直流双闭环调速系统课程设计
双闭环直流调速系统设计
一、课程设计目的在《电机与拖动》、《电力电子技术》、《伺服系统》和《电力拖动自动控制系统》课程知识的基础上,完成课程的综合性设计。
通过课程设计环节的训练,包括设计方案的论证、参数计算、系统仿真和设计报告的撰写,掌握系统综合应用项目的设计流程和方法,加深对完整项目开发的的理解和掌握,培养应用系统的设计能力,初步积累双闭环直流调速系统的设计方法,以及分析问题和解决问题的能力,并进一步拓宽专业知识面,培养实践应用技能和创新意识。
电力系统综合课程课程设计是电气工程及其自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练,其主要目的是:1、理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。
2、对一种典型的双闭环调速自动控制系统进行综合性分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。
加强基本技能训练。
3、掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。
4、培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。
为下学期毕业设计作准备。
5、通过设计熟练地查阅有关资料和手册。
二、课程设计内容与要求1、本课程设计的对象直流伺服电机:学生自行查找电机型号直流测速机:学生根据设计任务选择2、本课程设计的内容要求设计一个直流双闭环调速系统。
其主要内容为:1、测定综合实验中所用控制对象的参数(在实验室完成)。
2、根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。
3、按设计结果组成系统,以满足给定指标。
4、研究参数变化对系统性能的影响。
5、在时间允许的情况下进行调试。
3、本课程设计的设计要求a.调速范围D=5~10,静差率S≤5%。
b.空载启动时电流超调σi≤5%,转速超调σn≤10%(在额定转速时)。
c.动态速降小于10%。
d.振荡次数小于2次。
双闭环直流调速系统课程设计
双闭环调速系统的工作原理及其调试一、双闭环调速系统的分析1.双闭环调速系统的原理图图2-1 转速、电流双闭环调速系统ST ——转速调节器 LT ——电流调节器 SF ——测速发电机LH ——电流互感器 gn U 、fn U ——转速给定和速度反馈电压2.双闭环调速系统的工作原理采用双闭环调速系统即可保证在起动过程中,起动电流不超过某一最大值,而使电机和可控硅元件不会被烧坏,又能保证稳态精度,这主要是依靠电流环和转速环的作用。
3.KZS-1型晶闸管直流调速实验装置其面板布置图如图2-2所示。
4.转速调节器STST 的作用是在起动过程中的大部分时间里,转速调节器ST 处于饱和限幅状态,转速环相当于开环,系统表现为恒值电流调节的单环系统,只有转速超调后,ST 退出饱和后,才真正发挥线性调节作用,使转速不受负载变化的影响。
ST 能将输入的给定和反馈信号进行加法、减法、比例、积分微分等运算,使其输出量按某种规律变化,其原理电路如图2-8所示。
图2-2 面板布置图图2-3 转速调节器(ST )原理电路图ST 采用集成电路运算放大器组成,它具同相输入和反相输入两个输入端,其输出电压与两个输入端电压之差成正比。
2端为给定输入端,1端为反馈信号输入端。
搓在运算放大器输入端前面的阻抗为输入阻抗网络。
接在反相输入端和调节器输出端之间的网络为反馈阻抗网络。
改变输入与反馈阻抗网络参数,就能得到各种运算特性。
反向输入端与调节器输出端之间的场效应管起零速封锁作用。
零速时56端为零电平,场效应管导通,调节器输出锁零,56端为-15V 时,场效应管关断,调节器投入工作。
输出采用二极管箍位的外限幅电路。
电位器1RW 用以调节正向输出限幅值,电位器2RW 用以调节负向输出限幅值。
5.电流调节器LT电流调节器LT 的作用是保证在各种正常工作的条件下不发生过电流,在起、制动情况下维持电流恒定。
达到怛流起、制动,从而加快了起、制动过程。
在电网电压波动时,由于LT 反应快可以很快予以制止,减小了电网电压波动时对转速的影响,提高了抵抗电网电压波动能力。
双闭环直流调速系统课程设计_百度文库(精)
本科课程设计报告题目:三相全控桥晶闸管双闭不可逆环直流调速系统设计院 (系 :电气与信息工程学院班级:自动化 08 - 4 班姓名:周婷婷学号: 080502010419 指导教师:叶瑰昀教师职称:教授2011年 12月 8日摘要从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统是一个典型的系统.该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
给定信号为 0~10V 直流信号。
可对主电路输出电压进行平滑调节。
采用双 PI 调节器,可获得良好的动静态效果。
电流环校正成典型 I 型系统。
为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型Ⅱ型系统。
转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。
根据晶闸管的特性, 通过调节控制角大小来调节电压。
基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。
在设计中调速系统的主电路采用了三相全控桥整流电路来供电。
本文首先确定整个设计的方案和框图。
然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。
最后,即本文的重点设计直流电动机调速控制器电路, 本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。
为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。
从闭环结构上看,电流环在里面,称作内环;转速环在外边, 称做外环。
这就形成了转速、电流双闭环调速系统。
先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、然后最后稳压电路的参数的计算。
关键词 :双闭环; 转速调节器;电流调节器;稳态;动态目录第 1章系统主电路的结构形式及参数计算 ................................................................................................... 1 1. 1 主电路的结构选择与确定 ....................................................................................................................... 1 1.2 主电路各器件的选择和计算 ................................................................................................................... 2 1.2.1 整流变压器参数的计算和选择 (2)1.2.2 整流元件晶闸管的选型 ........................................................................................................... 4 1. 3 电抗器的设计 . ..........................................................................................................................................4 1. 4 主电路保护电路设计 ............................................................................................................................... 5 1.4.1过电压保护设计 ........................................................................................................................ 5 1.4.2过电流保护设计 ........................................................................................................................8 1. 5驱动电路的设计 (10)1.5.1 晶闸管触发电路设计 ...............................................................................................................10 1.5.2 脉冲变压器的设计 . (11)第 2章双闭环调速系统的组成及动静态结构框图 ..................................................................................... 12 2. 1双闭环直流调速系统的组成 .................................................................................................................. 12 2. 2 转速﹑电流双闭环直流调速系统的动静态结构框图 ......................................................................... 13 2.2.1双闭环直流调速系统的稳态结构框图和静特性 .................................................................. 13 2.2.2双闭环直流调速系统的动态结构框图 .................................................................................. 14 第 3章双闭环调速系统调节器的动态设计 ................................................................................................. 15 3. 1 电流调节器的设计 . ................................................................................................................................ 15 3.2 转速调节器的设计 . (16)结论 . ......................................................................................................................................... ......................... 20 收获和体会 ........................................................................................................................................... ..............21 参考文献 . ......................................................................................................................................... ................. 22 附表 . ......................................................................................................................................... .. (23)第 1章系统主电路的结构形式及参数计算1. 1 主电路的结构选择与确定直流调速系统常用的直流电源有三种①旋转变流机组; ②静止式可控整流器;③直流斩波器或脉宽调制变换器。
课程设计模板双闭环直流调速系统
直流双闭环调速系统设计1设计任务说明书某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为:直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量224.11094Nm GD =。
晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0=电流反馈系数⎪⎭⎫ ⎝⎛≈=N I V A V 5.11201.0β电压反馈系数⎪⎭⎫ ⎝⎛=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi ==V U U U cm im nm 12===**;调节器输入电阻Ω=K R O 40。
设计要求:稳态指标:无静差动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量0010≤n σ。
目录1设计任务与分析..................................................................................................................... 2调速系统总体设计................................................................................................................. 3直流双闭环调速系统电路设计.............................................................................................3.1晶闸管-电动机主电路的设计..........................................3.1.1主电路设计...................................................3.1.2主电路参数计算...............................................3.2转速、电流调节器的设计.............................................3.2.1电流调节器...................................................3.2.1.1电流调节器设计..........................................3.2.1.2电流调节器参数选择......................................3.2.2转速调节器...................................................3.2.2.1转速调节器设计..........................................3.2.2.2转速调节器参数选择...................................... 4计算机仿真.............................................................................................................................4.1空载起动...........................................................................................................................................4.2突加负载...........................................................................................................................................4.3突减负载5设计小结与体会.......................................................... 6参考文献.................................................................................................................................2调速系统总体设计为实现转速和电流两种负反馈分别作用,直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 即分别引入转速负反馈和电流负反馈。
双闭环直流调速系统的课程设计
双闭环直流调速系统的课程设计————————————————————————————————作者:————————————————————————————————日期:自动控制原理课程设计——双闭环直流调速系统课程设计班级电气自动化二班姓名程传伦学号110101225指导教师张琦2013年6月10日目录摘要第1章系统方案设计1.1 任务分析1。
2 方案比较论证1.3 系统方案确定第2章系统主电路设计及参数计算2。
1 主电路结构设计与确定2.2 主电路器件选择与计算2.2.1 整流变压器的参数计算和选择2.2.2 整流元件晶闸管的选型2.3 电抗器的设计2.4 主电路保护电路的设计2.4.1 过压保护设计2。
4.2 过流保护设计第3章双闭环调节系统调节器的设计3.1 电流调节器的设计3.2转速调节器的设计小结心得体会参考文献摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的.该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流.并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
第1章系统方案设计1。
1 任务分析本课题所涉及的调速方案本质上是改变电枢电压调速。
该调速方法可以实现大范围平滑调速,是目前直流调速系统采用的主要调速方案.但电机的开环运行性能远远不能满足要求.按反馈控制原理组成转速闭环系统是减小或消除静态转速降落的有效途径。
双闭环直流调速系统课程设计
目录目录 (1)第一章双闭环调速系统的组成 (2)第一节系统电路原理图 (2)第二节系统的稳态结构图 (3)第三节系统的动态结构图 (6)第二章双闭环系统调节器的设计 (9)第一节电流调节器的设计 (10)第二节转速调节器的设计 (14)第三节转速超调的抑制——转速微分负反馈 (18)第三章系统的仿真 (20)总结 (23)参考文献 (24)第一章 双闭环调速系统的组成第一节 系统电路原理图转速、电流双闭环调速系统的原理图如图1-1所示,图中两个调节器ASR 和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。
电流环在内,称之为内环;转速环在外,称之为外环。
为了获得良好的静、动态特性,双闭环调速系统的两个调节器都采用PI 调节器,其原理图如图所示。
在图中标出了两个调节器输入输出电压的实际极性,它们都是按照触发装置GT 的控制电压U ct 为正电压的情况标出的,并考虑到运算放大器的倒相作用。
两个调节器输出都带有限幅,ASR 的输出限幅什im U 决定了电流调节器ACR 的给定电压最大值im U ,对就电机的最大电流;电流调节器ACR 输出限幅电压cm U 限制了整流器输出最大电压值,限最小触发角α。
图1-1双闭环直流调速系统电路原理第二节系统的稳态结构图转速电流双闭环调速系统的稳态结构图如图1-2所示,PI调节器的稳态特性一般存在两种状况:饱和—输出达到限幅值,不饱和—输出未达到限幅值。
当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入与输出的联系,相当于使该调节器开环。
当调节器不饱和时,PI作用使输入偏差电压ΔU在稳定时总是零。
在实际运行时,电流调节器是不会达到饱和状态的,因此对于静特性来说,只有转速调节器饱和与不饱和两种状况。
双闭环直流调速系统设计
双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。
根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。
2.速度内环设计速度内环负责实现期望速度的跟踪控制。
常用的设计方法是采用比例-积分(PID)控制器。
PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。
PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。
3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。
一般采用PI调节器进行设计。
PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。
4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。
稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。
分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。
常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。
5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。
通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。
常用的鲁棒性设计方法包括H∞控制、μ合成控制等。
以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。
设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。
双闭环调速系统课程设计
双闭环调速系统课程设计一、课程目标知识目标:1. 学生能理解双闭环调速系统的基本原理和组成部分;2. 学生能掌握双闭环调速系统中速度环和电流环的工作原理及其相互关系;3. 学生能了解双闭环调速系统在工业生产中的应用。
技能目标:1. 学生能运用所学知识,分析并设计简单的双闭环调速系统;2. 学生能通过实际操作,完成双闭环调速系统的调试和优化;3. 学生能运用相关软件或工具,对双闭环调速系统进行仿真和分析。
情感态度价值观目标:1. 学生对双闭环调速系统产生兴趣,培养主动学习和探究的精神;2. 学生认识到双闭环调速系统在工程技术领域的重要性,增强对相关职业的认同感;3. 学生在团队协作中,培养沟通、合作和解决问题的能力。
课程性质:本课程为电气工程及其自动化专业核心课程,旨在使学生掌握双闭环调速系统的基本原理和设计方法。
学生特点:学生具备一定的电路基础和自动控制理论,具有较强的动手能力和探究精神。
教学要求:结合理论教学和实践操作,注重培养学生的实际应用能力和创新意识。
通过分解课程目标为具体学习成果,使学生在掌握知识的同时,提高技能和情感态度价值观。
后续教学设计和评估将以此为基础,确保课程目标的实现。
二、教学内容1. 双闭环调速系统基本原理- 介绍双闭环调速系统的定义、分类及其在工业生产中的应用;- 分析双闭环调速系统的结构及工作原理。
2. 速度环和电流环的工作原理- 详细讲解速度环和电流环的组成、功能及相互关系;- 分析速度环和电流环的参数整定方法及其对系统性能的影响。
3. 双闭环调速系统设计- 介绍双闭环调速系统的设计步骤和方法;- 结合实际案例,分析并设计双闭环调速系统。
4. 双闭环调速系统的调试与优化- 讲解双闭环调速系统调试的原理和方法;- 介绍优化双闭环调速系统性能的途径。
5. 双闭环调速系统的仿真与分析- 介绍常用仿真软件及其在双闭环调速系统中的应用;- 结合实际案例,进行双闭环调速系统的仿真分析。
双闭环直流可逆调速系统设计
双闭环直流可逆调速系统设计
一、实现双闭环直流可逆调速系统的基本原理
双闭环直流可逆调速系统是一种复杂的控制系统,通过控制电机转速
调整和调节,可以实现直流可逆调速系统的功能。
它的工作原理是:当电
机的转速发生变化时,运用程序控制器调整反馈信号。
在反馈信号中,检
测电机转速,并将其作为参考,经过放大器检测调节,将放大器调节的参
数输入给程序控制器,然后根据给定的转速和调节参数,程序控制器根据
相关的算法,调节步进电机的每一步的转速,实现当电机转速发生变化时,程序控制器控制电机转速。
二、双闭环直流可逆调速系统的组成
1.输入信号源:输入信号源主要有可逆调节信号和程序控制参数信号,两者同时作用,确定电机控制的转速范围和精度要求,从而保证可逆调速
系统的精度。
2.程序控制器:程序控制器是可逆调速系统的核心,它根据输入的控
制信号,控制反馈电路,实时获取电机的转速参数,根据算法,按照程序
控制的调节参数调节步进电机,实现调节目标速度。
双闭环直流调速系统(课程设计)
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
推荐-双闭环直流调速系统课程设计说明书 精品 精品
《交直流调速系统》课程设计说明书双闭环直流调速系统院、部:电气与信息工程学院学生姓名:学号:指导教师:专业:班级:完成时间:目录交直流调速系统课程设计指导书一、课程设计大纲适用专业:电气自动化、电气工程及其自动化总学时:2周1.课程设计的目的课程设计室本课程教学中极为重要的实践性教学环节,它不但起着提高本课程教学质量、水平和检验学生对课程内容掌握程度的作用,而且还将起到从理论过度到实践的桥梁作用。
因此,必须认真组织,周密布置,积极实施,以期达到下述教学目的:(1)通过课程设计,使学生进一步巩固、深化和扩充在交直流调速及相关课程设计方面的基本知识、基础理论和基本技能,达到培养学生独立思考、分析和解决实际问题的能力。
(2)通过课程设计,让学生独立完成一项直流或交流调速系统课题的基本设计工作,达到培养学生综合应用所学知识和实际查阅相关设计资料能力的目的。
(3)通过课程设计,使学生熟悉设计过程,了解设计步骤,掌握设计内容,达到培养学生工程绘图和编写设计说明书能力的目的,为学生今后从事相关方面的实际工作打下良好基础。
2.课程设计的要求(1)根据设计课题的技术指标和给定条件,在教师指导下,能够独立而正确地进行方案论证和设计计算,要求概念清楚、方案合理、方法正确、步骤完整。
(2)要求掌握交直流调速系统的设计内容、方法和步骤。
(3)要求会查阅有关参考资料和手册等。
(4)要求学会选择有关元件和参数。
(5)要求学会绘制有关电气系统图和编制元件明细表。
(6)要求学会编写设计说明书。
3.课程设计的程序和内容(1)学生分组、布置题目。
首先将学生按学习成绩、工作能力和平时表现分成若干小组,每小组按优、中、差合理搭配,然后下达课程设计任务书,原则上每小组一个题目。
(2)熟悉题目、收集资料。
设计开始,每个学生应按教师下达的具体题目,充分了解技术要求,明确设计任务,收集相关资料,包括参考书、手册和图表等,为设计工作做好准备。
(3)总体设计。
双闭环直流调速系统课程设计_电气专业
《电力拖动与运动控制系统》课程设计姓名:周俊峰班级: 20100433 学号: 2010043319 组别:六专业:电气工程及其自动化专题:91.94kW电力拖动自动控制系统设计指导教师:张敬南任务下达日期:2013年11月4日设计日期:2013年11月4日至2013年11月17日目录1. 设计要求 (3)1.1 设计内容和要求 (3)1.2 摘要 (4)2. 逻辑无环流双闭环转速控制系统的设计 (5)2.1 相关参数运算 (5)2.2 设计思路及调试结果 (5)2.2.1双闭环调速系统的设计 (5)2.2.2逻辑无环流系统的设计 (6)2.2.3综合逻辑无环流双闭环调速系统设计 (9)2.2.4Matlab仿真波形及结论 (9)2.3 相关元件选型及过电压过电流保护装置 (12)3. 基于51单片机的控制系统设计 (13)3.1 设计思路 (13)3.2 设计思路 (13)3.2.1数码管显示模块 (13)3.2.2A/D输入模块 (13)3.2.3D/A输出模块 (14)3.2.4键盘输入模块 (14)3.3 C51程序设计 (15)3.3.1程序流程 (15)3.3.2程序分析 (16)3.3.3Protues仿真及结果 (22)3.4 控制系统的PCB草图 (23)4. 个人总结 (24)5. 附录:参考文献 (25)设计专题题目:91.94kW电力拖动自动控制系统设计一、设计主要内容和要求:针对Matlab中提供的直流电机参数,进行直流电机调速系统的设计。
要求该直流调速系统调速范围宽、起制动性能好、可四象限运行,具体设计内容如下。
1. 基本要求(1)调速系统能进行平滑地速度调节,负载电机可逆运行,具有较宽的转速调节范围(D>=10),系统在工作范围内能稳定工作;(2)系统静特性良好,理论上实现无静差;(3)转速超调量小于5%,电流超调量小于5%,动态最大转速降小于10%;(4)系统在5%负载以上变化的运行范围内电流连续;(5)调速系统中设置有过电流、过电压保护,并且能够实现制动运行;(6)给定信号对应范围控制在正负5V;(7)要求实现电流和转速值的显示,转速值的给定设置(具有启动、停止、加速、减速、突加给±V);单定、正反转切换功能)电力拖动控制系统需要单片机控制系统提供转速给定模拟控制信号(5±V之间的转速和电流测量信号。
直流电动机双闭环调速系统课程设计
直流电动机双闭环调速系统课程设计一、引言直流电动机是一种常见的电动机,广泛应用于工业生产和日常生活中。
在实际应用中,为了满足不同的工作要求,需要对电动机进行调速。
传统的电动机调速方法是通过改变电源电压或者改变电动机的极数来实现,但这种方法存在调速范围小、调速精度低、调速响应慢等问题。
因此,现代工业中普遍采用电子调速技术,其中双闭环调速系统是一种常用的调速方案。
二、直流电动机双闭环调速系统的原理直流电动机双闭环调速系统由速度环和电流环组成。
速度环是通过测量电动机转速来控制电动机的转速,电流环是通过测量电动机电流来控制电动机的负载。
两个环路相互独立,但又相互联系,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
三、直流电动机双闭环调速系统的设计1.硬件设计硬件设计包括电源模块、电机驱动模块、信号采集模块和控制模块。
其中电源模块提供电源,电机驱动模块将电源转换为电机驱动信号,信号采集模块采集电机转速和电流信号,控制模块根据采集到的信号进行PID控制。
2.软件设计软件设计包括PID控制器设计和程序编写。
PID控制器是直流电动机双闭环调速系统的核心,其作用是根据采集到的信号计算出控制量,控制电机的转速和负载。
程序编写是将PID控制器的计算结果转换为电机驱动信号,实现电机的精确调速。
四、直流电动机双闭环调速系统的实现1.电路连接将电源模块、电机驱动模块、信号采集模块和控制模块按照设计要求连接起来。
2.参数设置根据电机的参数和工作要求,设置PID控制器的参数,包括比例系数、积分系数和微分系数等。
3.程序编写根据PID控制器的计算结果,编写程序将其转换为电机驱动信号,实现电机的精确调速。
五、直流电动机双闭环调速系统的应用直流电动机双闭环调速系统广泛应用于工业生产和日常生活中,如机床、风机、水泵、电梯等。
其优点是调速范围广、调速精度高、调速响应快、负载能力强等。
六、总结直流电动机双闭环调速系统是一种常用的电子调速方案,其原理是通过速度环和电流环相互独立但相互联系的方式,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
双闭环直流调速系统课程设计.
直流拖动控制系统课程设计报告题目:双闭环直流调速系统设计学院:沈阳工业大学工程学院专业:电气工程及其自动化班级:1101班姓名:孔令慧学号: 4指导教师:佟维妍起止日期:2014年6月16日~2014年6月22日目录设计概述 (2)第一章系统总体设计 (4)系统电路结构 (4)两个调节器的作用 (5)第二章整体电路分析 (7)电流环设计 (7)转速环设计 (7)典型I型系统介绍 (8)典型Ⅱ型系统介绍 (9)转速调节器的实现 (10)电流调节器的实现 (10)校核转速超调量 (10)第三章参数计算 (11)相关参数 (11)主要参数计算 (11)电流环参数计算 (11)转速环参数的计算 (13)MATLAB仿真 (16)课程设计体会 (20)设计概述双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点。
在理论和实践方面都是比较成熟的系统,在电力拖动领域中发挥着及其重要的作用。
由于直流电机双闭环调速是各种电机调速系统的基础,本人就直流电机调速进行了比较系统的研究,从直流电机的基本特性到单闭环调速系统,再进行双闭环直流电机设计方案的研究,用实际系统进行工程设计,并用所学的MATLAB进行仿真,分析了双闭环调速系统的工程设计方法中由于忽略和简化造成的误差。
在双闭环直流调速系统中,转速和电流调节器的结构选择与参数设计需从动态校正的需要来解决,设计每个调节器是,都必须先求该闭环的原始系统开环对数频率特性,再根据性能指标确定校正后系统的预期特性,对于经常正反转运动的系统,尽量缩短启、制动过程的时间是提高生产率的重要因素。
为此,在电机最大允许电流和转矩受到限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流为允许的最大值,是电力拖动系统以最大的加速度启动,到达稳定转速时,立即让电流降下来,使转矩马上与负载相平衡,从而装入稳态运行。
在设计过程中,为了实现转速和电流两种负反馈分别起作用,需要设置两个调节器,分别调节转速和电流,二者之间实行串级连接,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置从闭环结构上看,电流调节环在里面,叫内环;转速环在外面,叫外环。
(完整版)双闭环直流调速系统
第一章 调速系统的方案选择直流电动机具有良好的起动、制动性能,宜于在宽范围内平滑调速,在许多调速和快速正反向的电力拖动领域中得到了广泛的的应用。
近年来,虽然高性能的交流调速技术发展很快,交流调速系统已逐步取代直流调速系统。
然而直流拖动控制系统不仅在理论上和实践上都比较成熟,目前还在应用;而且从控制规律的角度来看,直流拖动控制系统又是交流拖动控制系统的基础。
直流电动机的稳态转速可以表示为n =U−IRK e ∅ (1-1)式中:n ——转速(r/min );U ——电枢电压(V );I ——电枢电流(A );R ——电枢回路总电阻(Ω);∅——励磁磁通(Wb ); K e ——由电机结构决定的电动势常数。
由上式可以看出,有三种调速电动机的方法:1. 调节电枢供电电压U ;2. 减弱励磁磁通∅;3. 改变电枢回路电阻R 。
对于要求在一定范围内无级平滑调速系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够调速,但调速范围不大,往往只是配合调压方案,在额定转速以上作小范围的弱磁升速。
因此,采用变压调速来控制直流电动机。
1.1 直流电动机的选择直流电动机的额定参数为:额定功率KW P N 67=,额定电压V U N 230=,额定电流A I N 291=,额定转速min 1450r n N =,电动机的过载系数2=λ,电枢电阻Ω=2.0a R 1.2 电动机供电方案的选择电动机采用三相桥式全控整流电路供电,三相桥式全控整流电路输出的电压脉动较小,带负载容量较大,其原理图如图1所示。
三相桥式全控整流电路的特点:一般变压器一次侧接成三角形,二次侧接成星型,晶闸管分为共阴极和共阳极。
1)有两个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各有一个晶闸管,且不能为同一相的晶闸管。
2)对触发脉冲的要求:按VT1—VT2—VT3—VT4—VT5—VT6的顺序,相位依次差60。
;共阴极组VT1、VT3、VT5的脉冲依次差120。
双闭环直流调速系统课程设计
电力拖动自动控制系统课程设计报告题目:晶闸管双闭环直流调速系统摘要双闭环直流调速系统即速度和电流双闭环直流调速系统,是由单闭环直流调速系统发展起来的,调速系统使用比例积分调节器,可以实现转速的无静差调速。
又采用电流截止负反馈环节,限制了起(制)动时的最大电流。
这对一般的要求不太高的调速系统,基本上已经能满足要求。
但是由于电流截止负反馈限制了最大电流,加上电动机反电势随着转速的上升而增加,使电流到达最大值后迅速降下来,这样,电动机的转矩也减小了,使起动加速过程变慢,起动的时间比较长。
在这些系统中为了尽快缩短过渡时间,所以就希望能够充分利用晶闸管元件和电动机所允许的过载能力,使起动的电流保护在最大允许值上,电动机输出最大转矩,从而转速可直线迅速上升,使过渡过程的时间大大的缩短。
另一方面,在一个调节器的输出端有综合几个信号,各个参数互相调节比较困难。
为了克服这一缺点就应用转速,电流双闭环直流调速系统。
关键词:双闭环直流调速系统 ASR ACR1.设计要求直流电动机设计双闭环直流晶闸管调速系统,技术要求如下:1.1直流电动机的额定参数P N=1.1KW、U N=110V、I N=1.2A、n N=1500r/min,电枢电阻R=1a Ω,电枢绕组电感L a=28mH,系统飞轮矩GD2=0.1375Kg·m2,电流过载倍数λ=1.5。
1.2电压参数电网电压:线电压U=380V采用三相晶闸管桥式整流电路供电1.3设计要求稳态无静差,电流超调量σi≤5%;转速超调量σn≤10%。
2.双闭环直流调速系统系统总设计为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级连接,如下图所示,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。
该双闭环调速系统的两个调节器ASR和ACR一般都采用PI调节器。
因为PI调节器作为校正装置既可以保证系统的稳态精度,使系统在稳态运行时得到无静差调速,又能提高系统的稳定性;作为控制器时又能兼顾快速响应和消除静差两方面的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动控制课程设计转速电流双闭环直流调速系统学院:电气工程学院班级:09年级自动化2班姓名:王伟指导老师:吴韬2012年12月25日目录摘要 (2)关键词 (2)设计要求 (2)1引言 (2)2双闭环调速系统的原理 (2)3双闭环调速系统的优点... (3)4转速、电流双闭环控制系统. (4)5电流环与转速环的设计.......... (10)6双闭环调速系统在Simulink环境下的仿真 (13)7小结....................................................13 致谢.........................................................14参考文献 (14)基于MATLAB的双闭环直流调速系统设计摘要:本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理,设计了基于PID控制的转速控制环和电流控制环。
详细分析了系统的起动过程及参数设计,运用Simulink对直流电动机双闭环调速系统进行数学建模和系统仿真。
根据仿真结果分析该调速系统满足我们的设计要求。
关键词:双闭环控制系统;Simulink;电流控制环;转速控制环;设计要求:1.利用所学知识设计转速电流双闭环直流调速系统;2.设计过程中详细说明系统组成,详细说明电流环和转速环调节器的设计过程;3.使用MATLAB软件编写调试程序,分析内环电流和电机转速的输出特性;4.要有详细原理说明和设计过程,方案以WORD文档的形式给出;5.课程总结,总结该课程的主要内容与相关实际应用。
1.引言调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。
目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。
早在20世纪40年代采用的是发电机-电动机系统,又称放大机控制的发电机-电动机组系统。
这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。
为了克服这些缺点,50年代开始使用水银整流器作为可控变流装置。
这种系统缺点也很明显,主要是污染环境,危害人体健康。
50年代末晶闸管出现,晶闸管变流技术日益成熟,使直流调速系统更加完善。
晶闸管-电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。
近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。
直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。
不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。
同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。
单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。
而基于电流和转速的双闭环直流调速系统静动态特性都很理想。
2.直流双闭环系统的原理ASR (速度调节器)根据速度指令Un *和速度反馈Un 的偏差进行调节,其输出是电流指令的给定信号U i *(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。
ACR(电流调节器)根据U i *和电流反馈U i 的偏差进行调节,其输出是U PE (功率变换器件的)的控制信号Uc 。
进而调节U PE 的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由Te-TL=Jdn/dt ,只要Te 与TL 不相等转速会相应的变化。
整个过程到电枢电流产生的转矩与负载转矩达到平衡,转速不变后,达到稳定。
3双闭环调速系统优点一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,只要引入这个量的负反馈。
因此采用电流负反馈控制过程,起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
采用转速、电流双闭环控制系统。
如图2所示。
图1理想启动过程t图2 双闭环直流调速控制系统原理图图3 双闭环直流调速系统动态结构图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图如图3所示。
4转速、电流双闭环控制系统I t I OtI d Oa 带电流截止负反馈的单闭环调速系统b 理想的快速起动过程图4 直流调速系统的电流、转速启动特性曲线双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统在突加给定电压*n U 由静止状态起动时,转速和电流的过渡过程如图5所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
第Ⅰ阶段:0~t 1是电流上升阶段。
突加给定电压*n U 后,通过两个调节器的控制作用,使U ct 、U do 、I d 都上升,当I d ≥I dl 后,电动机开始转动。
由于电机惯性的作用,转速的增长不会太快,因而ASR 的输入偏差电压∆U n =*n U -U n 数值较大并使其输出达到饱和值*im U ,强迫电流I d 迅速上升。
当m d I I d =时,*≈im i U U ,电流调节器ACR 的作用使I d 不再迅速增加,标志着这一阶段的结束。
在这一阶段中,ASR 由不饱和很快达到饱和,而ACR 一般应该不饱和,以保证电流环的调节作用。
第Ⅱ阶段:t 1~t 2是恒流加速阶段。
这一阶段是起动过程的主要阶段。
在这个阶段中,ASR 一直是饱和的,转速环相当于开环状态,系统表现为在恒流给定*im U 作用下的电流调节系统,基本上保持电流d I 恒定(电流可能超调,也可能不超调,取决于ACR 的参数),因而拖动系统的加速度恒定,转速呈线性增加。
又n C I R U e d d d φ+=0,n ↑→0d U ↑→ct U ↑,这样才能保持d I =cont 。
由于ACR 是PI 调节器,要使它的输出量按线性增长,其输入偏差电压i i i U U U -=∆*必须维持一定的恒值,也就是说,d I 应略低于dm I 。
此外还应指出,为了保证电流环的这种调节作用,在起动过程中电流调节器是不能饱和的,同时整流装置的最大电流m d U 0也须留有余地,即晶闸管装置也不应饱和,这都是设计中必须注意的。
第Ⅲ阶段:t 2以后是转速调节阶段。
此时*n n =,*n n U U =,0=∆n U ,但由于积分作用,**im i U U =,所以电动机仍在最大电流下加速,必然使转速必超调。
当*n n >时,0<∆n U ,使ASR 退出饱和状态,其输出电压即ACR 的给定电压*i U 迅速下降,d I 也迅速下降。
但由于dL d I I >,在一段时间内,转速仍继续增加。
当dL d I I =时,L e T T =,0=dtdn,n 达到最大值(t 3时刻)。
此后,电动机在负载的阻力下减速,与此相应,电流d I 也出现一段小与dL I 的过程,直到稳定。
在这最后的转速调节阶段内,ASR 与ACR都不饱和,同时起调节作用。
由于转速调节在外环,ASR 处于主导地位,而ACR 的作用则是力图使d I 尽快地跟随ASR 的输出量*i U ,或者说,电流内环是一个电流随动子系统。
图5转速和电流的过渡过程综上所述,双闭环调速系统的起动过程有三个特点: 1饱和非线性。
在不同情况下表现为不同结构的线性系统。
2准时间最优控制。
Ⅱ阶段属于电流受限制条件下的最短时间控制。
采用饱和非线性控制方法实现准时间最优控制是一种很有使用价值的控制策略,在各种多环系统中普遍地得到应用。
3转速必超调。
按照PI 调节器的特性,只有转速超调,ASR 的输入偏差电压n U ∆为负值,才能使ASR 退饱和。
这就是说,采用PI 调节器的双闭环调速系统的转速必超调。
I d *n dLI *n n tt5电流环与转速环的设计在设计双闭环调速系统时,一般是先内环后外环,调节器的结构和参数取决于稳态精度和动态校正的要求,双闭环调速系统动态校正的设计与调试都是按先内环后外环的顺序进行,在动态过程中可以认为外环对内环几乎无影响,而内环则是外环的一个组成环节[3]。
由于典型Ⅰ型系统的跟随性能由于典型Ⅱ型系统,而典型Ⅱ型系统的抗扰性能优于典型Ⅰ型系统,因此一般来说,从快速启动系统的要求出发,可按典型Ⅰ型系统设计电流环;由于要求转速无静差,转速环应按典型Ⅱ型系统设计。
工程设计法是建立在频率特性理论基础上的,只需将典型Ⅰ系统和典型Ⅱ系统的开环频率特性作为调速系统仅有的两种预期特性。
工程设计的步骤如下:1对已知系统的固有特性做恰当的变换和近似处理,以简化调节器结构。
2根据具体情况选定预期特性,即典型Ⅰ系统或典型Ⅱ系统,并按照零极点相消的原则,确定串联调节器的类型。
3根据要求的性能指标,确定调节器的有关P、I、D参数。
4校正5.1电流环的设计设计分为以下几个步骤:一、电流环的简化:图6简化后电流环按典型I型系统设计,ACR选PI调节器。
τi=T l,K i=(K i K sβ)÷(τi R)动态结构图图7动态结构图图8开环对数幅频特性二、确定时间常数(1)整流装置滞后时间常数s T 。
三相桥式电路的平均失控时间s T s 017.0=; (2)电流滤波时间常数oi T 。
三相桥式电路每个波头的时间是3.33ms ,为了基本滤平波头,应有()ms T oi 33.32~1=,因此取s ms T oi 002.02==;(3)电流环小时间常数i T ∑。
按小时间常数近似处理,取s T T T oi s i 0037.0=+=∑。
三、确定将电流环设计成何种典型系统根据设计要求%5≤i σ,而且1011.80037.003.0<==∑i l T T ,因此,电流环可按典型Ⅰ型系统设计。
四、电流调节器的结构选择电流调节器选用PI 型,其传递函数为:()ss K s W i i iACR ττ1+= 五、选择电流调节器参数ACR 超前时间常数:s T l i 03.0==τ;I d(s )1-电流环开环增益:因为要求%5≤i σ,故应取5.0=∑i I T K ,因此11.1350037.05.05.0-∑===s T K i I 于是,ACR 的比例系数为013.14005.05.003.01.135=⨯⨯⨯==s i Ii K R K K βτ。