中国西南干旱研究进展综述 Drought in Southwest China - A review
我国西南干旱研究最新进展综述
我国西南干旱研究最新进展综述我国西南干旱研究最新进展综述近年来,我国西南地区的干旱问题日益突出,给农业生产、生态环境和人民生活带来了巨大的影响。
为了应对西南地区日益严峻的干旱挑战,我国科学家积极投入研究,取得了一系列重要成果。
本文将综述我国西南干旱研究的最新进展,内容包括干旱成因、干旱监测预测、干旱对生态环境的影响以及干旱灾害应对策略等方面。
一、干旱成因的研究进展西南地区的干旱主要是由于降水偏少和蒸发蒸腾大的气候特点所致。
科学家通过对气候系统的研究,发现西南干旱主要受到南亚季风和西太平洋副热带高压的影响。
南亚季风是西南地区的主要降水来源,而西太平洋副热带高压则决定了干旱程度。
此外,气候变化也对西南地区的干旱产生了重要的影响。
通过对气候变化与西南干旱之间的关系进行分析,科学家发现,气候变化导致了降水分布的变化,使得西南地区的干旱呈现出加剧的趋势。
二、干旱监测预测的研究进展准确监测和预测干旱的发生和发展趋势对于制定合理的干旱防治措施具有重要意义。
近年来,我国科学家提出了一系列干旱监测和预测方法,取得了显著的进展。
其中,遥感技术被广泛应用于干旱监测领域。
科学家利用卫星数据获取了遥感指标,如地表温度、NDVI(归一化差值植被指数)等,并通过建立干旱指数模型,实现了对干旱的监测与预测。
三、干旱对生态环境的影响及其研究进展西南地区的干旱对生态环境的影响主要表现在农业生产、水资源及生态系统等方面。
科学家通过对干旱条件下农作物生长和产量的研究发现,干旱会显著降低农作物的生长速度和产量,并对作物的品质产生负面影响。
此外,干旱还加剧了水资源的稀缺,导致河流水位下降、水库蓄水量减少等问题。
同时,干旱还对生态系统造成了重大破坏,导致植被减少、土壤侵蚀加剧和生物多样性下降等现象。
四、干旱灾害应对策略的研究进展为了应对西南地区的干旱灾害,我国科学家通过多年的研究和实践,总结出一系列有效的干旱灾害应对策略。
其中,提高水资源利用效率是重要的措施之一,包括加强节水灌溉技术的推广应用、构建高效水资源管理体系等。
基于SPEI的近55年我国西南地区干旱特征分析
SPEI 数值 −1 < SPEI < −0.5 −1.5 < SPEI < −1 −2 < SPEI < −1.5 SPEI ≤ −2 干旱等级 轻旱 中旱 重旱 特旱
The Analysis of Drought Characteristics Based on SPEI in Southwest China in Recent 55 Years
Qiujie Wu, Liya Jin*
Chengdu University of Information Technology, Chengdu Sichuan
2.2.2. 标准化降水蒸散指数(SPEI) 标准化降水指数 SPI 与标准化降水蒸散指数 SPEI 所使用的计算方法较为一致,但是 SPEI 指数的计 算方法更为完善, 用降水与潜在蒸散之差来替换 SPI 计算中的单一降水异常, 能更好地反映干旱特征[24]。 SPEI 指数干旱等级标准按照 SPI 指数干旱等级标准划分, 具体内容见表 1 (正文所有干旱强度均以正值表 示)。
关键词
标准化蒸散指数(SPEI),区域干旱,时空变化,等级干旱
Copyright © 2019 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/
DOI: 10.12677/ccrl.2019.81009 75
中国西南地区干旱化趋势与适应措施研究
中国西南地区干旱化趋势与适应措施研究由于气候变化和人类活动的影响,中国西南地区正面临着日益严重的干旱化趋势。
这一趋势对该地区的生态环境、农业生产和人民生活产生了巨大的影响。
为了应对这一问题,研究人员和政府部门已经采取了一系列的适应措施。
首先,为了应对干旱化带来的水资源短缺问题,中国西南地区采取了一系列的节水措施。
例如,推广水资源的高效利用技术,如滴灌和雨水收集系统,可以在一定程度上减少农业用水的消耗。
此外,政府还鼓励居民节约用水,如推广水龙头节水器、浴室节水器等。
通过这些措施,可以有效地减少水资源的浪费,提高水资源的利用效率。
其次,中国西南地区还加强了森林保护和植被恢复工作,以应对干旱化带来的生态环境问题。
森林和植被在地表水循环和保持水源涵养能力方面起着重要作用。
因此,加强森林保护和植被恢复,对于维护区域水资源的平衡起着至关重要的作用。
政府加大了对非法砍伐和盗采行为的打击力度,并大力推广植被恢复工程,以提高西南地区的植被覆盖率和生态系统的稳定性。
此外,中国西南地区还致力于改善农业生产系统,增强其抗旱能力。
例如,政府在该地区推广了配套的灌溉系统,以确保农作物在旱季也能得到充足的水分供应。
农业专家们还开展了研究,培养抗旱品种和改良作物栽培技术,以提高农作物的适应性和产量。
此外,政府还加强了农村基础设施建设,为农民提供更好的农业生产条件。
除了上述措施之外,中国西南地区还加强了科学研究和技术创新。
通过加强科学研究,可以更好地了解干旱化趋势的原因和特点,为制定更有效的适应性措施提供科学依据。
同时,技术创新也是应对干旱化挑战的关键。
例如,利用遥感技术和无人机监测干旱区域的植被生长状况,可以及时发现并采取措施应对植被退化的问题。
此外,发展先进的水资源管理技术和节能技术,也可以在一定程度上缓解干旱带来的影响。
综上所述,中国西南地区干旱化趋势的应对措施涵盖了多个方面,包括节水措施、生态环境保护、农业生产改进和科技创新等。
西南干旱特征及其成因研究进展
几 十 年来 西南 干 旱 的 观测 事 实 和特 征 , 然 后对 干旱 成 因研 究 进 行 了
在 全球 变 暖背 景 下, 中国极 端 天 气 气候 事件频发 . 近年 来 , 发 生在 中 国西 南 的严 重干旱事件 给 当地造 成 了重大的 经
济损 失 和 严 重 的 社 会 影 响 , 引起 政 府 部
门和科 学界 的高度重视. 因此 , 总结 西南 干旱的观测事 实和规律 , 探 讨干旱 成 因, 为西南干旱 的预 测 预警提 供 依 据 , 是 一
至今 这几个 时 间段 是西 南 5省 旱灾 频 繁 发 生 的 时期 , 即 间隔 1 0 a左
作者简介 庞晶 , 女, 硕士生 , 主要研究方 向为大气环
境. p a n n i n g 5 8 2 @1 2 6 . c o n r
覃军( 通 信作 者 ) , 男, 博士, 高级工程 师 , 硕 士生导 师, 主要从事大气环流异常与气候 变
1 2 8
P AN G J i n g , e t a 1 . Ad v a n c e s i n c h a r a c t e r i s t i c s a n d c a u s e s o f d r o u g h t r e s e a r c h i n s o u t h we s t C h i n a
以及西 南部 分地 区 发生 严 重 伏 秋 连 旱 ; 2 0 0 5年 华 南 南 部 出 现严 重 的
中国干旱研究进展综述
中国干旱研究进展综述(南京信息工程大学滨江学院,南京,210044)摘要:随着人民生活水平的提高,经济建设的发展,由于干旱造成的危害也日益严重,其直接威肋到国家的长期粮食安全和社会稳定。
我国众多气象学家对于干旱从干旱的定义、干旱指标和干旱监测以及干旱预报方面进行了深入的研究,取得了相应的进展,作者将对这些研究进展作简要综述。
干旱的单一定义很难满足各行业、各部门的不同特点和对水的不同需求。
目前将干旱按气象干旱、农业干旱、水文干旱和社会经济干旱进行分类定义已得到大多学者的普遍认可。
对气象干旱指标、农业干旱指标、水文干旱指标3个方面的研究成果进行了较为全面的对比分析,同时分析比较了国内常用的一些干旱指数如降水量距平、降水量分位数、标准化降水指数及PDST等的原理和计算方法。
指出在研制干旱指标时,要注意要素的可收集性及其适时性,考虑主要要素和监测业务的可行性,干旱指标要简单、明了,可计算性强,以便于业务使用和推广。
文章还介绍了中国气象局国家气候中心干旱监测业务的发展与现状,以及干旱监测业务的流程监测方法、产品内容等。
从干旱分类及其应用指标的基础上,对目前在气象干旱预报、农业干旱预报以及干旱的集成预报方法方面所取得的进展进行了阐述,并讨论了各种预报方法的优缺点以及未来干旱预报的趋势。
关键词:干旱定义;干旱指标;干旱监测;干旱预报;引言干旱是造成损失最为严重的自然灾害,受其影响的人数比其它任何自然灾害都多。
干旱是我国范围的主要自然灾害,在社会经济高速发展的影响下,干旱的频繁发生己成为最为严峻的环境问题之一,己经引起我国政府的高度重视。
干旱,尤其是重大干旱灾害直接威肋到国家的长期粮食安全和社会稳定。
我国是一个自然灾害频发的国家,据统计,气象灾害造成的经济损失约占所有自然灾害的70 %,其中干旱造成的损失又占了气象灾害的50%以上。
开展干旱的评估、监测与预测研究,已成为政府和学术界高度重视的热点问题,且具有重大现实意义。
西南旱灾英文作文
西南旱灾英文作文Southwest Drought Disaster。
The Southwest region of China has been hit hard by a severe drought, causing widespread damage to crops, livestock, and the environment. The drought has been ongoing for several months, and the situation is becoming increasingly dire.Farmers in the affected areas are struggling to grow crops and feed their livestock. Many have been forced to sell off their animals at a loss, while others have been forced to abandon their farms altogether. The lack of rainfall has also caused water shortages, making itdifficult for people to access clean drinking water.The drought has also had a significant impact on the environment. Rivers and lakes have dried up, and the soil has become arid and infertile. This has led to a decline in biodiversity, with many plant and animal species strugglingto survive.The government has taken steps to address the situation, including providing financial assistance to affectedfarmers and implementing measures to conserve water. However, more needs to be done to mitigate the effects of the drought and prevent similar disasters from occurring in the future.In the meantime, it is important for people to come together and support those affected by the drought. Thiscan be done through donations, volunteering, and spreading awareness about the issue. By working together, we can help alleviate the suffering caused by this devastating natural disaster.。
西南旱灾总结汇报
西南旱灾总结汇报西南地区近期遭受了严重的旱灾,这场旱灾给当地人民生活和经济造成了重大影响。
在这份汇报中,我将对西南旱灾进行总结和分析,并提出应对旱灾的建议。
1. 旱灾背景西南地区旱灾的主要原因是降水不足。
今年的降水量明显偏低,部分地区出现了历史罕见的旱情。
旱灾给农田灌溉、城市供水和生态环境等方面带来了巨大压力。
2. 受灾情况西南地区多个省市都受到了旱灾的影响。
农作物受灾面积广泛,森林和草原火灾频发,城市和乡村的供水紧张。
不仅如此,旱灾还导致了经济损失和社会动荡。
3. 影响分析旱灾给当地的农业生产带来了严重的损失。
缺水导致农作物干旱枯萎,大量庄稼无法收获,致使农民的收入大幅度减少。
同时,旱灾还引发了部分农民和畜牧户的生活困境,他们难以维持基本生活需求。
此外,旱灾还对生态环境造成了不可逆转的伤害。
林火频繁,大片森林毁灭,生物多样性丧失。
长期缺水也严重影响了当地的生态平衡,动植物的生存环境恶化。
4. 应对措施为了有效应对旱灾,我们需要采取一系列措施:4.1 加强气象监测和预警系统通过加强气象监测和预警系统,能够提前预测和警报旱情的发生。
这样可以让人们提前做好应对准备,减少灾害损失。
4.2 加强水资源管理加强水资源管理,包括对水源的保护和高效利用。
开展节水宣传活动,推动人们采取合理的节水措施,同时加大对农田的灌溉工作,确保农作物的正常生长。
4.3 实施生态修复和防火措施加强对森林和草原的治理和保护工作,加强预防和控制森林火灾的能力。
同时,推动生态恢复项目的实施,以恢复受灾地区的生态平衡。
4.4 加大对受灾群众的援助力度在旱灾期间,重点关注受灾群众的生活需求和基本保障。
加大对农民和畜牧户的援助力度,确保他们基本生活的持续和稳定。
5. 启示与展望西南旱灾的发生提醒我们,要加强对气候变化和自然灾害的预警和应对能力,加强生态环境保护和水资源管理。
只有这样,我们才能更好地应对未来可能出现的类似灾害。
总体来说,西南旱灾给地方经济和社会生活带来了严重困扰,但也促使我们认识到了应对旱灾的重要性。
我国西南干旱研究最新进展综述
我国西南干旱研究最新进展综述我国西南干旱研究最新进展综述摘要:本文综述了我国西南干旱研究的最新进展。
西南地区是我国最严重的干旱地区之一,干旱对该地区的生态环境和经济发展造成了严重影响。
近年来,研究人员通过实地观测、遥感技术和数值模拟等手段,开展了一系列研究,以深入了解西南地区干旱的成因、演变规律和对策。
本文主要介绍了西南地区干旱的地理特点、气候变化与干旱关系、干旱指数、干旱机理和干旱对农业、水资源和生态环境的影响。
此外,本文还总结了目前西南地区干旱研究的主要成果,并提出了今后需要加强研究的方向。
关键词:干旱、西南地区、气候变化、农业、水资源、生态环境1. 引言西南地区是我国重要的生态脆弱区,干旱是其常见的气象灾害之一。
干旱不仅直接影响该地区的农业生产和人民生活,还对水资源和生态环境产生严重影响。
因此,研究西南地区的干旱成因、演变规律和对策具有重要意义。
2. 西南地区干旱的地理特点西南地区干旱主要分布在四川盆地、云贵高原和西藏高原等地,其主要特点有:高海拔、降水稀少、土地退化、蒸散发强烈等。
3. 气候变化与西南干旱关系气候变化是西南地区干旱的主要原因之一。
近年来,该地区的气温上升、降水减少等气候变化现象加剧了干旱的程度。
4. 西南地区干旱指数干旱指数是评价干旱程度的重要指标。
研究人员采用了多种干旱指数,如PMI指数、SPI指数和NDVI指数等,以揭示西南地区的干旱特点和演变规律。
5. 西南地区干旱机理西南地区干旱的机理涉及到气候和地理因素。
研究表明,降水不足、蒸散发强烈和土地退化是导致该地区干旱的重要原因。
6. 干旱对农业的影响干旱对西南地区的农业生产造成了严重损失。
干旱导致作物减产、水资源短缺、土地退化等问题,严重威胁着农业的可持续发展。
7. 干旱对水资源的影响西南地区的水资源主要来自降水和地表水,干旱使得水资源短缺。
研究人员通过实地观测和数值模拟等手段,分析了西南地区干旱对水资源的影响和其对策。
我国西南主要干旱河谷生态及其研究进展
寸草 不生 的荒漠 化演 变 趋 势 , 态恶 化 发 展 到危 机 生 状态 [ 。阿坝 州森林 覆 盖率 由 2 纪 5 , 0世 0年代的
最 困难 的 一 种 特 殊 地 域 类 型 J 主 要 分 布 于 金 沙 , 江、 怒江 、 沧 江和 雅砻 江的 中 、 澜 下游 , 大渡 河和元 江 的 中游 , 岷江上 游 和嘉 陵江上 游的 白水河 等河谷 区 ,
其总长度 为 4 1 5k 总面 积 1 3 m2 0 m, 12 0 k u 。干 旱 J
1 3 干旱河 谷生 态环 境现 状 .
将会对 区域 生态 环境 的改 善和 当地 的可持续 发展产
生重 大的意 义 。
1 干旱 河 谷
1 1 成 因 .
1 3 1 植被 稀疏 , .. 盖度 低 , 森林覆 盖率 减 少, 水文状 况恶化 【 由 于干 旱 少 雨 、 壤 贫 瘠 , 4 J 土 干旱 河 谷地 区植被极 为稀 疏 , 多 为低 矮 、 大 多刺 的 旱生 性 灌丛 。
展 . 。特定 的 自然 地理 因素 对 于 干旱 河 谷的 形成 7 J 起 着根本 的制 约作 用 , 人 为 因素 加 速 了干 旱河 谷 而
的形成 和退化 。 12 干旱河 谷的类 型 .
根 据不 同的 自然地理 区及 热量条 件 可将我 国的
干 旱河谷 分 为干热 河 谷 、 暖河 谷 和 干 温河 谷 三种 干 类 型[—l] 7 。 9o
干旱 河谷是 我 国西 南地 区 山地 的特殊 类型 , 在
南 北走 向的横 断 山, 使东 南 太 平 洋季 风 和 西南 印 致
同区域 山 地垂 直 带 中干 旱 河 谷 带 是 相 对 脆 弱 的 地
运用MODIS对我国西南地区极端干旱情况监测与评估研究
运用MODIS 对我国西南地区极端干旱情况监测与评估研究——以2009~2010年遥感数据为例张小强1,冯 彬1,王云燕2(1. 江苏省环境科学研究院 江苏省环境工程重点实验室,江苏 南京 210036;2. 河海大学环境学院,江苏 南京 210036)摘 要: 文章利用中分辨率成像光谱仪(MODIS )反演的干旱胁迫指数(DSI )来监测我国西南地区2009~2010年极端干旱的持续时间、发生强度和空间分布等特征,进而评估DSI 的干旱监测能力,并验证其精度。
结果表明:我国西南地区在2009年11月至2010年3月期间遭遇了极端干旱。
作物受灾面积占研究区总面积的74%,其中中度干旱、严重干旱和极端干旱面积占总面积的20%、12.7%和13.2%。
空间分布上,云南东部、贵州西部和广西西部地区均遭受了持续干旱,干旱期间强度从轻度到极端。
将DSI 和标准化降水指数(SPI )进行皮尔逊相关分析,以评估DSI 的监测结果。
结果表明:DSI 与SPI 的变化趋势在时间尺度较为一致,DSI 和时间尺度为3个月的SPI 的相关性系数最高(r =0.58),农业气象干旱的监测资料也验证了这一点。
研究表明,DSI 具有监测我国西南地区或全球其他类似地区极端干旱的能力。
关键词: 干旱;干旱胁迫指数;标准化降水指数;MODIS ;西南地区中图分类号: X321 文献标志码: A DOI :10.16803/ki.issn.1004 − 6216.2020.01.024Monitoring and Evaluation of Extreme Drought in Southwest China Based the MODIS——A Case Study Based on 2009 ~ 2010 Remote Sensing DataZHANG Xiaoqiang 1,FENG Bin 1,WANG Yunyan 2(1. Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science,Nanjing 210036, China ;2. College of Environment, Hohai University, Nanjing 210036, China )Abstract : This article investigated whether Drought Severity Index (DSI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) had the capability of detecting the regional drought in the subtropical southwest China. The monthly remote sensing data based DSI were used to characterize the extent, duration, and severity of the drought from 2000 to 2010. The results showed that southwest China suffered an extreme drought from November 2009 to March 2010 (referred to as the “drought period ”). The area affected by the drought occupied approximately 74% of the total area of the study region, in which a moderate drought, severe drought, and an extreme drought accounted for 20%, 12.7% and 13.2% of the total area, respectively. Spatially,eastern Yunnan, western Guizhou and Guangxi suffered a persistent drought ranged from mild to extreme during the drought period.Pearson correlation analyses were performed between DSI and the in-situ meteorological station-based Standardized Precipitation Index (SPI) for validating the monitoring results. The results showed that the DSI corresponded favorably with the temporal change trend of the SPI. Furthermore, similar spatial patterns and temporal variations were found between the DSI and the 3-month SPI with the highest correlation (mean: r=0.58), as well as the agro-meteorological drought observation data. The analysis proved that the DSI could monitor the extreme drought with a fine resolution across subtropical southwest China, or other similar regions.Keywords : Drought ;Drought Severity Index ;SPI ;MODIS ;Southwest China CLC number : X321在各类农业气象灾害中,农业干旱造成的损失十分严重,是对农业生产威胁最大的灾害之一。
我国西南地区的干旱化趋势与应对策略
我国西南地区的干旱化趋势与应对策略近年来,由于气候变化和人类活动等因素的影响,我国西南地区的干旱化趋势日益加剧。
干旱给该地区的农业生产、生态环境以及居民生活带来了巨大的困扰。
为了应对这一严峻的挑战,我们需要制定和实施一系列的应对策略。
首先,加强水资源管理是缓解干旱影响的关键一环。
西南地区的水资源十分有限,而干旱只会进一步削弱该地区的水源。
因此,我们应该加强对水资源的保护和管理。
这包括加强水资源的监测,建立健全水资源利用制度,加强节水意识和水资源的高效利用等。
此外,还应该推广并严格执行水资源的配额制度,确保水资源的公平合理分配,避免过度开采和浪费。
其次,推动农业产业结构调整也是应对干旱化的重要举措。
由于西南地区的干旱化,传统耕作方式对于水资源的依赖性变得越来越不可持续。
因此,我们需要促进农业产业结构的转型升级,推广节水农业和现代农业技术。
这包括发展雨养式农业、滴灌技术、水肥一体化等,以提高农业生产的水分利用效率,减轻干旱对农业生产的影响。
此外,加强干旱监测和预警系统建设也是关键所在。
通过建立完善的干旱监测网络,实时掌握地下水位、水库水位、降水量等关键信息,可以及时预警干旱的蔓延趋势。
同时,还需要建立干旱预警指标体系,准确判断干旱的程度和影响范围,以便及时采取针对性的应对措施。
除了加强水资源管理、调整农业产业结构和建设监测预警系统外,西南地区还可以通过合理规划和建设水利工程来应对干旱化。
例如,可以加强水库水利工程的建设,有效调节季节性的水资源供应;在一些缺水地区,可以采取水源调度、引水等方式解决水资源短缺问题;还可以加强地下水的开发和利用,提供一种降低对表面水依赖的可行方案。
最后,加强科技创新和人才培养也是解决干旱问题的重要手段。
在面对日益严峻的干旱化形势下,科学技术的创新尤为重要。
我们需要加大对干旱科技研究的投入,加强科技成果的转化和推广应用,提高抗旱技术和设备的效能和可靠性。
同时,培养专业的水资源管理和干旱防治人才,加强干旱相关科学和技术的人员队伍建设,为西南地区的干旱化问题提供持续的技术支持。
我国西南主要干旱河谷生态及其研究进展_杨兆平
第 25卷第 4期干旱地区农业研究Vol . 25No . 4收稿日期 :2006-07-08基金项目 :国家重点基础研究发展规划资助项目 (2002C B111506 作者简介 :杨兆平 (1980— , 男 , 山东枣庄人 , 硕士研究生 , 主要从事景观生态学研究。
E -mail :yangzp04@163. com 。
通讯作者 :常禹 , E -mail :changyu @iae . ac . cn 。
我国西南主要干旱河谷生态及其研究进展杨兆平1, 2, 常禹1(1. 中国科学院沈阳应用生态研究所 , 辽宁沈阳 110016; 2. 中国科学院研究生院 , 北京 110039摘要 :在广泛查阅前人工作的基础上 , 发现到目前为止 , 对干旱河谷生态方面的研究主要集中在成土特征和土壤养分水分分布特征、植被状况及生态恢复上。
认为干旱河谷生态研究的进一步工作应该注重人为因素的研究 , 对干旱河谷区人口与生态环境间不协调的方面进行干预 , 以实现该区域人口与生态环境的良性互动 ; 加强景观生态学研究和多尺度集成 , 利用景观生态学原理、方法来探讨干旱河谷景观结构和功能的相应变化 , 寻求维持区域生态安全的关键机制。
关键词 :干旱河谷 ; 生态环境 ; 生态恢复中图分类号 :X171. 1文献标识码 :A 文章编号 :1000-7601(2007 04-0090-04干旱河谷是我国西南地区山地的特殊类型 , 在同区域山地垂直带中干旱河谷带是相对脆弱的地带 [1, 2], 也是存在问题最多 , 在山区治理中最关键和最困难的一种特殊地域类型 [3], 主要分布于金沙江、怒江、澜沧江和雅砻江的中、下游 , 大渡河和元江的中游 , 岷江上游和嘉陵江上游的白水河等河谷区 , 其总长度为 4105km , 总面积 11230km 2[1]。
干旱河谷生态系统的脆弱性决定了干旱河谷具有低阈值生态安全和高风险生态退化的特点。
西南大旱反思
Rethinking the serious drought in south-west China 作者: 马仲庄[1];张晓峰[2];马润水[1]
作者机构: [1]邯郸市漳滏河灌溉供水管理处,河北邯郸056000;[2]通辽市水利勘察设计院,
内蒙通辽028000
出版物刊名: 河北工程大学学报:社会科学版
页码: 48-49页
年卷期: 2010年 第4期
主题词: 干旱;抗旱;措施
摘要:长期持续的西南干旱,对我国经济、社会产生了严重影响,同时也为身在他处的水利工
作者们敲响了警钟。
如何科学应对干旱,促进经济社会的可持续发展,成为不可避免的议题。
探讨了旱灾的成因并结合邯郸漳滏河灌区的现状探讨了农业抗旱的相关措施。
近百年西南地区干旱的多时间尺度演变特征
近百年西南地区干旱的多时间尺度演变特征王林1, 2 陈文1(1 中国科学院大气物理研究所季风系统研究中心,北京 100190; 2 中国科学院大学,北京 100049)摘要:以干旱变化的不同时间尺度特征为出发点,利用具有多时间尺度变化并考虑温度影响的标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI)对我国西南地区近百年的干旱演变特征进行了分析。
通过与年鉴资料对比,证明SPEI指数在西南地区具有较好的适用性。
进一步分析表明,长时间尺度的SPEI指数具有年代际变化特征,分别在1940年前后和2006年8月达到近百年来的最低值;而短时间尺度的SPEI具有季节和年际振荡的特征。
不同时间尺度的干旱叠加会导致极端干旱事件发生,从而对社会经济造成严重影响,比如2006年夏季的川渝高温干旱。
相对而言,1972年我国西南地区虽然也发生了伏旱灾害,但由于没有多时间尺度干旱叠加,旱灾就不严重。
针对近百年温度变化对西南干旱影响的分析表明,高温对干旱的贡献也不可忽视,常常可以达到20%~25%。
关键词:多时间尺度,SPEI指数,西南干旱DOI:10.3969/j.issn.2095-1973.2012.04.003Characteristics of Multi-timescale Variabilities of the Drought over Last 100 Years in Southwest ChinaWang Lin1,2, Chen Wen1(1 Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 1001902 University of Chinese Academy of Sciences, Beijing 100049)Abstract: The characteristics of 20th drought in Southwest China at different time scales have been investigated based on SPEI (Standardized Precipitation Evaportranspiration Index), which is a multi-timescale drought index and takes temperature into account. Firstly, in comparison with observations, the SPEI is confirmed to be applicable to analyze the drought in Southwest China. Secondly, the results present that at longer time scales the SPEI have a feature of interdecadal variability with minimum values of SPEI appearing around 1940 and in August, 2006. In contrast, the temporal evolutions at shorter time scales of the SPEI are characterized by seasonal to interannual oscillations. Sometimes, the droughts at different time scales may happen simultaneously, which may produce extreme drought events affecting society and economy seriously (for instance, the summer drought in 2006 in Sichuan and Chongqing). However, compared with the summer drought in 2006, the summer drought in 1972 is not that severe because there is no overlap of droughts at different time scales. Finally, the contribution of temperature anomaly to the drought is also analyzed. The result indicates that high temperature contribution cannot be neglected and its probability can reach as high as 20%-25%.Key Words: multiple time scales, SPEI, the drought in Southwest China1 引言干旱是我国乃至全球最重要的自然灾害之一,它的影响范围广,涉及时间长。
高考英语作文题目预测(南方旱灾)
高考英语作文题目展望(南方旱灾)导读:本文高考英语作文题目展望(南方旱灾),仅供参照,假如能帮助到您,欢迎评论和分享。
一、南方旱灾自昨年年末起,我国西南地域的旱灾连续了几个月。
很多土地因干旱而颗粒无收,人们面对着缺水断粮的窘境。
在天灾眼前,我们人类在找寻方法降低损失的同时,也应反省自己。
请依据下表,写一篇文章剖析出现旱灾的原由以及我们该怎样从自己做起。
原由(1)中国 63% 的城市道对水源缺少,污染和工业化恶化了这类状况;(2)大批树木被砍伐,丛林覆盖率急剧降落;(3)水利工程没有合理运用,浇灌系统过于陈腐。
做法(1)提升节俭用水,合理用水,循环用水的意识;(2)多植树,保护环境,防备水土流失;(3)政府应加大资本投入,实时维修水利工程。
注意:(1) 词数 100 左右 ;(2)可适合增添细节,以使上下文连接 ;(3)开头已写好,不计入总词数。
What Lessons Should Be Learned From the DroughtThe drought in the south-west China lasts for several months, which makes people face water and food scarcity. Weshould learn lessons from it.The drought can be cause by several factors.__________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ __【猜题原由】我国西南地域的旱灾牵动着国人的心,在为之痛心的同时,我们也应从中汲取教训。
【环保作文】说说西南的旱情
【环保作文】说说西南的旱情西南地区近年来常常遭遇严重的旱情,这样的情况给当地人民的生活和农业生产带来了极大的困扰。
西南地区是我国的旱灾重灾区之一,其旱情的严重程度不仅影响到当地人民的生活,也对国家经济的发展产生了一定的影响。
在这篇作文中,我将就西南旱情的原因、对策以及个人的责任等方面进行探讨。
西南地区的旱情原因不容忽视。
一方面,西南地区地势多山且主要由喀斯特地貌构成,造成地下水资源的贫乏。
西南地区也面临雨热背景下的蒸发量大、降雨不均匀等气候特点,使得旱情更加严重。
人类的活动也对旱情的加剧起到了一定的作用。
过度开垦耕地、乱砍滥伐以及过度开采地下水等行为,导致了地表水和地下水的逐渐枯竭,从而形成了旱情。
针对西南地区的严重旱情,我们必须采取相应的对策。
政府应加大对西南地区水资源的开发和保护力度,加快建设水库、引水工程等水利设施,提高利用水资源的能力。
建立科学的水资源管理体系,制定合理的水资源配置方案,保证水资源的合理分配。
要加强对西南地区的水资源调度工作,根据降雨情况合理安排水文调度,提高干旱时期的水源保障能力。
也要加强对水资源的监测与预警工作,及时掌握水资源的变化情况,提前做好应对措施。
要加强对西南地区水资源的保护工作,严禁乱砍滥伐和过度开采地下水等行为,加大对水土流失的治理力度,保护好水资源。
每个人都有责任参与到保护水资源的行动中,保护水资源、节约用水是一项基本的个人责任。
作为公民,我们可以从小事做起,养成节约用水的习惯。
家庭中可以修复水漏、安装水-saving 用品,减少水的浪费。
还可以通过宣传教育的方式,提高公众对水资源保护的意识,鼓励大家共同参与到保护水资源的行动中。
西南地区的旱情给当地人民的生活和农业生产带来了极大的困扰。
为了解决旱情问题,政府、公民以及全社会都应该共同努力,加大水资源的开发和保护力度,采取相应的措施来应对旱情。
只有这样,才能够在未来实现西南地区的可持续发展。
基于不同干旱指数的西南干旱特征
基于不同干旱指数的西南干旱特征发布时间:2021-08-09T15:03:50.420Z 来源:《探索科学》2021年6月作者:洛桑平措洛松卓玛德庆曲珍德吉央宗[导读] 干旱是成灾害最为严重的自然灾害,受其影响的人数比其他任何自然灾害都多。
干旱是我国范围的重要自然灾害,在社会经济高速发展的影响下,干旱的频繁发生已成为最为严峻的环境问题之一,已经引起我国政府的高度重视。
拉萨市气象局洛桑平措洛松卓玛德庆曲珍德吉央宗 850000摘要:干旱是成灾害最为严重的自然灾害,受其影响的人数比其他任何自然灾害都多。
干旱是我国范围的重要自然灾害,在社会经济高速发展的影响下,干旱的频繁发生已成为最为严峻的环境问题之一,已经引起我国政府的高度重视。
我国是个自然灾害频发的国家,据统计,气象灾害造成的经济损失约占所有自然灾害的百分之七十,其中干旱造成的算是又占了气象灾害的百分之五十以上。
开展干旱的评估,监测与预测研究,已经成为正度和学术界高度重视点问题,且具有重大现实意义。
针对干旱这一全球自然灾害,以我国西南地区为研究区。
近年来我国西南地区发生干旱较为频繁,干旱强度和受旱区域不断增加,严重影响了农业生产和经济的发展。
近年来我国西南地区发生干旱较为频繁,干旱强度和受旱区域不断增加,严重影响了农业生产和经济的发展。
通过分析不同指示意义的干旱指数来探究我国西南干旱的时空格局和变化趋势,为全球变化背景下极端事件研究提供科学参考。
关键词:全球气候变暖、PDSI、SPI、干旱灾害引言受全球气候变暖影响,中国西南地区、东北南部以及华北平原地区的干旱受灾情况日益严重(黄荣辉等,2011)。
40年来,中国国土范围内整体呈现出气候干旱的趋势,自东北向西南地区还存在一条显著的干旱趋势带,副热带和中低纬度地区的干旱日数呈增加趋势(Zhai et al., 2010;刘珂和姜大膀,2015)。
21世纪以来,西南地区遭受数次严重的干旱灾害:2005年云南省发生严重的春季干旱、2006年川渝地区夏季发生特大干旱、2009年秋季至2010年春季的干旱波及贵州、广西、四川多地,为西南地区有气象记录以来最严重的干旱事件。
近日我国西南大旱
近日我国西南大旱1. 简介近期,我国西南地区遭遇严重干旱天气。
这场大旱不仅给当地的农业生产和经济发展带来了巨大的影响,同时也给人们的生活带来了不便和困扰。
本文将对近日我国西南大旱的原因、影响以及相关的救灾措施进行分析和探讨。
2. 原因分析在分析西南大旱的原因时,主要从气候变化和人类活动两个方面进行探讨。
2.1 气候变化气候变化是导致西南大旱的主要原因之一。
随着全球气候的变暖,西南地区的降雨量逐年减少,干旱现象逐渐加剧。
科学家们认为,气候变化导致大气环流和降水模式发生改变,进而导致西南地区出现持续干旱的情况。
2.2 人类活动人类活动也是导致西南地区大旱的重要原因之一。
长期以来,西南地区的不合理开发和过度利用水资源,加上大规模的森林砍伐和土地开垦,导致了生态环境的破坏和水源减少。
同时,农业灌溉和城市用水的需求也在不断增加,进一步加剧了水资源紧缺的局面。
3. 影响分析西南大旱对当地的农业生产、经济发展和人民的生活产生了深远的影响。
3.1 农业生产干旱天气对农业生产带来了巨大的冲击。
缺水导致农作物的生长受阻,农民的种植收益大幅下降。
特别是对于以种植水稻、玉米等农作物为主的地区来说,大旱不仅使得农作物的产量大幅减少,还可能导致农民因无法获得足够的收入而面临生计问题。
3.2 经济发展西南地区是我国的重要经济区域之一,大旱对当地的经济发展产生了严重的负面影响。
首先,农业生产的下降导致农业经济的萎缩,进一步影响了地方的经济增长。
其次,干旱天气还可能导致水电供应不足,造成工业生产中断,对当地的产业链条和就业市场产生不利影响。
3.3 人民生活大旱对人们的生活也带来了很多不便和困扰。
由于水源短缺,很多地方面临着缺水问题,居民生活用水、饮水和卫生等方面受到了限制。
此外,干旱天气还会导致土壤干燥,增加火灾的风险,进一步加剧了人民的安全隐患。
4. 救灾措施为了应对西南大旱的严峻形势,政府和社会各界采取了一系列的救灾措施。
4.1 节水措施为了确保人民的生活用水和农业灌溉的需求,政府鼓励人们节约用水,加强对重要水资源的保护和管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国西南干旱研究进展综述最近十几年,中国西南地区出现了极端干旱事件频发的态势,对当地的农业、水资源、生态系统以及社会经济造成了严重的影响。
西南干旱已成为政府和学术界高度关注的热点问题,国内外学者针对中国西南干旱事件开展了一系列的研究工作。
虽然该领域的研究进展较快,但仍缺乏综合性和系统性,因此作者对中国西南干旱的科研成果和发展动态进行了系统的归纳和总结,并希望对今后的研究有所启示。
目前而言,对西南干旱的研究主要可以分为两类:一是对西南地区过去和未来干旱演变特征的分析和预估,二是对西南干旱事件发生的大尺度环流背景和成因分析。
研究表明,过去50年,西南干旱事件发生的频率增加、强度也增强,而且干旱风险在21世纪很可能将继续增加。
但是关于西南干旱成因和预估的一些关键问题还存在争议,特别是海洋强迫和大气环流异常影响西南干旱的过程和机制尚不完全清楚。
同时,复杂的非线性相互作用对理解和预测西南干旱也构成严峻的挑战。
尽管目前对西南干旱事件发生规律和机理的认识有限,但采取措施有效应对干旱的影响已刻不容缓。
关键词:干旱,中国西南,历史变化,未来预估,机理下载地址:http://159.226.119.58/aosl/EN/abstract/abstract570.shtml相关链接:/syky/201506/t20150615_4373967.shtml/newsroom/research_news/201506/t20150616_148920.shtmlP R E L I M I N A R Y A C C E P T E D V E R S I O NDrought in Southwest China: A ReviewWANG Lin 1 , CHEN Wen 2, ZHOU Wen 3, and HUANG Gang 4,51Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 2Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100190, China3Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China 4State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China 5Joint Center for Global Change Studies, Beijing 100875, ChinaReceived 29 April 2015; revised 20 May 2015; accepted 17 June 2015; published 16 November 2015AbstractThe clustering of severe and sustained droughts in Southwest China (SWC) during the last decade has resulted in tremendous losses, including crop failure, a lack of drinking water, ecosystem destruction, health problems, and even deaths. Various attempts have been made to explore the variability and causes of drought in SWC. Here, the authorsCorresponding author: WANG Lin, wang_lin@P R E L I M I N A R Y A C C E P T E D V E R S I O Nsummarize and integrate this accumulated but fragmented knowledge. On the whole, general agreement has been reached on the evolution of drought in SWC, which has become more frequent and intense during the past 50 years and is projected to continue throughout the 21st century. However, it is unclear and even disputable as to what and how sea surface temperatures and circulation oscillation patterns affect the drought condition. Meanwhile, the presence of strong nonlinearity places considerable challenges in both understanding and predicting drought in SWC. Therefore, much remains to be learned concerning the mechanisms responsible for drought disasters in SWC and accurate forecast practice. In addition to pursuing research on factors and processes involved in drought formation, above all, there is an urgent need to develop appropriate strategies and plans for mitigating the threats of drought.Keywords: drought, Southwest China, historical change, future scenario, mechanismCitation: Wang, L., W. Chen, W. Zhou, et al., 2015: Drought in Southwest China: A review, Atmos. Oceanic Sci. Lett., 8, doi:10.3878/AOSL20150043.1 IntroductionSouthwest China (SWC) covers an area of approximately 1.23 million km 2, or 12.9% of China, with latitude and longitude ranging from 22°N to 32°N and 98°E to 110°E, respectively, and comprises four provinces and one municipality: Sichuan, Guizhou, Yunnan, west of Guangxi and Chongqing. SWC is one of the most densely populated regions in China, accounting for an estimated 1/6 of the nation’s total, and is also the main grain producing area,P R E L I M I N A R Y A C C E P T E D V E R S I O Nproviding approximately 16% of the national food supply. SWC has abundant precipitation of about 1200–1800 mm per year on average; meanwhile, it contains headwaters of many important rivers, including the Yangtze, Lancang and Nujiang, which provide as much as 46% of China’s available water resources. Despite being located in the humid climate zone, exceptional and sustained droughts have frequently hit SWC in the last decade, with the summer of 2006, the autumn of 2009 to the spring of 2010, and the summer of 2011 being record-breaking events (Wang et al., 2014). According to statistics reported by the Chinese government, severe drought together with high temperatures during summer 2006 caused water scarcity for at least 18 million residents, crop failure on 311300 ha of land, and economic losses of 11.74 billion yuan (Li et al., 2009). During the long-lasting drought from autumn 2009 to the ensuing spring of 2010, more than 16 million people and 11 million livestock faced drinking water shortages, with direct economic losses estimated at 19 billion yuan (Barriopedro et al., 2012; Qian and Zhang, 2012; Yang et al., 2012b). One year later, the drought in the summer of 2011 affected a combined 5.86 million ha of crops, leaving a total of 9.17 million livestock and 12 million people short of drinking water (Sun et al., 2012; Wang et al., 2012). All of these super droughts constitute devastating and far-reaching threats to agriculture, water availability, ecosystems (Zhang et al., 2012a, b), the economy, and society (Ye et al., 2012). Besides the negative effect of drought, the complex topography, erosion, deforestation, and poor water management have exacerbated the worst drought events in SWC (Qiu, 2010).Before massive droughts over SWC initiated in 2006, studies of drought/flooding acrossP R E L I M I N A R Y A C C E P T E D V E R S I O Neastern China and Northwest China were hot topics among the research community (e.g., Huang, 2004; Zhou et al., 2006, 2012; Zhou and Chan, 2006; Chen et al., 2009, 2013a, b; Wei and Wang, 2013; Li et al., 2014a; Qu et al., 2014). During recent years, devastating droughts in SWC have attracted great concern from both the Chinese government and the academic sector. To date, considerable efforts have been expended on surveying the characteristics as well as establishing the physical causes of droughts in this hotspot region. Nevertheless, the relevant literature remains fragmented. Therefore, in this review paper, we gather and integrate the past achievements in understanding the multiple aspects of drought in SWC, and highlight the pending obstacles and knowledge gaps that need to be addressed in future work. The remainder of the paper is organized as follows: In section 2, we review the historical change of drought in SWC from an observational perspective, along with future projections based on simulations by climate models. After describing the basic characteristics of the variability of drought in SWC, the suggested causes of drought in the region are summarized in section 3. Finally, section 4 provides concluding remarks and suggests directions for future research. 2 Historical and future projected changes of drought in SWCThis section provides the current knowledge from historical and future perspectives regarding drought in SWC. He et al. (2011), Zhang et al. (2013a), and Li et al. (2014b) all detected the spatiotemporal signatures of dryness-wetness variations in SWC from 1960 to 2009 and, despite the different drought metrics employed, the generally consistent finding was that drought events in SWC have increased in both intensity and frequency during theP R E L I M I N A R Y A C C E P T E D V E R S I O Npast half a century, induced by the combined effect of decreasing precipitation and rising temperature. Wang and Chen (2012) examined the multiscalar variability of drought over SWC in long records starting from the early 20th century and found dramatic interannual variability superimposed on interdecadal oscillations without a pronounced long-term trend. Therefore, the trend towards increasing drought in the last 50 years may indeed reflect a phase transition associated with multi-decadal variability. Although current droughts are extremely serious, it is in fact not the worst period in a long-term context because the drought episodes centered around the year 1940 experienced the same intensity and duration. Other dry periods with less detrimental effects included the 1960s and 1990s, while very or extremely humid conditions were recorded in 1910–30, the 1950s, and 1967–70. In addition, other decades were characterized by climatic stability, with less intensive and shorter dry or humid periods. Recently, Ji et al. (2015) extended the analysis back to 1500 A. D. with the help of yearly charts of dryness-wetness in China for the last 500 years, a reconstruction product on the basis of China’s official historical documents. On the centennial scale, an abrupt increase of drought disasters was found during the 20th century compared to the past four centuries. However, it should be noted that there remains substantial uncertainty with respect to the proxy database inferred from chorography, indicating that interpretations of reconstructed drought variability should be treated with caution. Despite significant efforts made to place drought in SWC in a historical context, as Wang et al. (2015a) pointed out, it remains unclear as to why the recent super droughts are historically unprecedented during the past 50 years and what is the essential feature behind them. These failures stem from theP R E L I M I N A R Y A C C E P T E D V E R S I O Nabsence of an integrated approach to quantifying drought and its associated indexes, which is crucial for understanding the mechanisms responsible for super droughts and for distinguishing such droughts from those of less consequence. A new metric, called the Comprehensive Multiscalar Indicator (CMI), was developed to consider the combined effects of the wet/dry state at different timescales. Reexamination of droughts in SWC illuminates the essential feature of super droughts events— a combination of multiple stresses on water resources and highlights the utility of CMI.As we know, climate change poses a significant challenge to human survival and development, especially for underdeveloped regions. Apart from understanding historical evidence, it is of vital importance to assess possible future scenarios of drought risk under the background of global warming. Such knowledge will be helpful for the state and local government in preparing advanced mitigation and adaptation strategies. Wang et al. (2014) evaluated potential future changes in drought over SWC under the CMIP5 (Coupled Model Intercomparison Project Phase 5) framework. Towards the end of 21st century, precipitation and evaporation are both expected to increase, resulting from intensified water vapor transport from the Bay of Bengal and the joint effect of elevated temperature and surface net radiation, together with reduced relative humidity, respectively. In comparative terms, the increasing rate of evaporation outweighs that of precipitation, producing an overall drying tendency in SWC (Fig. 1). Furthermore, we see that not only will incidences of severe and extreme drought increase dramatically in the future, but extremely wet events will also become more probable. It is also noteworthy that the future drought risk in SWC is nearlyP R E L I M I N A R Y A C C E P T E D V E R S I O Ntwice that in other parts of the country (Wang and Chen, 2014). In light of the current impacts and future threats of drought disasters in SWC, it is imperative to take measures to improve our ability to cope with such change, including water management solutions, adjustments to cropping structures, soil protection, and so on.3 Mechanisms responsible for drought in SWCBased on the above arguments, the variability of drought in SWC at varying time scales becomes clear, but the physical mechanisms responsible remain elusive. In general, the maintenance of deficient precipitation over affected areas is often regulated by persistently abnormal sea surface temperature (SST) and the resulting atmospheric conditions. Therefore, many studies have been conducted to explore the critical pattern of SST and synoptic systems with significant influence on the lack of rainfall in SWC. Besides, drought is often enhanced by land-atmosphere coupling, which plays a significant role at a more local and on shorter time scales. Figure 2 summarizes the factors currently recognized as possibly being engaged in drought formation over SWC.At present, the vast majority of studies on the topic have been carried out with a focus on particular droughts, such as those that occurred in summer 2006, autumn 2009 to spring 2010, and summer 2011. Yang et al. (2008), Li et al. (2009), and Liu et al. (2009b) all noted that, during summer 2006, the western Pacific subtropical high (WPSH) strengthened, with its ridge line shifting northward and extending westward, and the Tibetan high lay eastward. The two highs then merged into a stable belt of continental high pressure aloft in the middle and upper troposphere. Under the control of high pressure, downward airflows prevailed in SWCP R E L I M I N A R Y A C C E P T E D V E R S I O Nand moisture supply from the Bay of Bengal and South China Sea to this region was blocked, as evidenced by anomalous water vapor flux from the northeast to the southwest, and an associated divergent center situated in the Sichuan-Chongqing region (Liu et al., 2009a). Further investigation showed that a stronger heat source induced vigorous convective activities over the western Pacific in summer (Peng et al., 2007) and less snow cover over the Tibetan Plateau in the preceding winter and spring (Zou and Gao, 2007), giving rise to the amplification of the WPSH and the Tibetan high, respectively. Moreover, accompanied by a weak blocking high in the Ural Mountains and a shallow East Asian trough, the midlatitudes were dominated by stronger zonal circulation than usual, which hindered the southward intrusion of cold air into SWC. Consequently, the large-scale configuration of the subtropical and midlatitude circulation pattern during summer 2006 was not favorable for the convergence of warm-moist air from the south and cold-dry air from the north, and thus severe drought developed. Related with the autumn 2009 to spring 2010 drought, several potential climatic candidates have been identified. At the local scale, SWC was characterized by a lack of moisture and warmer air temperature throughout the lower and middle troposphere, which together made it hard for the air to become saturated and thus also made it hard for rain to form (Lu et al., 2011; Yang et al., 2012b). Meanwhile, significant anomalous descent was observed in SWC. Even so, what and how did remote forcing affect the regional thermodynamic characteristics? Yang et al. (2012b) reported a significant positive correlation between the Arctic Oscillation (AO) index and precipitation in SWC, indicating that aP R E L I M I N A R Y A C C E P T E D V E R S I O N negative phase of the AO may bring drought to the region. Accordingly, Barriopedro et al. (2012), Huang et al. (2012), and Yang et al. (2012b) all noted that, in winter of 2009/2010, the AO index amounted to its lowest value since the mid-20th century, which brought the track of cold waves eastward with coincident reduced northerly flow of cold air into SWC, as mirrored by pronounced low temperature overwhelming the eastern half of China. Meanwhile, SWC also suffered from deficient moisture supply: during autumn 2009, an anomalous cyclone over the South China Sea impeded water vapor transport from the western Pacific and the Bay of the Bengal; during the subsequent winter, a flat-shaped south branch trough (also called the India-Burma trough) diverted water transfer to the far east before penetrating inland towards SWC (Wang and Li, 2010; Zhang et al., 2011; Barriopedro et al., 2012). Furthermore, Huang et al. (2012), Yang et al. (2012b), and Zhang et al. (2013b) all assumed oceanic warming in the equatorial central Pacific that began around June and matured in November, known as El Niño Modoki, to be the principal external forcing in shaping East Asian circulation pattern anomalies. Specifically, El Niño Modoki induced a strongly anomalous cyclone over the west North Pacific during autumn 2009 (Zhang et al., 2013b), while a substantial westward extension of the WPSH (Yang et al., 2012b) along with an anticyclone over the South China Sea (Huang et al., 2012) occurred during winter 2009/2010, all of which were conducive to a strong decline in water vapor transport to SWC. Conversely, however, Jiang and Li (2010) and Yang et al. (2012a) both argued that the drought during winter 2009/2010 did not arise from the impact of El Niño, owing to the fact that the SST anomaly composite for extreme rainfall deficit years resembled a La Niña pattern. AnotherP R E L I M I N A R Y A C C E P T E D V E R S I O Ncontroversial aspect is the effect of the Indian Ocean (Huang et al., 2012; Zhang et al., 2013b). In summary, studies are generally consistent in the AO playing a critical role in the extreme drought condition of 2009/2010, but it remains an open question as to whether El Niño Modoki or the Indian Ocean make the greatest contribution. We elaborate on this further later in the paper. Additionally, Li et al. (2013) demonstrated the importance of antecedent soil moisture anomalies in their simulation, showing that reduced soil moisture in autumn led to decreased precipitation in the subsequent winter via positive feedback loops.With respect to the 2011 summer drought, Sun et al. (2012) and Wang et al. (2012) concluded that a weakened water vapor supply and prevalent descending motion over SWC yielded the severity and persistence of the drought. Such a pattern is quite similar to the atmospheric configurations noted during the previous event in summer 2006. However, the WPSH exhibited contrasting characteristics in summer 2006 and 2011 in terms of its zonal extent. Li et al. (2014c) revealed that the WPSH stretched westward in 2006 but withdrew eastward in 2011, indicative of its possible nonlinear behavior. The case studies summarized above are indispensable but can sometimes be misleading, because of their very narrow focus. Recent studies have endeavored to provide a more general description of the synoptic and SST conditions, as opposed to specific examples, offering deeper insight into the causes of drought. Feng et al. (2014) studied the teleconnected causes of drought in SWC during its dry season (November to March), and considered SST anomalies in the tropical Pacific and North Atlantic to be the main drivers for drought. During La Niña years, enhanced heating over the Maritime Continent provokesP R E L I M I N A R Y A C C E P T E D V E R S I O Nanomalous downward motion over SWC through the connection of local Hadley circulation; in the presence of an ENSO-neutral status, a negative-phase North Atlantic Oscillation (NAO) plays a crucial role by exciting a large-scale wave train that leads to an anomalous anticyclone in SWC. Xu et al. (2012) focused on the asymmetric relationship between the NAO and SWC precipitation in boreal winter, disclosing that the negative phase of the NAO generates insufficient precipitation over SWC, while the relationship between them is not significant for the opposite phase.Regarding autumn drought, as suggested by Wang et al. (2015b), it is primarily the tropical Northwest Pacific (NWP) SST that exerts an influence on SWC; moreover, the three key dynamic processes linked to drought in SWC in response to a warm NWP have also been elucidated based on both observational diagnosis and numerical experiments. Therefore, it is evident that there is no preference for drought during the dry season to be correlated to the El Niño portion of ENSO. However, as mentioned, the 2009/2010 drought was attributed to El Niño Modoki by Huang et al. (2012), Yang et al. (2012b), and Zhang et al. (2013b). So, why are there such conflicting attitudes towards the effect of ENSO? One possible explanation to reconcile these disparate findings is that the response of drought and its associated circulation pattern to ENSO forcing is rather nonlinear. If a nonlinear association exists, it is probable for individual events (i.e., the 2009/2010 drought) to be influenced by a specific El Niño episode, with its distinct features in terms of intensity and location, even though there is no overall correspondence between them.Also recall that a strong and westward extension of the WPSH during summer 2006 isP RE L I M I N A R Y A C C E P T E D V E R S I O Nbelieved to have promoted the dry condition over SWC. Following the linear perspective, a weak and eastward retreat of the WPSH implies plentiful precipitation in SWC. However, Li et al. (2009) examined the strength indices and western-most points of its ridge line corresponding to severe drought in different years, and revealed that the WPSH patterns associated with marked positive and negative rainfall anomalies in SWC are not opposite to each other. Instead, either stronger with a westward shift or weaker with an eastward shift of the WPSH can result in inadequate precipitation over SWC, implying a nonlinear response of SWC precipitation to the amplitude and zonal deviation of the WPSH during summer. Nevertheless, a common feature shared by almost all drought events is the poleward displacement of its ridge line (Li et al., 2009; Liu et al., 2009b).Lastly, but importantly, the worsening drought risk in SWC is not only a natural process, but also the result of inappropriate human intervention. Extensive human activities have been exerting increasing impacts on the fragile environment of the region, including the degradation of vegetation, deforestation, soil erosion, and excessive consumption of water resources. When anthropogenic impacts work in tandem with natural disasters, drought conditions can intensify and perpetuate. Mu et al. (2010) studied the effects of human activity on severe drought in SWC, but it is beyond the scope of this review to go into their findings in detail.4 Conclusion and future perspective Starting around 2006, a sequence of extreme droughts have struck SWC, resulting inP R E L I M I N A R Y A C C E P T E D V E R S I O Ntremendous losses including crop failure, a lack of drinking water, ecosystem destruction, health problems, and even deaths. Enormous amounts of research effort have been dedicated to investigating the variability and causes of droughts in SWC. In this review, we first document the basic characteristics, encompassing historical changes and future scenarios, of dryness-wetness variation in SWC, and then summarize the proposed mechanisms responsible for drought. On the one side, clear agreement has been achieved on the spatiotemporal evolution of drought in SWC, which has become more frequent and intense during the past 50 years and is projected to continue throughout the 21st century. On the other side, however, although our understanding of the causes of drought in SWC has progressed a great deal, evolving from case studies to more generalized theory, many controversies and open questions remain. Hence, there is much left to be learned about the mechanisms that trigger drought in SWC. Based on this review of the literature, the key issues and challenges to be addressed in the future are highlighted as follows: (1) Role of SST (particularly ENSO) with associated teleconnections. There is great uncertainty as to which SSTs and induced atmospheric circulation anomalies cause drought or flood conditions in SWC. Detailed investigations need to be made to determine the exact impacts of SSTs. In particular, since ENSO is known to heavily disrupt normal weather conditions in many parts of the world, it is essential to ascertain the role and effect of ENSO, be it of the canonical or Modoki type. Besides, previous results are suggestive of a possible nonlinear influence of ENSO, depending on its intensity and location, on SWC, which deserved further attention.P R E L I M I N A R Y A C C E P T E D V E R S I O N(2) Strong nonlinearity. The SST and circulation patterns tied to the fluctuation of SWC precipitation are typically complicated, with already reported nonlinear influences of the WPSH and ENSO at play. Consequently, a simple linear technique, such as correlation, regression or composite analysis, is not applicable. The presence of nonlinear relationships invokes appreciable difficulties in understanding the mechanisms involved.(3) Predictability and prediction. The ultimate goal of understanding the mechanisms and processes underlying drought variability is to develop skillful prediction. Further, the ability to predict drought accurately relies on our knowledge of sources of predictability. However, little is currently known about potential predictors of drought in SWC. Moreover, as a consequence of strong nonlinearity, it is challenging to build effective prediction methods because current climate models are incapable of capturing both the position and intensity of SST and circulation anomalies.The scope of future work is not limited to the key issues outlined above. In particular, the contribution from land surface processes, both locally in SWC and remotely in the Tibetan Plateau, has not yet been investigated. Obviously, more research is needed in the future to reveal the potential candidates that contribute to drought in SWC. Therefore, the only way to address drought-related problems in SWC is via the concept of the climate system.Finally, regardless of whether or not improvements will be made to our understanding and forecasts of drought in SWC, it is urgent to implement planning and mitigation strategies in order to reduce the adverse impacts when drought occurs.Acknowledgements. This work was supported by the National Basic Research Program ofP R E L I M I N A R Y A C C E P T E D V E R S I O NChina (Grant Nos. 2012CB955604 and 2011CB309704), the National Natural Science Foundation of China (Grant Nos. 41461144001, 41230527, 41275083, and 91337105), and the National Outstanding Youth Science Fund Project of China (Grant No.41425019).References Barriopedro, D., C. M. Gouveia, R. M. Trigo, et al., 2012: The 2009/10 drought in China: Possible causes and impacts on vegetation, J. Hydrometeor., 13, 1251–1267.Chen, W., J. Feng, and R. Wu, 2013a: Roles of ENSO and PDO in the link of the East Asian Winter Monsoon to the following summer monsoon, J. Climate , 26, 622–635. Chen, W., X. Lan, L. Wang, et al., 2013b: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia, Chin. Sci. Bull., 58, 1355–1362. Chen, W., L. Wang, Y . Xue, et al., 2009: Variabilities of the spring river runoff system in East China and their relations to precipitation and sea surface temperature, Int. J. Climatol., 29, 1381–1394.Feng, L., T. Li, and W. Yu, 2014: Cause of severe droughts in Southwest China during 1951–2010, Climate Dyn., 43, 2033–2042.He, J., M. Zhang, P. Wang, et al., 2011: Climate characteristics of the extreme drought events in Southwest China during recent 50 years, Acta Geogr. Sinica (in Chinese), 66(9), 1179–1190. Huang, G ., 2004: An index measuring the interannual variation of the East Asian summer monsoon—the EAP index, Adv. Atmos. Sci., 21, 41–52.Huang, R., Y . Liu, L. Wang, et al., 2012: Analyses of the causes of severe drought occurringP R E L I M I N A R Y A C C E P T E D V E R S I O Nin Southwest China from the fall of 2009 to the spring of 2010, Chin. J. Atmos. Sci. (inChinese), 36(3), 443–457.Ji, Y ., G . Zhou, S. Wang, et al., 2015: Increase in flood and drought disasters during1500–2000 in Southwest China, Nat. Hazards , 77(3), doi:10.1007/s11069-015-1679-9. Jiang, X., and Y . Li, 2010: The spatio-temporal variation of winter climate anomalies inSouthwestern China and the possible influencing factors, Acta Geogr. Sinica (in Chinese), 65(11), 1325–1335.Li, C., H. Liu, and J. Song, 2013: Further study of Yunnan drought during the 2009/2010winter: numerical simulation of impact of antecedent soil moisture, Climatic Environ. Res. (in Chinese), 18(5), 551–561.Li, X., W. Zhou, D. Chen, et al., 2014a: Water vapor transport and moisture budget overeastern China: Remote forcing from the two types of El Niño, J. Climate , 27, 8778–8792. Li, Y ., H. Xu, and D. Liu, 2009: Features of the extremely severe drought in the east of Southwest China and anomalies of atmospheric circulation in summer 2006, Acta Meteor. Sinica , 67, 122–132.Li, Y ., F. Ren, Y . Li, et al., 2014b: Characteristics of the regional meteorological drought events in Southwest China during 1960–2010, J. Meteor. Res., 28(3), 381–392. Li, Z., J. Chen, and X. Dong, 2014c: Comparison analysis for summer heavy drought and itscirculation features in 2011/2006 in Chongqing, J. Southwest Univ. Nat. Sci. Edit. (in Chinese), 36(8), 1–10.。