2017中考数学总复习专题八解直角三角形的应用试题新人教版
2017年中考数学专题汇编----《解直角三角形的应用》专题
2017年中考数学专题汇编----《解直角三角形的应用》专题1.A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)2.如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B到舞台C的距离相等,测得∠A=30°,∠D=45°,AB=60m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离.(结果保留根号)3.位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)4.贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).5.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.6.如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)7.某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)8.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)9.图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.(1)若∠θ=37°50′,则AB的长约为cm;(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)(2)若FG=30cm,∠θ=60°,求CF的长.10.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)11.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)12.如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)13.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)14.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73)15.金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)16.某班数学课外活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度i=1:2,且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测倾器的高度忽略不计,结果保留根号)17.如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.求:(1)单摆的长度(≈1.7);(2)从点A摆动到点B经过的路径长(π≈3.1).18.小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D 三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.19.阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔.文峰塔的木塔年久倾毁,仅存塔基.1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁塔的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)20.衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内,如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°,求来雁塔的高度.(结果精确到0.1米)21.如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.22.数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8)23.耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)24.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)25.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B 在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)26.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)27.如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.28.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB 为15m,求实验楼的垂直高度即CD长(精确到1m)参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.29.关于三角函数有如下公式:sin(α+β)=sinαcosβ+co sαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0)tan(α﹣β)=(1+tanαtanβ≠0)利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.如:tan105°=tan(45°+60°)=根据上面的知识,你可以选择适当的公式解决下面问题:如图,两座建筑物AB和DC的水平距离BC为24米,从点A测得点D的俯角α=15°,测得点C的俯角β=75°,求建筑物CD的高度.30.如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测得教学楼外墙外点D的仰角为30°,从点C沿坡度为1:的斜坡向上走到点F时,DF正好与水平线CE 平行.(1)求点F到直线CE的距离(结果保留根号);(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高度(结果精确到0.0l).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)31.某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)32.如图,两座建筑物AD与BC,其地面距离CD为60cm,从AD的顶点A测得BC顶部B的仰角α=30°,测得其底部C的俯角β=45°,求建筑物BC的高(结果保留根号)33.在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD(如图所示),已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)34.如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.35.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量:无人机在A处正上方97m 处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)36.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C 的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)37.某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)38.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)39.热气球的探测器显示,从热气球A看一栋楼顶部B的仰角α为45°,看这栋楼底部C的俯角β为60°,热气球与楼的水平距离为100m,求这栋楼的高度(结果保留根号).40.如图,线段AB、CD分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米.(1)求甲、乙两建筑物之间的距离AD.(2)求乙建筑物的高CD.参考答案与解析1.(2017•淮安)A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)【分析】过点C作CD⊥AB与D,根据AC=20km,∠CAB=30°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可.【解答】解:过点C作CD⊥AB与D,∵AC=20km,∠CAB=30°,∴CD=AC=×20=10km,AD=cos∠CAB•AC=cos∠30°×20=10km,∵∠CBA=45°,∴BD=CD=10km,BC=CD=10≈14.14km∴AB=AD+BD=10+10≈27.32km.则AC+BC﹣AB≈20+14.14﹣27.32≈6.8km.答:从A地到B地的路程将缩短6.8km.【点评】此题考查了解直角三角形的应用,用到的知识点是三角函数、特殊角的三角函数值,关键是作出辅助线,构造直角三角形,求出有关线段的长.2.(2017•铁岭)如图,某市文化节期间,在景观湖中央搭建了一个舞台C,在岸边搭建了三个看台A,B,D,其中A,C,D三点在同一条直线上,看台A,B 到舞台C的距离相等,测得∠A=30°,∠D=45°,AB=60m,小明、小丽分别在B,D看台观看演出,请分别求出小明、小丽与舞台C的距离.(结果保留根号)【分析】如图作BH⊥AD于H.,CE⊥AB于E.解直角三角形,分别求出BC、CD 即可解决问题.【解答】解:如图作BH⊥AD于H.,CE⊥AB于E.∵CA=CB,CE⊥AB,∴AE=EB=30,∴tan30°=,∴CE=10,AC=CB=2CE=20,在Rt△CBH中,CH=BC=10,BH=CH=30,在Rt△BHD中,∵∠D=45°,∴BH=DH=30,∴DC=DH+CH=30+10,答:小明、小丽与舞台C的距离分别为20m和(30+10)m.【点评】本题考查解直角三角形、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.3.(2017•张家界)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【分析】根据等腰直角三角形的性质得出BC的长,再利用tan70.5°=求出答案.【解答】解:∵在Rt△DBC中,∠DBC=45°,且CD=2.3米,∴BC=2.3m,∵在Rt△ABC中,∠ABC=70.5°,∴tan70.5°==≈2.824,解得:AD≈4.2,答:像体AD的高度约为4.2m.【点评】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.4.(2017•贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.【点评】本题考查了解直角三角形的应用,首先构造直角三角形,再运用三角函数的定义解题,构造出直角三角形是解题的关键.5.(2017•上海)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;(2)由EF∥AD,BE=2AE,可得===,求出EF、DF即可利用勾股定理解决问题;【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB===3,∴sinB===.(2)∵EF∥AD,BE=2AE,∴===,∴==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE===5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(2017•安徽)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)【分析】在R△ABC中,求出BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,求出DF=BD•sin45°=600×≈300×1.41≈423,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:在Rt△ABC中,∵AB=600m,∠ABC=75°,∴BC=AB•cos75°≈600×0.26≈156m,在Rt△BDF中,∵∠DBF=45°,∴DF=BD•sin45°=600×≈300×1.41≈423,∵四边形BCEF是矩形,∴EF=BC=156,∴DE=DF+EF=423+156=579m.答:DE的长为579m.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.7.(2017•岳阳)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB 与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)【分析】(1)在Rt△CDE中,根据∠CDE=30°,DE=80cm,求出支架CD的长是多少即可.(2)首先在Rt△OAC中,根据∠BAC=30°,AC=165cm,求出OC的长是多少,进而求出OD的长是多少;然后求出OA的长是多少,即可求出真空热水管AB 的长是多少.【解答】解:(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=80×cos30°=80×=40(cm).(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC×tan30°=165×=55(cm),∴OD=OC﹣CD=55﹣40=15(cm),∴AB=AO﹣OB=AO﹣OD=55×2﹣15=95(cm).【点评】此题主要考查了解直角三角形的应用,要熟练掌握,注意将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).8.(2017•长春)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)【分析】过B作地平面的垂线段BC,垂足为C,构造直角三角形,利用正弦函数的定义,即可求出BC的长.【解答】解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,把坡面与水平面的夹角α叫做坡角.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.9.(2017•威海)图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.(1)若∠θ=37°50′,则AB的长约为83.2cm;(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)(2)若FG=30cm,∠θ=60°,求CF的长.【分析】(1)作EP⊥BC、DQ⊥EP,知CD=PQ=10,∠2+∠3=90°,由∠1+∠θ=90°且∠1=∠2知∠3=∠θ=37°50′,根据EQ=DEsin∠3和AB=EP=EQ+PQ可得答案;(2)延长ED、BC交于点K,结合(1)知∠θ=∠3=∠K=60°,从而由CK=、KF=可得答案.【解答】解:(1)如图,作EP⊥BC于点P,作DQ⊥EP于点Q,则CD=PQ=10,∠2+∠3=90°,∵∠1+∠θ=90°,且∠1=∠2,∴∠3=∠θ=37°50′,则EQ=DEsin∠3=120×sin37°50′,∴AB=EP=EQ+PQ=120sin37°50′+10=83.2,故答案为:83.2;(2)如图,延长ED、BC交于点K,由(1)知∠θ=∠3=∠K=60°,在Rt△CDK中,CK==,在Rt△KGF中,KF===,则CF=KF﹣KC=﹣==.【点评】本题主要考查解直角三角形的应用,根据题意构建所需直角三角形和熟练掌握三角函数是解题的关键.10.(2017•海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【分析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.【解答】解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.11.(2017•达州)如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)【分析】如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.分别在Rt△EQN、Rt△PFM中解直角三角形即可解决问题.【解答】解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.在Rt△QEN中,设EN=x,则EQ=2x,∵QN2=EN2+QE2,∴20=5x2,∵x>0,∴x=2,∴EN=2,EQ=MF=4,∵MN=3,∴FQ=EM=1,在Rt△PFM中,PF=FM•tan60°=4,∴PQ=PF+FQ=4+1.【点评】本题考查了解直角三角形的应用﹣坡度问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.12.(2017•贺州)如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】过C点作AB的垂线交AB的延长线于点D,由三角形外角的性质可得出∠ACB=30°,进而可得出BC=AB=4米,在Rt△CDB中利用锐角三角函数的定义即可求出CD的值.【解答】解:过C点作AB的垂线交AB的延长线于点D,∵∠CAD=30°,∠CBD=60°,∴∠ACB=30°,∴∠CAB=∠ACB=30°,∴BC=AB=4米,在Rt△CDB中,BC=4米,∠CBD=60°,sin∠CBD=,∴sin60°=,∴CD=4sin60°=4×=2≈3.5(米),故该生命迹象所在位置的深度约为3.5米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.(2017•黔东南州)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)【分析】假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.【解答】解:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,∵CD=12米,∠DCE=60°,∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.∵DE⊥AC,D′E′⊥AC,DD′∥CE′,∴四边形DEE′D′是矩形,∴DE=D′E′=6米.∵∠D′CE′=39°,∴EE′=CE′﹣CE=12.8﹣6=6.8≈7(米).答:学校至少要把坡顶D向后水平移动7米才能保证教学楼的安全.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14.(2017•潍坊)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73)【分析】设每层楼高为x米,由MC﹣CC′求出MC′的长,进而表示出DC′与EC′的长,在直角三角形DC′A′中,利用锐角三角函数定义表示出C′A′,同理表示出C′B′,由C′B′﹣C′A′求出AB 的长即可.【解答】解:设每层楼高为x米,由题意得:MC′=MC﹣C C′=2.5﹣1.5=1米,∴DC′=5x+1,EC′=4x+1,在Rt△DC′A′中,∠DA′C′=60°,∴C′A′==(5x+1),在Rt△EC′B′中,∠EB′C′=30°,∵A′B′=C′B′﹣C′A′=AB,∴(4x+1)﹣(5x+1)=14,解得:x≈3.17,则居民楼高为5×3.17+2.5≈18.4米.【点评】此题属于解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.15.(2017•荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)【分析】过点C作CM⊥AB于M.则四边形MEDC是矩形,设EF=x,根据AM=DE,列出方程即可解决问题.【解答】解:过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3.CM=ED,在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=x,在Rt△FCD中,CD=3,∠CFD=30°,∴DF=3,在Rt△AMC中,∠ACM=45°,∴∠MAC=∠ACM=45°,。
2017年中考数学专题练习 解直角三角形的应用 精品
解直角三角形的应用知识点1.仰角、俯角问题:例1.如图,为了测量某建筑物CD 的高度,先在地面上用测角仪自A 处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了m 100,此时自B 处测得建筑物顶部的仰角是45°,测角知识点2.坡度、坡角问题:例2.如图,衡阳市防洪指挥部发现湘江边一处长m 400,高m 8,背水坡的坡角为45°的防洪大堤(横截面为梯形ABC D )急需加固,经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽m 2,加固后,背水坡EF 的坡比2:1=i . (1)求加固后坝底增加的宽度AF 的长;(2)求完成这项工程需要土石多少立方米.知识点3.方向角问题:例3.南中国海是中国固有领海,我渔政船经常在此海域执勤巡察,一天我渔政船停在小岛A 北偏西37°方向的B 处,观察A 岛周边海域,据测算,渔政船距A 岛的距离AB 长为10海里,此时位于A 岛正西方向C 处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号,渔政船接警后,立即沿BC 航线以每小时30海里的速度前往救助,求渔政船大约需多少分钟到达渔船所在的C 船.(参考数据:6.037sin ≈︒,8.037cos ≈︒,77.050sin ≈︒,64.050cos ≈︒)基础训练:1.水库原大坝的横断面是梯形ABCD ,如图,m DC B m AB 3106010=︒=∠=,,,加固后大坝的横断面为梯形ABED ,若m CE 5=.(1)若加固的大坝长为m 100,求需要填方多少立方米;(2)求斜坡DE 的坡度.2.衡阳市雨母山的主峰海拔约为m 300,市政府准备在主峰AB 上建一座电信信号发射架BC ,现在山脚P 处测得封顶的仰角为α,发射架顶端的仰角为β,求发射架高BC .(参考数据53tan =α,85tan =β)3.如图,两条公路CD AB 、均视为直线,东西方向公路CD 段限速,规定最高行驶速度不能超过60千米/时,并在南北向公路离该公路100米的A 处设置了一个监测点,点C 在A 的北偏西60°方向上,点D 在A 的北偏东45°方向上.(1)若一辆汽车从点C 匀速行驶到点D 所用的时间是15秒,试判断该汽车在这段限速路上是否超速,并说明理由;(参考数据:732.13=)(2)若一辆大货车在限速路上由D 处向西行驶,一辆小汽车在南北向公路上由A 处向北行驶,设两车同时开出,小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离.4.如图,某人在山坡坡角C 处测得一座建筑物顶点A 的仰角为60°,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为45°,m BC 90=,且D C B 、、在同一直线上,山坡坡度为2:1. (1)求该建筑物AB 的高度;(2)求此人所在位置点P 的铅垂高度.能力训练:5.如图,小岛A 在港口P 的南偏西45°方向,距离港口70海里处,甲船从A 出发,沿AP 方向以每小时20海里的速度驶向港口P ;乙船从P 出发,沿南偏东60°方向以每小时15海里的速度驶离港口,若两船同时出发.(1)设甲船出发x 小时,与港口P 距离______________海里;(2)当x 取何值时,两船与港口P 的距离相等;(3)当乙船在甲船的正东方向时,船体发生了故障不能继续航行,此时,乙船向甲船发出求救信号,若甲船以现在的航速赶去救援,需几小时才能到达出事地点.(参考数据:414.12≈,732.13≈,最后结果精确到1.0)挑战压轴题:垂直+面积+平行6.如图,在平面直角坐标系中,O 为坐标原点,边长为5得到正三角形OAB 的OA 边在x 轴的正半轴上,点D C 、同时从点O 出发,点C 以1个单位长/秒的速度向点A 运动,点D 以2个单位长/秒的速度沿折线A B O →→运动,设运动时间为t 秒,且50<<t .(1)当250<<t 时,求证:OA DC ⊥;(2)若OCD △的面积为S ,求S 与t 的函数关系式;(3)以点C 为中心,将CD 所在的直线顺时针旋转60°交AB 边于点E ,若四边形OCED 有一组对边平行,求点E 的坐标.。
2017年中考数学专题练习解直角三角形.doc
《解直角三角形》:分24 分)1.在△ABC中,∠B=90°,AB=3,BC=4,则t an A 的值是()A.45B .35C.43D .342. 在Rt △ABC中,∠C=90°,sin A =,则s in B 的值为()A.B.5 13C.D.3. 已知0°<<90°,则m=sin +cos 的值()A.m >1 B .m =1C.m <1 D .m ≥ 14. 在△ABC 中,若32sin A (1 tan B) 0,则C的度数是()2A.45 B .60C.75 D .1055. 如果直线y2x与x轴正半轴的夹角为,那么下列结论正确的是()A. sin 2B. cos 2C. tan 2D. tan 126. 如图,在8×4 的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则t an ∠ACB的值为()A.13B.12C.22D.37. 如图,坡角为30 的斜坡上两树间的水平距离AC为2m ,则坡面距离AB为()A.4m B.3mC.4 33m D.4 3m8. 如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i 1:1.5 ,则坝底AD 的长度为()A.26 米 B .28 米C.30 米 D .46 米B30AC第6 题图第7 题图第8 题图二、填空题:(每小题 3 分,共24 分)9. 在Rt △ABC中, ∠C=90 o,BC=5,AB=13,sin A =_________.10. 计算:0 cos3002sin 45 tan 60 =.11. 如图,在地面上的点 A 处测得树顶B的仰角为度,AC=7 米,则树高BC为米(用含的代数式表示).12.如图,小明爬一土坡,他从 A 处爬到 B 处所走的直线距离AB=4 米,此时,他离地面高度为h=2 米,则这个土坡的坡角∠A=.13.在一次夏令营活动中,小明同学从营地 A 出发,要到 A 地的北偏东60°方向的 C 处,他先沿正东方向走了200 米到达 B 地,再沿北偏东30°方向走,恰能到达目的地 C (如图) ,那么,由此可知,B、C 两地相距米.北C30°60°A B第11 题图第12 题图第13 题图14.一架梯子AB 斜靠在墙上,若梯子底端到墙的距离是AC =3 米,且则梯子AB 的长度为米 . cos3BAC ,415. 如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为.16. 如图,在半径为 5 的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),那么cos C 的值是.第15 题图第16 题图三、解答题(本大题共8 个小题,满分52 分):17. (本题 4 分)计算:0 0( 3 2) 4sin 60 2 2 318. (本题4分)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=BPC的值.12∠BAC,试求tan ∠19.(本题6分)如图,某数学兴趣小组想测量一棵树C D的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B 点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树C D的高度(结果精确到0.1m).(参考数据:≈ 1.414 ,≈ 1.732 )20. (本题6分)如图,在Rt ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,3sin A ,求DE.5BDA C E21.( 本题6分) 如图,有小岛A和小岛B,轮船以45km/h 的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得 B 的方位角为南偏东45°,轮船航行 2 小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈ 1.41 ,≈ 2.45 )22. (满分8 分)如图,从A地到B 地的公路需经过C地,图中AC=10 千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B 两地之间修建一条笔直的公路.⑴. 求改直的公路AB的长;⑵.问公路改直后比原来缩短了多少千米?(sin25 °≈0.42 ,cos25°≈0.91 ,sin37 °≈0.60 ,tan37 °≈0.75 )23. (本题8分)如图,在Rt△ABC中,∠C=90°,∠ A 的平分线交BC于点E,EF⊥AB于点F,点 F 恰好是AB的一个三等分点(AF>BF).⑴. 求证:△ACE≌△AFE;⑵. 求tan ∠CAE的值.24.(满分10分)如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1).求证:BD=BF;(2).若C F=1,cosB=35,求⊙O的半径.解直角三角形1~8: CAAC CACD;9.513;10.52;11. 7 tan ;12. 030 ;13. 200 ;14.4 ;15. 3 3 ;16. 45 ;17. 3;18. 43;19. 8.7m;20. 154 ;21.100km ;22.(1)AB 14.7千米;(2)缩短了2.3千米;23. (1)证明过程略;(2)tan5 CAE ;524. (1) 证明过程略;(2). 52.。
中考2017数学汇编专题26:解直角三角形的应用含解析
专题26:解直角三角形的应用一、选择题1、(4分)(2017•兰州)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于()A .B .C.D.【分析】如图,在Rt△ABC中,AC===120m,根据tan∠BAC=,计算即可.【解答】解:如图,在Rt△ABC中,∵∠ACB=90°,AB=130m ,BC=50m,∴AC===120m,∴tan∠BAC===,故选C.【点评】本题考查解直角三角形的应用、勾股定理的应用等知识,解题的关键是记住锐角三角函数的定义,属于基础题.2、(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()12A .5米B .6米C .6.5米D .12米【分析】在Rt △ABC 中,先求出AB ,再利用勾股定理求出BC 即可. 【解答】解:如图AC=13,作CB ⊥AB ,∵cosα==,∴AB=12, ∴BC==132﹣122=5,∴小车上升的高度是5m . 故选A .【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.3、(3分)(2017•绥化)某楼梯的侧面如图所示,已测得BC 的长约为3.5米,∠BCA 约为29°,则该楼梯的高度AB 可表示为( )A .3.5sin29°米B .3.5cos29°米C .3.5tan29°米D .米【分析】由sin∠ACB=得AB=BCsin∠ACB=3.5sin29°.【解答】解:在Rt△ABC中,∵sin∠ACB=,∴AB=BCsin∠ACB=3.5sin29°,故选:A.【点评】本题主要考查解直角三角形的应用,熟练掌握正弦函数的定义是解题的关键.4、(3分)(2017•百色)如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200 D.300【分析】作BD⊥AC于点D,在Rt△ABD中利用三角函数求得AD的长,在Rt△BCD中,利用三角函数求得CD的长,则AC即可求得,进而求得速度.【解答】解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选A.3【点评】此题考查了解直角三角形及勾股定理的应用,用到的知识点是方向角,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.5、(3分)(2017•玉林)如图,一艘轮船在A处测得灯塔P位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()A.15海里B.30海里C.45海里D.30海里【分析】作CD⊥AB,垂足为D.构建直角三角形后,根据30°的角对的直角边是斜边的一半,求出BP.【解答】解:作BD⊥AP,垂足为D.根据题意,得∠BAD=30°,BD=15海里,∴∠PBD=60°,则∠DPB=30°,BP=15×2=30(海里),故选:B.【点评】本题考查了解直角三角形,解一般三角形,求三角形的边或高的问题一4般可以转化为解直角三角形的问题,解决的方法就是作高线.6、(3分)(2017•烟台)如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB 的高度为1.6米,则1.414)()楼房CD的高度约为(结果精确到0.1米,≈【分析】过B作BF⊥CD于F,于是得到AB=A′B′=CF=1.6米,解直角三角形即可得到结论.【解答】解:过B作BF⊥CD于F,∴AB=A′B′=CF=1.6米,在Rt△DFB′中,B′F=,在Rt△DFB中,BF=DF,∵BB′=AA′=20,∴BF﹣B′F=DF﹣=20,∴DF≈34.1米,∴CD=DF+CF=35.7米,答:楼房CD的高度约为35.7米,故选C.56【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.7、(5分)(2017•益阳)如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB=α,则拉线BC 的长度为(A 、D 、B 在同一条直线上)( )A .B .C .D .h•cosα【分析】根据同角的余角相等得∠CAD=∠BCD ,由cos ∠BCD=知BC==.【解答】解:∵∠CAD +∠ACD=90°,∠ACD +∠BCD=90°, ∴∠CAD=∠BCD ,在Rt △BCD 中,∵cos ∠BCD=,∴BC==,故选:B .【点评】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8、(3分)(2017•绵阳)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠AEO=120°,则FC的长度为()A.1 B.2 C.D.【分析】先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.【解答】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF ,又∵Rt△BOF中,BO=BD=AC=,∴OF=tan30°×BO=1,∴CF=1,故选:A.7【点评】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.9、(4分)(2017•重庆)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x 的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.CQ⊥AP于点Q,【解答】解:如图,延长DE交AB延长线于点P,作∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,8∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.二、填空题1、(3分)(2017•广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= 17.【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,9解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.2、(3分)(2017•黄石)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为137米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)【分析】设AB=x米,由∠ACB=45°得BC=AB=x、BD=BC+CD=x+100,根据tan ∠ADB=可得关于x的方程,解之可得答案.【解答】解:设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+CD=x+100(米),在Rt△ABD中,∵∠ADB=30°,10∴tan∠ADB==,即=,解得:x=50+50≈137,即建筑物AB的高度约为137米故答案为:137.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.3、(3分)(2017•天门)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12米,∠B=60°,加固后拦水坝的横断面为梯形ABED,tanE=,则CE的长为8米.【分析】分别过A、D作下底的垂线,设垂足为F、G.在Rt△ABF中,已知坡面长和坡角的度数,可求得铅直高度AF的值,也就得到了DG的长;在Rt△CDG 中,由勾股定理求CG的长,在Rt△DEG中,根据正切函数定义得到GE的长;根据CE=GE﹣CG即可求解.【解答】解:分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G,如图所示.∵在Rt△ABF中,AB=12米,∠B=60°,∴sin∠B=,∴AF=12×=6,∴DG=6.11∵在Rt△DGC中,CD=12,DG=6米,∴GC==18.∵在Rt△DEG中,tanE=,∴=,∴GE=26,∴CE=GE﹣CG=26﹣18=8.即CE的长为8米.故答案为8.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,勾股定理.作辅助线构造直角三角形是解答此类题的一般思路.4、(3分)(2017•邵阳)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n 秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是(20﹣20)km.【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,12∵LR=AR•cos30°=40×=20(km),AL=AR•sin30°=20(km),在Rt△BLR中,∵∠BRL=45°,∴RL=LB=20,∴AB=LB﹣AL=(20﹣20)km,故答案为(20﹣20)km.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.5、(3分)(2017•苏州)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC的长,然后根据=求解.13【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.【点评】本题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键.6、(3分)(2017•山西)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)14【分析】在Rt△ACD中,求出AD,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题.【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.3【点评】本题考查解直角三角形的应用﹣仰角俯角问题、锐角三角函数等知识,解题的关键是通过添加辅助线,构造直角三角形解决问题.7、(2017•宁波)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了280米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)【分析】如图在Rt△ABC中,AC=AB•sin34°=500×0.56≈280m,可知这名滑雪运15动员的高度下降了280m.【解答】解:如图在Rt △ABC 中,AC=AB•sin34°=500×0.56≈280m,∴这名滑雪运动员的高度下降了280m.故答案为280【点评】本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于中考常考题型.8、(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B 两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,16在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.9、(4分)(2017•岳阳)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值,设半径为r的圆内接正n边形的周长为L,圆的直径为d,如图所示,当n=6时,π≈==3,那么当n=12时,π≈= 3.11.(结果精确到0.01,参考数据:sin15°=cos75°≈0.259)【分析】圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得L=24r•sin15°,d=2r,进而得到π≈≈3.11.【解答】解:如图,圆的内接正十二边形被半径分成12个如图所示的等腰三角形,其顶角为30°,即∠AOB=30°,作OH⊥AB于点H,则∠AOH=15°,∵AO=BO=r,17∵Rt△AOH中,sin∠AOH=,即sin15°=,∴AH=r×sin15°,AB=2AH=2r×sin15°,∴L=12×2r×sin15°=24r×sin15°,又∵d=2r,∴π≈=≈3.11,故答案为:3.11【点评】本题主要考查了正多边形和圆以及解直角三角形的运用,把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.三、解答题1、(8分)(2017•台州)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)1819【分析】过点A 作AC ⊥OB ,垂足为点C ,解三角形求出AC 的长度,进而作出比较即可.【解答】解:过点A 作AC ⊥OB ,垂足为点C , 在Rt △ACO 中,∵∠AOC=40°,AO=1.2米,∴AC=sin ∠AOC•AO ≈0.64×1.2=0.768,∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米, ∴车门不会碰到墙.【点评】本题主要考查了解直角三角形的应用,解题的关键是正确添加辅助线,此题难度不大.2、(7分)(2017•十堰)如图,海中有一小岛A ,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东60°方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东20航行,有没有触礁的危险?【分析】过A 作AC ⊥BD 于点C ,求出∠CAD 、∠CAB 的度数,求出∠BAD 和∠ABD ,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD ,根据勾股定理求出AD 即可.【解答】解:只要求出A 到BD 的最短距离是否在以A 为圆心,以8海里的圆内或圆上即可,如图,过A 作AC ⊥BD 于点C ,则AC 的长是A 到BD 的最短距离, ∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°, ∴∠ABD=∠BAD , ∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°, ∴CD=AD=6海里, 由勾股定理得:AC==6≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.【点评】考查了勾股定理的应用和解直角三角形,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.3、(2017•郴州)如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:≈1.73)【分析】作PH⊥AC于H.求出PH与100比较即可解决问题.【解答】解:结论;不会.理由如下:作PH⊥AC于H.由题意可知:∠EAP=60°,∠FBP=30°,∴∠PAB=30°,∠PBH=60°,∵∠PBH=∠PAB+∠APB,∴∠BAP=∠BPA=30°,∴BA=BP=120,在Rt△PBH中,sin∠PBH=,21∴PH=PB•sin60°=120×≈103.80,∵103.80>100,∴这条高速公路不会穿越保护区.【点评】本题考查解直角三角形、等腰三角形的判定和性质、勾股定理的应用等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.4、(8分)(2017•恩施州)如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家的正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)【分析】作OC⊥AB于C,由已知可得△ABO中∠A=60°,∠B=45°且OA=80m,要求OB的长,可以先求出OC和BC的长.【解答】解:由题意可知:作OC⊥AB于C,∠ACO=∠BCO=90°,∠AOC=30°,∠BOC=45°.在Rt△ACO中,∵∠ACO=90°,∠AOC=30°,∴AC=AO=40m,OC=AC=40m.在Rt△BOC中,22∵∠BCO=90°,∠BOC=45°,∴BC=OC=40m.∴OB==40≈40×2.45≈82(米).答:小华家到学校的距离大约为82米.【点评】本题考查了解直角三角形的应用,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.5、(10分)(2017•天津)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.【分析】如图作PC⊥AB于C.分别在Rt△APC,Rt△PCB中求解即可解决问题.【解答】解:如图作PC⊥AB于C.23由题意∠A=64°,∠B=45°,PA=120,在Rt△APC中,sinA=,cosA=,∴PC=PA•sinA=120•sin64°,AC=PA•cosA=120•cos64°,在Rt△PCB中,∵∠B=45°,∴PC=BC,∴PB==≈153.∴AB=AC+BC=120•cos64°+120•sin64°≈120×0.90+120×0.44≈161.答:BP的长为153海里和BA的长为161海里.6、(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A 船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C24在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,≈1.41)≈,tan53°解:如图作CE⊥AB于E.【解答】∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt △BCE中,∵tan53°=,∴=,25解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.7、(10分)(2017•乌鲁木齐)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的≈0.8,≈1.732,结果取整数)艇的航行速度.(sin37°≈0.6,cos37°26再根据路程÷时间=速度求解即可.【解答】解:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,有题意知,∠FAB=60°,∠CBE=37°,∴∠BAD=30°,∵AB=20海里,∴BD=10海里,在Rt△ABD中,AD==10≈17.32海里,在Rt△BCE中,sin37°=,∴CE=BC•sin37°≈0.6×10=6海里,∵cos37°=,∴EB=BC•cos37°≈0.8×10=8海里,EF=AD=17.32海里,∴FC=EF﹣CE=11.32海里,AF=ED=EB+BD=18海里,在Rt △AFC中,AC==≈21.26海里,21.26×3≈64海里/小时.答:救援的艇的航行速度大约是64海里/小时.2728【点评】考查了解直角三角形的应用﹣方向角问题,用到的知识点是方向角、勾股定理、解直角三角形、三角函数值,关键是做出辅助线,构造直角三角形.8、(6分)(2017•白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【分析】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,根据AE=DE ,列出方程即可解决问题.【解答】解:过点D 作DE ⊥AC ,垂足为E ,设BE=x , 在Rt △DEB 中,,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.9、(8分)(2017•西宁)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段AC上的A,B两点分别对南岸的体育中心D进行测量,分别测得∠DAC=30°,∠DBC=60°,AB=200米,求体育中心D到湟水河北岸AC的距离约为多少米(精确到1米,≈1.732)?29【分析】如图,过点D作DH⊥AC于点H.通过解直角△BHD得到sin60°===,由此求得DH的长度.【解答】解:过点D作DH⊥AC于点H.∵∠HBD=∠DAC+∠BDA=60°,而∠DAC=30°,∴∠BDA=∠DAC=30°,∴AB=DB=200.在直角△BHD中,sin60°===,∴DH=100≈100×1.732≈173.D到湟水河北岸AC的距离约为173米.答:体育中心10、(8分)(2017•长沙)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?3031【分析】(1)在△ABP 中,求出∠PAB 、∠PBA 的度数即可解决问题; (2)作PH ⊥AB 于H .求出PH 的值即可判定; 【解答】解:(1)∵∠PAB=30°,∠ABP=120°, ∴∠APB=180°﹣∠PAB ﹣∠ABP=30°.(2)作PH ⊥AB 于H . ∵∠BAP=∠BPA=30°, ∴BA=BP=50,在Rt △PBH 中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.11、(2017•菏泽)如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在B 点测得C 点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算⑪号楼的高度CD.【分析】作AE⊥CD,用BD可以分别表示DE,CD的长,根据CD﹣DE=AB,即可求得BC的长,即可解题.【解答】解:作AE⊥CD ,∵CD=BD•tan60°=BD,CE=BD•tan30°=BD,∴AB=CD ﹣CE=BD,∴BD=21m,CD=BD•tan60°=BD=63m.答:⑪建筑物的高度CD为63m.【点评】本题考查了直角三角形中三角函数的应用,考查了特殊角的三角函数值,本题中求的BD的长是解题的关键.12、(8分)(2017•泸州)如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方32向上;求该渔船此时与小岛C之间的距离.【分析】过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,解直角三角形即可得到结论.【解答】解:过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,则:在Rt△BCD中,BD=BC•sin30°=x,CD=BC•cos30°=x;∴AD=30x,∵AD2+CD2=AC2,即:(30+x)2+(x)2=702,解之得:x=50(负值舍去),答:渔船此时与C岛之间的距离为50海里.【点评】此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.13、(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇33C恰好在A地的正北方向,求B,C两地的距离.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).B,C两地的距离是2千米.答:3414、(8分)(2017•广安)如图,线段AB、CD分别表示甲乙两建筑物的高,BA ⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米(1)求甲、乙两建筑物之间的距离AD.(2)求乙建筑物的高CD.【分析】(1)在Rt△ABD中利用三角函数即可求解;(2)作CE⊥AB于点E,在Rt△BCE中利用三角函数求得BE的长,然后根据CD=AE=AB﹣BE求解.【解答】解:(1)作CE⊥AB于点E,在Rt △ABD中,AD===10(米);(2)在Rt△BCE 中,CE=AD=10米,BE=CE•tanβ=10×=10(米),则CD=AE=AB﹣BE=30﹣10=20(米)答:乙建筑物的高度DC为20m.【点评】本题考查了直角三角形中三角函数的应用,考查了特殊角的三角函数值,35本题中求的AD的长是解题的关键.15、(8分)(2017•眉山)如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.【分析】设AG=x,分别在Rt△AFG和Rt△ACG中,表示出CG和GF的长度,然后根据DE=10m,列出方程即可解决问题.【解答】解:设AG=x.在Rt△AFG中,∵tan ∠AFG=,∴FG=,在Rt△ACG中,∵∠GCA=45°,∴CG=AG=x,∵DE=10,∴x ﹣=10,解得:x=15+5∴AB=15+5+1=16+5(米).36答:这棵树的高度AB为(16+5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16、(9分)(2017•内江)如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)【分析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=xm,则BE=2xm,DE=2xm,DC=3xm,BC=xm,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.【解答】解:由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC﹣∠EBC=60°﹣30°=30°.又∵∠BCD=90°,37∴∠BDC=90°﹣∠DBC=90°﹣60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=xm,则DE=BE=2EC=2xm,DC=EC +DE=x +2x=3xm ,BC===x,由题知,∠DAC=45°,∠DCA=90°,AB=20,∴△ACD为等腰直角三角形,∴AC=DC.∴x+60=3x,解得:x=30+10,2x=60+20.答:塔高约为(60+20)m.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度一般.17、(8分)(2017•宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).【分析】直接过点A作AD ⊥BC于点D,利用tan30°==,进而得出答38案.【解答】解:过点A作AD⊥BC于点D,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=xm ,则tan30°==,解得:x=50(+1),(+1)m.答:河的宽度为5018、(7分)(2017•吉林)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)39【解答】解:由题意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵tan34°=,∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.19、(8分)(2017•聊城)耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B 两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)【分析】在Rt△PBC中,求出BC,在Rt△PAC中,求出AC,根据AB=AC﹣40BC计算即可.【解答】解:根据题意,BC=142米,∠PBC=22°,∠PAC=17.9°,在Rt△PBC中,tan∠PBC=,∴PC=BCtan∠PBC=142•tan22°,在Rt△PAC中,tan ∠PAC=,∴AC==≈≈177.5,∴AB=AC﹣BC=177.5﹣142≈36米.答:运河两岸上的A、B两点的距离为36米.【点评】解直角三角形的应用﹣仰角俯角问题、锐角三角函数等知识,解题的关键是正确寻找直角三角形,利用三角函数解决问题,属于中考常考题型.20、(6分)(2017•青岛)如图,C地在A地的正东方向,因有大山阻隔,由A 地到C地需绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)≈,≈1.73)(参考数据:sin67°≈,cos67°≈,tan67°41。
2017年中考数学真题专题汇编----《解直角三角形的应用》专题练习
2017年中考数学专题汇编----《解直角三角形的应用》专题练习1.如图所示,飞机在一定高度上沿水平直线飞行,先在点A处测得正前方小岛C的俯角为30°,面向小岛方向继续飞行10km到达B处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).2.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)3.如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点A处测得码头C在船的东北方向,航行40分钟后到达B处,这时码头C恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头C的最近距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)4.为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?5.如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需绕行B 地.已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向.若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长.(结果保留整数)(参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.73)6.如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.7.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.8.如图,建筑物C在观测点A的北偏东65°方向上,从观测点A出发向南偏东40°方向走了130m到达观测点B,此时测得建筑物C在观测点B的北偏东20°方向上,求观测点B与建筑物C之间的距离.(结果精确到0.1m.参考数据:≈1.73)9.如图,湿地景区岸边有三个观景台A、B、C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,(参考数据:sin53.2°≈0.41,≈1.414).≈0.91,cos66.1°sin66.1°10.如图,海中有一小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?11.如图,小明家在学校O的北偏东60°方向,距离学校80米的A处,小华家在学校O的南偏东45°方向的B处,小华家在小明家正南方向,求小华家到学校的距离.(结果精确到1米,参考数据:≈1.41,≈1.73,≈2.45)12.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,≈,≈1.41)tan53°13.如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.14.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口≈0.80,tan37°≈0.75)≈0.60,cos37°A有多远?(参考数据:sin37°15.一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)16.超速行驶是一种十分危险的违法驾驶行为,在一条笔直的高速公路MN 上,小型车限速为每小时120千米,设置在公路旁的超速监测点C,现测得一辆小型车在监测点C的南偏西30°方向的A处,7秒后,测得其在监测点C的南偏东45°方向的B处,已知BC=200米,B在A的北偏东75°方向,请问:这辆车超速了吗?通过计算说明理由.(参考数据:≈1.41,≈1.73)17.今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B 的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C 点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A 港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)18.如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:≈1.73)19.一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)20.如图,码头A、B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C 在海岛O的北偏东75°方向上,码头A、B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数据:≈1.4,≈1.7)21.某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)(参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)22.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).23.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE 于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)24.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A 到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).25.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB 与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈≈0.24,tan76°≈≈0.97.cos76°≈1.60,sin76°0.85,cos58°≈0.53,tan58°4.00)26.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道L上确定点D,使CD与L垂直,测得CD的长等于24米,在L上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.73,≈1.41)27.如图,书桌上的一种新型台历和一块主板AB、一个架板AC和环扣(不计宽度,记为点A)组成,其侧面示意图为△ABC,测得AC⊥BC,AB=5cm,AC=4cm,现为了书写记事方便,须调整台历的摆放,移动点C至C′,当∠时,求移动的距离即CC′的长(或用计算器计算,结果取整数,其中C′=30°=1.732,=4.583)28.如图,放置在水平桌面上的台灯的灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)29.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.。
(完整)【解直角三角形】专题复习(知识点+考点+测试)(2),推荐文档
一、直角三角形的性质《解直角三角形》专题复习1、直角三角形的两个锐角互余A几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
1D几何表示:【∵∠C=90°∠A=30°∴BC= AB 】23、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为 AB 的中点 ∴ CD= 1 AB=BD=AD 】2C B4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在 Rt△ABC 中∵∠ACB=90° ∴ a 2 + b 2 = c 2 】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项, 每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD⊥AB∴ CD 2 = AD • BDAC 2 = AD • AB BC 2 = BD • AB 】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
( a • b = c • h )由上图可得:AB • CD=AC • BC二、锐角三角函数的概念如图,在△ABC 中,∠C=90°sin A = ∠A 的对边 =a斜边 c cos A = ∠A 的邻边 =b斜边 c tan A = ∠A 的对边 =a∠A 的邻边 b cot A = ∠A 的邻边 =b ∠A 的对边 a锐角 A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sinα≤1,0≤cosα≤1,tanα≥0,cotα≥0.三、锐角三角函数之间的关系(1) 平方关系(同一锐角的正弦和余弦值的平方和等于 1) sin 2 A + cos 2 A = 1 (2) 倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA • tan(90°—A)=1; cotA • cot(90°—A)=1; (3) 弦切关系tanA= sin A cos A cotA= cos Asin A (4) 互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A)30°23 60°C仰角俯角北东南iα1tanA=cot(90°—A),cotA=tan(90°—A)四、特殊角的三角函数值A说明:锐角三角函数的增减性,当角度在 0°~90°之间变化时. (1) 正弦值随着角度的增大(或减小)而增大(或减小) B(2)余弦值随着角度的增大(或减小)而减小(或增大) A(3) 正切值随着角度的增大(或减小)而增大(或减小) (4) 余切值随着角度的增大(或减小)而减小(或增大)2五、 解直角三角形2 在 Rt△中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三 角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
中考数学总复习《解直角三角形及其应用》专项提升练习题(附答案)
中考数学总复习《解直角三角形及其应用》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一.选择题1.已知△ABC三边AC,BC,AB的长度分别5,12,13,现将每条边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定2.已知平面直角坐标系xOy中第一象限内射线OA与x轴正半轴的夹角为α,点P在射线OA上,如果cosα=,且OP=5,那么点P的坐标是()A.(3,4)B.(4,3)C.(3,5)D.(5,3)3.如图,△ABC在网格(小正方形的边长均为1)中则tan∠BAC的值是()A.B.C.D.4.如图,△ABC是边长为6的等边三角形,点D,E在边BC上,若∠DAE=30°,,则BD 的长度是()A.B.C.D.5.如图,在外力的作用下,一个滑块沿坡度为i=1:3的斜坡向上移动了10米.此时滑块上升的高度是()(单位:米)A.B.C.D.106.如图,沿AB方向架桥BD,以桥两端B、D出发,修公路BC和DC,测得∠ABC=150°,BC=1800m,∠BCD=105°,则公路DC的长为()A.900m B.900m C.900m D.1800m7.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,测得AB=60cm,∠B=50°,则点A到BC的距离为()A.60sin50°cm B.60cos50°cmC.D.60tan50°cm8.如图,小明为了测量遵义市湘江河的对岸边上B,C两点间的距离,在河的岸边与BC平行的直线EF上点A处测得∠EAB=37°,∠F AC=60°,已知河宽18米,则B,C两点间的距离为()(参考数据:sin37°,cos37°≈,tan37°≈)A.(18+6)米B.(24+10)米C.(24+6)米D.(24+18)米二.填空题9.如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在格点处,则∠ABC的正弦值为.10.某人在大厦一层乘坐观光电梯,看到大厦外一棵树上的鸟巢,仰角为30°,到达大厦的第五层后,再看这个鸟巢,俯角为60°,已知大厦的层高均为4m,则这棵树与大厦的距离为m.11.拦水坝的横断面如图所示,迎水坡AB的坡比是,坝高BC=8m,则坡面AB的长度是m.12.一渔船在海上A处测得灯塔C在它的北偏东60°方向,渔船向正东方向航行12海里到达点B处,测得灯塔C在它的北偏东45°方向,若渔船继续向正东方向航行,则渔船与灯塔C的最短距离是海里.13.如图所示,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为150米,则这栋楼的高度为米.14.图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC 与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC =40cm,则支架BC的长为cm.(结果精确到1cm,参考数据:≈1.414,≈1.732,≈2.449)三.解答题15.常州天宁寺始建于唐贞观年间,是佛教音乐梵呗的发源地之一,也是常州最大的寺庙.某校数学兴趣小组的同学利用卷尺和自制的测角仪尝试求解天宁寺宝塔的高度.如图所示,平地上一幢建筑物AB与宝塔CD相距56m,在建筑物的顶部分别观测宝塔底部的俯角为45°、宝塔顶部的仰角为60°.求天宁寺宝塔的高度(结果保留根号).16.如图,某住宅小区南,北两栋楼房直立在地面上,且高度相等.为了测量两楼的高度AE、BD和两楼之间的距离AD,小莉在南楼楼底地面A处测得北楼顶部B的仰角为31°,然后她来到南楼离地面12m 高的C处,此时测得B的仰角为20°.求两楼的高度和两楼之间的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.)17.如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为米.(假定点A,B,C,D都在同一平面内.参考数据:,.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?18.如图所示,为了知道楼房CP外墙上一广告屏的高度GH是多少,某数学活动小组利用测角仪和米尺等工具进行如下操作:在A处测得∠GDF=30°,在B处测得∠HEF=50°,点A、B、C共线,AC⊥CP 于点C,DF⊥CP于点F,AB为20米,BC=30米,测角仪的高度(AD、BE)为1.3米,根据测量数据,请求出GH的值.(结果精确到0.1米,参考数据:≈1.73,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.如图1,图2分别是网上某种型号拉杆箱的实物图与示意图,根据商品介绍,获得了如下信息:滑杆DE、箱长BC、拉杆AB的长度都相等,即DE=BC=AB,点B、F在线段AC上,点C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°.请根据以上信息,解决下列问题;(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留到1cm).参考数据:≈1.41,≈1.73,≈2.45.20.如图,海面上有A,B两个小岛,A在B的正东方向,有一艘渔船在点P处,从A处测得渔船在北偏西60°的方向.从B处测得渔船在其东北方向,且测得B,P两点之间的距离为30海里.(1)求小岛A,B之间的距离(结果保留根号);(2)渔船在P处发生故障、在原地等待救援,一艘救援船以每小时45海里的速度从A地出发先沿正西方向前往B点去取修理的材料(将材料装配上船的时间忽略不计),再沿射线BP方向以相同的速度前往P点进行救援.救援船从A点出发的同时,一艘补给船从C点出发,以每小时30海里的速度沿射线CP 方向前往P点,已知A、P,C三点在同一直线上,从B测得C在B的北偏西15°方向,请通过计算说明救援船能否在补给船到达P点后的40分钟之内赶到P点.(参考数据: 1.41,≈1.731,≈2.45)参考答案一.选择题1.解:∵将△ABC三边AC,BC,AB的长度分别5,12,13∴AC2+BC2=52+122=169,AB2=132=169∴AC2+BC2=AB2∴△ABC为直角三角形,即∠C=90°∴cos A==现将每条边的长度都扩大为原来的5倍,则=∴cos A的值不变.故选:A.2.解:过点P作PB⊥x轴于点B∵cosα==∴可假设OB=4,则OP=5∴PB==3∴点P的坐标可能是(4,3)故选:B.3.解:过点C作CD⊥AB,垂足为D.AB===5,BC=2,AC==∵S△ABC=BC•3=3,S△ABC=AB•CD=CD∴CD=.在Rt△ACD中AD====.∴tan∠BAC===.故选:B.4.解:过点A作AH⊥BC于H∵△ABC是等边三角形∴AB=AC=BC=6,∠BAC=60°∵AH⊥BC∴∠BAH=∠BAC=30°∴∠BAD+∠DAH=30°∵∠DAE=30°∴∠BAD+∠EAC=30°∴∠DAH=∠EAC∴tan∠DAH=tan∠EAC=∵BH=AB=3∵AH=AB sin60°=6×=3∴=∴DH=∴BD=BH﹣DH=3﹣故选:A.5.解:如图,设AB=10m,过点B作BC⊥AC于点C由i=1:3,得tanα==∴AC=3BC在Rt△ABC中∵AC2+BC2=AB2∴(3BC)2+BC2=102解得BC=∴滑块上升的高度为:h=.故选:A.6.解:如图,过点C作CE⊥BD,垂足为E∵∠ABC=150°∴∠CBE=180°﹣150°=30°,∠BCE=150°﹣90°=60°又∵∠BCD=105°∴∠DCE=105°﹣60°=45°在R△BCE中∠CBE=30°,BC=1800m∴CE=BC=900(m)在Rt△CDE中∠DCE=45°∴CD=CE=900(m)故选:B.7.解:如图,过点A作AD⊥BC于点D在Rt△ABD中∵sin B=∴AD=sin B•AB=60sin50°即点A到BC的距离为60sin50°cm故选:A.8.解:作AD⊥BC于点D,如图∵BC∥EF∴∠DBA=∠EAB,∠DCA=∠CAF∵∠EAB=37°,∠CAF=60°∴∠DBA=37°,∠DCA=60°∵AD=18米,tan∠DBA=,tan∠DCA=∴=,=解得BD=24米,CD=6米∴BC=BD+CD=(24+6)米故选:C.二.填空题9.解:如图,取BC的中点D,连接AD由网格可得,AC=,AB=∴AB=AC∴AD⊥BCRt△ABD中∵AD=∴sin∠ABC=.故答案为:.10.解:如图,根据题意可知:∠BAC=30°,∠DCB=30°,AB=4×4=16(m)∴∠ADC=90°,设CD=x m∴AD=AD=xm,BD=CD=xm∵AD+BD=AB∴x+x=16∴x=4(m).答:这棵树与大厦的距离为4m.故答案为:4.11.解:∵迎水坡AB的坡比是1:,坝高BC=8m∴==解得AC=8则AB==16(m).故答案为:16.12.解:过点C作CH⊥AB于H.∵∠DAC=60°,∠CBE=45°∴∠CAH=90°﹣∠CAD=30°,∠CBH=90°﹣∠CBE=45°∴∠BCH=90°﹣45°=45°=∠CBH∴BH=CH在Rt△ACH中∠CAH=30°,AH=AB+BH=12+CH,tan30°=∴CH=(12+CH)解得CH=6(+1).答:渔船与灯塔C的最短距离是6(+1)海里.故答案为:6+6.13.解:过点A作AD⊥BC,垂足为D由题意得:AD=150米在Rt△ADB中∠BAD=30°∴BD=AD•tan30°=150×=50(米)在Rt△ADC中∠DAC=60°∴CD=AD•tan60°=150(米)∴BC=BD+CD=200(米)∴这栋楼的高度为200米故答案为:200.14.解:如图2,过C作CD⊥MN于D则∠CDB=90°∵∠CAD=60°,AC=40(cm)∴CD=AC•sin∠CAD=40×sin60°=40×=20(cm)∵∠ACB=15°∴∠CBD=∠CAD﹣∠ACB=60°﹣15°=45°∴BC=CD=×20=20≈20×2.449≈49(cm)故答案为49.三.解答题15.解:如图所示,过点A作AE⊥CD于点E,则四边形AEDB是矩形依题意BD=56,∠EAD=45°,∠CAE=60°∴△ADE是等腰直角三角形∴AE=ED则四边形ABDE是正方形∴AE=BD=56在Rt△ACE中∴答:天宁寺宝塔的高度为()米.16.解:过点C作CF⊥BD,垂足为F由题意得:AC=DF=12m,CF=AD设AD=CF=xm在Rt△ABD中∠BAD=31°∴BD=AD•tan31°≈0.6x(m)在Rt△CFB中∠BCF=20°∴BF=CF•tan20°≈0.36x(m)∴BD=BF+DF=(0.36x+12)m∴0.6x=0.36x+12解得:x=50∴AD=50m,BD=30m∴两楼的高度约为30m,两楼之间的距离约为50m.17.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°∵∠DCF=∠FDC=45°∴CF=DF∵四边形BCFE是矩形∴BE=CF=DF在Rt△ADE中∠AED=90°∴tan∠DAE===2+∴BE=30经检验,BE=30是原方程的解∴EF=DH﹣DF=30+15﹣30=15(米)答:此时小区楼房BC的高度为15米.(2)∵DE=15(2+)米∴AE===15(米)过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H在Rt△ABC中∠ABC=90°,AB=45米,BC=15米∴tan∠BAC===在Rt△AGH中GH=DE=15(2+)米AH===(30+45)米∴DG=EH=AH﹣AE=(30+45)﹣15=(30+30)米(30+30)÷5=(6+6)(秒)答:经过(6+6)秒时,无人机刚好离开了操控者的视线.18.解:由题意得:EF=BC=30米,DF=AC=AB+BC=50(米)在Rt△EHF中∠HEF=50°∴HF=EF•tan50°≈30×1.19=35.7(米)在Rt△DFG中∠GDF=30°∴FG=DF•tan30°=50×=(米)∴HG=FH﹣FG=35.7﹣≈6.9(米)∴GH的值约为6.9米.19.解:(1)过F作FH⊥DE于H.∴∠FHC=∠FHD=90°.∵∠FDC=30°,DF=30∴,∵∠FCH=45°∴CH=FH=15∴∵CE:CD=1:3∴∵AB=BC=DE∴;(2)过A作AG⊥ED交ED的延长线于G∵∠ACG=45°∴=20×1.41+20×2.45=77.2≈77(cm)答:拉杆端点A到水平滑杆ED的距离为77cm.20.解:(1)过P作PH⊥AB于H,如图:根据已知得:∠PBH=45°,∠P AH=30°,BP=30海里∴∠PBH=∠BPH=45°∴△BPH是等腰直角三角形∴BH=PH===15(海里)在Rt△APH中tan∠P AH=,即tan30°=∴AH=15(海里)∴AB=BH+AH=15+15≈57.9(海里)∴小岛A,B之间的距离约是57.9海里;(2)过P作PG⊥BC于G,如图:由(1)知AB=57.9海里,BP=30海里∴救援船到达P所需时间为≈1.95(小时)由已知可得∠CBP=60°,∠BPC=∠PBA+∠P AB=75°∴∠GPB=90°﹣∠CBP=30°,∠GPC=∠BPC﹣∠GPB=45°在Rt△BPG中cos∠BPG=,即cos30°=∴PG=15∵∠GPC=45°=∠C∴△GPC是等腰直角三角形∴CP=PG=15≈36.75(海里)∴补给船到达P所需时间为36.75÷30=1.23(小时)∵1.95﹣1.23=0.72(小时),0.72×60=43.2(分)∴救援船不能在补给船到达P点后的40分钟之内赶到P点.。
2017年中考数学专题复习试卷分类汇编(解析版):--解直角三角形专题
.选择题1. ( 2016山东省荷泽市 3分)如图,△ ABC 与厶A'B'C'都是等腰三角形,且 AB=AC=5, AB 'AC ' =3 若/B+ / B ' =90° 则 A ABC 与厶 A 'B'C 的面积比为( )【考点】互余两角三角函数的关系. 【分析】先根据等腰三角形的性质得到 / B=Z C , / B ' =C ',根据三角函数的定义得到 AD=AB?sinB , A D ' AB ' s ?B BC=2BD=2AB?;osB , B C ' =2 D ' =2B ' c ?sB ',然后根据三角 形面积公式即可得到结论. 【解答】解:过 A 作AD 丄BC 于D ,过A 作A D 丄B C 于D ', •••△ ABC 与厶A B C 都是等腰三角形, •••/ B= / C , / B ' M C ; BC=2BD , B C ' =B D ••• AD=AB?sinB , A D ' AB ' S ?B ; BC=2BD=2AB?cosB , B C ' =B D ' =A B ' c ?sB ; •••/ B+ / B ' =90° • sinB=cosB ', sinB ' cosB , •-S BAC 誌 AD7BC 令 AB?si nB?2AB?sosB=25s in B^osB , S A A B C =*A D ' B ? ' = B ' c ?sB ' A2B ' s ?B ' =9iB ' cosB ',•-S A BAC : S A A B C =25: 9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知 元素的过程就是解直角三角形•也考查了等腰三角形的性质和三角形面积公式.2. (2016重庆市A 卷•分)某数学兴趣小组同学进行测量大树 CD 高度的综合实践活动, 解直角三角形2'A . 25: 9B . 5: 3C . . ~:D . 5. : 3一扌 故选A .如图,在点A处测得直立于地面的大树顶端C的仰角为36°然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1 : 2.4,那么大树CD的高度约为(参考数据:sin36°~ 0.5%os36°~ 0.8,an36°~ 0.73A . 8.1 米B . 17.2 米C. 19.7 米 D . 25.5 米【分析】作BF丄AE于F,贝U FE = BD=6米,DE = BF,设BF=x米,贝U AF =2.4米,在Rt A ABF 中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt A ACE 中,由三角函数求出CE,即可得出结果.【解答】解:作BF丄AE于F,如图所示:贝U FE=BD=6 米,DE=BF ,•••斜面AB的坡度i=1 : 2.4,••• AF =2.4BF ,设BF=x 米,则AF=2.4x 米,在Rt A ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,•DE = BF=5 米,AF=12 米,•AE=AF + FE=18 米,在Rt A ACE 中,CE=AEtan36°18X0.73=13.14 米,•CD = CE- DE=13.14 米- 5 米~8.1 米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数; 决问题的关键. 3. ( 2016浙江省绍兴市 4分)如图,在 Rt A ABC 中,/ B=90 ° / A=30 °以点A 为圆心, BC 长为半径画弧交 AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点 E , 连接AE , DE ,则/ EAD 的余弦值是( A — B F E C 昼 D . 73 5 . 6 . 3 2 【考点】解直角三角形. 【分析】设BC=x ,由含30°角的直角三角形的性质得出 根据题意得出AD = BC=x , AE=DE=AB= :;x ,作EM 丄AD 于M ,由等腰三角形的性质得出 111 1 AM^-AD^-x , 在 Rt A AEM 中,由三角函数的定义即可得出结果. 【解答】 解:如图所示:设 BC=x , •••在 Rt A ABC 中,/ B=90° , / A=30° ,故选:B . A M I 0 £7 L\ 、 Ec4. (2016重庆市B 卷4分)如图所示,某办公大楼正前方有一根高度是 15米的旗杆ED ,由勾股定理得出方程是解 AC=2BC=2x ,求出 AB= . 】BC=. ; x , 根据题意得: AD=BC=x , AE=DE=AB 「_;x ,在 Rt A AEM 中, cos / EAD= ANAE 13.5 ••• AC=2BC=2x , AB= ';BC= :_;x , 作EM 丄AD 于M ,贝U AM =」-AD= x ,从办公楼顶端A测得旗杆顶端E的俯角a是45°旗杆底端D到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC是12米,梯坎坡度i=1:.则大楼AB的高度约为()(精确到o.i 米,参考数据: 1.41 1.73 2.45I~IC DA. 30.6B. 32.1C. 37.9D. 39.4【考点】解直角三角形的应用-坡度坡角问题.【分析】延长AB交DC于H,作EG丄AB于G,则GH = DE=15米,EG=DH,设BH=x米, 则CH= .「;x米,在Rt A BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6米,得出BG、EG的长度,证明△ AEG是等腰直角三角形,得出AG=EG=6. :+20(米),即可得出大楼AB 的高度.【解答】解:延长AB交DC于H,作EG丄AB于G,如图所示:贝U GH = DE=15 米,EG=DH ,•••梯坎坡度i=1:「,••• BH : CH=1 ::-.,设BH=x 米,贝U CH= . lx 米,在Rt A BCH 中,BC=12 米,由勾股定理得:x2+ (一「;x)2=122,解得:x=6, • BH=6 米,CH=6. 一;米,•BG = GH - BH=15 - 6=9 (米),EG=DH=CH + CD=6 . :+20 (米),T/ a=45°,•••/ EAG=90°- 45° =45°,•△ AEG是等腰直角三角形,•AG = EG=6 . 1+20 (米),•AB=AG+BG=6 才£+20+A 39.4 (米);故选:D.H C D【点评】本题考查了解直角三角形的应用-坡度、 俯角问题;通过作辅助线运用勾股定理求 出BH ,得出EG 是解决问题的关键.二.填空题1. ( 2016山东省荷泽市 3分)如图,在正方形 ABCD 外作等腰直角 △ CDE , DE = CE ,连 接 BE ,贝U tan / EBC= 二.~~【考点】正方形的性质;等腰直角三角形;解直角三角形.【专题】计算题.【分析】作EF 丄BC 于F ,如图,设DE=CE = a ,根据等腰直角三角形的性质得 CD=*CE=.:a , / DCE=45 °再利用正方形的性质得 CB=CD^2a , / BCD =90 °接着判断△ CEF 为等【解答】解:作 EF 丄BC 于F ,如图,设DE=CE=a ,•••△ CDE 为等腰直角三角形,••• CD= _ 】CE=.】a , / DCE=45° ,•••四边形ABCD 为正方形,• CB=CD^ ■:a , / BCD =90°,•••/ ECF=45° ,• △ CEF 为等腰直角三角形,腰直角三角形得到 CF = EF= V2 CE=^-' a ,然后在Rt A BEF 中根据正切的定义求解.即/ EBC —•3正方形的四条边都相等, 四个角都是直角;正方形的两 条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四 边形、矩形、菱形的一切性质•也考查了等腰直角三角形的性质.2. (2016湖北荆州3分)全球最大的关公塑像矗立在荆州古城东门外•如图,张三同学 在东门城墙上C 处测得塑像底部 B 处的俯角为18°8 ',测得塑像顶部 A 处的仰角为45°点 D 在观测点C 正下方城墙底的地面上,若CD=10米,则此塑像的高 AB 约为 58 米(参考数据:tan 78° 12'~)4.8 7 C* 1 弊:二*「B D【分析】 直接利用锐角三角函数关系得出 EC 的长,进而得出 AE 的长,进而得出答案.【解答】 解:如图所示:由题意可得: CE 丄AB 于点E , BE=DC ,•// ECB=18° 48,'•••/ EBC=78° 12'则 tan78° 12'—=—=4.8, BE 10解得:EC=48 (m ), •// AEC=45° 贝U AE=EC ,且 BE=DC=10m ,•此塑像的高 AB 约为:AE+EB=58 (米).故答案为:58.一一 V2 宁一一 BFa 在 RtA BEF 中,tan / EBFE4啓匚 B D【点评】此题主要考查了解直角三角形的应用,根据题意得出EC 的长是解题关键. 三•解答题1. ( 2016湖北随州8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝 雕像高度,已知烈山坡面与水平面的夹角为 30°山高857.5尺,组员从山脚 D 处沿山坡向 着雕像方向前进1620尺到达E 点,在点E 处测得雕像顶端 A 的仰角为60°求雕像AB 的 高度.【考点】 解直角三角形的应用-仰角俯角问题.【分析】构造直角三角形,利用锐角三角函数,进行简单计算即可.【解答】解:如图,过点E 作EF 丄AC , EG 丄CD , 在 Rt A DEG 中,•/ DE=1620, / D=30°•/ BC=857.5, CF=EG ,••• EG=••• BF=BC - CF=47.5, 在 Rt A BEF 中,tan / BEF=三一, EF • EF= -BF , 在 Rt A AEF 中,/ AEF=60° ,设 AB=x , •/ tan / AEF —二 BF • AF =EF xtan / AEF , • x+47.5=3 X 47.5, • x=95, 答:雕像AB 的高度为95尺. 2. (2016吉林7分)如图,某飞机于空中 A 处探测到目标 C ,此时飞行高度 AC=1200m , 从飞机上看地平面指挥台 B 的俯角a =43°,求飞机A 与指挥台B 的距离(结果取整数) (参考数sin43°0.68, cos43°=0.73, tan43° =0.93)答:飞机A 与指挥台B 的距离为1765m . 3. (2016江西8分)如图1是一副创意卡通圆规,图 OB 是旋转臂,使用时,以点 A 为支撑点,铅笔芯端点 OA=OB=10cm . 【考点】 解直角三角形的应用-仰角俯角问题. 【分析】先利用平行线的性质得到 / B= a =43°,然后利用/ B 的正弦计算AB 的长. 【解答】 解:如图,/ B= a =43° , 在 Rt A ABC 中,•/sinB= = AB = & 1765(m ). 2是其平面示意图,OA 是支撑臂,B 可绕点A 旋转作出圆.已知(1)当/ AOB=18°时,求所作圆的半径;(结果精确到O.O1cm)(2)保持/ A0B=18°不变,在旋转臂0B末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度. (结果精确到0.01cm)(参考数据:sin9°~ 0.15@4cos9°~ 0.9877sin 18°~ 0.3090cos18°~ 0.95,可使用科学计算器)圉1【考点】解直角三角形的应用.【分析】(1)根据题意作辅助线OC丄AB于点C,根据OA=OB=10cm, / OCB=90°,/ AOB=18°,可以求得/ BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC丄AB于点C,如右图2所示,由题意可得,OA=OB=10cm, / OCB=90°, / AOB=18°,•••/ BOC=9°••• AB=2BC=2OB?sin9°~ 2X 10X 0.1564 5,即所作圆的半径约为 3.13cm;(2)作AD丄OB于点D,作AE=AB,如下图3所示,•••保持/ AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,•••折断的部分为BE,•••/ AOB=18°, OA=OB , / ODA =90°,•••/ OAB=81°, / OAD =72°,•••/ BAD=9° ,••• BE=2BD=2AB?sin9°~ 2X 3.13 X 0.1564 笔册98 即铅笔芯折断部分的长度是 0.98cm .4. (2016辽宁丹东10分)某中学九年级数学兴趣小组想测量建筑物AB 的高度•他们在 C64 °求建筑物的高度.(测角器的高度忽略不计,结果精确到【考点】 解直角三角形的应用-仰角俯角问题.【分析】Rt A ADB 中用AB 表示出BD 、Rt A ACB 中用AB 表示出BC ,根据CD = BC - BD 可 得关于AB 的方程,解方程可得.【解答】 解:根据题意,得 / ADB=64° , / ACB=48°AB 10 tan48& Ji11• CD = BC - BDsin48°^^, tan48°^^,sin64° J10 101A* #建/ /巩/ // /JT £(参考数据:jf fL_CDBAB 1贝VBD=处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进 6米到达D 处,测得仰角为在 Rt A ADB 中,tan64° -二:,在 Rt A ACB 中,tan48° =.AB ■,tan 64°~)2在 Rt △ ACF 中,tan / ACF肿 -_工 =tan2^ ACP tan Cl i 一丄一「在直角AB =x+ BF =4+ x (米), 在直角 △ ABF 中, =AB :=x+4tan/AEB3•/ CF - 解得:x= 则AB =~2~ 胡打 3V3+12+4=22答:树高AB 是心]"'(米).1 AB -二AB2132 解得:AB=== y•••建筑物的高度约为 14.7 米.5. (2016四川宜宾)如图,CD 是一高为4米的平台,AB 是与CD 底部相平的 棵树,在平台顶C 点测得树顶A 点的仰角a =30° ,从平台底部向树的方向 水平前进3米到达点E ,在点E 处测得树顶A 点的仰角3=60° ,求树高AB (结【分析】作CF 丄AB 于点F ,设AF=x 米,在直角△ ACF 中利用三角函数用x 表示出CF 的长,在直角△ ABE 中表示出BE 的长,然后根据CF - BE = DE 即 可列方程求得x 的值,进而求得AB 的长. 【解答】解:作CF 丄AB 于点F ,设AF =x 米, ~ 14.7(米),三角形的应用-仰角俯角问题.△ ABE中, 则CF,(x+4 )米..,则 BEtan / AEB = BE = DE ,即 (x+4 ) =3 .D6. ( 2016湖北黄石8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB 和BC两段,每一段山坡近似是直”的,测得坡长AB=800米,BC=200米,坡角/ BAF=30° / CBE=45°.(1 )求AB段山坡的高度EF ;(2)求山峰的高度CF .(叮[F1.414, CF结果精确到米)【分析】(1)作BH丄AF于H,如图,在Rt A ABF中根据正弦的定义可计算出BH的长, 从而得到EF的长;(2)先在Rt A CBE中利用/ CBE的正弦计算出CE,然后计算CE和EF的和即可.【解答】解:(1)作BH丄AF于H,如图,在Rt A ABF 中,T sin/ BAH==,AB••• BH=800?si n30°=400,/• EF =BH =400m;(2)在Rt A CBE 中,T sin/ CBE=),BC•CE=200?sin45°=100 J 2^ 141.4•CF=CE+EF=141.4+400~541 ( m).答:AB段山坡高度为400米,山CF的高度约为541米.【点评】本题考查了解直角三角形的应用-坡度与坡角问题: 平宽度I 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i=1: m 的形式.把坡面与水平面的夹角 a 叫做坡角,坡度i 与坡角a 之间的关系为:iTan a 7.( 2016湖北荆门6分)如图,天星山山脚下西端 A 处与东端B 处相距800 (1+ '■)米, 小军和小明同时分别从 A 处和B 处向山顶C 匀速行走.已知山的西端的坡角是 45°东端的 坡角是30°小军的行走速度为 *2米/秒•若小明与小军同时到达山顶 C 处,则小明的行走 【考点】解直角三角形的应用-坡度坡角问题.【分析】过点C 作CD 丄AB 于点D ,设AD=x 米,小明的行走速度是 a 米/秒,根据直角三 角形的性质用x 表示出AC 与BC 的长,再根据小明与小军同时到达山顶 C 处即可得出结论. 【解答】 解:过点C 作CD 丄AB 于点D ,设AD=x 米,小明的行走速度是 a 米/秒, •••/ A=45° , CD 丄 AB , ••• AD = CD=x 米, ••• AC=*x. 在 RtA BCD 中,坡度是坡面的铅直高度 h 和水速度是多少?• BC = sin3Q =2x ,•••小军的行走速度为.米/秒.若小明与小军同时到达山顶 C 处,•••/ B=30° ,8. (2016四川内江)(9分)如图8,禁渔期间,我渔政船在 A 处发现正北方向B 处有一艘可 疑船只,测得 A , B 两处距离为200海里,可疑船只正沿南偏东45。
中考数学复习《解直角三角形的应用》专项检测卷-附带答案
中考数学复习《解直角三角形的应用》专项检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.小王同学学习了锐角三角函数后,通过观察广场的台阶与信号塔之间的相对位置,他认为利用台阶的可测数据与在点A,B处测出点D的仰角度数,可以求出信号塔DE的高.如图,AB的长为5m,高BC为3m.他在点A处测得点D的仰角为45°,在点B处测得点D的仰角为38.7°.A,B,C,D,E在同一平面内.你认为小王同学能求出信号塔DE的高吗?若能,请求出信号塔DE的高;若不能,请说明理由.(参考数据:sin38.7°≈0.625,cos38.7°≈0.780,tan38.7°≈0.80,结果保留整数)2.如图,太阳能电池板宽为AB,点O是AB的中点,OC是灯杆,地面上三点D,E与C在一条直线上,DE=10.5m,EC=5m.在D处测得电池板边缘点B的仰角为37°,在E处测得电池板边缘点B的仰角为45°.此时点A、B与E在一条直线上,求太阳能电池板宽AB的长度.(结果精确到0.1m.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√2≈1.41,√3≈1.73)3.为积极响应绿色出行的号召,骑车出行已经成为人们的新风尚.图①是某品牌自行车放在水平地面上的实物图,图②是其示意图,其中AB∥CD∥l,车轮半径为32cm,∠ABC=64°,BC=60cm,坐垫E与点B的距离BE为10cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为84cm,现将坐垫E调整至坐骑舒适高度位置E′,求EE′的长.(结果精确到0.lcm.参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)4.在学校的数学学科周上,李老师指导学生测量学校旗杆AB的高度.在旗杆附近有一个斜坡,坡长CD=10米,坡度i=3:4,小华在C处测得旗杆顶端A的仰角为60°,在D处测得旗杆顶端A的仰角为45°.求旗杆AB的高度.(点A,B,C,D在同一平面内,B,C在同一水平线上,结果保留根号)5.如图1是某商场的入口,它是由立柱、斜杆、支撑杆组成的支架撑起的,如图2是它的示意图,点P、A、C在同一水平线上,经过测量,支架的立柱BC与地面PC垂直(∠ACB=90°),BC=3米,支撑杆DE⊥AB于点E,∠BDE=α且sinα=25,从点B观测点D的仰角为45°,又测得BE =4米.(1)求该支架的边BD的长;(2)求支架的边BD的顶端点D到地面PC的距离DF.(结果保留根号)6.桔槔俗称“吊杆”“称杆”(如图1),是我国古代农用工具,始见于《墨子•备城门》,是一种利用杠杆原理的取水机械.如图2所示的是桔槔示意图,OM是垂直于水平地面的支撑杆,OM=3米,AB是杠杆,且AB=6米,OA:OB=2:1.当点A位于最高点时,∠AOM=127°.(1)求点A位于最高点时到地面的距离;(2)当点A从最高点逆时针旋转54.5°到达最低点A1时,求此时水桶B上升的高度.(参考数据:sin37°≈0.6,sin17.5°≈0.3,tan37°≈0.8)7.某班同学在一次综合实践课上,测量校园内一棵树的高度.如图,测量仪在A处测得树顶D的仰角为45°,在C处测得树顶D的仰角为37°(点A、B、C在同一条水平直线上).已知测量仪高度AE=CF=1.65米,AC=28米,求树BD的高度.(结果精确到0.1米)【参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】8.如图,某工厂坐落在东西方向公路MN的北侧,H,E分别是矩形生产车间ABCD的入口和出口(AD∥MN,HE⊥BC),车间宽度EH=80m,生产出来的产品沿北偏西53°的厂内道路EF运送到库房F存放,EF=500m,工厂大门G在库房F南偏西26.6°的方向,求大门与车间入口之间的距离GH的长.(点G,B,H,C在直线MN上.参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.5,sin53°≈45,cos53°≈35,tan53°≈43)9.数学兴趣小组测量某楼房的高度.如图所示,楼房剖面和台阶的剖面在同一平面,在台阶底部点A处测得楼顶端点E的仰角∠GAE=50.2°,台阶AB长39米,台阶坡面AB的坡度i=5:12,然后在点B处测得楼顶端点E的仰角∠EBF=63.4°,则楼顶到地面的高度EF约为多少米.(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)10.“工欲善其事,必先利其器”,如图为钓鱼爱好者购买的神器“晴雨伞”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AD,用绳子拉直AC后系在树干PQ上的点E处,使得A,C,E在一条直线上,AB=AC=2m,DQ=3m.(1)垂钓时打开“晴雨伞”,若∠α=60°,求遮蔽宽度BC(结果精确到0.01m);(2)若由(1)中的位置收合“晴雨伞”,使得∠BAC=106°,求点E下降的高度(结果精确到0.1m).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,√3≈1.73)参考答案1.解:能,过B作BF⊥DE于F则EF=BC=3m,BF=CE在Rt△ABC中,∵AB=5m,BC=3m∴AC=√AB2−BC2=4(m)在Rt△ADE中,∵∠DAE=45°∴AE=DE设AE=DE=x m∴BF=(4+x)m,DF=(x﹣3)m在Rt△BDF中,tan38.7°=DFBF =x−34+x≈0.80解得x=31∴DE=31m答:信号塔DE的高为31m.2.解:过B作BM⊥ED于M,BN⊥CO于N ∴∠DMB=90°,∠ONB=90°∵∠BEM=45,∠BDE=37°,∠OCE=90°∴△OEC,OBN是等腰直角三角形设BN=MC=x m∴ME=(5﹣x)m,MD=(5.5﹣x)m在Rt△BMD中,∠DMB=90°∴tan∠BDM=BMDM =5−x5.5−x=0.75∴x=0.5∵∠BEM=45°,∠ECO=90°∴OB=√22∴AB=2OB=√2≈1.4(m)答:太阳能电池板宽AB的长度约为1.4m.3.解:过点E作EG⊥CD于点G∴∠EGC=90°.∵BC=60cm,坐垫E与点B的距离BE为10cm ∴CE=70(cm).∵∠ABC=64°,AB∥CD∴∠ECD=64°.∴EG=EC•sin64°≈70×0.90=63(cm).∵CD∥l,CF⊥l,l与⊙D相切,车轮半径为32cm ∴CF=32(cm).∴坐垫E到地面的距离为:63+32=95(cm).答:坐垫E到地面的距离为95cm;(2)过点E′作E′G′⊥CD于点G′∴∠E′G′C=90°.∵小明的腿长约为84cm∴E′G′=84×0.8=67.2(cm).∵∠ECD=64°∴CE′=67.2sin64°=67.20.90≈74.67(cm).∴EE′=CE′﹣CE=74.67﹣70=4.67≈4.7(cm).答:EE′长4.7cm.4.解:过点D作DE⊥BC,垂足为E,过点D作DF⊥AB,垂足为F由题意得:DF=BE,BF=DE∵坡长CD=10米,坡度i=3:4∴DECE=34∴设DE=3x米,则CE=4x米在Rt△CDE中,CD=√CE2+DE2=√(4x)2+(3x)2=5x(米)∴5x=10解得:x=2∴CE=8米,DE=BF=6米设BC=y米∴DF=BE=BC+CE=(y+8)米在Rt△ABC中,∠ACB=60°∴AB=BC•tan60°=√3y(米)在Rt△ADF中,∠ADF=45°∴AF=DF•tan45°=(y+8)米∵AB=AF+BF∴√3y=y+8+6解得:y=7√3+7∴AB=√3y=(21+7√3)米∴旗杆AB的高度为(21+7√3)米.5.解:(1)∵DE⊥AB∴△DBE是直角三角形在Rt△DBE中,sinα=BEDB=25∵BE=4∴BD=10即该支架的边BD的长为10米;(2)根据已知可得,在Rt△DBG中∠DBG=45°,且BD=10∴sin∠DBG=sin45°=DGDB即DG10=√22解得:DG=5√2在矩形GFCB中,GF=BC=3∴DF=DG+GF=(5√2+3)米.6.解:(1)过O作EF⊥OM于O,过A作AG⊥EF于G ∵AB=6米,OA:OB=2:1∴OA=4米,OB=2米∵∠AOM=127°,∠EOM=90°∴∠AOE=127°﹣90°=37°在Rt△AOG中,AG=AO×sin37°≈4×0.6=2.4(米)点A位于最高点时到地面的距离为2.4+3=5.4(米)答:点A位于最高点时到地面的距离为5.4米;(2)过O作EF⊥OM,过B作BC⊥EF于C,过B1作B1D⊥EF于D ∵∠AOE=37°∴∠BOC=∠AOE=37°,∠B1OD=∠A1OE=17.5°∵OB1=OB=2(米)在Rt△OBC中,BC=sin∠OCB×OB=sin37°×OB≈0.6×2=1.2(米)在Rt△OB1D中,B1D=sin17.5°×OB1≈0.3×2=0.6(米)∴BC+B1D=1.2+0.6=1.8(米)∴此时水桶B上升的高度为1.8米.7.解:连接EF交树BD于点G.由题意知;AE⊥AC,CF⊥AC,BD⊥AC又∵AE=CF=1.65米∴四边形EAGB、CFGB是矩形.∴BG=AE=1.65米.∠DGE=∠DGF=90°AB=EG,BC=GF.在Rt△EGD中∵∠DEG=45°∴AB=DG=EG=(DB﹣1.65)米.在Rt△FGD中∵tan∠DFG=DGGF∴BC=GF=DGtan∠DFG ≈DB−1.650.75米.∵AB+BC=AC=28∴DB﹣1.65+DB−1.65=280.75∴DB=13.65≈13.7(米).答:树BD的高度为13.7米.8.解:过F作FP⊥BG于P,延长EA交FP于Q则四边形PHEQ是矩形∴PQ=EH=80m,EQ=PH在Rt△EFQ中,∠FQE=90°,∠EFQ=53°,EF=500m∴FQ=EF•cos53°≈500×3=300(m),EQ=EF•sin53°≈500×45=400(m)5∴PH=EQ=400m,PF=FQ+PQ=300+80=380(m)在Rt△PFG中,∠FPG=90°,∠PFG=26.6°∴PG=PF•tan26.6°≈380×0.5=190(m)∴GH=PG+PH=190+400=590(m)答:大门与车间入口之间的距离GH的长约为590m.9.解:如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形∴FB=PH,FH=PB由i=5:12,可以假设BP=5x,AP=12x∵PB2+P A2=AB2∴(5x)2+(12x)2=392∴x=3或﹣3(舍去)∴PB=FH=15,AP=36设EF=a米,BF=b米∵tan∠EBF=EFBF∴ab≈2∴a≈2b①∵tan∠EAH=EHAH =EF+HFAP+PH=EF+BPAP+BF∴a+1536+b≈1.2②由①②得a≈70.5,b≈35.25答:塔顶到地面的高度EF约为70.5米.10.解:(1)∵AB=AC=2m,AO⊥BC ∴BC=2OC在Rt△AOC中,∠α=60°∴OC=AC•sin60°=2×√32=√3(m)∴BC=2OC=2√3≈3.46(m)∴遮蔽宽度BC约为3.46m;(2)过点E作EF⊥AD,垂足为F由题意得:EF=DQ=3m当∠α=60°时在Rt△AFE中,AF=EFtan60°=√3=√3(m)当∠BAC=106°时∵AB=AC,AO⊥BC∴∠EAF=12∠BAC=53°在Rt△AFE中,AF=EFtan53°≈31.33≈2.26(m)∴点E下降的高度=2.26﹣1.73≈0.5(m)∴点E下降的高度约为0.5m.第11页共11页。
2017中考数学真题汇编-----解直角三角形(含解析)
2017中考数学真题汇编-----解直角三角形一.选择题(共12小题)1.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD 的长为()A.B.C.D.2.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2C.3+D.33.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=214.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.5.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm6.在Rt△ABC中,∠C=90°,cosA=,AC=,则BC等于()A.B.1 C.2 D.37.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.8.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2D.BC=49.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,若点E是BC的中点,则sin∠CAE的值为()A.2 B.C.D.10.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A.B.7C.4+3D.3+411.如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点A到OC的距离为sin36°sin54°C.点B到AO的距离为tan36°D.点A到OC的距离为cos36°sin54°12.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.二.填空题(共12小题)13.如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=.14.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.15.如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=,则tan2α=.16.如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).17.如图,在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB于E,CD=DE,AC+CD=9.则BC=.18.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.19.如图,在等腰三角形中,AB=AC,BC=4,D为BC的中点,点E、F在线段AD 上,tan∠ABC=3,则阴影部分的面积是.20.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM=.21.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是.22.如图,正△EFG内接于正方形ABCD,其中E,F,G分别在边AB,AD,BC 上,若,则=.23.四边形ABCD中,∠A=∠C=90°,∠ADC=60°,AB=11,BC=2,则BD=.24.如图,已知∠BAC=60°,在角的内部有一点P,P到AB的距离为,P 到AC的距离为3,则点P到顶点A的距离为.三.解答题(共16小题)25.把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=,sin2A2+cos2A2=,sin2A3+cos2A3=;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.26.某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).27.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)28.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.29.阅读下面的材料:(1)锐角三角函数概念:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,称sinA=,sinB=是两个锐角∠A,∠B的“正弦”,特殊情况:直角的正弦值为1,即sin90°=1,也就是sinC==1.由sinA=,可得c=;由sinB=,可得c=,而c==,于是就有(2)其实,对于任意的锐角△ABC,上述结论仍然成立,即三角形各边与对角的正弦之比相等,我们称之为“正弦定理”,我们可以利用三角形面积公式证明其正确性.证明:如图1作AD⊥BC于D则在Rt△ABD中,sinB=,∴AD=c•sinB,∴S△ABC=a•AD=ac•sinB,在Rt△ACD中,sinC=,∴AD=b•sinC.∴S△ABC =a•AD=ab•sinC.同理可得S△ABC=bc•sinA.因此有S△ABC=ac•sinB=ab•sinC=bc•sinA.也就是=ac•sinB=ab•sinC=bc•sinA.每项都除以abc,得,故请你根据对上面材料的理解,解答下列问题:(1)在锐角△ABC中,∠B=60°,∠C=45°,c=2,求b;(2)求问题(1)中△ABC的面积;(3)求sin75°的值(以上均求精确值,结果带根号的保留根号)30.如图,四边形ABCD中,AB=AD,∠ABC=∠ADC.(1)求证:CB=CD;(2)若∠BCD=90°,AO=2CO,求tan∠ADO.31.已知:如图,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,若CE=2,cos∠AEF=,求BE的长.32.如图,已知在△ABC中,AB=AC=10,tan∠B=.(1)求BC的长;(2)点D在边AB上,且AD=1,M为边BC上一动点,连接DM.当△BDM是直角三角形时,求BM的长.33.如图,在四边形ABCD中,∠ABC=90°,DE⊥AC于点E,且AE=CE,DE=5,EB=12.(1)求AD的长;(2)若∠CAB=30°,求四边形ABCD的周长.34.已知:如图,在Rt△ABC和Rt△BCD中,∠ABC=∠BCD=90°,BD与AC相交于点E,AB=9,cos∠BAC=,tan∠DBC=.求:(1)边CD的长;(2)△BCE的面积.35.定义:在△ABC中,∠C=30°,我们把∠A的对边与∠C 的对边的比叫做∠A 的邻弦,记作thi A,即thi A==.请解答下列问题:已知:在△ABC中,∠C=30°.(1)若∠A=45°,求thi A的值;(2)若thi A=,则∠A=°;(3)若∠A是锐角,探究thi A与sinA的数量关系.36.在一节数学实践课上,老师出示了这样一道题,如图1,在锐角三角形ABC 中,∠A、∠B、∠C所对边分别是a、b、c,请用a、c、∠B表示b2.经过同学们的思考后,甲同学说:要将锐角三角形转化为直角三角形来解决,并且不能破坏∠B,因此可以经过点A,作AD⊥BC于点D,如图2,大家认同;乙同学说要想得到b2要在Rt△ABD或Rt△ACD中解决;丙同学说那就要先求出AD=,BD=;(用含c,∠B的三角函数表示)丁同学顺着他们的思路,求出b2=AD2+DC2=(其中sin2α+cos2α=1);请利用丁同学的结论解决如下问题:如图3,在四边形ABCD中,∠B=∠D=90°,∠BAD=60°,AB=4,AD=5.求AC的长(补全图形,直接写出结果即可).37.如图,在平面直角坐标内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求tan∠BAO的值.38.如图所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线.(1)比较∠BAD和∠DAC的大小.(2)求sin∠BAD.39.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AB=10,tan∠BAC=,求菱形ADCE的面积.40.喜欢钻研的小亮对75°角的三角函数发生了兴趣,他想:75度虽然不是特殊角,但和特殊角有着密切的关系,能否通过特殊角的三角函数值求75°的正弦值呢?经研究,他发现:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°,于是他大胆猜想:sin(α+β)=sinαcosβ+cosαsinβ(α和β为锐角).将图1(a)等积变形为图1(b)可用于勾股定理的证明,现将这两幅图分别“压扁”成图2(a)和图2(b).如图,锐角为α的直角三角形斜边为m,锐角为β的直角三角形斜边为n,请你借助图2(a)和图2(b)证明上述结论能成立.参考答案与解析一.选择题(共12小题)1.(2017•安顺)如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.【分析】首先由切线的性质得出OB⊥BC,根据锐角三角函数的定义求出cos∠BOC的值;连接BD,由直径所对的圆周角是直角,得出∠ADB=90°,又由平行线的性质知∠A=∠BOC,则cos∠A=cos∠BOC,在直角△ABD中,由余弦的定义求出AD的长.【解答】解:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC==,∴cos∠A=cos∠BOC=.又∵cos∠A=,AB=4,∴AD=.故选B.【点评】本题综合考查切线、平行线、圆周角的性质,锐角三角函数的定义等知识点的运用.此题是一个综合题,难度中等.2.(2017•滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.3【分析】通过解直角△ABC得到AC与BC、AB间的数量关系,然后利用锐角三角函数的定义求tan∠DAC的值.【解答】解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°,∴AB=2AC,BC==AC.∵BD=BA,∴DC=BD+BC=(2+)AC,∴tan∠DAC===2+.故选:A.【点评】本题考查了解直角三角形,利用锐角三角函数的概念解直角三角形问题.3.(2017•杭州)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BQ=CQ=6,求出CM=QM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.4.(2017•怀化)如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A.B.C.D.【分析】作AB⊥x轴于B,如图,先利用勾股定理计算出OA=5,然后在Rt△AOB 中利用正弦的定义求解.【解答】解:作AB⊥x轴于B,如图,∵点A的坐标为(3,4),∴OB=3,AB=4,∴OA==5,在Rt△AOB中,sinα==.故选C.【点评】本题考查了解直角三角形:充分利用勾股定理和三角函数的定义计算三角形的边或角.也考查了坐标与图形性质.5.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【分析】根据垂直平分线的性质得出BD=AD,再利用cos∠BDC==,即可求出CD的长,再利用勾股定理求出BC的长.【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选A.【点评】此题主要考查了线段垂直平分线的性质以及解直角三角形等知识,得出AD=BD,进而用CD表示出BD是解决问题的关键.6.在Rt△ABC中,∠C=90°,cosA=,AC=,则BC等于()A.B.1 C.2 D.3【分析】根据题意画出图形,利用勾股定理求出BC的长.【解答】解:如图:∵cosA=,∴=,又∵AC=,∴BC==1.故选B.【点评】本题主要考查了解直角三角形,画出图形并利用勾股定理和三角函数是解题的关键.7.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.【分析】方法1、利用待定系数法求得直线AB的解析式,然后求得B的坐标,进而利用正切函数定义求解.方法2、先求出AD,即可得出结论.【解答】解:方法1、设直线AB的解析式是y=kx+b,根据题意得:,解得,则直线AB的解析式是y=﹣x+2.在y=﹣x+2中令y=0,解得x=.则B的坐标是(,0),即OB=.则tan∠OAB===.故选B.方法2、过点C作CD⊥y轴,∵C(﹣2,5),∴CD=2,OD=5,∵A(0,2),∴OA=2,∴AD=OD﹣OA=3,在Rt△ACD中,tan∠OAB=tan∠CAD=,故选B.【点评】本题考查了三角函数的定义以及待定系数法求函数解析式,正确求得B 的坐标是关键.8.在数学活动课上,老师出示两张等腰三角形纸片,如图所示.图1的三角形边长分别为4,4,2;图2的三角形的腰长也为4,底角等于图1中三角形的顶角;某学习小组将这两张纸片在同一平面内拼成如图3的四边形OABC,连结AC.该学习小组经探究得到以下四个结论,其中错误的是()A.∠OCB=2∠ACB B.∠OAB+∠OAC=90°C.AC=2D.BC=4【分析】A、根据∠OBC=∠AOB即可得出OA∥BC,由平行线的性质即可得出∠OAC=∠ACB,再由等腰三角形的性质即可得出∠OAC=∠OCA,替换后即可得出∠OCB=2∠ACB,结论A正确;B、根据等腰三角形的性质结合三角形内角和定理即可得出∠OAB+∠AOB=90°,结合结论A即可得出∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,则△AOE≌△OAF,利用勾股定理即可AF=OE==,从而得出AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,则△AOE∽△ABM,根据相似三角形的性质即可得出AM=,OM=AO﹣AM=,由BC∥AO、BM⊥AO、ON⊥BC即可得出四边形MBNO为矩形,再根据矩形的性质以及等腰三角形的性质即可得出BC=2BN=2OM=7,结论D错误.综上即可得出结论.【解答】解:A、∵∠OBC=∠AOB,∴OA∥BC,∴∠OAC=∠ACB.∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠ACB,∴∠OCB=2∠ACB,结论A正确;B、∵OA=OB,∴∠OAB+∠AOB+∠OBA=180°.∵∠OAC=∠OCB=∠AOB,∠OAB=∠OBA,∴∠OAB+∠AOB=90°,即∠OAB+∠OAC=90°,结论B正确;C、过点O作OE⊥AB于点E,过点O作OF⊥AC于点F,如图4所示.∵OA=OB,∴∠AOE=∠AOB=∠OAF.在△AOE和△OAF中,,∴△AOE≌△OAF(AAS),∴AF=OE==,∴AC=2AF=2,结论C正确;D、过点B作BM⊥OA于点M,过点O作ON⊥BC于点N,如图5所示.∵∠OAB+∠AOE=90°,∠MAB+∠ABM=90°,∴∠AOE=∠ABM.∵∠AEO=∠AMB=90°,∴△AOE∽△ABM,∴,∴AM=,OM=AO﹣AM=.∵BC∥AO,BM⊥AO,ON⊥BC,∴四边形MBNO为矩形,∴BN=OM=.∵OB=OC,ON⊥BC,∴BC=2BN=7,结论D错误.故选D.【点评】本题考查了等腰三角形的性质、解直角三角形、相似三角形的判定与性质、全等三角形的判定与性质以及矩形的判定与性质,逐一分析四个选项的正误是解题的关键.9.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,若点E是BC的中点,则sin∠CAE的值为()A.2 B.C.D.【分析】如图,由于在边长为1的小正方形组成的网格中,△ABC的边长可以利用勾股定理求出,然后利用三角函数的定义即可求解.【解答】解:依题意得AB==,AC==2BC==5,∴AB2+AC2=BC2,∴△ABC是直角三角形,又∵E为BC的中点,∴AE=CE,∴∠CAE=∠ECA,∴sin∠CAE=sin∠ECA==.故选D.【点评】此题主要考查了三角函数的定义,也考查了勾股定理及其逆定理,首先根据图形求出三角形的边长,然后利用勾股定理及其逆定理和三角函数即可解决问题.10.如图,四边形BDCE内接于以BC为直径的⊙A,已知:BC=10,cos∠BCD=,∠BCE=30°,则线段DE的长是()A. B.7 C.4+3D.3+4【分析】在Rt△CDB和Rt△CBE中,通过解直角三角形易求得BD、BE的长.过B作BF⊥DE于F,由圆周角定理知∠BCE=∠BDE,∠BED=∠BCD.根据这些角的三角函数值以及BD、BE的长,即可求得DF、EF的值,从而得到DE的长.【解答】解:过B作BF⊥DE于F.在Rt△CBD中,BC=10,cos∠BCD=,∴BD=8.在Rt△BCE中,BC=10,∠BCE=30°,∴BE=5.在Rt△BDF中,∠BDF=∠BCE=30°,BD=8,∴DF=BD•cos30°=4.在Rt△BEF中,∠BEF=∠BCD,即cos∠BEF=cos∠BCD=,BE=5,∴EF=BE•cos∠BEF=3.∴DE=DF+EF=3+4,故选D.【点评】此题主要考查的是圆周角定理和解直角三角形的综合应用,难度适中.11.如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点A到OC的距离为sin36°sin54°C.点B到AO的距离为tan36°D.点A到OC的距离为cos36°sin54°【分析】根据图形得出B到AO的距离是指BO的长,过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=ABsin36°,即可判断A、C;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AOsin36°,AO=AB•sin54°,求出AD,即可判断B、D.【解答】解:B到AO的距离是指BO的长,∵AB∥OC,∴∠BAO=∠AOC=36°,∵在Rt△BOA中,∠BOA=90°,AB=1,∴sin36°=,∴BO=ABsin36°=sin36°,故A、C选项错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°,∵sin36°=,∴AD=AO•sin36°,∵sin54°=,∴AO=AB•sin54°,∵AB=1,∴AD=AB•sin54°•sin36°=1×sin54°•sin36°=sin54°•sin36°,故B选项正确,D选项错误;故选:B.【点评】本题考查了解直角三角形的应用,解此题的关键是①找出点A到OC的距离和B到AO的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.12.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.【分析】过点A构造∠ADB所在的直角三角形,设AE为1,得到DE的值,相除即可.【解答】解:作AE⊥BD,交DB的延长线于点E.由题意可得:∠ABE=∠CBD=45°,设AE=1,则AB=∴BC=,∵Rt△BCD是等腰直角三角形,∴BD=,∴DE=1+,∴tan∠ADB=1÷(+1)=.故选D.【点评】考查解直角三角形的知识;构造出所求角所在的直角三角形是解决本题的难点.二.填空题(共12小题)13.(2017•广州)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=17.【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.14.(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.15.(2017•铜仁市)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,ED⊥AB交AC于点E.设∠A=α,且tanα=,则tan2α=.【分析】根据题目中的数据和锐角三角函数可以求得tan2α的值,本题得以解决.【解答】解:连接BE,∵点D是AB的中点,ED⊥AB,∠A=α,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA=∠A=α,∴∠BEC=2α,∵tanα=,设DE=x,∴AD=3a,AE=,∴AB=6a,∴BC=,AC=∴CE=,∴tan2α==,故答案为:.【点评】本题考查解直角三角形、线段垂直平分线,解答本题的关键是明确题意,找出所求问题需要的条件,利用解直角三角形的相关知识解答.16.(2017•舟山)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,计算tan∠BA4C=,…按此规律,写出tan∠BA n C=(用含n的代数式表示).【分析】作CH⊥BA4于H,根据正方形的性质、勾股定理以及三角形的面积公式求出CH、A4H,根据正切的概念求出tan∠BA4C,总结规律解答.【解答】解:作CH⊥BA4于H,由勾股定理得,BA4==,A4C=,△BA4C的面积=4﹣2﹣=,∴××CH=,解得,CH=,则A4H==,∴tan∠BA4C==,1=12﹣1+1,3=22﹣2+1,7=32﹣3+1,∴tan∠BA n C=,故答案为:;.【点评】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键.17.如图,在Rt△ABC中,∠ACB=90°,sinB=,D是BC上一点,DE⊥AB于E,CD=DE,AC+CD=9.则BC=8.【分析】可设DE为未知数,表示出AC,CD,根据∠B的正弦值得到BD的值,易得∠B的正切值,进而在△ABC中利用得到的正切值即可求得未知数,也就求得了BC长.【解答】解:设DE为x,则CD=x,AC=9﹣x,∵sinB=,∴BD=x,tanB=,∴=,=,解得x=3,∴BC=x+x=8,故答案为8.【点评】考查解直角三角形的相关知识;熟练掌握三角函数的定义并灵活进行应用是解决本题的关键.18.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.【分析】首先在△ABC中,根据三角函数值计算出AC的长,再利用勾股定理计算出AD的长,然后根据余弦定义可算出cos∠ADC.【解答】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案为:.【点评】此题主要考查了解直角三角形,以及勾股定理的应用,关键是利用三角函数值计算出AC的长,再利用勾股定理计算出AD的长.19.如图,在等腰三角形中,AB=AC,BC=4,D为BC的中点,点E、F在线段AD 上,tan∠ABC=3,则阴影部分的面积是6.【分析】由图,根据等腰三角形是轴对称图形知,阴影部分的面积是三角形面积的一半.根据BC=4,D为BC的中点,tan∠ABC=3可求AD,然后利用阴影部分即可求解.面积=S△ABC【解答】解:∵AB=AC,D为BC的中点,∴△ABC是等腰三角形,∴△ABC是轴对称图形,AD所在直线是对称轴,.∴阴影部分面积=S△ABC∵AB=AC,BC=4,D为BC的中点,∴BD=DC=BC=2,AD⊥BC,∴tan∠ABC===3,∴AD=6,=××4×6=6.∴阴影部分面积=S△ABC故答案为6.【点评】本题考查了解直角三角形,等腰三角形的性质及轴对称性质;利用对称发现阴影部分的面积是三角形面积的一半是正确解答本题的关键.20.在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM=.【分析】根据∠NMB=∠MBC,延长MN,BC相交于T,得到等腰△TBM,连接点T和MB的中点,得到相似三角形,然后由相似三角形的性质进行计算,求出∠ABM的正切.【解答】解:如图:延长MN交BC的延长线于T,设MB的中点为O,连TO,则OT⊥BM,∵∠ABM+∠MBT=90°,∠OTB+∠MBT=90°,∴∠ABM=∠OTB,则△BAM∽△TOB,∴=,即=,即MB2=2AM•BT ①令DN=1,CT=MD=K,则:AM=2﹣K,BM=,BT=2+K,代入①中得:4+(2﹣K)2=2(2﹣K)(2+K),解方程得:K1=0(舍去),K2=.∴AM=2﹣=.tan∠ABM===.故答案是:.【点评】本题考查的是解直角三角形,运用正方形的性质,根据题目中角的关系,判断两个三角形相似,然后用相似三角形的性质进行计算,求出直角三角形中边的长度,再用正切的定义求出角的正切值.21.如图,在菱形ABCD中,AE⊥BC,E为垂足,若cosB=,EC=2,P是AB边上的一个动点,则线段PE的长度的最小值是 4.8.【分析】设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,解直角△ABE即可求得x的值,即可求得BE、AE的值,根据AB、PE的值和△ABE的面积,即可求得PE的最小值.【解答】解:设菱形ABCD的边长为x,则AB=BC=x,又EC=2,所以BE=x﹣2,因为AE⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=,于是,解得x=10,即AB=10.所以易求BE=8,AE=6,当EP⊥AB时,PE取得最小值.故由三角形面积公式有:AB•PE=BE•AE,求得PE的最小值为4.8.故答案为 4.8.【点评】本题考查了余弦函数在直角三角形中的运用、三角形面积的计算和最小值的求值问题,求PE的值是解题的关键.22.如图,正△EFG内接于正方形ABCD,其中E,F,G分别在边AB,AD,BC 上,若,则=.【分析】如图所示,作出辅助线,可知三角形ABK是等边三角形,设出正方形的边长,解直角三角形求出BG.再计算比值.【解答】解:如图,作EK⊥FG,K是FG的中点,连AK、KB,易知E、K、G、B 和E、K、F、A分别四点共圆∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°.∴三角形ABK是等边三角形作KM⊥AB,M是AB的中点,设AB=6则EB=AB=2,MB=3,ME=1,MK=6sin60°=3∴EK=;;.故.故答案为.【点评】此题是一个综合性很强的题目,主要考查等边三角形的性质、解直角三角形、三角函数等知识.难度很大,有利于培养同学们钻研和探索问题的精神.23.四边形ABCD中,∠A=∠C=90°,∠ADC=60°,AB=11,BC=2,则BD=14.【分析】延长AB与DC的延长线相交于点E,构造了两个30°的直角三角形,首先在直角三角形CBE中求得BE的长,再进一步在直角三角形ADE中,求得AD 的长,再在直角三角形BAD中由勾股定理求得BD.【解答】解:如图,延长AB与DC的延长线相交于点E.在Rt△ADE中,∵∠ADE=60°,∴∠E=30°.在Rt△BCE中,sinE=,∴BE==4,∴AE=AB+BE=11+4=15.在Rt△DAE中,tanE=,∴AD=AE•tanE=15×=5,在Rt△BAD中,BD===14,故答案为:14.【点评】此题考查的知识点是解直角三角形,关键要特别注意构造30°的直角三角形,熟练运用锐角三角函数求解.24.如图,已知∠BAC=60°,在角的内部有一点P,P到AB的距离为,P 到AC的距离为3,则点P到顶点A的距离为5.【分析】延长BP,AC交于点D,构造出两个特殊的直角三角形,易得PD的值,也就求得了BP的值,进而求得AB的值,利用勾股定理即可求得AP的值.【解答】解:延长BP,AC交于点D,连接AP.∵∠D=30°,PC=3,∴PD=6,∴BD=BP+PD=4.5+2,∴AB=+2,PA===5.故答案为5.【点评】考查解直角三角形的相关知识;把四边形转换为直角三角形求解是常用的解题思路.三.解答题(共16小题)25.(2017•黔西南州)把(sinα)2记作sin2α,根据图1和图2完成下列各题.(1)sin2A1+cos2A1=1,sin2A2+cos2A2=1,sin2A3+cos2A3=1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1;(3)如图2,在Rt△ABC中证明(2)题中的猜想:(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.【分析】(1)根据正弦函数和余弦函数的定义分别计算可得;(2)由(1)中的结论可猜想sin2A+cos2A=1;(3)由sinA=、cosA=且a2+b2=c2知sin2A+cos2A=()2+()2===1;(4)根据直角三角形中sin2A+cos2A=1知()2+cosA2=1,据此可得答案.【解答】解:(1)sin2A1+cos2A1=()2+()2=+=1,sin2A2+cos2A2=()2+()2=+=1,sin2A3+cos2A3=()2+()2=+=1,故答案为:1、1、1;(2)观察上述等式猜想:在Rt△ABC中,∠C=90°,总有sin2A+cos2A=1,故答案为:1;(3)在图2中,∵sinA=,cosA=,且a2+b2=c2,则sin2A+cos2A=()2+()2=+===1,即sin2A+cos2A=1;(4)在△ABC中,∠A+∠B=90°,∴∠C=90°,∵sin2A+cos2A=1,∴()2+cosA2=1,解得:cosA=或cosA=﹣(舍),∴cosA=.【点评】本题主要考查解直角三角形,熟练掌握正弦函数和余弦函数的定义是解题的关键.26.(2017•湘潭)某游乐场部分平面图如图所示,C、E、A在同一直线上,D、E、B在同一直线上,测得A处与E处的距离为80 米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(≈1.4,≈1.7)(1)求旋转木马E处到出口B处的距离;(2)求海洋球D处到出口B处的距离(结果保留整数).【分析】(1)在Rt△ABE中,利用三角函数即可直接求得BE的长;(2)在Rt△CDE中,利用三角函数求得DE的长,然后利用DB=DE+EB求解.【解答】解:(1)∵在Rt△ABE中,∠BAE=30°,∴BE=AE=×80=40(米);(2)∵在Rt△ABE中,∠BAE=30°,∴∠AEB=90°﹣30°=60°,∴∠CED=∠AEB=60°,∴在Rt△CDE中,DE=≈=40(米),则BD=DE+BE=40+40=80(米).【点评】本题考查了解直角三角形,正确理解三角函数的定义,理解边角关系是关键.27.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)【分析】作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.【解答】解:作BE⊥l于点E,DF⊥l于点F.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin ,∴mm在Rt△ADF中,cos ,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.【点评】本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.28.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.【分析】(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC =S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,然后在Rt△BDE中利用余弦的定义求解.【解答】解:(1)在△ABC中,∵∠ACB=90°,∴sinA==,而BC=8,∴AB=10,∵D是AB中点,∴CD=AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC==6,∵D是AB中点,∴BD=5,S△BDC =S△ADC,∴S△BDC =S△ABC,即CD•BE=•AC•BC,∴BE==,在Rt△BDE中,cos∠DBE===,即cos∠ABE的值为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.29.阅读下面的材料:(1)锐角三角函数概念:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,称sinA=,sinB=是两个锐角∠A,∠B的“正弦”,特殊情况:直角的正弦值为1,即sin90°=1,也就是sinC==1.由sinA=,可得c=;由sinB=,可得c=,而c==,于是就有(2)其实,对于任意的锐角△ABC,上述结论仍然成立,即三角形各边与对角的正弦之比相等,我们称之为“正弦定理”,我们可以利用三角形面积公式证明其正确性.证明:如图1作AD⊥BC于D则在Rt△ABD中,sinB=,∴AD=c•sinB,∴S△ABC=a•AD=ac•sinB,在Rt△ACD中,sinC=,∴AD=b•sinC.∴S△ABC =a•AD=ab•sinC.同理可得S△ABC=bc•sinA.因此有S△ABC=ac•sinB=ab•sinC=bc•sinA.也就是=ac•sinB=ab•sinC=bc•sinA.每项都除以abc,得,故请你根据对上面材料的理解,解答下列问题:(1)在锐角△ABC中,∠B=60°,∠C=45°,c=2,求b;(2)求问题(1)中△ABC的面积;(3)求sin75°的值(以上均求精确值,结果带根号的保留根号)【分析】(1)根据阅读材料得到,则=,可计算出b=;(2)作AD⊥BC于D,如图,在Rt△ABD中,利用余弦的定义得cosB=cos60°=,可计算出BD=1,在Rt△ADC中,根据等腰直角三角形的性质得AD=CD=AC=,所以BC=BD+CD=+1,然后根据三角形面积公式计算得到△ABC的面积=;(3)先根据三角形内角和定理得到∠A=180°﹣∠B﹣∠C=75°,再根据阅读材料得到△ABC的面积=bcsinA,即••2•sin75°=,可计算出sin75°=.【解答】解:(1)∵,∴=,∴b==;(2)作AD⊥BC于D,如图,在Rt△ABD中,cosB=cos60°==,∴BD=1,在Rt△ADC中,AD=CD=AC=×=,∴BC=BD+CD=+1,∴△ABC的面积=××(+1)=;(3)∵∠B=60°,∠C=45°,∴∠A=180°﹣∠B﹣∠C=75°,∴△ABC的面积=bcsinA,∴••2•sin75°=,∴sin75°=.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.30.如图,四边形ABCD中,AB=AD,∠ABC=∠ADC.(1)求证:CB=CD;(2)若∠BCD=90°,AO=2CO,求tan∠ADO.【分析】(1)根据等腰三角形的性质得到∠ABD=∠ADB,根据角的和差得到∠CBD=∠CDB,于是得到结论;。
28.2.2解直角三角形的应用(最新2017年中考试题版)
2、方位角 • 指南或指北的方向线与目标方向线构成 小于900的角,叫做方位角. • 如图:点A在O的北偏东30° • 点B在点O的南偏西45°(西南方向) 北 A 30°
西 B
O 45°
南
东
例4.如图,海中一渔船在A处且与小岛C相距70nmile,若该 渔船由西向东航行30nmile到达B处,此时测得小岛C位于 B的北偏东30∘方向上;求该渔船此时与小岛C之间的距 离。
1.仰角与俯角的定义
在视线与水平线所成的角中规定: 视线在水平线上方的叫做仰角, 视线在水平线下方的叫做俯角。
视线
铅 垂 线
仰角 俯角
水平线
视线
例1、如图所示,为了测量出一垂直水平地面的某高 大建筑物AB的高度,一测量人员在该建筑物附近C 处,测得建筑物顶端A处的仰角大小为45∘,随后沿直 线BC向前走了100米后到达D处,在D处测得A处的 仰角大小为30∘,则建筑物AB的高度约为___ 米。 (注:不计测量人员的身高,结果按四舍五入保留整 数,参考数据: 2 ≈1.41, 3 ≈1.73)
x
3x
x
例2.如图,两座建筑物的水平距离BC=30m, 从A点测得D点的俯角α为30∘,测得C点的 俯角β为60∘,求这两座建筑物的高度。
E
例3、如图,某数学兴趣小组要测量一栋五层居民楼 CD的高度。该楼层底为车库,高2.5米;上面五层居 住,每层高度相等。测角仪支架离地1.5米,在A处测 得五楼顶部点D的仰角为60∘,在B处测得四楼顶点E 的仰角为30∘,AB=14米。求居民楼的高度(精确到 0.1米,参考数据: 3 =1.73)
3、坡度
例7.为做好防汛工作,防汛指挥部决定对某水库的水 坝进行加高加固,专家提供的方案是:水坝加高2米 (即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1), 如图所示,已知AE=4米,∠EAC=130∘,求水坝原来的 高度BC. (参考数据:sin50∘≈0.77,cos50∘≈0.64,tan50∘≈1.2)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。
中考数学必考点提分专练08 解直角三角形的实际应用(含解析)
|类型1| 两直角三角形在高线同侧1.[2019·襄阳]襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC和塔冠BE)进行了测量.如图所示,最外端的拉索AB的底端A到塔柱底端C的距离为121 m,拉索AB与桥面AC的夹角为37°,从点A 出发沿AC方向前进23.5 m,在D处测得塔冠顶端E的仰角为45°.请你求出塔冠BE的高度.(结果精确到0.1 m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√2≈1.41)解:在Rt△ACB中,AC=121,∠A=37°,∴tan A=BCAC=BC121≈0.75,∴BC≈90.75,由题知AD=23.5,∴CD=AC-AD=97.5.在Rt△DCE中,∠EDC=45°,∴tan∠EDC=ECCD=1,∴EC=97.5,∴BE=EC-BC=97.5-90.75=6.75≈6.8.答:塔冠BE的高度约为6.8 m.2.[2019·衡阳]如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A的仰角为30°,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°,已知坡面CD=10米,山坡的坡度i=1∶√3(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度.(结果精确到0.1米)(参考数据:√3≈1.73,√2≈1.41)解直角三角形的实际应用提分专练08解:过点D作DH⊥AB于点H,交AE于点F.作DG⊥BC于点G,则DG=BH,DH=GB.x米,设楼房AB的高为x米,则EB=√33∵坡度i=1∶√3,CD=10米,∴坡面CD的铅直高度DG为5米,坡面的水平宽度CG为5√3米,,在Rt△ADH中,tan∠ADH=AHDH∴DH=√3(x-5).x=√3(x-5),∴5√3+10+√33解得x=15+5√3≈23.7(米).所以楼房AB的高度约为23.7米.3.[2019·宿迁]宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图3①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB,CD都与地面l平行,车轮半径为32 cm,∠BCD=64°,BC=60 cm,坐垫E与点B的距离BE为15 cm.(1)求坐垫E到地面的距离.(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80 cm,现将坐垫E调整至坐骑舒适高度位置E',求EE'的长.(结果精确到0.1 cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)解:(1)如图①,过点E作EM⊥CD于点M,由题意知∠BCM=64°,EC=BC+BE=60+15=75(cm),∴EM=EC sin∠BCM=75sin64°≈67.5(cm),故坐垫E到地面的距离为67.5+32=99.5(cm).(2)如图②所示,过点E'作E'H ⊥CD 于点H ,由题意知E'H=80×0.8=64(cm), 则E'C=E 'Hsin∠ECH =64sin64°≈71.1(cm),∴EE'=CE -CE'=75-71.1=3.9(cm).|类型2| 两直角三角形在高线异侧4.[2019·铜仁]如图,A ,B 两个小岛相距10 km ,一架直升机由B 岛飞往A 岛,其飞行高度一直保持在海平面以上的h km ,当直升机飞到P 处时,由P 处测得B 岛和A 岛的俯角分别是45°和60°,已知A ,B ,P 和海平面上一点M 都在同一个平面上,且M 位于P 的正下方,求h.(结果取整数,√3≈1.732)解:由题意得,∠P AB=60°,∠PBA=45°,AB=10 km ,在Rt △APM 和Rt △BPM 中,tan ∠P AM=ℎAM =√3,tan ∠PBM=ℎBM =1, ∴AM=3=√33h ,BM=h.∵AM+BM=AB=10,即√33h+h=10, 解得h=15-5√3≈6. 答:h 约为6 km .5.[2019·海南]如图是某区域的平面示意图,码头A 在观测站B 的正东方向,码头A 的北偏西60°方向上有一小岛C ,小岛C 在观测站B 的北偏西15°方向上,码头A 到小岛C 的距离AC 为10海里.(1)填空:∠BAC= ,∠C= ; (2)求观测站B 到AC 的距离BP .(结果保留根号)解:(1)30°45°(2)设BP=x海里.由题意,得BP⊥AC,则∠BPC=∠BP A=90°.∵∠C=45°,∴∠CBP=∠C=45°,则CP=BP=x.在Rt△ABP中,∠BAC=30°,则∠ABP=60°.∴AP=tan∠ABP·BP=tan60°·BP=√3x,∴√3x+x=10,解得x=5√3-5,则BP=5√3-5.答:观测站B到AC的距离BP为(5√3-5)海里.6.[2019·邵阳]某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40 cm,∠ADE=30°,DE=190 cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度.(结果精确到1 cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:设OE=OB=2x,∴OD=DE+OE=190+2x.∵∠ADE=30°,∴OC=12OD=95+x,∴BC=OC-OB=95+x-2x=95-x.∵tan∠BAD=BCAC ,∴2.14≈95-x40,解得:x≈9,∴2x=18,即OB的长度约为18 cm.|类型3| 其他类型7.[2019·泸州]如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛D位于东北方向上,且相距20√2n mile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C 恰好在点B的正北方向上,且相距50 n mile,又测得点B与小岛D相距20√5n mile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=20√2,∠DAE=45°,∴DE=20√2×sin45°=20.在Rt△BED中,BD=20√5,∴sin∠ABD=EDBD =20√5=√55.(2)过D作DF⊥BC于F,在Rt△BED中,DE=20,BD=20√5,∴BE=√BD2-DE2=40.易知四边形BFDE是矩形,∴DF=EB=40,BF=DE=20,∴CF=BC-BF=30.在Rt△CDF中,CD=√DF2+CF2=50,∴小岛C,D之间的距离为50 n mile.8.[2019·镇江]在三角形纸片ABC(如图①)中,∠BAC=78°,AC=10.小霞用5张这样的三角形纸片拼成了一个内外都是正五边形的图形(如图②).(1)∠ABC=°;(2)求正五边形GHMNC的边GC的长.(参考值:sin78°≈0.98,cos78°≈0.21,tan78°≈4.7)①②解:(1)30[解析]∵五边形ABDEF是正五边形,=108°,∴∠ABD=(5-2)×180°5∠DBG=∠BAC=78°,∴∠ABC=∠ABD-∠DBG=30°,故答案为:30.(2)作CQ⊥AB于Q,在Rt△AQC中,sin∠QAC=QC,AC∴QC=AC·sin∠QAC≈10×0.98=9.8.在Rt△BQC中,∠ABC=30°,∴BC=2QC=19.6,∴GC=BC-BG=BC-AC=9.6.9.[2019·威海]如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=3,木箱底5部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.解:∵BH=0.6,sin α=35,∴AB=BHsinα=0.635=1,∴AH=0.8.∵AF=FC=2,∴BF=1,作FQ ⊥BG 于点Q ,作EP ⊥FQ 于点P ,∵FB=AB=1,∠EPF=∠FQB=∠AHB=90°,∠EFP=∠FBQ=∠ABH , ∴△EFP ∽△ABH ,△FBQ ≌△ABH , ∴EPAH =EFAB ,BQ=BH=0.6,即EP0.8=1.61, ∴EP=1.28,∴EP+BQ=1.88(米)<2米, ∴木箱上部顶点E 不会触碰到汽车货厢顶部.。
2017年中考数学解直角三角形专题训练(有答案和解释)
2017年中考数学解直角三角形专题训练(有答案和解释)解直角三角形一、选择题(共13小题,每小题4分,满分52分)1.在△ABC中,已知AB=5,AC=3,BC=4,则下列结论中正确的是()A.sinA= B.cosB= C.tanA= D.tanB= 2.如图,△ABC为边长是5的等边三角形,点E在AC边上,点F在AB边上,ED⊥BC,且ED=AE,DF=AF,则CE的长是() A. B. C.20+10 D.20�10 3.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A. B. C. D.2 4.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,下列关系式中错误的是() A.b=c•cosB B.b=a•tanB C.a=c•sinA D.a=b•cotB 5.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB= BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是() A.①②③④ B.①②③ C.①②④ D.②③④ 6.如图,点A的坐标为(�1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为() A.(0,0)B.(,�) C.(�,�) D.(�,�) 7.如图,AB为⊙O 的直径,CA切⊙O于A,CB交⊙O于D,若CD=2,BD=6,则sinB=()A. B. C. D. 8.在Rt△ABC中,∠C=90°,AB=13,BC=5,则tanA=() A. B. C. D. 9.已知在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为() A. B. C. D. 10.如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于() A.6( +1)m B.6(�1)m C.12( +1)m D.12(�1)m 11.已知α为等边三角形的一个内角,则cosα等于() A. B. C. D. 12.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地() A. m B.100m C.150m D. m 13.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A. B. C. D.二、填空题(共10小题,每小题5分,满分50分) 14.化简 = . 15.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1:1.5,上底宽为6m,路基高为4m,则路基的下底宽为m. 16.如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm.为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现将斜坡的坡度设计为i=1:4.5,则AC的长为cm. 17.身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约为m.(结果精确到0.1m,其中小丽眼睛距离地面的高度近似为身高) 18.如图,在正方形网格中,∠ABO的正切值是. 19.若△ABC中,∠C=90°,AC:BC=3:4,那么sinA= . 20.如图,有一个边长为5的正方形纸片ABCD,要将其剪拼成边长分别为a,b的两个小正方形,使得a2+b2=52.①a,b的值可以是(提示:答案不惟一)(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:. 21.将一个含30°角的三角板和一个含45°角的三角板如图摆放,∠ACB与∠DCE 完全重合,∠C=90°,∠A=45°,∠EDC=60°,AB=4 ,DE=6,则EB= . 22.比较大小:sin33°+cos33°1.(可用计算器辅助) 23.在Rt△ABC中,∠C=Rt∠,如果AC=3,BC=4,那么sinA= .三、解答题 24.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB 相似?若存在,求出N点的坐标;若不存在,说明理由. 25.计算:. 26.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732) 27.计算:. 28.为测量大楼CD的高度,某人站在A处测得楼顶的仰角为45°,前进20m后到达B处测得楼顶的仰角为60°,求大楼CD的高度. 29.如图,为测量某塔AB的高度,在离该塔底部20米处目测其顶A,仰角为60°,目高1.5米,试求该塔的高度(≈1.7). 30.九年级甲班数学兴趣小组组织社会实践活动,目的是测量一山坡的护坡石坝高度及石坝与地面的倾角∠α.(1)如图1,小明所在的小组用一根木条EF斜靠在护坡石坝上,使得BF与BE的长度相等,如果测量得到∠EFB=36°,那么∠α的度数是;(2)如图2,小亮所在的小组把一根长为5米的竹竿AG斜靠在石坝旁,量出竿长1米时离地面的高度为0.6米,请你求出护坡石坝的垂直高度AH;(3)全班总结了各组的方法后,设计了如图3方案:在护坡石坝顶部的影子处立一根长为a米的杆子PD,杆子与地面垂直,测得杆子的影子长为b米,点P到护坡石坝底部B的距离为c米,如果利用(1)得到的结论,请你用a、b、c表示出护坡石坝的垂直高度AH.(sin72°≈0.95,cos72°≈0.3,tan72°≈3) 31.如图,某中学科学楼高15米,计划在科学楼正北方向的同一水平地上建一幢宿舍楼,第一层是高2.5米的自行车场,第二层起为宿舍.已知该地区一年之中“冬至”正午时分太阳高度最低,此时太阳光线AB的入射角∠ABD=55°,为使第二层起能照到阳光,两楼间距EF至少是多少米(精确到0.1米).(参考数据:tan55°=1.4281,tan35°=0.7002). 32.如图,某电信部门计划修建一条连接B、C 两地的电缆,测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B地测得C地的仰角为60度.已知C地比A地高200米,电缆BC至少长多少米?(精确到0.1米) 33.如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合,已知BC=6.(1)三角尺旋转了多少度?连接CD,试判断△BCD的形状;(2)求AD的长;(3)连接CE,试猜想线段AC与CE的大小关系,并证明你的结论. 34.计算: 35.计算:(�2)3+()�1×cos60°�(1�)0. 36.计算:�22+()0+2sin30°. 37.又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话:甲:我站在此处看塔顶仰角为60°;乙:我站在此处看塔顶仰角为30°;甲:我们的身高都是1.5m;乙:我们相距20m.请你根据两位同学的对话,计算白塔的高度.(精确到1米) 38.如图,有两棵树,一棵高14m,另一棵高10m,两树相距5m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米? 39.如图,沿江堤坝的横断面是梯形ABCD,坝顶AD=4m,坝高AE=6 m,斜坡AB的坡比i=1:2,∠C=60°,求斜坡AB、CD的长. 40.如图,为了测量电线杆的高度AB,在离电线杆25米的D处,用高1.20米的测角仪CD测得电线杆顶端A的仰角α=22°,求电线杆AB的高.(精确到0.1米)参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040,cot22°=2.4751. 41.兰州市城市规划期间,欲拆除黄河岸边的一根电线杆AB(如图),已知距电线杆AB水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡角∠CDF的正切值为2,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域) 42.课外实践活动中,数学老师带领学生测量学校旗杆的高度.如图,在A处用测角仪(离地高度为1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B处,再次测得旗杆顶端的仰角为30°,求旗杆EG的高度. 43.如图所示,张伯伯利用假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来,假设铅垂P不动,鱼漂移动了一段距离BC,且顶端恰好与水面齐平,(即PA=PC)水平l与OC的夹角α为8°(点A在OC上),求铅锤P处的水深h.(参考数据:sin8°≈ ,cos8°≈ ,tan8°≈ )解直角三角形参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分) 1.在△ABC中,已知AB=5,AC=3,BC=4,则下列结论中正确的是() A.sinA= B.cosB= C.tanA= D.tanB= 【考点】锐角三角函数的定义.【分析】先判定此三角形为直角三角形,再根据锐角三角函数的定义,分别求得sinA、cosB、tanA、tanB的值,即可判断.【解答】解:在△ABC中,∵AB=5,AC=3,BC=4,∴△ABC 是直角三角形,其中∠C是直角.∴sinA= ,cosB= ,tanA= ,tanB= ,故选A.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边. 2.如图,△ABC为边长是5的等边三角形,点E在AC边上,点F在AB边上,ED⊥BC,且ED=AE,DF=AF,则CE的长是()A. B. C.20+10 D.20�10 【考点】等边三角形的性质.【专题】计算题.【分析】根据ED⊥BC可得∠CED=30°,即可求得EC与ED 的关系,设DE=x,则AE=x,根据DE即可计算CE,根据AE+CE=5即可计算x的值,根据CE=AC�AE即可求CE的值.【解答】解:∵ED⊥BC,∠C=60°,∴∠CED=30°,设DE=x,则AE=x,且CE= x,又∵AE+CE=5,∴x+ x=5,解得x=10 �15,∴CE=5�(10 �15)=20�10 .故选D.【点评】本题考查了特殊角的正弦值,等边三角形各内角为60°的性质,本题中根据AE、CE求x的值是解题的关键. 3.正方形网格中,∠AOB如图放置,则c os∠AOB的值为()A. B. C. D.2 【考点】锐角三角函数的定义.【专题】网格型.【分析】作EF⊥OB,则求cos∠AOB的值的问题就可以转化为直角三角形边的比的问题.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE= .∴cos∠AOB= = = .故选:A.【点评】本题通过构造直角三角形,利用勾股定理和锐角三角函数的定义求解. 4.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,下列关系式中错误的是() A.b=c•co sB B.b=a•tanB C.a=c•sinA D.a=b•cotB 【考点】锐角三角函数的定义.【专题】计算题.【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则cosA= ,sinA= , tanB= ,cosB= , tanA= ,cotA= ;因而b=ccosA=atanB,a=csinA=ccosB=btanA= ,错误的是b=c•cosB.故选A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边. 5.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB= BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是() A.①②③④ B.①②③ C.①②④ D.②③④ 【考点】相似三角形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】几何综合题;压轴题.【分析】根据已知及相似三角形的判定方法对各个结论进行分析从而得到最后答案.【解答】解:∵∠BDE=45°,DE⊥BC ∴DB= BE,BE=DE ∵DE⊥BC,BF⊥CD∴∠BEH=∠DEC=90° ∵∠BHE=∠DHF ∴∠EBH=∠CDE∴△BEH≌△DEC ∴∠BHE=∠C,BH=CD ∵▱ABCD中∴∠C=∠A,AB=CD ∴∠A=∠BHE,AB=BH ∴正确的有①②③ 故选B.【点评】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.相似三角形的对应边成比例,对应角相等. 6.如图,点A的坐标为(�1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0) B.(,�) C.(�,�) D.(�,�)【考点】垂线段最短;坐标与图形性质.【专题】计算题;压轴题.【分析】过A点作垂直于直线y=x的垂线AB,此时线段AB最短,因为直线y=x 的斜率为1,所以∠AOB=45°,△AOB为等腰直角三角形,过B作BC 垂直x轴垂足为C,则OC=BC= .因为B在第三象限,所以点B的坐标为(�,�).【解答】解:线段AB最短,说明AB此时为点A 到y=x的距离.过A点作垂直于直线y=x的垂线AB,∵直线y=x与x轴的夹角∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC 垂直x轴,垂足为C,则BC为中垂线,则OC=BC= .作图可知B在x轴下方,y轴的左方.∴点B的横坐标为负,纵坐标为负,∴当线段AB最短时,点B的坐标为(�,�).故选:C.【点评】本题考查了动点坐标的确定,还考查了学生的动手操作能力,本题涉及到的知识点为:垂线段最短. 7.如图,AB为⊙O的直径,CA 切⊙O于A,CB交⊙O于D,若CD=2,BD=6,则sinB=()A. B. C. D.【考点】切线的性质;圆周角定理;锐角三角函数的定义.【分析】根据切割线定理CA2=CD•CB可得CA=4,然后在Rt△ABC中,利用CA=4,BC=8可以求出sinB.【解答】解:如图,∵CA切⊙O于A,∴CA2=CD•CB,又CD=2,BD=6,∴CA=4.在Rt△ABC 中,CA=4,BC=8,故sinB= = .故选A.【点评】此题主要考查锐角三角函数的概念及切割线定理等知识. 8.在Rt△ABC中,∠C=90°,AB=13,BC=5,则tanA=() A. B. C. D.【考点】解直角三角形.【分析】由勾股定理易得AC的值,进而根据三角函数的定义求解.【解答】解:在Rt△ABC中,∠C=90°,AB=13,BC=5,由勾股定理得:AC=12.则tanA= = .故选A.【点评】本题要求学生熟练掌握三角函数的定义与解直角三角形的方法. 9.已知在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为() A. B. C. D.【考点】锐角三角函数的定义;互余两角三角函数的关系.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA= ,tanB= 和a2+b2=c2.∵sinA= ,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB= .故选A.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°�B)=sinA= .又∵sin2B+cos2B=1,∴sinB= = ,∴tanB= = = .故选A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值. 10.如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A.6( +1)m B.6(�1)m C.12( +1)m D.12(�1)m 【考点】解直角三角形的应用�仰角俯角问题.【分析】利用所给的角的三角函数用AB表示出BD,CB;根据BC�DB=CD即可求出建筑物AB 的高度.【解答】解:根据题意可得:BC= = AB,BD==AB.∵CD=BC�BD=AB(�1)=12,∴AB=6( +1).故选A.【点评】本题通过考查仰角的定义,构造两个直角三角形求解.考查了学生读图构造关系的能力. 11.已知α为等边三角形的一个内角,则cosα等于() A. B. C. D.【考点】特殊角的三角函数值;等边三角形的性质.【分析】先根据等边三角形的性质求出α的度数,再根据cos60°= 即可解答.【解答】解:∵α为等边三角形的一个内角,∴α=60°.∴cosα=cos60°= .故选A.【点评】本题考查的是等边三角形的性质及特殊角的三角函数值,比较简单. 12.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地() A. m B.100m C.150m D. m 【考点】解直角三角形的应用�方向角问题.【专题】压轴题.【分析】根据三角函数分别求AD,BD的长,从而得到CD的长.再利用勾股定理求AC的长即可.【解答】解:AD=AB•sin60°=50 ;BD=AB•cos60°=50,∴CD=150.∴AC==100 .故选D.【点评】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线. 13.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于() A. B. C. D.【考点】锐角三角函数的定义.【专题】压轴题;网格型.【分析】找到∠ABC所在的直角三角形,利用勾股定理求得斜边长,进而求得∠ABC的邻边与斜边之比即可.【解答】解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为 =2 .∴cos∠ABC= = .故选B.【点评】难点是构造相应的直角三角形利用勾股定理求得∠ABC所在的直角三角形的斜边长,关键是理解余弦等于邻边比斜边.二、填空题(共10小题,每小题5分,满分50分) 14.化简 = .【考点】特殊角的三角函数值.【分析】运用特殊角三角函数值计算.【解答】解:原式= = = .【点评】此题比较简单,只要熟记特殊角的三角函数值即可. 15.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1:1.5,上底宽为6m,路基高为4m,则路基的下底宽为18 m.【考点】解直角三角形的应用�坡度坡角问题.【专题】计算题.【分析】过C作CF⊥AB,过D作CF⊥AB,根据CF的长和坡度即可求得AE、BF的值,根据AB=AE+EF+BF即可计算AB,即可解题.【解答】解:如右图,过C作CF⊥AB,过D作DE⊥AB, DE=CF=4m 坡度= = = ,∴AE=BF=6m,∴AB=AE+EF+FB=6+6+6(m)=18m.故答案为 18.【点评】本题考查了坡度的定义,考查了坡度在直角三角形中的运用,本题中求AE、BF的长是解题的关键. 16.如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm.为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现将斜坡的坡度设计为i=1:4.5,则AC的长为210 cm.【考点】解直角三角形的应用�坡度坡角问题.【专题】计算题.【分析】如图所示:所有台阶高度和为BD的长,所有台阶深度和为AD的长,即BD=60m,AD=60m.然后根据坡度比解答.【解答】解:由题可知BD=60cm,AD=60cm.∵坡度!=BD:DC=1:4.5,∴DC=270,∴AC=DC�AD=270�60=210(cm).【点评】运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题). 17.身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约为 5.1 m.(结果精确到0.1m,其中小丽眼睛距离地面的高度近似为身高)【考点】解直角三角形的应用�坡度坡角问题.【专题】压轴题.【分析】树高等于CD与DE的和,利用三角函数求CD长即可.【解答】解:∵∠CAD=30°,AD=6.∴CD=2 .∴树的高=1.6+2 ≈5.1(米).【点评】此题主要考查三角函数定义的应用. 18.如图,在正方形网格中,∠ABO 的正切值是 1 .【考点】锐角三角函数的定义.【专题】网格型.【分析】根据三角函数的定义即可求出tan∠ABO的值.【解答】解:利用三角函数的定义可知tan∠ABO= =1.【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边. 19.若△ABC中,∠C=90°,AC:BC=3:4,那么sinA= .【考点】锐角三角函数的定义.【分析】由题意得,AC:BC:AC=3:4:5,即可求得sinA 的值.【解答】解:设AC=3x,BC=4x,根据勾股定理可得AB=5x,∴sinA=BC:AB= .【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边. 20.如图,有一个边长为5的正方形纸片ABCD,要将其剪拼成边长分别为a,b的两个小正方形,使得a2+b2=52.①a,b的值可以是3,4 (提示:答案不惟一)(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性:图中的点E可以是以BC为直径的半圆上的任意一点(点B,C除外).BE,CE的长分别为两个小正方形的边长.【考点】勾股定理的应用.【专题】压轴题;开放型.【分析】①使得a2+b2=52.由直角三角形勾股定理的很容易联想到a、b的值是3、4;②要求设计一般性的剪裁,则先分割出来一个边长为4的正方形,再把剩下的部分分为两个边长为1的正方形和两个长为3宽为1的矩形,四个四边形拼成一个边长为3的正方形.【解答】解:①要使得a2+b2=52.考虑到直角三角形的特殊情况,a,b的取值可以使3,4一组(答案不唯一);②裁剪线及拼接方法如图所示:按照上图所示剪裁,先剪一个边长是4的正方形;剩下的剪三个边长为1的正方形和两个长为3宽为1的矩形,然后将这些拼接成边长为3的正方形即可.【点评】本题考查了学生的空间想象能力和发散思维能力.解决本题的关键是紧紧抓住a2+b2=52这个已知条件及剪拼过程面积不变的这个线索. 21.将一个含30°角的三角板和一个含45°角的三角板如图摆放,∠ACB与∠DCE完全重合,∠C=90°,∠A=45°,∠EDC=60°,AB=4 ,DE=6,则EB= .【考点】勾股定理;等腰三角形的性质.【专题】压轴题.【分析】根据直角三角形的性质,求得BC,再求得EC,由此可以求出CE,再利用BE=CE�BC即可求出EB.【解答】解:在Rt△AB C中,∵AB=4 ,∠A=45°,∴BC=4 × =4 在Rt△EDC中,∵∠EDC=60°,DE=6,∴CE=DE•sin∠EDC=6× =3∴BE=CE�BC=3 �4.故填空答案:3 �4.【点评】本题利用了直角三角形的性质和等腰三角形的性质求解. 22.比较大小:sin33°+cos33°>1.(可用计算器辅助)【考点】计算器―三角函数.【专题】计算题.【分析】先利用计算器求出33°的正弦值和余弦值,再计算两者之和,与1比较即可.【解答】解:∵sin33°≈0.545,cos33°≈0.839,∴sin33°+cos33°≈0.545+0.839≈1.384>1.故答案是>.【点评】本题考查了计算器计算三角函数值,注意一般取到小数点后3位. 23.在Rt△ABC中,∠C=Rt∠,如果AC=3,BC=4,那么sinA= .【考点】锐角三角函数的定义.【专题】压轴题.【分析】先由勾股定理求出AB,再利用锐角三角函数的定义求解.【解答】解:在Rt△ABC中,∠C=90°,∵AC=3,BC=4,∴AB= ==5.∴sinA= = .【点评】本题考查勾股定理及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.三、解答题 24.(2009•枣庄)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB 面积的3倍;(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)已知顶点坐标,设抛物线解析式的顶点式y=a(x�2)2+1,把O(0,0)代入即可;(2)∵△MOB与△AOB公共底边OB,最高点A 的纵坐标为1,只需要点M的纵坐标为�3即可,将y=�3,代入解析式可求M点坐标;(3)由已知△OAB为等腰三角形,点N在抛物线上,只可能OB=BN,即要求∠AOB=∠BON,A、A'要关于x轴对称,通过计算,不存在.【解答】解:(1)由题意,可设抛物线的解析式为y=a(x�2)2+1,∵抛物线过原点,∴a(0�2)2+1=0,a=�.∴抛物线的解析式为y=�(x�2)2+1=�x2+x.(2)△AOB和所求△MOB同底不等高,且S△MOB=3S△AOB,∴△MOB的高是△AOB高的3倍,即M点的纵坐标是�3.∴�3=�x2+x,即x2�4x�12=0.解之,得x1=6,x2=�2.∴满足条件的点有两个:M1(6,�3),M2(�2,�3)(3)不存在.由抛物线的对称性,知AO=AB,∠AOB=∠ABO.若△OBN 与△OAB相似,必有∠BON=∠BOA=∠BNO,即OB平分∠AON,设ON 交抛物线的对称轴于A'点,则A、A′关于x轴对称,∴A'(2,�1).∴直线ON的解析式为y=�x.由�x=�x2+x,得x1=0,x2=6.∴N (6,�3).过N作NE⊥x轴,垂足为E.在Rt△BEN中,BE=2,NE=3,∴NB= = .又∵OB=4,∴NB≠OB,∠BON≠∠BNO,△OBN与△OAB 不相似.同理,在对称轴左边的抛物线上也不存在符合条件的N 点.所以在该抛物线上不存在点N,使△OBN与△OAB相似.【点评】本题考查了抛物线解析式的求法,坐标系里的面积问题,探求相似三角形的存在性问题,具有一定的综合性. 25.计算:.【考点】特殊角的三角函数值;绝对值;零指数幂;负整数指数幂;二次根式的性质与化简.【专题】计算题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式= =5.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 26.如图,小明站在A处放风筝,风筝飞到C处时的线长为20米,这时测得∠CBD=60°,若牵引底端B离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1米,≈1.732)【考点】解直角三角形的应用�仰角俯角问题.【专题】计算题;压轴题.【分析】由题可知,在直角三角形中,知道已知角以及斜边,求对边,可以用正弦值进行解答.【解答】解:在Rt△BCD中,CD=BC×sin60°=20× =10 又DE=AB=1.5,∴CE=CD+DE=CD+AB=10 +1.5≈18.8 答:此时风筝离地面的高度约是18.8米.【点评】本题考查直角三角形知识在解决实际问题中的应用. 27.计算:.【考点】实数的运算.【分析】按照实数的运算法则依次计算.【解答】解:原式= =2 .【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、乘方、绝对值等考点的运算.注意(�1)2010=1,|�|= ,(π�2010)0=1. 28.为测量大楼CD的高度,某人站在A处测得楼顶的仰角为45°,前进20m后到达B处测得楼顶的仰角为60°,求大楼CD的高度.【考点】解直角三角形的应用�仰角俯角问题.【分析】此题可利用两仰角的正切值及CD的高度表示AB,即AB= �,求得CD即可.【解答】解:如图,依题意得∠CBD=60°,∠CAD=45°,AB=20m,设CD=xm,则AB= �, 20=x� x,解得:x=(30+10 )m,答:大楼CD的高为(30+10 )m.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形. 29.如图,为测量某塔AB的高度,在离该塔底部20米处目测其顶A,仰角为60°,目高1.5米,试求该塔的高度(≈1.7).【考点】解直角三角形的应用�仰角俯角问题.【专题】应用题.【分析】本题是一个直角梯形的问题.作CD⊥AB于点D,把求AB的问题转化求AD的长,从而在△ACD中利用三角函数求解.【解答】解:如图,CD=20,∠ACD=60°.在Rt△ACD中,tan∠ACD= ,∴ = ,∴AD=20 ≈34.又∵BD=1.5,∴塔高AB=34+1.5=35.5(米).【点评】解直角梯形可以通过作高线转化为解直角三角形和矩形的问题. 30.九年级甲班数学兴趣小组组织社会实践活动,目的是测量一山坡的护坡石坝高度及石坝与地面的倾角∠α.(1)如图1,小明所在的小组用一根木条EF斜靠在护坡石坝上,使得BF与BE的长度相等,如果测量得到∠EFB=36°,那么∠α的度数是72°;(2)如图2,小亮所在的小组把一根长为5米的竹竿AG斜靠在石坝旁,量出竿长1米时离地面的高度为0.6米,请你求出护坡石坝的垂直高度AH;(3)全班总结了各组的方法后,设计了如图3方案:在护坡石坝顶部的影子处立一根长为a米的杆子PD,杆子与地面垂直,测得杆子的影子长为b米,点P到护坡石坝底部B的距离为c米,如果利用(1)得到的结论,请你用a、b、c表示出护坡石坝的垂直高度AH.(sin72°≈0.95,cos72°≈0.3,tan72°≈3)【考点】解直角三角形的应用�坡度坡角问题.【专题】压轴题;方案型.【分析】(1)BF与BE的长度相等,则由等边对等角和三角形的外角等于与它不相邻两个内角和,得到∠α的度数.(2)由于竿长1米时离地面的高度为0.6米,则有AG:AH=1:0.6,可求得AH的长.(3)由题意知,△CPD∽△PHA,根据相似三角形的对应边相等可求得AH 的长.【解答】解:(1)∵BF=BE.∴∠BFE=∠FEB.∴∠α=2∠EFB=72°.(2)∵竿长1米时离地面的高度为0.6米,MN∥AH.∴AG:AH=1:0.6 ∴AH=3米.(3)在Rt△ABH中,BH=AH÷tan72°=AH÷3= .由题意知,△CPD∽△PHA.∴DP:CP=AH:PH=AH:(PB+BH)=AH:(PB+ ).即:a:b=AH:(c+ ).解得:AH= .【点评】本题主要用到了等边对等角和三角形的外角等于与它不相邻两个内角和;平行线的性质,正切的概念,相似三角形的性质等知识点求解. 31.如图,某中学科学楼高15米,计划在科学楼正北方向的同一水平地上建一幢宿舍楼,第一层是高2.5米的自行车场,第二层起为宿舍.已知该地区一年之中“冬至”正午时分太阳高度最低,此时太阳光线AB的入射角∠ABD=55°,为使第二层起能照到阳光,两楼间距EF至少是多少米。
解直角三角形的应用中考练习题
解直角三角形的应用一.选择题共5小题1.如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为A.100米B.50米C.米D.50米2.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:,则坝底AD的长度为A.26米B.28米C.30米D.46米3.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB 的坡度为1:,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为精确到米,sin42°≈,tan42°≈A .米B.米C.米D.米4.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为A .20海里B.10海里C.20海里D.30海里二.填空题共5小题5.如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC 为_________ 米精确到米.sin35°≈,cos35°≈,tan35°≈;sin52°≈,cos52°≈,tan52°≈6.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角如图所示,则梯子的顶端沿墙面升高了_________ m.7.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出_________ 个这样的停车位.≈8.如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b 上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为_________ 米.三.解答题共5小题9.图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.1连接CD,EB,猜想它们的位置关系并加以证明;2求A,B两点之间的距离结果取整数,可以使用计算器参考数据:≈,≈,≈10.如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1即tan∠CED=1的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.参考数据:≈,结果精确到米11.如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.1当∠CED=60°时,求C、D两点间的距离;2当∠CED由60°变为120°时,点A向左移动了多少cm结果精确到3设DG=xcm,当∠CED的变化范围为60°~120°包括端点值时,求x的取值范围.结果精确到参考数据≈,12.如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.1求FM的长;2连接AF,若sin∠FAM=,求AM的长.13.一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.温馨提示:sin53°≈,cos53°≈解直角三角形的应用练习题参考答案与试题解析一.选择题共5小题1.2012 襄阳在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为A .4+m B.12+m C.4+m D.4m考点:解直角三角形的应用.分析:根据已知得出AK=BD=12m,再利用tan30°==,进而得出CD的长.解答:解:∵BD=12米,李明的眼睛高AB=米,∠AOE=60°,∴DB=AK,AB=KD=米,∠CAK=30°,∴tan30°==,解得CK=4米,即CD=CK+DK=4+=4+米.故选:A.点评:本题考查的是解直角三角形的应用,根据题意得出tan30°==解答是解答此题的关键.2.2014 随州如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为A .100米B.50米C.米D.50米考解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.点评:此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.3.2014 衡阳如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB 的坡度i=1:,则坝底AD的长度为A .26米B.28米C.30米D.46米考解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:先根据坡比求得AE的长,已知CB=10m,即可求得AD.解答:解:∵坝高12米,斜坡AB的坡度i=1:, ∴AE==18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选:D.点评:此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.4.2014 西宁如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为精确到米,sin42°≈,tan42°≈A .米B.米C.米D.米考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利析:用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:,∴==.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD tan∠CAD≈12×≈米,∴BC≈米.故选:D.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.2014 临沂如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C 处观测到B在C的北偏东60°方向上,则B、C之间的距离为A .20海里B.10海里C.20海里D.30海里考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.解答:解:如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC 中,sin∠ABC===,∴BC=20海里.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.二.填空题共5小题6.2009 仙桃如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC为米精确到米.sin35°≈,cos35°≈,tan35°≈;sin52°≈,cos52°≈,tan52°≈考点:解直角三角形的应用-仰角俯角问题.专题:应用题;压轴题.分析:图中有两个直角三角形△ABD、△ACD,可根据两个已知角度,利用正切函数定义,分别求出BD和CD,求差即可.解答:解:根据题意:在Rt△ABD中,有BD=AD tan52°.在Rt△ADC中,有DC=AD tan35°.则有BC=BD﹣CD=6﹣=米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.7.2009 安徽长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角如图所示,则梯子的顶端沿墙面升高了2m.考点:解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:利用所给角的正弦函数求两次的高度,相减即可.解答:解:由题意知:平滑前梯高为4sin45°=4=.平滑后高为4sin60°=4=.∴升高了2m.点评:本题重点考查了三角函数定义的应用.8.2014 宁波为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17 个这样的停车位.≈考点:解直角三角形的应用.专题:调配问题.分析:如图,根据三角函数可求BC,CE,由BE=BC+CE可求BE,再根据三角函数可求EF,再根据停车位的个数=56﹣BE÷EF+1,列式计算即可求解.解答:解:如图,BC=×sin45°=×≈米,CE=5×sin45°=5×≈米,BE=BC+CE≈,EF=÷sin45°=÷≈米,56﹣÷+1=÷+1≈16+1=17个.故这个路段最多可以划出17个这样的停车位.故答案为:17.点评:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.9.2014 十堰如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B 的距离是24 海里.结果精确到个位,参考数据:≈,≈,≈考解直角三角形的应用-方向角问题.点:专题:几何图形问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD 中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=90°﹣70°+90°﹣50°=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°.在直角△ABD 中,BD=AB sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×=24海里.故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.10.2014 抚顺如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为100 米.考点:解直角三角形的应用.专题:几何图形问题.分析:过点P作PE⊥AB于点E,先求出∠APE及∠BPE、∠ABP的度数,由锐角三角函数的定义即可得出结论.解答:解:过点P作PE⊥AB于点E, ∵∠APC=75°,∠BPD=30°,∴∠APB=75°,∵∠BAP=∠APC=75°,∴∠APB=∠BAP,∴AB=PB=200m,∵∠ABP=30°,∴PE=PB=100m.故答案为:100.点评:本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.三.解答题共5小题11.2014 南昌图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.1连接CD,EB,猜想它们的位置关系并加以证明;2求A,B两点之间的距离结果取整数,可以使用计算器参考数据:≈,≈,≈考点:解直角三角形的应用.分1连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行析:线的判定可得CD,EB的位置关系;2根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:1猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.2BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.12.2014 铁岭如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1即tan∠CED=1的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE 的长度.参考数据:≈,结果精确到米考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,作辅助线EF⊥AC,通过平角减去其他角从而得到∠AEF=45°即可求出AE的长度.解答:解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°﹣45°﹣15°=30°,∴EF=CE=135米,∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°﹣45°﹣60°﹣30°=45°,∴AE=135≈米点评:本题考查了解直角三角形的应用,解答本题的关键是作辅助线EF⊥AC,以及坡度和坡角的关系.13.2014 抚州如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.1当∠CED=60°时,求C、D两点间的距离;2当∠CED由60°变为120°时,点A向左移动了多少cm结果精确到3设DG=xcm,当∠CED的变化范围为60°~120°包括端点值时,求x的取值范围.结果精确到参考数据≈,可使用科学计算器考点:解直角三角形的应用;菱形的性质.分析:1证明△CED是等边三角形,即可求解;2分别求得当∠CED是60°和120°,两种情况下AD的长,求差即可;3分别求得当∠CED是60°和120°,两种情况下DG的长度,即可求得x的范围.解答:解:1连接CD图1.∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm;2根据题意得:AB=BC=CD,当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H图2,则∠CEH=60°,CH=HD.在直角△CHE 中,sin∠CEH=,∴CH=20 sin60°=20×=10cm,∴CD=20cm,∴AD=3×20=60≈cm.∴﹣60=cm.即点A向左移动了;3当∠CED=120°时,∠DEG=60°,∵DE=EG,∴△DEG是等边三角形.∴DG=DE=20cm,当∠CED=60°时图3,则有∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG,∴∠DEI=∠GEI=60°,DI=IG,在直角△DIE 中,sin∠DEI=,∴DI=DE sin∠DEI=20×sin60°=20×=10cm.∴DG=2DI=20≈.则x的范围是:20cm≤x≤.点评:本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个等边三角形.14.2014 宿迁如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.1求FM的长;2连接AF,若sin∠FAM=,求AM的长.考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:1分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长线于点H,根据AB∥CD∥EF,AM∥BC∥DE,分别解Rt△ABN、Rt△DCG、Rt△FEH,求出BN、DG、FH的长度,继而可求出FM的长度;2在Rt△FAM中,根据sin∠FAM=,求出AF的长度,然后利用勾股定理求出AM的长度.解答:解:1分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长线于点H,在Rt△ABN中,∵AB=6m,∠BAM=30°,∴BN=ABsin∠BAN=6×=3m,∵AB∥CD∥EF,AM∥BC∥DE,同理可得:DG=FH=3m,∴FM=FH+DG+BN=9m;2在Rt△FAM中,∵FM=9m,sin∠FAM=,∴AF=27m,∴AM==18m.即AM的长为18m.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数解直角三角形,注意勾股定理的应用.15.2014 邵阳一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.温馨提示:sin53°≈,cos53°≈考点:解直角三角形的应用-方向角问题.专几何图形问题.题:分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50海里,∴海警船到大事故船C 处所需的时间大约为:50÷40=小时.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.。
中考数学试题分类汇总《解直角三角形及其应用》练习题
中考数学试题分类汇总《解直角三角形及其应用》练习题(含答案)1.比较大小:sin60°>tan30°(用“>”或“<”填空).2.Rt△ABC中∠C=90°,sin A=,则tan A的值是()A.B.C.D.【解答】解:∵∠C=90°,sin A=,∴∠A=30°,∴tan30°=.3.如图,在4×5的正方形网格中点A,B,C都在格点上,则tan∠ABC=.【分析】过点C作CE⊥AB于点E,利用面积法可求出CE的长,在Rt△BCE中,利用勾股定理可求出BE的长,再结合正切的定义可求出tan∠ABC的值.【解答】解:过点C作CE⊥AB于点E,如图所示.∵S△ABC=AC•3=AB•CE,即×2×3=×3•CE,∴CE=.在Rt△BCE中,BC=,CE=,∴BE==2,∴tan∠ABC==.4.如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.B.C.D.5.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,作等腰三角形ABD,使AB=AD,∠BAD=∠BAC,且点C不在射线AD上,过点D作DE⊥AB,垂足为E,则sin∠BDE的值为()A.B.C.D.【分析】先在Rt△BCA中求出AB,再利用“AAS”说明△ADE≌△ABC,求出BE、BD的长,最后在Rt △BDE中求出∠BDE的正弦.【解答】解:∵DE⊥AB,∴∠DEB=90°.∵∠C=90°,AC=6,BC=8,∴AB==10.在△ADE和△ABC中∵AB=AD=10,∠BAD=∠BAC,∠DEA=∠C=90°,∴△ADE≌△ABC(AAS),∴AC=AE=6,BC=DE=8.∴BE=AB﹣AE=4.∴BD==4.∴sin∠BDE===.故选:C.6.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C在格点上,则∠A正切值是()A.B.C.2D.【分析】取格点D,E,连接BD,可得∠ADB=90°,再由勾股定理求得线段AD、AB的长,然后由锐角三角函数定义求解即可.【解答】解:取格点D,E,连接BD,如图,∵∠ADE=∠BDE=45°,∴∠ADB=90°,由勾股定理得:AD==2,BD==,∴tan A===,7.如图,在△ABC中,∠ACB=90°,BC=4,AB=5,将△ABC绕点B顺时针旋转得到△A′BC′,使点C恰好落在A′B上,则tan∠A′AC的值为()A.B.C.D.【分析】先利用勾股定理求出AC,再根据旋转的性质得出AB=A′B=5,从而求出A′C,然后在Rt △ACA′中,利用锐角三角函数的定义,进行计算即可解答.【解答】解:∵∠ACB=90°,BC=4,AB=5,∴AC===3,由旋转得:AB=A′B=5,∴A′C=A′B﹣BC=5﹣4=1,∵∠ACB=90°,∴∠ACA′=180°﹣∠ACB=90°,在Rt△ACA′中,tan∠A′AC==,8.如图,一辆小车沿倾斜角为α的斜坡向上行驶13m,若sinα=,则小车上升的高度是()A.5m B.6m C.6.5m D.12m【分析】根据正弦的定义列式计算,得到答案.【解答】解:设小车上升的高度是xm,∵sinα=,∴=,解得,x=5,9.在边长为1的正方形网格中,点A、B、C、D都在格点上,AB与CD相交于点O,则∠AOD的正弦值为()A.B.C.D.【解答】解:如图,过点C作CE∥AB,则∠AOD=∠DCE,过点E作EF⊥CD于点F,则∠EFC=90°,由图可得:CD==,CE==,=4,∵,即4=,∴EF=,在Rt△CEF中,sin∠DCE===,∴sin∠AOD=.10.如图,在5×5的正方形网格中,每个小正方形的边长均为1,△ABC的顶点均在格点(网格线的交点)上,则tan B的值为.【解答】解:如图,连接格点A、D.在Rt△ABD中,∵AD=3,BD=4,∴tan B=;11.如图是一种平板电脑支架,由托板、支撑板和底座构成,平板电脑放置在托板上,右图是其侧面结构示意图.量得托板长AB=20cm,支撑板长CD=DE=16cm,支撑板顶端C点恰好是托板AB的中点,托板AB可绕点C转动,支撑板CD可绕点D转动.当∠BCD=75°,∠CDE=60°,则点A到直线DE 的距离是()cm(结果保留根号)A.B.C.D.【解答】解:过点A作AH⊥DE延长线于H,过点C作CF⊥DE于F,CG⊥AH于G,∵CG∥EH,∴∠GCD=∠CDE=60°,∴∠ACG=180°﹣60°﹣75°=45°,在Rt△ACG中,AC=10(cm),sin∠ACG===,∴AG=5(cm),在Rt△CDF中,CD=16cm,∠CDE=60°,∴CF=CD•sin60°=8m,∴GH=CF=8cm,∴AH=(5+8)cm.12.如图,在△ABC中,AB=AC,D是BC边的中点,点E是AC边上一点且CE=2AE,将△BAE沿BE 翻折得△BFE,若EF∥AD,则tan∠CBE=.【解答】解:延长EF交BC于H,如图:∵AB=AC,D是BC边的中点,∴BD=CD,AD⊥BC,∵EF∥AD,∴EH⊥BC,=,∵CE=2AE,∴CH=2DH,设DH=x,则CH=2x,∴CD=BD=3x,∴BH=BD+DH=4x,设AE=EF=y,FH=a,则CE=2y,AC=AB=3y=BF,在Rt△BFH中,BH2+FH2=BF2,∴(4x)2+a2=(3y)2①,在Rt△CEH中,CH2+EH2=CE2,∴(y+a)2+(2x)2=(2y)2②,由①②联立方程组,解得x=a,y=3a,∴BH=4x=4a,EH=EF+FH=y+a=4a,∴tan∠CBE===,13.如图,直角△ABC中,∠C=90°,根据作图痕迹,若CA=3cm,tan B=,则DE=cm.【解答】解:在Rt△ACB中,∠ACB=90°,AC=3cm,∴tan B==,∴CB=4(cm),∴AB===5(cm),∵DE垂直平分线段AB,∴BE=AE=(cm),∵∠B=∠B,∠DEB=∠C=90°,∴△CED∽△BCA,∴=,∴=,∴DE=(cm),14.(2022·深圳坪山区一模)如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,则sin B的值是.【解答】解:∵∠C=90°,AC=3,BC=4,∴AB==5,∴sin B==,解直角三角形的应用15.春节期间,小明发现远处大楼的大屏幕时出现了“新年快乐”几个大字,小明想利用刚学过的知识测量“新”字的高度:如图,小明先在A处,测得“新”字底端D的仰角为60°,再沿着坡面AB向上走到B处,测得“新”字顶端C的仰角为45°,坡面AB的坡度i=1:,AB=50m,AE=75m(假设A、B、C、D、E在同一平面内).(1)求点B的高度BF;(2)求“新”字的高度CD.(CD长保留一位小数,参考数据≈1.732)【分析】(1)由坡度的概念求出BF即可;(2)由勾股定理求出AF,再由锐角三角函数定义求出DE和CG,即可解决问题.【解答】解:(1)如图,过B作BG⊥CE于G,∵坡面AB的坡度1:,∴tan∠BAF=1:=,∴∠BAF=30°,∴BF=AB=25(m);(2)由勾股定理得,AF===25(m),∴BG=FE=AF+AE=(25+75)(m),在Rt△DAE中,tan∠DAE==tan60°=,∴DE=AE=75(m),∵∠CBG=45°,∴△CBG是等腰直角三角形,∴CG=BG=(25+75)m,∵GE=BF=25m,∴CD=CG+GE﹣DE=25+75+25﹣75=100﹣50≈13.4(m),答:“新”字的高度CD约为13.4m.16.小明为测量校园里一棵大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为11米.(结果精确到1m.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)【分析】过点D作DE⊥AB,构造直角三角形,利用直角三角形的边角关系,求出AE,进而求出AB即可.【解答】解:如图,过点D作DE⊥AB,垂足为E,由题意得,BC=DE=8米,∠ADE=52°,BE=CD =1米,在Rt△ADE中,AE=DE•tan∠ADE=8×tan52°≈10.24(米),∴AB=AE+BE=10.24+1≈11(米)17.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC 为()A.(1.5+150tanα)米B.(1.5+)米C.(1.5+150sinα)米D.(1.5+)米【分析】过点A作AE⊥BC,E为垂足,再由锐角三角函数的定义求出BE的长,由BC=CE+BE即可得出结论.【解答】解:过点A作AE⊥BC,E为垂足,如图所示:则四边形ADCE为矩形,AE=150米,∴CE=AD=1.5米,在△ABE中,∵tanα==,∴BE=150tanα,∴BC=CE+BE=(1.5+150tanα)(米),18.如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD 为米,点A、D、B在同一水平直线上,则A、B两点间的距离是米.(结果保留根号)19.在疫情防控工作中,某学校在校门口的大门上方安装了一个人体测温摄像头.如图,学校大门高ME=7.5米,AB为体温监测有效识别区域的长度,小明身高BD=1.5米,他站在点B处测得摄像头M的仰角为30°,站在点A处测得摄像头M的仰角为60°,求体温监测有效识别区域AB的长度.【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:根据题意可知:四边形EFCA和ABDC是矩形,ME=7.5米,∴CA=EF=BD=1.5米,CD=AB,设FC=x,在Rt△MFC中,∵∠MCF=60°,∴∠FMC=30°,∴MC=2FC=2x,MF=x,∵∠MDC=30°,∴∠CMD=60°﹣30°=30°,∴CD=CM=2x,∵ME=MF+EF,∴x+1.5=7.5,解得x=2,∴MC=2x=4(米),答:体温监测有效识别区域AB的长为4米.20.某地为了让山顶通电,需要从山脚点B开始接驳电线,经过中转站D,再连通到山顶点A处,测得山顶A的高度AC为300米,从山脚B到山顶A的水平距离BC是500米,斜面BD的坡度i=1:2(指DF与BF的比),从点D看向点A的仰角为45°.(1)斜面AD的坡度i=1:1;(2)求电线AD+BD的长度(结果保留根号).【分析】(1)根据题意可得∠AED=90°,∠ADE=45°,然后在在Rt△ADE中,利用锐角三角函数的定义进行计算即可解答;(2)设AE=DE=x米,则DE=CF=x米,从而表示出DF,BF的长,再利用斜面BD的坡度i=1:2,列出关于x的方程,进行计算即可求出x的值,然后分别在Rt△BDF和Rt△ADE中,利用勾股定理求出AD,BD的长,进行计算即可解答.【解答】解:(1)由题意得:∠AED=90°,∠ADE=45°,在Rt△ADE中,tan45°==1,∴斜面AD的坡度i=1:1,(2)由(1)得:AE=DE,设AE=DE=x米,则DE=CF=x米,∵AC=300米,BC=500米,∴EC=AC﹣AE=(300﹣x)米,BF=BC﹣CF=(500﹣x)米,∴DF=EC=(300﹣x)米,∵斜面BD的坡度i=1:2,∴=,∴BF=2DF,∴500﹣x=2(300﹣x),解得:x=100,∴BF=400米,DF=200米,AE=DE=100米,在Rt△BDF中,BD===200(米),在Rt△ADE中,AD===100(米),∴AD+BD=(100+200)米,∴电线AD+BD的长度为(100+200)米.21.学校玩转数学小组利用无人机测量大树BC的高.当无人机在A处时,恰好测得大树顶端C的俯角为45°,大树底端B的俯角为60°,此时无人机距离地面的高度AD=30米,求大树BC的高.(结果保留小数点后一位.≈1.414,≈1.732)【分析】延长BC,交过点A的水平线于点E,根据题意可得BE⊥AE,AD=BE=30米,先在Rt△ABE中,利用锐角三角函数的定义求出AE的长,再在Rt△AEC中,利用锐角三角函数的定义求出EC的长,然后进行计算即可解答.【解答】解:如图:延长BC,交过点A的水平线于点E,则BE⊥AE,AD=BE=30米,在Rt△ABE中,∠EAB=60°,∴AE===10(米),在Rt△AEC中,∠EAC=45°,∴EC=AE•tan45°=10(米),∴BC=BE﹣EC=30﹣10≈12.7(米),∴大树BC的高约为12.7米.22.如图,广州塔与木棉树间的水平距离BD为600m,从塔尖A点测得树顶C点的俯角α为44°,测得树底D点俯角β为45°,则木棉树的高度CD是24米.(精确到个位,参考数据:sin44°≈0.69,cos44°≈0.72,tan44°≈0.96)【解答】解:如图:延长DC,交过点A的水平线于点E,则BD=AE=600米,在Rt△AED中,∠EAD=45°,∴DE=AE•tan45°=600×1=600(米),在Rt△AEC中,∠EAC=44°,∴EC=AE•tan44°≈600×0.96=576(米),∴CD=DE﹣CE=600﹣576=24(米),∴木棉树的高度CD是24米,23.“湾区之光”摩天轮位于深圳市华侨城欢乐港湾内,是深圳地标性建筑之一,摩天轮采用了世界首创的鱼鳍状异形大立架,有28个进口轿厢,每个轿厢可容纳25人.小亮在轿厢B处看摩天轮的圆心O处的仰角为30°,看地面A处的俯角为45°(如图所示,OA垂直于地面),若摩天轮的半径为54米,则此时小亮到地面的距离BC为27米.(结果保留根号)【分析】过点B作BD⊥OA,垂足为D,根据题意可得AD=BC,然后在Rt△DOB中,利用锐角三角函数的定义求出DO,DB的长,最后在Rt△ADB中,利用锐角三角函数的定义求出AD的长,从而求出BC的长,即可解答.【解答】解:过点B作BD⊥OA,垂足为D,则AD=BC,在Rt△ODB中,∠OBD=30°,OB=54米,∴OD=OB=27(米),DB=OD=27(米),在Rt△ADB中,∠ABD=45°,∴AD=DB•tan45°=27(米),∴AD=BC=27米,∴小亮到地面的距离BC为27米,24.如图,上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B处,从A,B两处分别测得小岛C在北偏东45°和北偏东15°.(1)求∠C的度数;(2)求B处船与小岛C的距离.(结果保留根号)【解答】解:(1)过点B作BE⊥AC与点E.由题意得,∠ABC=105°,∠CAB=45°,∴∠C=180°﹣105°﹣45°=30°;(2)由题意得,AB=40×=20(海里),在Rt△ABE中,BE=AB•sin45°=10(海里),在Rt△BCE中,∠CBE=60°,∴BC=2BE=20(海里),答:B处船与小岛C的距离为20海里.25.如图,一名患者体内某重要器官后面有一肿瘤在A处.在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤.已知射线从肿瘤右侧10cm的B处进入身体,且射线与皮肤所成的夹角为∠CBA=32.7°,则肿瘤在皮下的深度AC约为 6.4cm.[参考数据:sin32.7°≈0.54,cos32.7°≈0.84,tan32.7°≈0.64]【分析】在Rt△ABC中,利用锐角三角函数的定义,进行计算即可解答.【解答】解:在Rt△ABC中,∠CBA=32.7°,BC=10cm,∴AC=BC•tan32.7°≈10×0.64=6.4(cm),∴肿瘤在皮下的深度AC约为6.4cm,26.某仓储中心有一斜坡AB,其坡比i=1:2,顶部A处的高AC为4米,B、C在同一水平面上.则斜坡AB的水平宽度BC为8米.【分析】根据坡度定义直接解答即可.【解答】解:∵坡度为i=1:2,AC=4米,∴BC=4×2=8(米),27.(2022·深圳坪山区二模)如图是某地滑雪运动场大跳台简化成的示意图.其中AB段是助滑坡,倾斜角∠1=37°,BC段是水平起跳台,CD段是着陆坡,倾斜角∠2=30°,sin37°≈0.6,cos37°=0.8.若整个赛道长度(包括AB、BC、CD段)为270m,平台BC的长度是60m,整个赛道的垂直落差AN是114m.则AB段的长度大约是()A.80m B.85m C.90m D.95m【解答】解:过点C作CH⊥DN于H,设AB=xm,则CD=270﹣60﹣x=(210﹣x)m,在Rt△CDH中,∠2=30°,则CH=CD=(210﹣x)m,在Rt△ABM中,sin∠1=,则AM=AB•sin∠1≈0.6xm,由题意得:(210﹣x)+0.6x=114,解得:x=90,即AB=90m,28.如图为某学校门口“测温箱”截面示意图,当身高1.7米的小聪在地面M处时开始显示额头温度,此时在额头B处测得A的仰角为45°,当他在地面N处时,此时在额头C处测得A的仰角为58°,如果测温箱顶部A处距地面的高度AD为3.3米,求B、C两点的距离.(结果保留一位小数,sin58°≈0.8,cos58°≈0.5,tan58°≈1.6)【解答】解:如图,延长BC交AD于点E,∵BM=CN=1.7米,且BM⊥DM,CN⊥DM,∴BM∥CN,∴四边形BCNM是平行四边形,∵∠CNM=∠BMN=90°,∴平行四边形BCNM是矩形,同理,四边形CEDN是矩形,∴ED=CN=1.7米,∴AE=AD﹣ED=3.3﹣1.7=1.6(米),在Rt△AEC中,∠AEC=90°,∠ACE=58°,∵,∴CE=≈=1(米),在Rt△AEB中,∠AEB=90°,∠ABE=45°,∵=1,∴BE=AE=1.6(米),∴BC=BE﹣CE≈1.6﹣1=0.6(米),答:B、C两点的距离约为0.6米.29.如图,小明利用一个锐角是30°的三角板测操场旗杆的高度,已知他与旗杆之间的水平距离BC为15m,AB为1.5m(即小明的眼睛与地面的距离),那么旗杆的高度是()A.(15+)m B.5m C.15m D.(5+)m【解答】解:由题意可得,四边形ABCD是矩形,BC=15m,AB=1.5m,∴BC=AD=15m,AB=CD=1.5m,在Rt△ADE中,∠EAD=30°,AD=15m,∴DE=AD•tan∠EAD=15×=5(m),∴CE=CD+DE=(5+1.5)(m).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题八 解直角三角形的应用仰角、俯角问题【例1】 (2016·河南)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)分析:分别求出BD ,CD 及AD ,则可求出AB ,即得旗子上升高度,从而求出速度. 解:在Rt △BCD 中,BD =9米,∠BCD =45°,则BD =CD =9米.在Rt △ACD 中,CD =9米,∠ACD =37°,则AD =CD·tan 37°≈9×0.75=6.75(米),∴AB =AD +BD =15.75米.整个过程中旗子上升高度是15.75-2.25=13.5(米),上升速度v =13.545=0.3(米/秒),则国旗应以0.3米/秒的速度匀速上升方向角问题【例2】 (2016·内江)禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度.(结果保留根号).分析:过点C 作CD⊥AB 于点D ,设BD =x 海里,在Rt △BCD 中求出CD ,则可求出BD ,在Rt △BCD 中求出BC ,从而求出速度.解:过点C 作CD⊥AB 于点D ,设BD =x 海里,则AD =(200-x)海里,在Rt △BCD 中,∠ABC =45°,∴BD =CD =x ,在Rt △ACD 中,∠BAC =30°,∴CD =AD·tan 30°=33(200-x),则x =33(200-x),解得x =1003-100,即BD =1003-100,在Rt △BCD 中,BC =BD cos 45°=1006-1002,(1006-1002)÷4=25(6-2)(海里/时),则该可疑船只的航行速度为25(6-2)海里/时坡度、坡角问题【例3】 (2016·黄石)如图,为测量一座山峰CF 的高度,将此山的某侧山坡划分为AB 和BC 两段,每一段山坡近似是“直”的,测得坡长AB =800米,BC =200米,坡角∠BAF =30°,∠CBE =45°.(1)求AB 段山坡的高度EF ;(2)求山峰的高度CF.(2≈1.414,结果精确到米)分析:(1)作BH⊥AF 于H ,在Rt △ABH 中求出BH ,从而求出EF ;(2)在Rt △CBE 中求出CE ,再计算CE 和EF 的和即可.解:(1)作BH⊥AF 于点H ,在Rt △ABH 中,BH =AB ·sin ∠BAH =800·sin 30°=400,∴EF =BH =400 米(2)在Rt △CBE 中,CE =BE·sin ∠CBE =200·sin 45°=1002≈141.4,∴CF =CE +EF =141.4+400≈541(米)1.(2016·泰州)如图,地面上两个村庄C ,D 处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN 方向水平飞行,航线MN 与C ,D 在同一铅直平面内.当该飞行器飞行至村庄C 的正上方A 处时,测得∠NAD=60°;该飞行器从A 处飞行40分钟至B 处时,测得∠ABD=75°.求村庄C ,D 间的距离.(3取1.73,结果精确到0.1千米)解:过B 作BE⊥AD 于点E ,∵∠NAD =60°,∠ABD =75°,∴∠ADB =45°,∵AB =6×4060=4,∴AE =2,BE =23,∴DE =BE =23,∴AD =2+23,∵∠C =90°,∠CAD =30°,∴CD =12AD =1+3(千米),即村庄C ,D 间的距离为(1+3)千米2.(2016·荆门)如图,天星山山脚下西端A 处与东端B 处相距800(1+3)米,小军和小明分别从A 处和B 处同时向山顶C 匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为22米/秒.若小明与小军同时到达山顶C 处,则小明的行走速度是多少?解:过点C 作CD⊥AB 于点D ,设AD =x 米,小明的行走速度是a 米/秒,∵∠A =45°,CD ⊥AB ,∴AD =CD =x 米,∴AC =2x.在Rt △BCD 中,∵∠B =30°,∴BC =2CD =2x ,∵小军的行走速度为22米/秒,若小明与小军同时到达山顶C 处,则2x 22=2x a,解得a =1,则小明的行走速度是1米/秒3.(2016·乐山)如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A 处接到指挥部通知,在他们东北方向距离12海里的B 处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C 处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.解:设巡逻船从出发到成功拦截所用时间为x 小时,由题意得∠ABC =45°+75°=120°,AB =12,BC =10x ,AC =14x ,过点A 作AD⊥CB 的延长线于点D ,在Rt △ABD 中,AB=12,∠ABD =60°,∴BD =AB·cos 60°=12AB =6,AD =AB·sin 60°=63,∴CD =10x +6.在Rt △ACD 中,由勾股定理得(14x)2=(10x +6)2+(63)2,解得x 1=2,x 2=-34(不合题意,舍去),则巡逻船从出发到成功拦截所用时间为2小时1.在一次海上拯救行动中,一艘潜艇在海面下500米的A 点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2 000米后到达B 点,在B 处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C 点距离海面的深度.(结果保留根号)解:过点C 作CD⊥AB 于点D ,交海面于点E ,设BD =x ,∵∠CBD =60°,∴CD =BD·tan ∠CBD =3x.∵AB=2 000,∴AD =x +2 000,∵∠CAD =45°,∴CD =AD ,∴3x =x +2000,解得x =1 0003+1000,∴CD =3000+10003,∴CE =CD +DE =3500+1000 3,则黑匣子C 点距离海面的深度为(3500+10003)米2.(2016·昆明)如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B ,C 两点间的距离.(结果精确到0.1 m ;参考数据:2≈1.414,3≈1.732)解:过点D 作DF⊥AB 于点F ,过点C 作CH⊥DF 于点H ,则DE =BF =CH =10 m ,在Rt △ADF 中,∵AF =80 -10=70 (m ),∠ADF =45°,∴DF =AF =70 m .在Rt △CDE 中,∵DE=10 m ,∠DCE =30°,∴CE =DE tan 30°=1033=103(m ),∴BC =BE -CE =70-10 3 ≈70-17.32≈52.7(m ),则障碍物B ,C 两点间的距离约为52.7 m3.(导学号 59042303)为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面AD 与通道BC 平行),通道水平宽度BC 为8米,∠BCD =135°,通道斜面CD 的长为6米,通道斜面AB 的坡度i =1∶ 2.(1)求通道斜面AB 的长;(2)为增加市民行走的舒适度,拟将设计图中的通道斜面CD 的坡度变缓,修改后的通道斜面DE 的坡角为30°,求此时BE 的长.(结果精确到0.1米,参考数据:2≈1.41,5≈2.24,6≈2.45)解:(1)过点A 作AN⊥CB 于点N ,过点D 作DM⊥BC 于点M ,∵∠BCD =135°,∴∠DCM=45°.在Rt △CMD 中,∠CMD =90°,CD =6,∴DM =CM =22CD =32,∴AN =DM =32,∵通道斜面AB 的坡度i =1∶2,∴tan ∠ABN =AN BN =12,∴BN =2AN =6,∴AB =AN 2+BN 2=36≈7.4,即通道斜面AB 的长约为7.4米(2)∵在Rt △MED 中,∠EMD =90°,∠DEM =30°,DM =32,∴EM =3DM =32,∴EC =EM -CM =36-32,∴BE =BC -EC =8-(36-32)≈4.9,即此时BE 的长约为4.9米4.(导学号 59042304)(2016·鄂州)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,有两艘海监船刚好在我某岛东西海岸线上的A ,B 两处巡逻,同时发现一艘不明国籍的船只停在C 处海域.如图,AB =60(6+2)海里,在B 处测得C 在北偏东45°的方向上,在A 处测得C 在北偏西30°的方向上,在海岸线AB 上有一灯塔D ,测得AD =120(6-2)海里.(1)分别求出A 与C 及B 与C 的距离AC ,BC ;(结果保留根号)(2)已知在灯塔D 周围100海里范围内有暗礁群,我在A 处的海监船沿AC 前往C 处盘查,途中有无触礁的危险?(参考数据:2≈1.41,3≈1.73,6≈2.45)解:(1)过点C 作CE⊥AB 于点E ,可得∠CBD=45°,∠CAD =60°,设CE =x ,在Rt △CBE 中,BE =CE =x ,在Rt △CAE 中,AE =33x ,∵AB =60(6+2),∴x +33x =60(6+2),解得x =606,则AC =233x =1202,BC =2x =1203,则A 与C 的距离为1202海里,B 与C 的距离为1203海里(2)过点D 作DF⊥AC 于点F ,在△ADF 中,∵AD =120(6-2),∠CAD =60°,∴DF =AD·sin 60°=1802-606≈106.8>100,故海监船沿AC 前往C 处盘查,途中无触礁的危险。