10吨吊车梁计算书
10吨葫芦双梁起重机计算书
10吨葫芦双梁起重机计算书计算书项目:10吨葫芦双梁起重机一、计算荷载1.预计荷载根据项目需求,起重机的设计荷载为10吨,即最大起重能力为10吨。
2.起升荷载根据起重机的工作条件和使用需求,预计维持起吊时的起升荷载为7吨。
这个值较为保守,可以确保机械的安全操作。
3.起升高度根据项目需求,起升高度为30米。
4.设计荷载计算根据荷载特征系数,起吊荷载的设计荷载为最大起重能力乘以系数,即设计荷载=10吨*1.25=12.5吨。
二、计算主要构件尺寸1.主梁尺寸计算根据主梁材质和设计荷载,可以计算主梁的截面尺寸。
一般起重机主梁采用钢结构,需要满足强度和刚度的要求。
通过计算,可以确定主梁的截面尺寸。
2.起升机构计算起升机构是起重机的核心部件,需要满足起升速度和动力要求。
根据设计荷载和起升高度,可以计算起升机构所需的电机功率和速度。
同时,还需要计算起升机构的滚筒直径、齿轮尺寸、链条尺寸等。
3.支腿计算支腿是起重机的稳定部件,需要满足机械的稳定性和平衡性。
根据起重机的设计荷载和基座尺寸,可以计算支腿的尺寸和材质。
4.自由悬吊计算自由悬吊是起重机的附属设备,需要满足起升高度和安全要求。
根据荷载、高度和起升速度,可以计算自由悬吊所需的滑轮尺寸、链条尺寸等。
三、结构计算1.吊机的结构设计根据主梁、起升机构、支腿和自由悬吊的尺寸计算结果,可以进行整体的结构设计。
需要考虑整机的稳定性、安全性和材质的选择。
2.强度校核对主要结构构件进行强度校核,确保各部件的强度满足要求,不发生破损和损坏。
3.刚度校核对吊机的刚度进行校核,确保起升机构和支腿等部件的刚度满足要求,不会发生过大的位移和变形。
4.操作安全性校核对吊机的操作安全性进行校核,确保吊机在起吊过程中不会发生滑移、倾翻等危险情况。
四、验算和检测1.吊车的静态测试对吊车进行静态测试,检验各部件是否安装正确,刚度和强度是否满足设计要求。
2.起升机构的动态测试对起升机构进行动态测试,检验起升机构的速度、承载能力和动力是否满足要求。
吊车梁计算书
-139.661
-498.708
上部 as:
35
35
35
下部 as:
65
65
65
上部纵筋:
640
640
640
下部纵筋:
640
4911
640
箍筋 Asv: 上纵实配:
947 4E16(804)
947 4E16(804)
947 4E16(804)
下纵实配: 4E28+5E25 2/7(4917)
箍筋实配:
根据厂房预制吊车梁布置图(见附图),吊车梁的长度共有 11 种规格,其长 度依次为:5.875m,6.220m,6.530m,6.175m, 6.770m ,6.425m,7.268m, 6.923m,7.279m,8.215m,7.790m。本次选取标准跨径为 8.215m 的梁进行计算,梁 的净跨度为 7.150m,梁的支承宽度按 0.725m、0.340m 计算。初拟该 T 形梁的梁高
T:一个轮子产生的扭矩标准值,kN·m; Pmax:吊车最大竖向轮压标准值,kN,162 kN; H0:吊车横向水平刹车力标准值(一个轮子),kN; μ:吊车竖向轮压动力系数,1.05; β:一台吊车工作时,β=0.8。 e1:吊车轨道安装偏心矩,m,一般取 0.02m; e2:H0 对吊车梁截面弯曲中心的距离,0.4+0.05+0.15m=0.6m; 已知小车刹车力为 10.3kN,此刹车力当小车极靠近某侧吊车梁时,刹车力几乎 由该侧大车 4 个轮子全部承担,单个轮子水平刹车力标准值为 10.3÷4=2.575kN T = β (µ Pmaxe1 + H0e2 ) = 0.8×(1.05×162× 0.02 + 2.575× 0.6)= 3.96kN ⋅ m
10t门式起重机轨道梁基础受力计算书
1#标准化钢筋加工场10t门式起重机轨道梁基础受力计算书项目部名称:项目总工程师:工程技术人员:年月日第份/共份目录1 工程概况 (1)2 基础设计及受力分析 (1)2.1 门式起重机轨道梁基础设计 (1)2.2 受力分析 (2)2.3 荷载组合 (3)2.4 建模计算 (3)2.5 门式起重机轨道梁基础配筋 (5)2.6 门式起重机轨道梁基础地基承载力计算 (8)3 总结 (9)1 工程概况1#标准化钢筋加工场计划配置3台10t门式起重机,其跨径1-27m,净高7m。
2 基础设计及受力分析2.1 门式起重机轨道梁基础设计轨道梁基础采用倒T型C25钢筋混凝土条形基础,基础底部宽60cm,上部宽40cm,每隔15m设置一道2cm宽的沉降缝。
基础底部采用6根HRB400Φ12钢筋作为纵向受拉钢筋,顶部放置两排Φ12作为抗负弯矩主筋,每隔40cm设置一道环形箍筋。
箍筋采用HPB300φ8光圆钢筋,具体尺寸如下图2-1、图2-2所示。
图2-1 门式起重机轨道梁基础断面设计图图2-2 门式起重机轨道梁基础配筋图2.2 受力分析(1)轮压荷载根据《1#标准化钢筋加工场10t门式起重机设计图纸》所提供资料,本例门式起重机两个车轮之间间距为6m,单个最大轮压为80kN,受力简图如下2-3所示:图2-3 门式起重机受力示意图(2)自重荷载轨道梁自重由计算软件自动计入。
2.3 荷载组合根据《路桥施工计算手册》进行荷载组合,其中恒载分项系数取 1.2,活载冲击系数取1.45,利用计算软件自动输入。
2.4 建模计算2.4.1 力学模型简化本例轨道梁基础采用Midas-Civil 2017进行建模计算,基础模拟共采用110个节点,110个梁单元,电算建模细则如下:建模范围:轨道梁基础长度110m。
单元类型:轨道梁基础采用一般梁单元模拟,其中轨道梁基础以1m单元体分割,共分割为110个单元体。
边界条件:轨道梁基础两端采用一般支承限制约束;轨道梁基础底部采用面弹性支承的分布弹性支承,基床系数k =5.6×104kN/m³。
型钢吊车梁计算书
吊车梁计算书焊接工字钢吊车梁计算书!跨度6米,10吨单梁吊车[设计资料]吊车数:1台吊车工作级别:A1-A3吊车的轮数2吊车轮子间间距a1=0.25m, a2=2m, a3=0m最大轮压标准值40KN横向荷载标准值5KN竖向轮压动力系数1.05钢材类型:Q235支座形式:平板式吊车梁长度6m轨道高度107mm建筑允许高度10m控制挠度值1/600欠载系数0受拉翼缘与腹板连接处焊缝及附近的主体金属疲劳应力幅0N/mm^2 横向加劲肋端点处手工焊缝附近的主体金属疲劳应力幅0N/mm^2 无制动结构支撑数:0(1)截面特征计算吊车梁高度h=450 mm腹板厚度tw=10 mm上翼缘宽度bs=330 mm上翼缘厚度ts=14 mm下翼缘宽度bx=200 mm下翼缘厚度tx=14 mm吊车梁截面面积A=11640 mm^2吊车梁X轴惯性矩Ix=4.01852e+008 mm^4吊车梁X轴抵抗矩Wx1=2.10488e+006 mm^3吊车梁X轴抵抗矩Wx2=1.55104e+006 mm^3吊车梁Y轴抵抗矩Wy=310879 mm^3吊车梁上翼缘截面对Y轴抵抗矩Wy1=254100 mm^3吊车梁最大面积矩Sx=1.22977e+006 mm^3(2)内力计算吊车竖向荷载标准值P=40KN吊车竖向荷载设计值P=1.4x1.05x40=58.8KN吊车横向荷载标准值T=5KN吊车横向荷载设计值T=1.4x5=7KN吊车梁的最大设计弯矩Mmax=122.5 kN*m吊车梁的最大设计弯矩处相应的设计剪力Vc=49 kN梁端支座处的最大设计剪力Vcmax=98 kN吊车梁在水平荷载作用下的最大设计弯矩MTmax=14.583 kN*m局部承压验算的集中荷载设计值F=58.8 kN(3)承载力验算1)强度验算上翼缘:最大正应力σ=Mmax/Wx1 + MTmax/Wy1=115.59N/mm2<f=215N/mm^2,满足下翼缘:最大正应力σ=Mmax/Wx2 =78.98 N/mm^2<f=215N/mm^2,满足腹板:最大剪应力τ=VcmaxSx/Ix/tw =29.99 N/mm^2<fv=125N/mm^2,满足ψ=1,lz=50+2x107+5x14=334 mm局部压应力σc=ψF/tw/lz =17.6 N/mm^2<f=215N/mm^2,满足2)整体稳定验算因6000/330=18.1818>13 ,所以需要验算吊车梁的整体稳定梁的整体稳定系数Фb = 0.918整体稳定应力σ=Mmax/Фb/Wx1 + MTmax/Wy=110.3N/mm^2<f=215N/mm^2,满足3)刚度验算吊车梁的竖向挠度验算按一台吊车荷载标准值作用下产生的最大弯矩Mkx=83.333 kN*m挠度v=Mkx*l*l/10/E/Ix=3.62mm < [v]=10mm,满足4)疲劳验算本吊车为A1-A3工作级别吊车,不必进行疲劳验算。
10t双梁起重机基础承载力计算书
10t双梁起重机基础承载力计算书1. 引言本文档旨在计算10t双梁起重机基础的承载力,以满足安全和稳定要求。
在计算过程中,会考虑起重机的重量、荷载和基础材料的特征等因素。
2. 起重机参数- 起重机型号:10t双梁起重机- 最大起重能力:10吨- 起升高度:标准高度(可根据实际情况调整)- 跨度:标准跨度(可根据实际情况调整)3. 基础材料参数- 基础材料:混凝土- 基础设计强度等级:C25- 基础材料特性:抗压强度fc = 25MPa4. 承载力计算1. 计算基础面积(A)根据起重机参数和实际情况,确定基础面积。
假设基础面积为: A = 10m × 10m = 100m²2. 计算基础承载力(Q)基础承载力为基础面积乘以基础材料的抗压强度。
Q = A × fc = 100m² × 25MPa = 2500kN3. 计算起重机重量(W)根据起重机参数,确定起重机的自重。
假设起重机自重为: W = 20t = 200kN4. 计算荷载(L)根据起重机的最大起重能力,确定荷载。
假设荷载为: L = 10t = 100kN5. 判断基础承载力和荷载的比较如果基础承载力大于等于起重机重量和荷载之和,则满足安全要求;反之,则需要重新设计基础。
比较结果为:基础承载力(Q) >= 起重机重量(W) + 荷载(L)2500kN >= 200kN + 100kN2500kN >= 300kN满足安全要求。
5. 结论根据计算结果,10t双梁起重机基础的承载力满足安全和稳定的要求。
为确保实际施工的可行性,建议根据实际情况进行认真勘察,并再次检查计算过程和结果。
参考文献- 相关国家或地区的建筑规范和标准- 起重机制造商提供的技术规格和数据以上文档仅供参考,具体情况,请在实际施工中结合专业知识和建筑规范进行具体计算。
10t桥式起重机基础承载力计算书
10t桥式起重机基础承载力计算书
1. 引言
本文档旨在计算10t桥式起重机基础的承载力。
起重机的基础承载力是设计和安装过程中至关重要的参数,它直接影响起重机的稳定性和安全性。
2. 计算方法
基础承载力的计算遵循以下简单策略:
- 根据桥式起重机的额定起重量为10t,确定基础承载力的设计参数
- 结合承载力计算公式和相关标准,计算基础所需的尺寸和材料
3. 承载力计算步骤
计算基础承载力的步骤如下:
3.1 确定起重机参数
- 起重机额定起重量:10t
3.2 计算单个主梁轮压力
根据起重机的额定起重量,计算单个主梁轮的压力,公式如下:\[ P = \frac{W}{N} \]
其中,P为单个主梁轮的压力,W为起重机额定起重量,N为
主梁轮的数量。
3.3 确定基础尺寸
根据单个主梁轮的压力,确定基础所需的尺寸,包括基础底面
积和基础高度。
具体的计算公式和参数参考相关标准。
3.4 确定基础材料
根据基础的尺寸和设计要求,选择合适的材料以满足基础的承
载力需求。
材料的选择应遵循相关标准和规范。
4. 结论
根据以上计算步骤,可以得出10t桥式起重机基础的承载力计
算结果。
通过合理的设计和计算,确保基础能够承受起重机的额定
起重量,从而保证起重机操作的安全性和稳定性。
请注意,本文档中的计算结果仅供参考,具体的设计和施工应根据实际情况和相关标准进行。
吊车梁的计算书
计算:(1).行车基本数据计算:G1,k=448.46KN , G2,k=165.54KN, G3,k=500KN, P max,k=437KN说明G1,k为大车重量,G2,k为小车重量,G3,k为额定起吊重量,P max,k为最大轮压标准值P min,k=( G1,k+ G2,k+ G3,k)/2- P max,k=(448.46+165.54+500)/2-437.1=120KN利用如图所示的简支吊车梁支座反力影响线计算D max,k ,D min,k(按两台车考虑)D max,k=βP max,k∑y i=1X437(1+0.286)=1X437X1.286=562KND min,k=βP min,k∑y i =1X120X1.286=154.32KN纵向水平荷载:T纵向水平,k =α,∑P max,k=0.1X437=43.7KN横向水平荷载:T总横向水平,k =α(G2,k + G3,k)=0.1X(165.54+500)=66.55KNT横向水平,k =α(G2,k + G3,k)/4=66.55/4=16.64KNT max横向水平,k =βT横向水平,k∑y i =1.0X16.54X1.286=21.27KN由上部数据可知行车牛腿最大荷载为竖向荷载D max,k=562KN,水平荷载T max横向=21.27KN水平,k(2).吊车梁基本数据计算:A.吊车的计算跨度7000mm,梁上部荷载按P max,k=437KN(按一台车考虑)a. 跨中截面C 的最大弯矩,临界荷载为437KNMc max =437X1.75=764.75KN.mb. 绝对最大弯矩合力为437KNR 至临界荷载(437KN )的距离a 由合力矩定理求得:a=0mM max = Mc max =764.75KN.m所以可知吊车梁的绝对最大弯矩为764.75KN.M (标准值) 对应的水平最大水平推力产生弯矩M 水(吊车梁)= M max X T 横向水平,k / P max,k =764.75X 21.27/437=37.22KN.M由剪力包络图可知:V max = P max,k ∑y i =437X (1+0.286)=437X1.286=5627KN (标准值)由上可得出吊车梁计算的基本数据:(标准值)M max =764.75KN.M M 水(吊车梁)=37.22KN.M V max =562KN吊车梁自重:(0.6X0.2+0.8X0.35)X25=10KN/M轨道自重:0.64KN/M∑=10+0.64=10.64KN/M恒载:M=1/8ql 2=1/8X10.64X72=65.17KN.MV=1/2ql=1/2X10.64X7=37.24KN一.吊车梁计算: 1. 承载力极限状态 承载力计算(按一台车考虑) M=1.2X65.17+1.4X1.05X764.75=78.21+1124.2=1202.41KN.MV=1.2X37.24+1.4X1.05X562=44.69+826.14=870.83KN判断T 形梁截面类型Mu=α1f c b f ’ h f ’(h 0- h f ’/2)=1.0X16.7X600X200(1000-25-200/2)=1753.5KN.M>M=1202.41KN.M所以为第一种类型a s =M/α1f c bh 02=1202.41KN.M/1.0X16.7X350X(1000-25)2=0.269112s ξα=--=1120.269--⨯=0.320(112)/20.5(1120.320)0.8=+-=⨯+-⨯=S S γα()62S 0A /1202.4110/3000.81000255138.5==⨯⨯⨯-=y s M f h mm γ选配11二级25(A S =5401mm 2)0/5401/[350(100025)] 1.58%==⨯-=S A bh ρ00.2%/0.2%1000/9750.205%>=⨯=h h满足最小配筋条件2.正常使用极限状态正常使用极限状态验算(按一台车考虑)标准组合:M 标=65.17+764.75=829.92KN.M准永久组合:M 准=65.17+0.5X764.75=446.545KN.MNo. b h bfu bfd hfu hfd dfu dfd as as` lo Lxo Lyo 1 350.1000. 600. 350. 200. 0. 0. 0. 35. 25. 7000. 4000. 4000. --------------------------------No. C fy fyv N Mk Mq VX VY T Asb Asw kzdj Kzzh 1 35. 300. 210. 0. 830. 447. 0. 200. 0. 0. 0. 5 0 编号 No: 1.** 裂缝宽度验算 **受拉钢筋面积 As (mm2): 5401.001受拉钢筋等效直径 deq(mm): 25.000构件受力特征系数αcr: 2.100有效受拉钢筋配筋率ρte: 0.024标准组合荷载下受拉钢筋的应力σsk: 183.027纵向受拉钢筋应变不均匀系数ψ: 0.774最大裂缝宽度Wmax(mm): 0.195** 刚度挠度计算 **纵向受拉钢筋配筋率ρte: 0.031考虑荷载长期效应对挠度增大系数θ: 2.000受弯构件的短期刚度Bs(kN.m2 /E12): 636021.875受弯构件长期刚度Bl(kN.m2 /E12): 413522.719受弯构件挠度值(mm): 10.244受弯构件相对挠度的倒数(lo/f): 683.335综上可知梁配筋为11二级25(A S =5401 mm 2)0/5401/[350(100025)] 1.583%==⨯-=S A bh ρ3.箍筋计算:V=562KNa.验算截面尺寸:h w =h 0- h f ’=1000-25-200=775mmh w /b=775/350=2.214截面符合要求b.验算是否需要计算配置箍筋验算是否需要计算配置箍筋00.70.7 1.573501000384.65=⨯⨯⨯=t f bh KN < V=562KN 故需进行配箍计算c.只配箍筋而不用弯起钢筋t 0yv SV10V 0.7f bh 1.25f .(n.A /s).h <+562000=0.7X1.57X350X1000+1.25X210Xn.A S /SX1000 n.A S /S=(562000-384650)/(1.25X210X1000)n.A S /S=0.6752X78.5/150=1.05>0.675(满足) 配箍率 ρsv = n.A S /bS=2X78.5/350X150=0.299%最小配箍率ρsvmin =0.24f t / f yv =0.24X1.57/210=0.179%满足配箍条件4.水平刹车力对应的翼缘配筋 A S =M/0.9f y h 0=1.4X1.05X37220000/[0.9X300X(650-25)]=324.23选配2二级16 A S =402.2。
10t龙门吊基础承载力计算书
①基础砼:g1=1.28×0.2m2×25kN/m3=6.4kN
②钢轨:g2=1.28×43×10N/kg=0.55kN
③龙门吊轮压:g3=(14+10)÷4×10KN/T=60kN
作用在基础底部的基本组合荷载
Fk=g2+g2+g3=66.95KN
4.材料信息:
混凝土:C30钢筋:HPB300
5.基础几何特性:
底面积:A=1.28×0.6=0.76验算
按《建筑地基基础设计规范》(GB50007-2002)下列公式验算:
pk=Fk/A=66.95/0.768=87.2KPa
结论:本地地表往下0.5~3米均为粉质黏土,承载力可达130KPa,满足承载力要求。
10T龙门吊基础底承载力计算书
一、计算说明
1、根据“10t龙门吊基础图”典型断面图计算。
2、采用双层C30钢筋混凝土基础。
二、示意图
基础类型:条基计算形式:验算截面尺寸
剖面:
三、基本参数
1.依据规范
《建筑地基基础设计规范》(GB50007-2011)
2.几何参数:
已知尺寸:
B1=400mm,
H1=400mm
钢结构设计吊车梁计算
吊车梁计算吊车梁采用Q345-B 起重量10t 跨度22.5m 总重量8.8t 小车4t ,max k P =75kN ,min k P =19.2kNmax P =1.4⨯1.05⨯,max k P =110.25kN竖向轮压作用max M =82.68 ⨯2.25=186.04kN.mmax V =110.25⨯1.5=165.4kN横向水平力'1.4g (Q+Q )/n=1.4100.1210+4/4=5.88kN T ξ=⨯⨯⨯()5.88=186=9.92110.25y M kN ⨯ 水平反力 5.88165.48.82110.25H kN =⨯= 暂取吊车梁截面如图所示1) 毛截面特性2=281+500.8+201=88A cm ⨯⨯⨯0280+4025.5+2051==23288y mm ⨯⨯⨯ 毛截面惯性矩32224=1/120.850+12823.2+12027.8+50 2.3=39125x I cm ⨯⨯⨯⨯⨯⨯⨯334128120=+=24961212y I cm ⨯⨯5.3cm y i = 5.3cm y i =净截面特性2=(28-22)1+500.8+201=84n A cm ⨯⨯⨯⨯形心位置 1=y (40⨯25.5+20⨯51)/84=243mm净截面惯性矩32224=1/120.850+40 1.2+12424.3+2026.7=36820nx I cm ⨯⨯⨯⨯⨯⨯3==148524.8nx nx I W cm 上 3==135427.2nx nx I W cm 下 3x S =28124.3+23.80.823.8/2=907cm ⨯⨯⨯⨯对上翼缘 324128=-1272=163312ny I cm ⨯⨯⨯⨯ =ny W 3=116.7cm 14ny I 毛截面 33128/12==130.714y W cm ⨯ 2)强度验算①上翼缘最大正应力6622max 33ny n 186109.9210=+=+=210.26N/mm <310N/mm 148510116.710y x M M W W σ⨯⨯⨯⨯上 下翼缘正应力 max n =x M W σ下=6318610=137135410⨯⨯.422N/mm <310N/mm ②剪应力 33max 4165.41090710===50.936820810x w V S I t τ⨯⨯⨯⨯⨯22N/mm <180N/mm ③腹板局部压应力=+5+250+510+2130360mm z y R l a h h =⨯⨯=31.0110.2510=38.38360c w z P t l ψσ⨯⨯==⨯22N/mm <310N/mm3)整体稳定验算1116000100.412280520l t b h ξ⨯===<⨯ 取0.730.180.80b βξ=+= 6000113.253y mm λ== h=520mm1121633/24690.65b I I I α===+ 0.8(21)0.248b b ηα=-= 2345/y f N mm =222234320235=+]43208800520235 =0.8+0248]0.770.6113.2148510345b b b y X yAh y W f ϕβλ⨯⨯⨯=>⨯ ' 1.070.282/0.70b b ϕϕ=-=66'33186.0109.9210 5.6560.7165110130.7101000yXb y M M l mm W σϕ⨯⨯=+=+=<=⨯⨯⨯ 4)刚度验算 挠度 2622kx 54186.04 1.05 1.4106000=236.8310/mm 1010 2.06103912510X M l N EI υ÷÷⨯⨯==<⨯⨯⨯⨯ 满足要求 吊车为A1~A5 疲劳可不进行验算5)加劲肋0wh t 可按构造配量0.50h 02a h ≤≤ 求间距 a =1.20h =600mm界面尺寸外伸长度 0/30+40=57s b h mm ≥ 厚度s t ≥/15s b =3.8m 采用80⨯8mm支座反力 R=165.4KN计算截面面积A=18⨯1.2+15⨯0.8=33.62cm绕腹板中线的截面惯性矩 3341.218 1.50.8+583.81212I cm ⨯⨯==4.17cm i = 50=12.04.17λ= 查表ϕ=0.989 322165.41049.8310/0.9893360N N mm f N mm A ϕ⨯==<=⨯ 6) 焊缝计算上翼缘与腹板连接焊缝=1.8f h mm= 取f h =6mm下翼缘与腹板连接焊缝3max 1.2 1.2165.410 1.771.4 1.4500160f w w t R h mml f ⨯⨯===⨯⨯ 同样取f h =6mm 吊车梁计算结束。
10t吊车梁的设计参数
10t吊车梁的设计参数
【原创版】
目录
1.10t 吊车概述
2.10t 吊车梁的设计参数
3.10t 吊车的应用领域
4.10t 吊车的车身自重
正文
1.10t 吊车概述
10t 吊车是一种广泛应用于室内外工矿企业、铁路运输、钢铁化工、机械加工、港口码头、物流周转等部门和场所的起重设备。
它可以帮助用户完成各种吊装作业,提高工作效率。
2.10t 吊车梁的设计参数
10t 吊车梁的设计参数主要包括跨度高度、载重量、工作速度、起升高度等。
这些参数决定了吊车的性能和适用范围。
跨度高度:吊车梁的跨度高度决定了吊车的作业范围。
一般来说,跨度越高,吊车的作业范围越大。
载重量:10t 吊车的载重量是指吊车在正常工作条件下所能承受的最大重量。
这个参数决定了吊车的承重能力。
工作速度:工作速度是指吊车在空载状态下移动的速度。
一般来说,工作速度越快,吊车的作业效率越高。
起升高度:起升高度是指吊车在正常工作条件下能够提升物体的最大高度。
这个参数决定了吊车的垂直作业范围。
3.10t 吊车的应用领域
10t 吊车广泛应用于室内外工矿企业、铁路运输、钢铁化工、机械加工、港口码头、物流周转等部门和场所。
它的应用领域非常广泛,几乎涵盖了所有需要吊装作业的行业。
4.10t 吊车的车身自重
10t 吊车的车身自重是指吊车本身的重量。
这个参数会影响吊车的承重能力和机动性。
一般来说,车身自重越轻,吊车的机动性越好。
10t系列门式起重机主结构计算书
10t系列门式起重机门式起重机主结构计算书(2009-09-23 16:32:33)一、概述10t系列门式起重机是用于某预制梁场的小型起重设备,根据其应用地域(沿海地区,有台风及季风影响)及其特点(起吊载荷较轻,A3级工作制)且无悬臂,决定采用三角形断面空间桁架作为主梁,支腿采用格构结构,本设计按起重量10t,跨度分别为25.5m、23m、20m、7.5m的规格进行控制性设计,并充分考虑到外部环境对结构的冲击性,拼装的便利性,使用中的特殊要求等。
本设计完全遵循GB3811-83《起重机设计规范》及其他相关的机械技术条件进行设计计算,所选用的零部件及电气元件等亦完全按照相关的国家标准、部颁标准、行业标准、企业标准等要求执行。
二、计算依据1、基本参数1) 额定起重量10t2) 起升速度8m/min3) 跨度及起升高度4) 小车运行速度 20 m/min5) 大车运行速度12 m/min6) 起重机工作等级A37) 适应纵坡±1%8) 工作电源380v/50Hz9) 走行轨道大车P43(单轨) 小车P38(单轨)10) 工作风压250Pa2、遵照规范及主要参考文献1) 《起重机设计规范》GB3811-832) 《起重机试验规范和程序》GB5905-863) 《起重机机械安全规程》GB6067-854) 《钢结构设计规范》GB50017-20035) 《钢结构施工及验收规范》GB50205-956) 《通用门吊起重机》GB/T14406-937) 《钢结构工程质量检验评定标准》GB50221-958) 《钢结构焊缝外形尺寸》GB10854-899) 《电气装置安装工程施工及验收规范》GB50017-200310) 《铁路工程施工安全技术规程》TB10401.1-200311) 《桥式和提梁机制造及轨道安装公差》GB1183-8812) 《通用桥式和门式起重机司机室技术条件》GB/T14407-9713) 《双梁通用门式起重机技术条件》JB4102-8614) 《起重设备安装工程施工及验收规范》GB50278-981) 3、材料选择考虑到各方面综合因素的影响,主材均选用Q235B,考虑1.5倍的安全系数后其性能如下:抗拉、抗压和抗弯强度:[σ] =235/1.5=156Mpa抗剪强度:[τ] =90MPa端面承压(刨平顶紧) [σce] =215MPa三、总体设计计算1、轮压①小车轮压:由于定滑轮组设置时偏离了小车轴距中心线,造成轮压不均。
吊车梁计算书
F=163X1.05X1.4=237.5KN
σ cr = 310Ν / mm 2
WW
2
σc =
φF t wl z
= 57.3Ν / mm 2
σ c ,cr = 162.2 Ν / mm 2
龙
满足要求 ③ 横向加劲肋尺寸确定:按构造要求在腹板两侧成对布置 外伸宽度: bs ≥ 取 bs = 85mm 厚度: t s ≥ bs 15 = 85 = 5.6mm 15 hw 1300 + 40 = + 40 = 83.3mm 30 30
6.227 × 10 = 5.56ΚΝ T k = η 2n 1 × 10 = 0.1 × 6+2 ×2 1
Q
Q +Q
㈡各项内力计算: 计算 项目 支座 处最 大剪 力 Vmax 最大竖向 弯 矩 M max 简图
网
WW
内力 V max =
222 9
T′ = γ
Τk =1.4 × 5.56=7.78 ΚΝ
ZH
τ=
V 222 × 10 3 = = 17 Ν / mm 2 hw t w 1300 × 10
UL
V = 222ΚΝ
ON
σ=
Μx w上 x
+
Μy w上 y
= 254.4
G. CO
Μ y = 27.5ΚΝ ⋅ m
M
取 t s = 6mm ⑸ 梁挠度验算: 吊车梁垂直挠度: (不靠虑动力系数,荷载用标准值,两台吊车) 783.7 Μx = = 533.6ΚΝ ⋅ m 1.4 × 1.05 等截面简支吊车梁竖向挠度按标准值计算 ∆=
初选腹板高
hw = 1300 ㎜
(1300/2+10-y)+10X(1300/2-y)X(1300/2-y)/2= 60X(1300/2+y)+10X(1300/2+y)X(1300/2+y)/2 得 y=139mm 5112 I x = 500 × 20 × 521 + 300 × 20 × 799 + 511 × 10 × 4 2 789 + 789 × 10 × = 810632cm 4 4
10t起重机基础承载力计算书
10t起重机基础承载力计算书一、背景介绍起重机基础承载力计算是用于确定起重机底座基础设计的重要环节。
本文档旨在计算10t起重机基础的承载力,以确保其安全可靠的运行。
二、计算过程1. 确定起重机底座的尺寸:根据起重机的负载能力和设计要求,确定底座的长度、宽度和高度。
2. 确定底座的材质:根据现场条件和工程要求,选择适合的材料。
常用的材料包括钢筋混凝土、钢板等。
3. 计算基础的承载能力:分析起重机的荷载特点,包括水平荷载和垂直荷载。
根据荷载作用点的位置和方向,计算出作用在基础上的最大力和力矩。
4. 根据计算结果,确定起重机基础的设计方案:根据计算结果,确定底座的形状和厚度,以确保基础能够承受起重机的荷载。
5. 完善基础设计:根据基础的设计方案,进行进一步的细化设计,包括基础的支撑结构和加固措施。
确保基础的稳定性和安全性。
三、计算实例下面用一个简单的计算实例来说明如何计算10t起重机基础的承载力。
1. 基础尺寸- 长度:5m- 宽度:5m- 高度:1m2. 底座材质- 钢筋混凝土3. 荷载特点- 水平荷载:10t- 垂直荷载:20t4. 承载能力计算- 水平荷载作用点离中心的距离:1m- 垂直荷载作用点离中心的距离:2m- 水平荷载产生的力矩:10t * 1m = 10tm- 垂直荷载产生的力矩:20t * 2m = 40tm- 最大力:sqrt((10t)^2 + (20t)^2) = sqrt(100t^2 + 400t^2) =sqrt(500t^2) = 22.36t5. 设计方案根据计算结果,可确定起重机基础底座的厚度为1m,形状为矩形。
四、总结通过计算,我们得到了10t起重机基础的承载力计算结果,并确定了相应的设计方案。
这将确保起重机底座的可靠性和安全性。
在实际工程中,我们还需要遵循相关的标准和规范,进行详细的设计和施工。
本文档只提供了一个简单的示例,具体的计算和设计应根据实际情况进行。
希望这份文档能对你有所帮助!。
LDY10t×19.5m电动单梁起重机计算书
LDYlOtX 19.5m冶金电动单梁桥式起重机的计算、LDYlOtX 19.5m冶金电动单梁桥式起重机外形见图M1、起重量:Q=10t=lX10^N;2、跨度:L=19.5m=L95X10W;3、起升高度:H=9m;4、大车运行速度:V=20m/min;5、工作作制度:A6;6、电动葫芦采用CDYl-0tX9m电动葫芦;7、起升速度:7 m/min;小车运行速度:V小=20m/min;9、电动葫芦最大轮压:P^=79X10^N;10> 电动葫芦自重:G=L03X10^N;地而操纵。
8二、主梁的计算(一)、主梁截面几何特性(主梁截面尺寸如图2J )主梁截而面积:F= 26100 mm':主梁截而垂直惯性矩:Jy = 4.8X109 mn?主梁截而水平惯性矩:I, =&82X10* mm'(二)、主梁强度的计算Is 垂直载荷引起的弯曲正应力为:"严曾叫字+警^)(曲)592 (l ・3xl0 + l ・lxl ・03)xl ・95xl(? 1.1x4.25 xL95-x 10^4.8x109 4 += 11238N/mm'o2、 主梁截而水平形心轴x-x 位置:y 产592mm ;3、 4、2、水平载荷引起的弯曲正应力为:by = 旦[(Q+q)L(i__L)+疋(3_2I)] (N/mm^)20 厶 4 2r 24 r42 J.1x10(1- 0.26) + 4.25 X 1.95-X10*(3 _ 】仍”20x&82x10* 4 i 24=O・32N/mm2。
3.主梁工字钢下翼缘的局部弯曲应力i=a.c-e=56.4-0.164R=32.6mn.,"'爭心8;查局部弯曲系数曲线图得:k严0.35, 3=2.匕严1・35;a 严 1.38, a ,=1.25, t=15 + 12=27mm;L38xL35x2.8xl0' " r 272%5卩轮l・38xO・35x2・8xl(/27-02&2 伐L25x0.5x2.8xl0^ 汉r27- =704 N/mn?;⑴、0=1 &6 N/mm';(2)、=24 N/mn?。
10t双梁起重机基础稳定性计算书
10t双梁起重机基础稳定性计算书1. 引言本文档旨在对10t双梁起重机的基础稳定性进行计算分析,以确保设备的安全运行。
稳定性计算是起重机设计中的关键环节,它直接关系到起重机的使用寿命和工作安全性。
2. 设备参数- 起重机型号:10t双梁起重机- 起重能力:10t- 桥梁跨度:X m- 起升高度:Y m3. 基础稳定性计算方法3.1 基础类型选择首先,根据实际情况选择适合的基础类型。
常见的基础类型包括承台、钢筋混凝土柱支撑基础、浇铸桩基础等。
根据起重机的行走距离和工作条件,我们选择了承台基础作为结构基础类型。
3.2 基础尺寸计算基础尺寸的计算取决于起重机的重量、荷载大小和工作条件。
根据起重机的重量和荷载大小,我们使用结构力学原理计算得出了合适的基础尺寸。
3.3 基础材料选择基础的材料选择也非常重要,它直接影响基础的承载能力和稳定性。
根据起重机的工作条件和周边环境要求,我们选择了优质的混凝土作为基础的材料。
3.4 基础稳定性计算基础稳定性计算是确保起重机安全运行的重要环节。
我们采用了静力学和动力学计算方法来评估基础的稳定性。
通过计算起重机的重心位置和基础的反力分布,我们可以得出基础稳定性的指标。
4. 结果与分析根据计算结果,我们得出了10t双梁起重机基础的稳定性评估指标。
根据国家相关标准和规范,我们的计算结果满足起重机的使用要求,保证了起重机的安全运行。
5. 结论本文档对10t双梁起重机的基础稳定性进行了计算分析,通过合理的基础类型选择、基础尺寸计算和基础材料选择,以及基础稳定性计算,确保了起重机的安全运行。
对于其他起重机设计和基础稳定性计算工作,可参考本文档的方法和步骤。
以上是对10t双梁起重机基础稳定性的计算书。
如需进一步了解详细计算过程和具体结果,请联系相关专业人员。
10t龙门吊机走道基础计算书 (1)
10t 龙门吊机走道基础计算书一、概述为满足钢筋制作的需要,在钢筋制梁区域设置1台10t 龙门吊机。
龙门吊机跨度14m ,净高9m 。
龙门吊机配备10t 电动葫芦一台。
根据吊机轨道地基承载力要求和钢筋场地地质条件,10t 龙门吊机轨道基底需夯实,并采用钢筋混凝土条形基础作为龙门吊机的走道。
1. 3q2. 公式:02)(2'0'2=+-++)(‘a A h A b n x b A A n x s s s s —a I 受压区换算截面对中性轴的惯性矩;—a S 受压区换算截面对中性轴的面积矩;—s A 受拉区钢筋的截面积;—'s A 受压区钢筋的截面积;—cm a 5=受拉钢筋重心至受拉混凝土边缘的距离;'5a cm =—受压钢筋重心至受压混凝土边缘的距离;030525h h a cm =-=-=—截面有效高度;—x 混凝土受压区高度;—y 受压区合力到中性轴的距离;—b 基础的宽度;—n 钢筋的弹性模量与混凝土的变形模量之比;M Z 。
A.由公式得:2210210(4.5 4.5)(4.525 4.55)04040x x ⨯⨯++-⨯+⨯=2 4.567.50x x +-=得x =6.3cm 由公式得:322140 6.310 4.5(6.35)34140 6.310 4.5(6.35)2y ⨯⨯+⨯⨯-==⨯⨯+⨯⨯-(cm) 025 6.3422.7Z h x y =-+=-+=(cm)由公式得:316101574.522.7s s M A Z σ⨯===⨯<200(MPa)合格 由公式得: 157 6.3 5.31025 6.3c σ=⨯=-<7.0(MPa)合格 由公式得: 032100.5τ⨯==<][2-tp σ=0.73(MPa)合格。
10t轨排吊车计算书
MHx10t吊车计算书一、设计依据《钢结构设计规范》 GB50017-2003《钢结构设计手册》中国建筑工业出版社 2004.1《钢结构施工及验收规范》 GB50205-2001《钢结构工程质量检验评定标准》 GB50221-2001《钢焊缝手工超声波探伤方法和探伤结果分析》 GB/T11345-1989《钢结构焊缝外形尺寸》 GB10854-89《装配通用技术要求》 JB/ZQ 4000.9《焊接件通用技术要求》 JB/ZQ 4000.3《碳钢、低合金钢焊接构件焊后热处理方法》 JB/T6046-1992《紧固件机械性能》 GB 3098《建筑结构载荷规范》GB 50009-2001《建筑钢结构焊接技术规程》JGJ81-2002《混凝土结构设计规范》GB50010-2002《起重机设计手册》中国铁道出版社 1997二、材料参数钢材弹性模量E=206x103N/mm2;剪变模量G=79x103N/mm2;线膨胀系数α=12x10-6 /℃;质量密度ρ=7850kg/m3。
表1 钢材强度设计值钢材型号抗拉、抗压、抗弯强度设计值(MPa)主要受力件:215Q235(厚度≤8mm)三、设计载荷载荷包括自重载荷、起升载荷、风载荷、温度载荷、冰雪载荷等。
结构计算采用极限应力法,因此,载荷值取值比一般较大。
1自重载荷钢结构自重由程序自动统计计算,结构自重×1.1来考虑节点重量。
加载时按均布载荷加载于梁底部平面。
承重梁自重约2000kg。
2起升载荷起升载荷主要考虑,电动葫芦起升,起升为10t。
根据起重机设计规范要求,考虑到突然离地起升或下降制动的情况,对承载结构和传动机构将产生附加的动载作用。
这一动载作用可通过将起升载荷乘以大于1的起升载荷系数φ2考虑。
系数φ2的取值方法(ISO 8686-1;1989)。
设稳定起升速度≤0.2m/s,起升状态级别为HC2 。
则φ2=1.6。
则起升载荷使用极限应力法计算时,按施加1.6倍静载荷计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10吨吊车梁计算书-CAL-FENGHAI.-(YICAI)-Company One1-----------------------------------------------------------------------------| 简支焊接工字型钢吊车梁设计输出文件 || 输入数据文件:10 || 输出结果文件: || 设计依据:建筑结构荷载规范GB50009-2001 || 钢结构设计规范GB50017-2003 || 设计时间: 2016年 8月 4日 |----------------------------------------------------------------------------------------------------------------------------------------------------------| 吊车数据:(除注明外,重量单位为 t;长度单位为 m) ||---------------------------------------------------------------------------||序号起重量工作级别一侧轮数 Pmax Pmin 小车重吊车宽度轨道高度 | |---------------------------------------------------------------------------|| 1 10 电动单梁 2 || 卡轨力系数α: || 轮距: |----------------------------------------------------------------------------------------------------------------------------------------------------------| 输入数据说明: || Lo: 吊车梁跨度 || Lo2: 相邻吊车梁跨度 || SDCH: 吊车台数 || DCH1: 第一台的序号 || DCH2: 第二台的序号(只有一台时=0) || KIND: 吊车梁的类型,/1无制动结构/2制动桁架/3制动板/ || IG1: 钢材钢号,/ || IZXJM:自选截面/1.程序自动选择截面/0.验算截面/ || || H: 吊车梁总高 || DB: 腹板的厚度 || B: 上翼缘的宽度 || TT: 上翼缘的厚度 || B1: 下翼缘的宽度 || T1: 下翼缘的厚度 || D1: 连接吊车轨道的螺栓孔直径 || D2: 连接制动板的螺栓孔直径 || E1: 连接轨道的螺栓孔到吊车梁中心的距离 || E2: 连接制动板的螺栓孔到制动板边缘的距离 || |-----------------------------------------------------------------------------===== 输入数据 =====Lo Lo2 SDCH DCH1 DCH2 KIND IG1 IZXJM2 1 1 1 16 0H DB B TT B1 T1 D1 D2 E1 E2-----------------------------------------------------------------------------===== 计算结果 =====-----------------------------------------------------------------------------| || ===== 梁绝对最大竖向、水平弯矩(标准值)计算 ===== || || BWH: 最大弯矩对应梁上的轮子序号(从左到右) || EWH: 最大弯矩对应梁上有几个轮 || CSS: 最大弯矩对应轮相对梁中点的距离,(轮在中点左为正) | | MP: 吊车最大轮压(标准值)产生的最大竖向弯矩 || MT: 吊车横向水平荷载(标准值)产生的最大水平弯矩 || P(J): 吊车最大轮压(kN),按每台吊车一侧的轮数排列 || T(J): 吊车横向水平荷载(kN),按每台吊车一侧的轮数排列 || CC(J):吊车轮距,按每台吊车一侧的轮数排列 |-----------------------------------------------------------------------------BWH EWH CSS MP MT3 3P(J)T(J)CC(J)-----------------------------------------------------------------------------| || ===== 梁绝对最大竖向、水平弯矩(设计值)计算 ===== || || MPP: 绝对最大竖向弯矩 || MTT: 绝对最大水平弯矩(由横向水平制动力产生) || Madd: 考虑其他荷载作用时绝对最大竖向弯矩设计值增大 | | MTadd: 考虑其他荷载作用时绝对最大水平弯矩设计值增大 | -----------------------------------------------------------------------------MPP MTT Madd MTadd-----------------------------------------------------------------------------| || ===== 梁绝对最大剪力(设计值)计算 ===== || || Qmaxk: 绝对最大剪力(标准值) || Qmax: 绝对最大剪力(设计值) || MM: 计算最大剪力对应的轮子序号(从左往右) || Qadd: 考虑其他荷载作用时绝对最大剪力设计值增大 |-----------------------------------------------------------------------------QMAXk QMAX MM Qadd2-----------------------------------------------------------------------------| || ===== 吊车梁、制动梁的净截面截面特性计算 ===== | | || YCJ: 吊车梁重心位置(相对于下翼缘下表面m) || JXJ: 吊车梁对于x 轴的惯性矩(m^4) || WXJ: 吊车梁对于x 轴的抵抗矩(m^3) || JYJ: 制动梁对于y 轴的惯性矩(m^4) || WYJ: 制动梁对于y 轴的抵抗矩(m^3) |-----------------------------------------------------------------------------YCJ JXJ WXJ JYJ WYJ +00-----------------------------------------------------------------------------| || ===== 吊车梁上翼缘宽厚比计算 ===== || || Bf/Tf: 吊车梁上翼缘自由外伸宽度与其厚度的比值 |-----------------------------------------------------------------------------Bf/Tf = <= [Bf/Tf] =-----------------------------------------------------------------------------| || ===== 梁截面应力、局部挤压应力计算 ===== || || CM: 上翼缘最大应力 || DM: 下翼缘最大应力 || TU: 平板支座时的剪应力 || TU1: 突缘支座时的剪应力 || JBJYYL: 吊车最大轮压作用下的局部挤压应力 || CMZj: 吊车横向荷载作用下的制动梁(或桁架)边梁的应力 | -----------------------------------------------------------------------------CM DM TU TU1 JBJYYL CMZJCM = <= [CM] =DM = <= [DM] =TU = <= [TU] =TU1 = <= [TU1] =JBJYYL = <= [CJ] =CMZJ = <= [CMZJ] =-----------------------------------------------------------------------------| || ===== 无制动结构的吊车梁整体稳定计算 ===== || || Wx: 吊车梁对于x 轴的毛截面抵抗矩(m^3) || Wy: 制动梁对于y 轴的毛截面抵抗矩(m^3) || Faib: 整体稳定系数 || ZTWDYL: 整体稳定应力 |-----------------------------------------------------------------------------Wx Wy Faib ZTWDYLZTWDYL = <= [ZTWDYL] =-----------------------------------------------------------------------------| || ===== 梁竖向挠度计算 ===== || 注:吊车荷载按起重量最大的一台吊车确定,采用标准值 | | || MPN: 最大一台吊车竖向荷载标准值作用下的最大弯矩 | | MKadd: 考虑其他荷载作用时绝对最大竖向弯矩标准值增大 | | L/f: 吊车梁跨度与竖向挠度之比 |-----------------------------------------------------------------------------MPN MKadd L/FL/F = >= [L/F] =-----------------------------------------------------------------------------| || ===== 梁截面加劲肋计算 ===== || 梁腹板高厚比h0/tw= || 计算只需配横向加劲肋 ||A1: 横向加劲肋的最大容许间距 ||BP,TP: 横向加劲肋的宽度,厚度 |-----------------------------------------------------------------------------A1 BP TP计算结果:≤1,横加劲肋区格验算满足-----------------------------------------------------------------------------| || ===== 突缘式支座端板和角焊缝计算 ===== || || SB: 支座端板的宽度 || ST: 支座端板的厚度 || HF1: 吊车梁下翼缘与腹板的角焊缝厚度 || HF2: 支座端板与吊车梁腹板的角焊缝厚度 |-----------------------------------------------------------------------------SB ST HF1 HF2-----------------------------------------------------------------------------| || ===== 平板式支座加劲肋和角焊缝计算 ===== || || PSB: 平板式支座加劲肋的宽度 || PST: 平板式支座加劲肋的厚度 || HF3: 支座加劲肋与吊车梁腹板的角焊缝厚度 |-----------------------------------------------------------------------------PSB PST HF3-----------------------------------------------------------------------------| || ===== 吊车梁总重量和刷油面积计算 ===== || || WW: 吊车梁总重量(包括加劲肋,端板等)(t) || BPF: 刷油面积(m^2) |-----------------------------------------------------------------------------WW BPF-----------------------------------------------------------------------------| || ===== 吊车轮压传至柱牛腿的反力计算 ===== || (结果为标准值,单位kN,用于计算排架) || || RMAX: 吊车最大轮压传至柱牛腿的反力 || RMIN: 吊车最小轮压传至柱牛腿的反力 || TMAX: 吊车横向荷载传至两侧柱上的总水平力 | | WT: 最大的一台吊车桥架重量 || Wt=吊车总重-额定起重量(硬钩吊车*额定起重量) || MM1: 产生最大反力时压在支座上的轮子的序号 | -----------------------------------------------------------------------------RMAX RMIN TMAX WT MM13-----------------------------------------------------------------------------| || ===== 吊车梁与柱的连接计算 ===== || TQmaxK: 吊车横向荷载产生的最大水平剪力标准值 | | TQmax: 吊车横向荷载产生的最大水平剪力设计值 | | NHSBolt: 吊车梁与柱的连接需要高强度螺栓个数 | | (摩擦型高强度螺栓 d=20 级钢丝刷除绣表面处理) |-----------------------------------------------------------------------------TQmaxK TQmax NHSBolt1===== 设计满足 ========== 计算结束 =====。