧一与水平方向成θ=30°的足够长的传送带与水平面在P点平滑连接,传送带轮逆时针转动速率为3 m/s,一质量为1 kg可视为质点的物块A压缩弹簧(与弹簧不拴接),使弹簧获得的弹性势能E p=9 J,物块与OP段动摩擦因数μ1=0.1,另一与A完全相同的物块B停在P点,B与传送带的动摩擦因数μ2=33,传送带足够长,A与B的碰撞时间不计,碰后A、B交换速度,重力加速度g=10 m/s2,现释放A,求:图4(1)物块A、B第一次碰撞前瞬间,A的速率v0;(2)从A、B第一次碰撞后到第二次碰撞前,B与传送带之间由于摩擦而产生的热量;(3)A、B能够碰撞的总次数.答案(1)4 m/s(2)12.25 J(3)6次解析(1)设物块质量为m,A与B第一次碰前的速率为v0,则E p=12m v20+μ1mgL,解得v0=4 m/s.(2)设A、B第一次碰撞后的速度分别为v A、v B,则v A=0,v B=4 m/s,碰后B沿传送带向上做匀减速运动直至速度为零,加速度大小设为a1,则mg sin θ+μ2mg cos θ=ma1,解得a1=g sin θ+μ2g cos θ=10 m/s2.运动的时间t1=v Ba1=0.4 s.位移x1=v B2t1=0.8 m.此过程相对运动路程Δs1=v t1+x1=2 m.此后B反向加速,加速度仍为a1,与传送带共速后匀速运动直至与A再次碰撞,加速时间为t2=va1=0.3 s.位移为x2=v2t2=0.45 m.此过程相对运动路程Δs2=v t2-x2=0.45 m,全过程摩擦生热Q=μ2mg cos θ(Δs1+Δs2)=12.25 J.(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A、B和弹簧组成的系统,从第二次碰撞后到不再碰撞:12m v2=2nμ1mgL,解得第二次碰撞后重复的过程数为n=2.25.所以碰撞总次数为N=2+2n=6.5=6次(取整数).。
高考物理二轮复习专题6动力学、动量和能量观点的综合应用学案
专题6 动力学、动量和能量观点的综合应用考题一 动量定理和能量观点的综合应用1.动量定理公式:Ft=p′-p说明:(1)F为合外力①恒力,求Δp时,用Δp=Ft②b.变力,求I时,用I=Δp=mv2-mv1③牛顿第二定律的第二种形式:合外力等于动量变化率④当Δp一定时,Ft为确定值:F=Δptt小F大——如碰撞;t大F小——缓冲(2)等式左边是过程量Ft,右边是两个状态量之差,是矢量式.v1、v2是以同一惯性参照物为参照的.Δp的方向可与mv1一致、相反或成某一角度,但是Δp的方向一定与Ft一致.2.力学规律的选用原则单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.例1 据统计人在运动过程中,脚底在接触地面瞬间受到的冲击力是人体自身重力的数倍.为探究这个问题,实验小组同学利用落锤冲击的方式进行了实验,即通过一定质量的重物从某一高度自由下落冲击地面来模拟人体落地时的情况.重物与地面的形变很小,可忽略不计.g 取10 m/s2.下表为一次实验过程中的相关数据.重物(包括传感器)的质量m/kg8.5重物下落高度H/cm45重物反弹高度h/cm20最大冲击力F m/N850重物与地面接触时间t/s0.1(1)请你选择所需数据,通过计算回答下列问题:①重物受到地面的最大冲击力时的加速度大小;②在重物与地面接触过程中,重物受到的地面施加的平均作用力是重物所受重力的多少倍.(2)如果人从某一确定高度由静止竖直跳下,为减小脚底在与地面接触过程中受到的冲击力,可采取什么具体措施,请你提供一种可行的方法并说明理由.解析 (1)①重物受到最大冲击力时加速度的大小为a由牛顿第二定律:a=F m-mgm解得a =90 m/s 2②重物在空中运动过程中,由动能定理mgh =mv 212重物与地面接触前瞬时的速度大小v 1=2gH 重物离开地面瞬时的速度大小v 2=2gh重物与地面接触过程,重物受到的平均作用力大小为F ,设竖直向上为正方向由动量定理:(F -mg )t =mv 2-m (-v 1)解得F =510 N ,故=6F mg因此重物受到的地面施加的平均作用力是重物所受重力的6倍.(2)可以通过增加人与地面接触时间来减小冲击力(如落地后双腿弯曲),由动量定理Ft =Δmv 可知,接触时间增加了,冲击力F 会减小.答案 (1)①90 m/s 2 ②6倍 (2)见解析变式训练1.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长量,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.+mg B.-mg m 2ght m 2ght C.+mg D.-mg m ghtm ght答案 A解析 由自由落体运动公式得人下降h 距离时的速度为v =,在t 时间内对人由动量定2gh 理得(F -mg )t =mv ,解得安全带对人的平均作用力为F =+mg ,A 项正确.m 2ght2.一质量为0.5 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图1所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止.g 取10 m/s 2.图1(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05 s ,求碰撞过程中墙面对物块平均作用力的大小F ;(3)求物块在反向运动过程中克服摩擦力所做的功W .答案 (1)0.32 (2)130 N (3)9 J解析 (1)对小物块从A 运动到B 处的过程中应用动能定理-μmgs =mv 2-mv 12122代入数值解得μ=0.32(2)取向右为正方向,碰后滑块速度v ′=-6 m/s 由动量定理得:F Δt =mv ′-mv 解得F =-130 N其中“-”表示墙面对物块的平均作用力方向向左.(3)对物块反向运动过程中应用动能定理得-W =0-mv ′212解得W =9 J.考题二 动量守恒定律和能量观点的综合应用1.动量守恒定律(1)表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′;或p =p ′(系统相互作用前总动量p 等于相互作用后总动量p ′);或Δp =0(系统总动量的增量为零);或Δp 1=-Δp 2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(2)动量守恒条件:①理想守恒:系统不受外力或所受外力合力为零.②近似守恒:外力远小于内力,且作用时间极短,外力的冲量近似为零,或外力的冲量比内力冲量小得多.③单方向守恒:合外力在某方向上的分力为零,则系统在该方向上动量守恒.动量守恒定律应用要注意的三性(1)矢量性:在一维运动中要选取正方向,未知速度方向的一律假设为正方向,带入求解.(2)同时性:m1v1和m2v2——作用前的同一时刻的动量m1v1′和m2v2′——作用后的同一时刻的动量(3)同系性:各个速度都必须相对于同一个惯性参考系.定律的使用条件:在惯性参考系中普遍适用(宏观、微观、高速、低速)2.力学规律的选用原则多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.例2 如图2所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5 m,物块A以v0=6 m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1 m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1 kg(重力加速度g取10 m/s2;A、B视为质点,碰撞时间极短).图2(1)求A滑过Q点时的速度大小v和受到的弹力大小F;(2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值;(3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式.解析 (1)从A →Q 由动能定理得-mg ·2R =mv 2-mv 12122解得v =4 m/s >= m/sgR 5在Q 点,由牛顿第二定律得F +mg =mv 2R解得F =22 N.(2)A 撞B ,由动量守恒得mv 0=2mv ′解得v ′==3 m/sv 02设摩擦距离为x ,则-2μmgx =0-·2mv ′212解得x =4.5 m 所以k ==45.x L(3)AB 滑至第n 个光滑段上,由动能定理得-μ·2mgnL =·2mv -·2mv ′2122n 12所以v n = m/s (n <45).9-0.2n 答案 (1)4 m/s 22 N (2)45(3)v n = m/s (n <45)9-0.2n 变式训练3.如图3,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图3答案 (-2)M ≤m <M5解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,由动量守恒定律得mv 0=mv 1+Mv 2由机械能守恒定律得mv =mv +Mv 12201221122可得v 1=v 0,v 2=v 0m -M m +M 2m m +M要使得A 与B 能发生碰撞,需要满足v 1<0,即m <MA 反向向左运动与B 发生碰撞过程,有mv 1=mv 3+Mv 4mv =mv +Mv 122112231224整理可得v 3=v 1,v 4=v 1m -M m +M 2mm +M由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2即v 0≥v 1=()2v 02m m +M m -M m +M m -M m +M整理可得m 2+4Mm ≥M 2解方程可得m ≥(-2)M 5另一解m ≤-(+2)M 舍去5所以使A 只与B 、C 各发生一次碰撞,须满足(-2)M ≤m <M .5考题三 电学中动量和能量观点的综合应用系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).例3 如图4所示,直角坐标系xOy 位于竖直平面内,x 轴与绝缘的水平面重合,在y 轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m 2=8×10-3 kg 的不带电小物块静止在原点O ,A 点距O 点l =0.045 m ,质量m 1=1×10-3 kg 的带电小物块以初速度v 0=0.5 m/s 从A 点水平向右运动,在O 点与m 2发生正碰并把部分电量转移到m 2上,碰撞后m 2的速度为0.1 m/s ,此后不再考虑m 1、m 2间的库仑力.已知电场强度E =40 N/C ,小物块m 1与水平面的动摩擦因数为μ=0.1,取g =10 m/s 2,求:图4(1)碰后m 1的速度;(2)若碰后m 2做匀速圆周运动且恰好通过P 点,OP 与x 轴的夹角θ=30°,OP 长为l OP =0.4 m ,求磁感应强度B 的大小;(3)其他条件不变,若改变磁场磁感应强度的大小,使m 2能与m 1再次相碰,求B ′的大小.解析 (1)设m 1与m 2碰前速度为v 1,由动能定理-μm 1gl =m 1v -m 1v 12211220代入数据解得:v 1=0.4 m/sv 2=0.1 m/s ,m 1、m 2正碰,由动量守恒有:m 1v 1=m 1v 1′+m 2v 2代入数据得:v 1′=-0.4 m/s ,方向水平向左(2)m 2恰好做匀速圆周运动,所以qE =m 2g 得:q =2×10-3 C由洛伦兹力提供向心力,设物块m 2做圆周运动的半径为R ,则qv 2B =m 2v 2R轨迹如图,由几何关系有:R =l OP解得:B =1 T(3)当m 2经过y 轴时速度水平向左,离开电场后做平抛运动,m 1碰后做匀减速运动.m 1匀减速运动至停止,其平均速度大小为:=|v 1′|=0.2 m/s>v 2=0.1 m/s ,v 12所以m 2在m 1停止后与其相碰由牛顿第二定律有:F f =μm 1g =m 1a m 1停止后离O 点距离:s =v 1′22a则m 2平抛的时间:t =s v 2平抛的高度:h =gt 212设m 2做匀速圆周运动的半径为R ′,由几何关系有:R ′=h12由qv 2B ′=,联立得:B ′=0.25 Tm 2v 2R ′答案 (1)-0.4 m/s ,方向水平向左 (2)1 T (3)0.25 T 变式训练4.如图5所示,C 1D 1E 1F 1和C 2D 2E 2F 2是距离为L 的相同光滑导轨,C 1D 1和E 1F 1为两段四分之一的圆弧,半径分别为r 1=8r 和r 2=r .在水平矩形D 1E 1E 2D 2内有竖直向上的匀强磁场,磁感应强度为B .导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速度释放,则:图5(1)求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);(2)若P 、Q 不会在轨道上发生碰撞,棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;(3)若P 、Q 不会在轨道上发生碰撞,且两者到达E 1E 2瞬间,均能脱离轨道飞出,求回路中产生热量的范围.答案 (1),方向逆时针 (2)32BL grRgr(3)3mgr ≤Q ≤4mgr解析 (1)导体棒P 由C 1C 2下滑到D 1D 2,根据机械能守恒定律:mgr 1=mv ,v D=4122D gr 导体棒P 到达D 1D 2瞬间:E =BLv D 回路中的电流I ==E 2R 2BL gr R方向逆时针(2)棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,此时对Q :mg =,v Q =mv 2Qr2gr设导体棒P 离开轨道瞬间的速度为v P ,根据动量守恒定律:mv D =mv P +mv Q 代入数据得,v P =3gr(3)由(2)知,若导体棒Q 恰能在到达E 1E 2瞬间飞离轨道,P 也必能在该处飞离轨道.根据能量守恒,回路中产生的热量:Q 1=mv -mv -mv =3mgr122D 122P 122Q 若导体棒Q 与P 能达到共速v ,回路中产生的热量最多,则根据动量守恒:mv D =(m +m )v ,v =2gr回路中产生的热量:Q 2=mv -(m +m )v 2=4mgr122D 12综上所述,回路中产生热量的范围是3mgr ≤Q ≤4mgr .专题规范练1.如图1所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R =0.8 m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m =0.4 kg 的物块A 自圆弧形轨道的顶端静止释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为x =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:图1(1)BP 间的水平距离x BP ;(2)判断物块B 能否沿圆轨道到达M 点;(3)物块A 由静止释放的高度h .答案 (1)4.1 m (2)不能 (3)1.8 m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时其竖直速度为v y =2gR同时=tan 45°,解得v D =4 m/s v y v D设平抛用时为t ,水平位移为x ,则有R =gt 212x =v D t解得x =1.6 m物块B 碰后以初速度v 0=6 m/s ,加速度大小a =-4 m/s 2减速到v D ,则BD 间的位移为x 1==2.5 m v 2D -v 202a故BP 之间的水平距离x BP =x +x 1=4.1 m(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,则有mv -mv =-mgR 122M 122D 22设轨道对物块的压力为F N ,则F N +mg =m v 2M R解得F N =(1-)mg <0,即物块不能到达M 点.2(3)对物块A 、B 的碰撞过程,有:m A v A =m A v A ′+m B v 0m A v =m A v A ′2+m B v 122A 121220解得:v A =6 m/s设物块A 释放的高度为h ,则mgh =mv ,122A 解得h =1.8 m2.如图2所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆形轨道组成,Q 点为圆形轨道最低点,M 点为最高点,圆形轨道半径R =0.32 m.水平轨道PN 右侧的水平地面上,并排放置两块长木板c 、d ,两木板间相互接触但不粘连,长木板上表面与水平轨道PN 平齐,木板c 质量m 3=2.2 kg ,长L =4 m ,木板d 质量m 4=4.4 kg.质量m 2=3.3 kg 的小滑块b 放置在轨道QN 上,另一质量m 1=1.3 kg 的小滑块a 从P 点以水平速度v 0向右运动,沿圆形轨道运动一周后进入水平轨道与小滑块b 发生碰撞,碰撞时间极短且碰撞过程中无机械能损失.碰后a 沿原路返回到M 点时,对轨道压力恰好为0.已知小滑块b 与两块长木板间动摩擦因数均为μ0=0.16,重力加速度g =10 m/s 2.图2(1)求小滑块a 与小滑块b 碰撞后,a 和b 的速度大小v 1和v 2;(2)若碰后滑块b 在木板c 、d 上滑动时,木板c 、d 均静止不动,c 、d 与地面间的动摩擦因数μ至少多大?(木板c 、d 与地面间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力)(3)若不计木板c 、d 与地面间的摩擦,碰后滑块b 最终恰好没有离开木板d ,求滑块b 在木板c 上滑行的时间及木板d 的长度.答案 (1)4 m/s 5.2 m/s (2)0.069 (3)1 s 1.4 m解析 (1)根据题意可知:小滑块a 碰后返回到M 点时:m 1=m 1gv 2M R 小滑块a 碰后返回到M 点过程中机械能守恒:m 1v =m 1v +m 1g (2R )1221122M 代入数据,解得:v 1=4 m/s取水平向右为正方向,小滑块a 、b 碰撞前后:动量守恒:m 1v 0=-m 1v 1+m 2v 2机械能守恒:m 1v =m 1v +m 2v 12201221122代入数据,解得:v 0=9.2 m/s ,v 2=5.2 m/s(2)若b 在d 上滑动时d 能静止,则b 在c 上滑动时c 和d 一定能静止μ(m 2+m 4)g >μ0m 2g解得μ>μ0≈0.069m 2m 2+m 4(3)小滑块b 滑上长木板c 时的加速度大小:a 1=μ0g =1.6 m/s 2此时两块长木板的加速度大小:a 2=g =0.8 m/s 2μ0m 2m 3+m 4令小滑块b 在长木板c 上的滑行时间为t ,则:时间t 内小滑块b 的位移x 1=v 2t -a 1t 212两块长木板的位移x 2=a 2t 212且x 1-x 2=L解得:t 1=1 s 或t 2= s(舍去)103b 刚离开长木板c 时b 的速度v 2′=v 2-a 1t 1=3.6 m/sb 刚离开长木板c 时d 的速度v 3=a 2t 1=0.8 m/sd 的长度至少为x :由动量守恒可知:m 2v 2′+m 4v 3=(m 2+m 4)v解得:v =2 m/sμ0m 2gx =m 2v 2′2+m 4v -(m 2+m 4)v 212122312解得:x =1.4 m3.如图3所示,两个圆形光滑细管在竖直平面内交叠,组成“8”字形通道,在“8”字形通道底端B 处连接一内径相同的粗糙水平直管AB .已知E 处距地面的高度h =3.2 m ,一质量m =1 kg 的小球a 从A 点以速度v 0=12 m/s 的速度向右进入直管道,到达B 点后沿“8”字形轨道向上运动,到达D 点时恰好与轨道无作用力,直接进入DE 管(DE 管光滑),并与原来静止于E 处的质量为M =4 kg 的小球b 发生正碰(a 、b 均可视为质点).已知碰撞后a 球沿原路返回,速度大小为碰撞前速度大小的,而b 球从E 点水平抛出,其水平射程s =0.8 m.(g =10 m/s 2)13图3(1)求碰后b 球的速度大小;(2)求“8”字形管道上下两圆的半径r 和R ;(3)若小球a 在管道AB 中运动时所受阻力为定值,请判断a 球返回到BA 管道时,能否从A 端穿出?答案 (1)1 m/s (2)0.9 m 0.7 m (3)不能解析 (1)b 球离开E 点后做平抛运动h =gt 2,s =v b t ,解得v b =1 m/s12(2)a 、b 碰撞过程,动量守恒,以水平向右为正方向,则有:mv a =-m ×v a +Mv b13解得v a =3 m/s碰前a 在D 处恰好与轨道无作用力,则有:mg =m v 2a rr =0.9 mR ==0.7 m h -2r 2(3)小球从B 到D ,机械能守恒:mv =mv +mgh 122B 122a 解得:mv =36.5 J 122B 从A 到B 过程,由动能定理得:-W f =mv -mv 122B 1220解得:W f =35.5 J从D 到B ,机械能守恒:m ()2+mgh =mv B ′212v a 312解得:mv B ′2=32.5 J<W f 12所以,a 球返回到BA 管道中时,不能从A 端穿出.4.如图4所示,整个空间中存在竖直向上的匀强电场,经过桌边的虚线PQ 与桌面成45°角,其上方有足够大的垂直纸面向外的匀强磁场,磁感应强度为B ,光滑绝缘水平桌面上有两个可以视为质点的绝缘小球,A 球对桌面的压力为零,其质量为m ,电量为q ;B 球不带电且质量为km (k >7).A 、B 间夹着质量可忽略的火药.现点燃火药(此时间极短且不会影响小球的质量、电量和各表面的光滑程度).火药炸完瞬间A 的速度为v 0.求:图4(1)火药爆炸过程中有多少化学能转化为机械能;(2)A 球在磁场中的运动时间;(3)若一段时间后A 、B 在桌上相遇,求爆炸前A 球与桌边P 的距离.答案 (1)mv (2) (3)·k +12k 203πm 2qB 2k -2-3π2 k +1 mv 0qB解析 (1)设爆炸之后B 的速度大小为v B ,选向左为正方向,在爆炸前后由动量守恒可得:0=mv 0-kmv BE =mv +kmv =mv 1220122B k +12k20(2)由A 球对桌面的压力为零可知重力和电场力等大反向,故A 球进入电场中将会做匀速圆周运动,如图所示则T =2πm qB有几何知识可得:粒子在磁场中运动了个圆周34则t 2=3πm2qB(3)由0=mv 0-kmv B 可得:v B =v 0k由qv 0B =m 知,R =v 20R mv 0qB设爆炸前A 球与桌边P 的距离为x A ,爆炸后B 运动的位移为x B ,时间为t B则t B =+t 2+,x B =v B t Bx A v 0Rv 0由图可得:R =x A +x B联立上述各式解得:x A =·.2k -2-3π2 k +1 mv 0qB。
高中物理《动量和能量的综合应用》教案
动量和能量的综合应用一. 教学内容:动量和能量的综合应用二. 重点、难点:1. 重点:分过程及状态使用动量守恒和能量规律2. 难点:动量和能量的综合应用【典型例题】[例1](1)如图,木块B 与水平桌面的接触是光滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧(质量不可忽略)合在一起作为研究对象(系统),此系统从子弹开始射入到弹簧压缩到最短的整个过程中,动量是否守恒。
(2)上述情况中动量不守恒而机械能守恒的是( )A. 子弹进入物块B 的过程B. 物块B 带着子弹向左运动,直到弹簧压缩量达最大的过程C. 弹簧推挤带着子弹的物块B 向右移动,直到弹簧恢复原长的过程D. 带着子弹的物块B 因惯性继续向右移动,直到弹簧伸长量达最大的过程答案:(1)不守恒;(2)BCD解析:以子弹、弹簧、木块为研究对象,分析受力。
在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。
由于子弹射入木块过程,发生剧烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒。
[例2] 在光滑水平面上有A 、B 两球,其动量大小分别为10kg ·m/s 与15kg ·m/s ,方向均为向东,A 球在B 球后,当A 球追上B 球后,两球相碰,则相碰以后,A 、B 两球的动量可能分别为( )A. 10kg ·m/s ,15kg ·m/sB. 8kg ·m/s ,17kg ·m/sC. 12kg ·m/s ,13kg ·m/sD. -10kg ·m/s ,35kg ·m/s答案:B解析:① A 与B 相碰时,B 应做加速,故p B ′>p B ,即B 的动量应变大,故A 、C 不对,因A 、C 两项中的动量都不大于p B =15kg ·m/s 。
② A 、B 相碰时,动能不会增加,而D 选项碰后E k ′=BA B A m m m m 2152102352012222+>+ 故不合理。
高考物理专题——动力学和能量观点的综合应用
第2讲 动力学和能量观点的综合应用 专题复习目标学科核心素养 高考命题方向 1.本讲在应用机械能守恒定律解决问题的过程中,引导学生体会守恒的思想,领悟从守恒的角度分析问题的方法,增强分析和解决问题的能力。
2.掌握从动力学和能量观点分析问题的基本思路和方法。
1.物理观念:能量观念。
2.科学推理和论证:应用牛顿第二定律、运动学公式、动能定理以及能量守恒定律分析和推理。
高考以创设较为复杂的运动情景为依托,强调受力分析、运动过程分析以及应用动力学和能量观点进行分析和推理。
主要题型:动力学方法和动能定理的应用;动力学和能量观点分析多运动过程问题。
一、动力学方法1.匀变速直线运动的运动学公式 速度公式:v =v 0+at ,位移公式:x =v 0t +12at 2,速度位移公式:v 2-v 20=2ax ,平均速度公式v -=v 0+v 2。
2.牛顿第二定律物体运动的加速度与物体受到的合外力成正比,与物体的质量成反比,加速度的方向与物体所受合外力的方向是一致的。
表达式:F 合=ma ,加速度是联系受力和运动的桥梁。
二、能量观点1.动能定理(1)内容:物体所受合外力做的功等于物体动能的变化量。
(2)表达式:W =12m v 22-12m v 21。
(3)应用技巧:如果一个物体有多个运动过程,应用动能定理的时候,可以对全过程和分过程应用动能定理列式。
2.机械能守恒定律(1)内容:在只有重力(或者弹力)做功的物体系统内,动能和势能可以相互转化,但机械能的总量保持不变。
(2)表达式3.功率表达式P=F v的应用(1)求v:由F牵-F阻=ma,P=F牵v,可求v=PF阻+ma。
(2)求v m:由P=F阻v m,可求v m=PF阻。
题型一动力学方法和动能定理的应用1.规律方法运动学的基本规律、牛顿运动定律、圆周运动的知识和动能定理。
2.解题技巧如果涉及加速度、时间和受力的分析和计算,一般应用动力学方法解决;如果只涉及位移、功和能量的转化问题,通常采用动能定理分析。
高考物理专题五动力学动量和能量的观点的综合应用讲学案
专题五动力学、动量和能量的观点的综合应用课标卷高考命题分析年份题号·题型·分值模型·情景题眼分析难度2020年Ⅰ卷35题(2)·计算题·10分三物体2次碰撞只发生2次碰撞的条件中Ⅱ卷35题(2)·计算题·10分碰撞现象与x-t图象结合读取图象信息中2020年Ⅰ卷35题(2)·计算题·10分动量定理变质量微元法难Ⅱ卷35题(2)·计算题·10分斜面体碰撞(三物体2次碰撞)只发生2次碰撞的条件中Ⅲ卷35题(2)·计算题·10分碰撞问题数学计算中2020年Ⅰ卷14题·选择题·6分反冲类动量守恒问题在很短时间内喷出易Ⅲ卷20题·选择题·6分动量定理F-t图象中面积表示冲量中1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统所受外力的合力不为零,但在某一方向上系统受到的合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三个基本观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).高考题型1 动量定理和动量守恒定律的应用例1 (2020·福建省大联考)汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 =36 km/h正面撞击固定试验台,经时间t1= 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2=0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.答案见解析解析(1)v1= 36 km/h=10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1①将已知数据代入①式得I0=1.6×104N·s②由冲量定义有I0 =F0t1③将已知数据代入③式得F0=1.6×105 N④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+m2v2 =(m1+m2)v⑤对试验车,由动量定理有-Ft2 =m1v-m1v1⑥将已知数据代入⑤⑥式得F=2.5×104 N可见F<F0,故试验车的安全气囊不会爆开.1.(多选)(2020·全国卷Ⅲ·20)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动.F随时间t变化的图线如图1所示,则( )图1A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零答案AB解析由动量定理可得:Ft=mv,解得v=Ftm.t=1 s时物块的速率为v=2×12m/s=1 m/s,故A正确;t=2 s时物块的动量大小p2=2×2 kg·m/s=4 kg·m/s,t=3 s时物块的动量大小为p3=(2×2-1×1) kg·m/s=3 kg·m/s,t=4 s 时物块的动量大小为p4=(2×2-1×2) kg·m/s=2 kg·m/s,所以t=4 s 时物块的速度为1 m/s,故B正确,C、D错误.2.(2020·济南一中模拟)如图2所示,质量为3 kg的小车A以v0=4 m/s的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为1 kg的小球B(可看做质点),小球距离车面0.8 m.某一时刻,小车与静止在水平面上的质量为1 kg的物块C发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g取10 m/s2.求:图2(1)绳未断前小球与砂桶的水平距离;(2)小车系统最终的速度大小.答案(1)0.4 m (2)3.2 m/s解析(1)设小车与物块碰后的共同速度为v1,A与C的碰撞动量守恒:m A v0=(m A+m C)v1,解得:v1=3 m/s设小球下落时间为t ,则:H =12gt 2,解得t =0.4 sΔx=(v 0-v 1)t =0.4 m即绳未断前小球与砂桶的水平距离为0.4 m.(2)设系统最终速度为v 2,由水平方向动量守恒可得: (m A +m B ) v 0=(m A +m B +m C )v 2 解得:v 2=3.2 m/s高考题型2 动量和能量观点在力学中的应用例2 (2020·山东临沂市一模)如图3,长度x =5 m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4 m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5 kg, B 的质量M =5.5 kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8 m/s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10 m/s 2,求:图3(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4 m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.答案 (1)4 m/s 3 m/s (2)不能相遇53m 解析 (1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得: -μmgx=12mv A 2-12mv 02①A 与B 碰撞前后动量守恒,有mv A =mv A ′+Mv B ′② 由能量守恒定律得:12mv A 2=12mv A ′2+12Mv B ′2③联立①②③式得v A ′=-4 m/s ,v B ′=3 m/s 碰后A 、B 的速度大小分别为4 m/s 、3 m/s (2)设A 碰撞后运动的路程为s A ,由动能定理得: -μmgs A =0-12mv A ′2④s A =163m所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12Mv B ′2⑥解得s B =3 m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3 m/s.在水平面PQ 上,B 再运动s B ′=s B =3 m 停止,s B ′+s A ′<5 m ,所以A 、B 不能再次相遇. 最终A 、B 的距离s AB =x -s A ′-s B ′=53m.1.弄清有几个物体参与运动,并划分清楚物体的运动过程. 2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.3.(2020·福建泉州市二模)如图4,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.图4(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大; (3)通过计算判断C 能否从木板上掉下来. 答案 见解析解析 (1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12mv 02得,v 0=2gL小球在圆周最低点时拉力最大,由牛顿第二定律得: F T -mg =m v 02R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T 即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t解得:h =L(3)小球与滑块C 碰撞过程中小球和C 组成的系统动量守恒,设C 碰后速率为v 1, 依题意有mv 0=m(-v 02)+3mv 1假设木板足够长,在C 与木板相对滑动直到相对静止过程中,设两者最终共同速率为v 2, 由动量守恒得:3mv 1=(3m +6m)v 2由能量守恒得:12·3mv 12=12(3m +6m)v 22+μ·3mgs联立解得:s =L2由s<L 知,滑块C 不会从木板上掉下来.高考题型3 动量和能量观点在电学中的应用例3 (2020·江西省六校3月联考) 在竖直的xOy 平面内,第Ⅰ、Ⅲ象限均存在相互正交的匀强电场和匀强磁场,第一象限内电场沿+y 方向,磁场垂直xOy 平面向外,第三象限内电场沿-x 方向,磁场垂直xOy 平面向里,电场强度大小均为E ,磁感应强度大小均为B ,A 、B 两小球带等量异种电荷,带电量大小均为q ,两球中间夹一被压缩的长度不计的绝缘轻弹簧(不粘连),某时刻在原点O 处同时由静止释放A 、B ,A 、B 瞬间被弹开之后,A 沿圆弧OM 运动,B 沿直线OP 匀速运动,OP 与-x 轴夹角θ=37°,如图5中虚线所示,不计两球间库仑力的影响,已知重力加速度为g ,sin 37°=0.6,cos 37°=0.8,试求:图5(1)A 、B 两球的质量比m Am B;(2)A 球出射点M 离O 点的距离; (3)刚释放时,弹簧的弹性势能E p . 答案 (1)34 (2)8E 23B 2g (3)350E 3q81B 2g解析 (1)弹开后,A 沿圆弧运动,所以A 应带正电, m A g =Eq 得:m A =EqgB 沿OP 运动,受力平衡,带负电,有 tan θ=Eq m B g ,得:m B =4Eq3gm Am B =Eqg 4Eq 3g=34(2)对B 球受力分析,知:Bqv 2sin θ=Eq 得B 球速度v 2=5E3BA 、B 弹开瞬间动量守恒,可得m A v 1=m B v 2 由以上各式得,A 球速度v 1=20E 9BA 做圆周运动,F A 洛=F 向,即Bqv 1=m A v 12R轨道半径R =m A v 1Bq =20E 29B 2g ,OM =2Rsin θ=8E23B 2g(3)弹开瞬间,由能量守恒可知:E p =12m A v 12+12m B v 22解得:E p =350E 3q81B 2g.4.(2020·哈尔滨师大附中等二模)如图6所示,竖直平面内,水平线OO ′下方足够大的区域内存在水平匀强磁场,磁感应强度为B ,一个单匝正方形导体框,边长为L ,质量为m ,总电阻为r ,从ab 边距离边界OO ′为L 的位置由静止释放.已知从ab 边刚进入磁场到cd 边刚进入磁场所用时间为t ,重力加速度为g ,空气阻力不计,导体框不翻转,求:图6(1)ab 边刚进入磁场时,b 、a 间电势差大小U ba ; (2)cd 边刚进入磁场时,导体框的速度大小. 答案 (1)3BL 42gL (2)gt -B 2L3mr +2gL解析 (1)ab 边刚进入磁场时速度大小为v 1,则mgL =12mv 12E =BLv 1 I =E rU ba =I·34r解得U ba =3BL42gL(2)从ab 边刚进入磁场到cd 边刚进入磁场的过程中 mgt -F A t =mv 2-mv 1 F A =B I LI =E rE =ΔΦtΔΦ=BL 2由以上各式解得: v 2=gt -B 2L3mr+2gL题组1 全国卷真题精选1.(2020·全国卷Ⅱ·35(2))如图7,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3 m(h 小于斜面体的高度).已知小孩与滑板的总质量为m 1=30 kg ,冰块的质量为m 2=10 kg ,小孩与滑板始终无相对运动.取重力加速度的大小g =10 m/s 2.图7(ⅰ)求斜面体的质量;(ⅱ)通过计算判断,冰块与斜面体分离后能否追上小孩? 答案 (ⅰ)20 kg (ⅱ)不能,理由见解析解析 (ⅰ)规定向左为速度正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v ,斜面体的质量为m 3.由水平方向动量守恒和机械能守恒定律得 m 2v 0=(m 2+m 3)v ①式中v0=3 m/s为冰块推出时的速度.联立①②式并代入题给数据得m3=20 kg v=1 m/s③(ⅱ)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v0=0④代入数据得v1=-1 m/s⑤设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v0=m2v2+m3v3⑥1 2m2v02=12m2v22+12m3v32⑦联立③⑥⑦式并代入数据得v2=-1 m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.2.(2020·新课标全国Ⅱ·35(2))如图8,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、 B速度相等时,B 与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短.求从A开始压缩弹簧直至与弹簧分离的过程中,图8(ⅰ)整个系统损失的机械能;(ⅱ)弹簧被压缩到最短时的弹性势能.答案(ⅰ)116mv02(ⅱ)1348mv02解析(ⅰ)从A压缩弹簧到A与B具有相同速度v1时,对A、B与弹簧组成的系统,由动量守恒定律得mv0=2mv1①此时B与C发生完全非弹性碰撞,设碰撞后它们的瞬时速度为v2,损失的机械能为ΔE,对B、C组成的系统,由动量守恒定律和能量守恒定律得mv1=2mv2②1 2mv12=ΔE+12×(2m)v22③联立①②③式得ΔE=116mv02④(ⅱ)由②式可知v2<v1,A将继续压缩弹簧,直至A、B、C三者速度相同,设此速度为v3,此时弹簧被压缩至最短,其弹性势能为E p,由动量守恒定律和能量守恒定律得mv0=3mv3⑤联立④⑤⑥式得E p=1348 mv02题组2 各省市真题精选3.(2020·广东理综·36)如图9所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5 m ,物块A 以v 0=6 m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1 m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1 kg(重力加速度g 取10 m/s 2;A 、B 视为质点,碰撞时间极短).图9(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ;(2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值;(3)求碰后AB 滑至第n 个(n <k)光滑段上的速度v n 与n 的关系式.答案 (1)4 m/s 22 N (2)45(3)v n =9-0.2n m/s(n<k)解析 (1)从A →Q 由动能定理得-mg·2R=12mv 2-12mv 02解得v =4 m/s >gR = 5 m/s在Q 点,由牛顿第二定律得F +mg =m v2R解得F =22 N.(2)A 撞B ,由动量守恒得mv 0=2mv ′解得v ′=v 02=3 m/s设摩擦距离为x ,则-2μmgx=0-12·2mv′2解得x =4.5 m所以k =x L =45.(3)AB 滑至第n 个光滑段上,由动能定理得-μ·2mgnL=12·2mv n 2-12·2mv′2所以v n =9-0.2n m/s(n<k).专题强化练1.(2020·全国卷Ⅰ·14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102kg·m/s C .6.0×102 kg·m/sD .6.3×102 kg·m/s 答案 A解析 设火箭的质量为m 1,燃气的质量为m 2.由题意可知,燃气的动量p 2=m 2v 2=50×10-3×600 kg·m/s =30 kg·m/s.根据动量守恒定律可得,0=m 1v 1-m 2v 2,则火箭的动量大小为p 1=m 1v 1=m 2v 2=30 kg·m/s,所以A 正确,B 、C 、D 错误.2.(2020·贵州贵阳市2月模拟)如图1所示,某超市两辆相同的手推购物车质量均为m 、相距l 沿直线排列,静置于水平地面上.为节省收纳空间,工人给第一辆车一个瞬间的水平推力使其运动,并与第二辆车相碰,且在极短时间内相互嵌套结为一体,以共同的速度运动了距离l 2,恰好停靠在墙边.若车运动时受到的摩擦力恒为车重的k 倍,忽略空气阻力,重力加速度为g.求:图1 (1)购物车碰撞过程中系统损失的机械能;(2)工人给第一辆购物车的水平冲量大小.答案 (1)mkgl (2)m 6gkl解析 (1)设第一辆车碰前瞬间的速度为v 1,与第二辆车碰后的共同速度为v 2.由动量守恒定律有mv 1=2mv 2由动能定理有-2kmg·l 2=0-12(2m)v 22 则碰撞中系统损失的机械能ΔE=12mv 12-12(2m)v 22 联立以上各式解得ΔE=mkgl(2)设第一辆车推出时的速度为v 0由动能定理有-kmgl =12mv 12-12mv 02 冲量I =mv 0联立解得I =m 6gkl.3.(2020·四川宜宾市二诊) 如图2所示,在粗糙水平面上A 点固定一半径R =0.2 m 的竖直光滑圆弧轨道,底端有一小孔.在水平面上距A 点s =1 m 的B 点正上方O 处,用长为L =0.9 m 的轻绳悬挂一质量M =0.1 kg 的小球甲,现将小球甲拉至图中C 位置,绳与竖直方向夹角θ=60°.静止释放小球甲,摆到最低点B 点时与另一质量m =0.05 kg 的静止小滑块乙(可视为质点)发生完全弹性碰撞.碰后小滑块乙在水平面上运动到A 点,并无碰撞地经过小孔进入圆轨道,当小滑块乙进入圆轨道后立即关闭小孔.g =10 m/s 2.图2(1)求甲、乙碰前瞬间小球甲的速度大小;(2)若小滑块乙进入圆轨道后的运动过程中恰好不脱离圆轨道,求小滑块乙与水平面的动摩擦因数. 答案 (1)3 m/s (2)0.3或0.6解析 (1)小球甲由C 到B ,由动能定理得Mg(L -Lcos θ)=12Mv 02 解得v 0=3 m/s(2)甲、乙发生完全弹性碰撞,由动量守恒定律得Mv 0=Mv 1+mv 2由能量守恒定律得12Mv 02=12Mv 12+12mv 22 解得v 2=4 m/s若小滑块乙恰能经过最高点,则最高点速度v t 满足mg =m v t 2R解得v t =gR从B 到圆轨道最高点,由动能定理有-μmgs-2mgR =12mv t 2-12mv 22 解得μ=0.3若滑块乙不能经过圆轨道最高点,则最高位置必与圆心同高,由动能定理得-μ′mgs -mgR =0-12mv 22 解得μ′=0.6因此小滑块乙与水平面的动摩擦因数为0.3或0.6.4.(2020·四川绵阳市二诊)如图3所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段AB 、圆弧段CD 和倾斜段DP 都光滑,水平段BC 粗糙,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h =0.1 m ,整个轨道绝缘,处于方向水平向左、场强未知的匀强电场中.一个质量m 1=0.4 kg 、带正电、电荷量未知的小物块Ⅰ在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2=0.6 kg 小物块Ⅱ碰撞并粘在一起在BC 段上做匀速直线运动,到达倾斜段DP 上某位置.物块Ⅰ和Ⅱ与轨道BC 段的动摩擦因数都为μ=0.2.g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图3(1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小;(2)物块Ⅰ和Ⅱ第一次经过C 点时,圆弧段轨道对物块Ⅰ和Ⅱ支持力的大小.答案 (1)2 m/s (2)18 N解析 (1)物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度为E ,物块Ⅰ带电荷量为q ,物块Ⅰ与物块Ⅱ碰撞前速度为v 1,碰撞后共同速度为v 2,则qE =μ(m 1+m 2)gqEt =m 1v 1m 1v 1=(m 1+m 2)v 2解得v 2=2 m/s(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ经过C 点时圆弧段轨道对物块Ⅰ和Ⅱ支持力的大小为F N ,则 R(1-cos θ)=hF N -(m 1+m 2)g =(m 1+m 2)v 22R解得F N =18 N.5.(2020·山东淄博市二模)如图4所示,一个质量为m 、电阻不计的足够长的光滑U 形金属框架MNQP ,位于光滑绝缘水平桌面上,平行导轨MN 和PQ 相距为L.空间存在着足够大的方向竖直向下的匀强磁场,磁感应强度的大小为B.另有质量也为m 的金属棒CD ,垂直于MN 放置在导轨上,并用一根与MN 平行的绝缘细线系在定点A.已知,细线能承受的最大拉力为T 0,CD 棒接入导轨间的有效电阻为R.现从t =0时刻开始对U 形框架施加水平向右的拉力,使其从静止开始做加速度为a 的匀加速直线运动.图4(1)求从框架开始运动到细线断裂所需的时间t 0及细线断裂时框架的瞬时速度v 0大小;(2)若在细线断裂时,立即撤去拉力,求此后过程中回路产生的总焦耳热Q.答案 (1)T 0R B 2L 2a T 0R B 2L 2 (2)mT 02R 24B 4L4 解析 (1)细线断裂时,对棒有T 0=F 安,F 安=BILI =E R,E =BLv 0,v 0=at 0 联立解得t 0=T 0R B 2L 2a ,v 0=T 0R B 2L 2(2)在细线断裂时立即撤去拉力,框架向右减速运动,棒向右加速运动,直至二者速度相同,设二者最终速度大小为v ,撤去拉力F 时,框架的速度v 0=T 0RB 2L 2,由系统动量守恒可得mv 0=2mv解得v =v 02=T 0R2B 2L 2撤去拉力后,系统总动能的减少量等于回路消耗的电能,最终在回路中产生的总焦耳热为Q =12mv 02-12·2mv 2解得Q =mT 02R24B 4L 4.高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
山东专用高考物理二轮复习专题二5第5讲动量与能量的综合应用教案
山东专用高考物理二轮复习专题二5第5讲动量与能量的综合应用教案第5讲动量与能量的综合应用一、单项选择题1.(2019安徽芜湖模拟)光滑水平面上有两个小球,在同一直线上相向运动,它们的动量大小相等,则两球碰撞后,下列说法正确的是( )A.两球可能沿同一方向运动B.两个小球可能一个静止,一个运动C.若两球均运动,则质量大的球动量一定小D.若两球均运动,则质量大的球动能一定小答案 D 由题可知,两球沿同一直线相向运动,动量大小相等,因此系统的总动量为零,碰撞过程系统的总动量守恒,因此碰撞后系统的总动量仍为零,因此两球不可能沿同一方向运动,也不可能一个静止,一个运动,A、B项错误;若两球均运动,根据动量守恒定律可知,两球一定沿相反方向运动,且动量等大反向,即m1v1=m2v2,C 可知,质量大的球动能小,D项正确。
项错误;由E k=p22p2.如图所示,质量为0.5 kg的小球在距离小车底部20 m高处以一定的初速度向左平抛,落在以7.5 m/s的速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg。
设小球在落到车底前瞬间速度大小是25 m/s,重力加速度取10 m/s2,不计空气阻力。
则当小球与小车相对静止时,小车的速度大小是( )A.4 m/sB.5 m/sC.8.5 m/sD.9.5 m/s答案 B 小球做平抛运动,下落时间为t=√2pp=2 s,竖直方向速度大小为v y =gt=20 m/s,小球在落到车底前瞬时速度大小是25 m/s,根据速度合成原则可知,v x =√p 2-p p 2=15 m/s,小球与车在水平方向上动量守恒,以向右为正方向,有Mv 车-mv x =(m+M)v 共,解得v 共=5 m/s,故B 正确。
3.(2015重庆理综,3,6分)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动)。
2018年高考物理一轮复习专题五动力学和能量观点的综合应用精讲深剖
专题五 动力学和能量观点的综合应用【专题解读】1.本专题是力学两大观点在直线运动、曲线运动多物体多过程的综合应用,高考常以计算题压轴题的形式命题.2.学好本专题,可以极大的培养同学们的审题能力、推理能力和规范表达能力,针对性的专题强化,可以提升同学们解决压轴题的信心.3.用到的知识有:动力学方法观点(牛顿运动定律、运动学基本规律),能量观点(动能定理、机械能守恒定律、能量守恒定律).考向一 多运动组合问题1.多运动组合问题主要是指直线运动、平抛运动和竖直面内圆周运动的组合问题. 2.解题策略(1)动力学方法观点:牛顿运动定律、运动学基本规律. (2)能量观点:动能定理、机械能守恒定律、能量守恒定律. 3.解题关键(1)抓住物理情景中出现的运动状态和运动过程,将物理过程分解成几个简单的子过程. (2)两个相邻过程连接点的速度是联系两过程的纽带,也是解题的关键.很多情况下平抛运动的末速度的方向是解题的重要突破口.【例1】 如图1所示,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态,直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出),随后P 沿轨道被弹回,最高到达F 点,AF =4R .已知P 与直轨道间的动摩擦因数μ=14,重力加速度大小为g .(取sin 37°=35,cos 37°=45)图1(1)求P 第一次运动到B 点时速度的大小;(2)求P 运动到E 点时弹簧的弹性势能;(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点.G 点在C 点左下方,与C 点水平相距72R 、竖直相距R ,求P 运动到D 点时速度的大小和改变后P 的质量.关键词 ①直轨道与一半径为56R 的光滑圆弧轨道相切;②水平飞出后,恰好通过G 点.【答案】(1)2gR (2)125mgR (3)355gR 13m(3)设改变后P 的质量为m 1,D 点与G 点的水平距离为x 1、竖直距离为y 1,由几何关系(如图所示)得θ=37°.由几何关系得:方法总结多过程问题的解题技巧1.“合”——初步了解全过程,构建大致的运动图景. 2.“分”——将全过程进行分解,分析每个过程的规律. 3.“合”——找到子过程的联系,寻找解题方法. 阶梯练习1.同学们参照伽利略时期演示平抛运动的方法制作了如图2所示的实验装置.图中水平放置的底板上竖直地固定有M 板和N 板.M 板上部有一半径为R 的14圆弧形的粗糙轨道,P 为最高点,Q 为最低点,Q 点处的切线水平,距底板高为H .N 板上固定有三个圆环.将质量为m 的小球从P 处静止释放,小球运动至Q 飞出后无阻碍地通过各圆环中心,落到底板上距Q 水平距离为L 处.不考虑空气阻力,重力加速度为g .求:(1)距Q 水平距离为L2的圆环中心到底板的高度;(2)小球运动到Q 点时速度的大小以及对轨道压力的大小和方向; (3)摩擦力对小球做的功. 【答案】(1)34H (2)Lg 2H mg (1+L 22HR ),方向竖直向下 (3)mg (L 24H-R )2.如图3所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.水平桌面右侧有一竖直放置的轨道MNP ,其形状为半径R =1.0 m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4 m .用质量为m =0.2 kg 的物块将弹簧缓慢压缩到C 点后释放,物块经过B 点后做匀变速运动,其位移与时间的关系为x =6t -2t 2,物块飞离桌面后恰好由P 点沿切线落入圆轨道.(不计空气阻力,g 取10 m/s 2)图3(1)求物块过B 点时的瞬时速度大小v B 及物块与桌面间的动摩擦因数μ; (2)若轨道MNP 光滑,求物块经过轨道最低点N 时对轨道的压力F N ;(3)若物块刚好能到达轨道最高点M ,求物块从B 点到M 点运动的过程中克服摩擦力所做的功W .【答案】(1)6 m/s 0.4 (2)16.8 N ,方向竖直向下 (3)4.4 J解得F N ′=16.8 N根据牛顿第三定律,F N =F N ′=16.8 N ,方向竖直向下(3)物块刚好能到达M 点,有mg =m v2M R解得v M=gR=10 m/s物块到达P点的速度v P=v2x+v2y=8 m/s 从P到M点应用动能定理,有-mgR(1+cos 60°)-W PNM=12mv2M-12mv2P考向二传送带模型问题1.模型分类:水平传送带问题和倾斜传送带问题.2.处理方法:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.例2 如图4所示,小物块A、B由跨过定滑轮的轻绳相连,A置于倾角为37°的光滑固定斜面上,B位于水平传送带的左端,轻绳分别与斜面、传送带平行,传送带始终以速度v0=2 m/s 向右匀速运动,某时刻B从传送带左端以速度v1=6 m/s向右运动,经过一段时间回到传送带的左端,已知A、B的质量均为1 kg,B与传送带间的动摩擦因数为0.2.斜面、轻绳、传送带均足够长,A不会碰到定滑轮,定滑轮的质量与摩擦力均不计,g取10 m/s2,sin 37°=0.6,求:图4(1)B向右运动的总时间;(2)B回到传送带左端的速度大小;(3)上述过程中,B与传送带间因摩擦产生的总热量.关键词①光滑固定斜面;②B 与传送带间的动摩擦因数为0.2;③B 经过一段时间回到传送带的左端.【答案】(1)2 s (2)2 5 m/s (3)(16+45) J【解析】(1)B 向右减速运动的过程中,刚开始时,B 的速度大于传送带的速度,以B 为研究对象,水平方向B 受到向左的摩擦力与绳对B 的拉力,设绳子的拉力为F T1,以向左为正方向,得F T1+μmg =ma 1①以A 为研究对象,则A 的加速度的大小始终与B 相等,A 向上运动的过程中受力如图,则mg sin 37°-F T1=ma 1②联立①②可得a 1=g sin 37°+μg2=4 m/s 2③B 的速度与传送带的速度相等时所用的时间 t 1=-v 0--v 1a 1=1 s.所以它们受到的合力不变,所以B 的加速度a 3=a 2=2 m/s 2.t 1时间内B 的位移x 1=-v 0+-v 12t 1=-4 m ,负号表示方向向右.t 2时间内B 的位移x 2=0+-v 02×t 2=-1 m , 负号表示方向向右.B 的总位移x =x 1+x 2=-5 m.B 回到传送带左端的位移x 3=-x =5 m.速度v =2a 3x 3=2 5 m/s.(3)t 1时间内传送带的位移x 1′=-v 0t 1=-2 m , 该时间内传送带相对于B 的位移Δx 1=x 1′-x 1=2 m.t 2时间内传送带的位移x 2′=-v 0t 2=-2 m ,方法总结 1.分析流程2.功能关系(1)功能关系分析:W F =ΔE k +ΔE p +Q .(2)对W F和Q的理解:①传送带的功:W F=Fx传;②产生的内能Q=F f x相对.阶梯练习3.如图5所示,传送带与地面的夹角θ=37°,A、B两端间距L=16 m,传送带以速度v=10 m/s沿顺时针方向运动,物体质量m=1 kg无初速度地放置于A端,它与传送带间的动摩擦因数μ=0.5,sin 37°=0.6,g=10 m/s2,试求:图5(1)物体由A端运动到B端的时间;(2)系统因摩擦产生的热量.【答案】(1)2 s (2)24 J4.一质量为M=2.0 kg的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中并从物块中穿过,子弹和小物块的作用时间极短,如图6甲所示.地面观察者记录了小物块被击中后的速度随时间变化的关系如图乙所示(图中取向右运动的方向为正方向).已知传送带的速度保持不变,g取10 m/s2.图6(1)指出传送带速度v的大小及方向,说明理由.(2)计算物块与传送带间的动摩擦因数μ.(3)传送带对外做了多少功?子弹射穿物块后系统有多少能量转化为内能?【答案】(1)2.0 m/s 方向向右(2)0.2 (3)24 J 36 J考向三滑块—木板模型问题1.滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑块—木板模型.2.滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.例3 图7甲中,质量为m1=1 kg的物块叠放在质量为m2=3 kg的木板右端.木板足够长,放在光滑的水平面上,木板与物块之间的动摩擦因数为μ1=0.2.整个系统开始时静止,重力加速度g取10 m/s2.甲图7(1)在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F至少应为多大?(2)在0~4 s内,若拉力F的变化如图乙所示,2 s后木板进入μ2=0.25的粗糙水平面,在图丙中画出0~4 s内木板和物块的v-t图象,并求出0~4 s内物块相对木板的位移大小和整个系统因摩擦而产生的内能.【答案】(1)8 N (2)见解析系统摩擦产生的内能Q1=μ1m1gΔx1=4 J.2~4 s内物块相对木板的位移大小Δx2=1 m,物块与木板因摩擦产生的内能Q2=μ1m1gΔx2=2 J;木板对地位移x2=3 m,木板与地面因摩擦产生的内能Q3=μ2(m1+m2)gx2=30 J.0~4 s内系统因摩擦产生的总内能为Q=Q1+Q2+Q3=36 J.方法总结滑块—木板模型问题的分析和技巧1.解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.2.规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE内=-ΔE机=F f x相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.阶梯练习5.如图8所示,一劲度系数很大的轻弹簧一端固定在倾角为θ=30°的斜面底端,将弹簧压缩至A 点锁定,然后将一质量为m 的小物块紧靠弹簧放置,物块与斜面间动摩擦因数μ=36,解除弹簧锁定,物块恰能上滑至B 点,A 、B 两点的高度差为h 0,已知重力加速度为g .图8(1)求弹簧锁定时具有的弹性势能E p .(2)求物块从A 到B 的时间t 1与从B 返回到A 的时间t 2之比.(3)若每当物块离开弹簧后,就将弹簧压缩到A 点并锁定,物块返回A 点时立刻解除锁定.设斜面最高点C 的高度H =2h 0,试通过计算判断物块最终能否从C 点抛出?【答案】(1)32mgh 0 (2)33(3)见解析 【解析】(1)物块受到的滑动摩擦力F f =μmg cos θ,A 到B 过程由功能关系有-F fh 0sin θ=mgh 0-E p ,解得E p =32mgh 0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课标卷高考命题分析1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统所受外力的合力不为零,但在某一方向上系统受到的合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三个基本观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).高考题型1动量定理和动量守恒定律的应用例1(2017·福建省大联考)汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 =36 km/h正面撞击固定试验台,经时间t1=0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2=0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.答案见解析解析(1)v1=36 km/h=10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1①将已知数据代入①式得I0=1.6×104 N·s②由冲量定义有I0 =F0t1③将已知数据代入③式得F0=1.6×105 N④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+m2v2 =(m1+m2)v⑤对试验车,由动量定理有-Ft 2 =m 1v -m 1v 1⑥ 将已知数据代入⑤⑥式得F =2.5×104 N 可见F <F 0,故试验车的安全气囊不会爆开.1.(多选)(2017·全国卷Ⅲ·20)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动.F 随时间t 变化的图线如图1所示,则( )图1A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零 答案 AB解析 由动量定理可得:Ft =m v ,解得v =Ftm .t =1 s 时物块的速率为v =2×12 m /s =1 m/s ,故A 正确;t =2 s 时物块的动量大小p 2=2×2 kg·m /s =4 kg·m/s ,t =3 s 时物块的动量大小为p 3=(2×2-1×1) kg·m/s =3 kg·m/s ,t =4 s 时物块的动量大小为p 4=(2×2-1×2) kg·m /s =2 kg·m/s ,所以t =4 s 时物块的速度为1 m/s ,故B 正确,C 、D 错误.2.(2017·济南一中模拟)如图2所示,质量为3 kg 的小车A 以v 0=4 m /s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为1 kg 的小球B (可看做质点),小球距离车面0.8 m .某一时刻,小车与静止在水平面上的质量为1 kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g 取10 m/s 2.求:图2(1)绳未断前小球与砂桶的水平距离; (2)小车系统最终的速度大小. 答案 (1)0.4 m (2)3.2 m/s解析 (1)设小车与物块碰后的共同速度为v 1, A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1, 解得:v 1=3 m/s设小球下落时间为t ,则:H =12gt 2,解得t =0.4 sΔx =(v 0-v 1)t =0.4 m即绳未断前小球与砂桶的水平距离为0.4 m.(2)设系统最终速度为v 2,由水平方向动量守恒可得: (m A +m B ) v 0=(m A +m B +m C )v 2 解得:v 2=3.2 m/s高考题型2 动量和能量观点在力学中的应用例2 (2017·山东临沂市一模)如图3,长度x =5 m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4 m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5 kg, B 的质量M =5.5 kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8 m /s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10 m/s 2,求:图3(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4 m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远. 答案 (1)4 m /s 3 m/s (2)不能相遇 53m解析 (1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得: -μmgx =12m v A 2-12m v 02①A 与B 碰撞前后动量守恒,有m v A =m v A ′+M v B ′② 由能量守恒定律得:12m v A 2=12m v A ′2+12M v B ′2③联立①②③式得v A ′=-4 m /s ,v B ′=3 m/s 碰后A 、B 的速度大小分别为4 m /s 、3 m/s (2)设A 碰撞后运动的路程为s A ,由动能定理得: -μmgs A =0-12m v A ′2④s A =163m所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12M v B ′2⑥解得s B =3 m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3 m/s.在水平面PQ 上,B 再运动s B ′=s B =3 m 停止,s B ′+s A ′<5 m ,所以A 、B 不能再次相遇. 最终A 、B 的距离s AB =x -s A ′-s B ′=53m.1.弄清有几个物体参与运动,并划分清楚物体的运动过程. 2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.3.(2017·福建泉州市二模)如图4,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.图4(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大; (3)通过计算判断C 能否从木板上掉下来. 答案 见解析解析 (1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12m v 02得,v 0=2gL小球在圆周最低点时拉力最大,由牛顿第二定律得: F T -mg =m v 02R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T 即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t解得:h =L(3)小球与滑块C 碰撞过程中小球和C 组成的系统动量守恒,设C 碰后速率为v 1,。