27.2.1三角形相似判定(四)
27.2.1相似三角形的判定(SSS和SAS)
网格中的相似 如何判断网格中的三角形是? 三角形相似的两个判定: 三边成比例的两个三角形相似 两边成比例且夹角相等的两个三角形相似
网格中的相似
如图,在正方形网格上有6个斜三角形:①△ABC, ②△BCD,③△BDE,④△BFG,⑤△FGH,⑥△EFK, 在②~⑥中,与三角形①相似的是(B )
A.②③④ B.③④⑤ C.④⑤⑥ D.②③⑥
网格中的相似
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格 点上. (1)判断△ABC和△DEF是否相似,并说明理由; (2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个 点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三 角形,并在图中连结相应线段,不必说明理由).
∴△ABC~△A'B'C'.
判定的应用
∴ΔABC∽ΔADE ∴∠BAC=∠DAE ∴∠BAC-∠DAC=∠DAE-∠DAC 即∠BAD=∠CAE.
判定的应用 提示:先把线段乘积转化为比例
判定的应用
如图,在三角形纸片ABC中,AB=6,BC=8,AC=4. 沿虚线剪下的涂色部分的三角形与△ABC相似的是(C )
相似三角形的判定(SSS和SAS)
教学目标 理解三边成比例的两个三角形相似. 理解两边成比例且夹角相等的两个三角形相似.
教学重点 运用三角形相似的判定证明三角形相似.
教学难点 运用三角形相似的判定证明三角形相似.
知识回顾
1.对应角_相___等___,对应边成___比__例__的两个三角形, 叫做相似三角形. 2.相似三角形性质:对应角相等,对应边成比例.
27.2.1相似三角形的判定4
自学互学展示课
课前探究:
巩固练习: (比一比,看谁做得好又快) 1 、填一填 ★(1)如图3,点D在AB上,当∠ =∠ 时, △ACD∽△ABC。 ★ ( 2 ) 如 图 4 , 已 知 点 E 在 AC 上 , 若 点 D 在 AB 上 , 则 满 足 条件,就可以使△ADE与原△ABC相似。
A D E
●
AB 图 3CFra bibliotekB 图 4
C
★★2.已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.
★★3.在△ABC和△A′B′C′中, 如果∠A=80°, ∠C=60°, ∠A′ =80°,∠B′=40°,那么这两个三角形是否相似?为什么?
4
AF EF ★★、 已知: 如图,△ABC 的高AD、BE交于点F.求证: BF FD .
总结反思
承德三中九年级数学学科导学案
主备人 王秀萍 梁大伟 审核人 刘玉鹏 课题 相似三角形的判定(两角和 HL) (1) 初步掌握以及“两组对应角相等的两个三角形相似”的判定方法. 学习目标 学习环节 课堂设计 学法建议 学 习 过 程 (2) 能够运用三角形相似的条件解决简单的问题. 审批领导 课型 授课时间 编号 2706
27.2.1相似三角形的判定
∵AB=2,BC=2 2,AC=2 5,FE=2,DE= 2,
DF= 10,
∴
DABE=
2= 2
2,BECF=2 2 2=
2,DACF=2
5= 10
2.
∴ DABE=BECF=DACF,∴△ABC∽△DEF.
感悟新知
知识点 5 边角关系判定三角形相似定理
知5-讲
1. 相似三角形的判定定理:两边成比例且夹角相等的两个
感悟新知
知识点 1 相似三角形
知1-讲
1. 定义:如果在两个三角形中,三个角分别相等,三条边 成比例,那么这两个三角形相似.
感悟新知
如图27.2-1,在△ ABC 和△ A′B′C′中,
知1-讲
∠ A= ∠ A′,∠ B= ∠ B′,∠ C= ∠ C′, △ABC
AB BC AC k,
↔ ∽△A′B′C′.
感悟新知
知2-练
3-1. 如图,l1 ∥ l2 ∥ l3,AB=3,AD=2,DE=4,EF=9, 求BC,BF 的长.
感悟新知
解:∵ l1∥l2∥l3, ∴ ABBC=ADDE.
∵
AB=3,AD=2,DE=4,
∴
3 BC
=24,
解得 BC=6.
知2-练
∵ l1∥l2∥l3,
∴
BF EF
=
AB AC
第27章 相似
27.2 相似三角形
27.2.1 相似三角形的判定
学习目标
1 课时讲解
2 课时流程
逐点 导讲练
相似三角形 平行线分线段成比例 平行线截三角形相似的定理 三边关系判定三角形相似定理 边角关系判定三角形相似定理 角的关系判定三角形相似定理 直角三角形相似的判定
27.2.1相似三角形判定(20141219 SSS、SAS)
A’B’=12cm,B’C’=18cm,A’C’=21cm.
AB BC AC = = , 例2.如图已知, AD DE AE
试说明∠BAD=∠CAE. A D B E C
1.图中的两个三角形是否相似?
2如图在正方形网格上有 、如图在正方形网格上有△A C A1 B1C1和A C 1B 1和 2 B21 2, △A 它们相似吗?如果相似 ,求出相似比;如果 2B2C2,它们相似吗?如果相似,求 出相似比;如果不相似,请说明理由。 不相似,请说明理由。
探究3
边S 角A 边S
A
AB AC 已知: A B AC k ,
∠A =∠A′ . 求证:△ABC∽△A′B′ C′. A′
B
C
你能证明吗? C′
B′
AB AC , A A '. 已知:在ABC和A' B' C '中, A' B ' A'C ' 求证: △ ABC ∽△ A ' B ' C '.
1.定义判定法 2.平行判定法 比较复杂,烦琐 只能在特定的图形里面使用
3.边边边判定法(SSS) 4.边角边判定法(SAS)
不经历风雨,怎么见彩虹 没有人能随随便便成功!
证明:在线段A ' B(或它的延长线 ' 上)截取A ' D AB,过点D再作 DE ∥ B' C ' 交A' C ' 交于点E,可得 B A' DE ∽A ' B ' C '.
C D E A
A'
AB AC , A ' D AB. 又 A ' B ' A 'C '
人教版相似三角形的判定
∠B=∠B',求证: △ABC∽△A'B'C'
A'
几何语言:
∵ ∠A=∠A', ∠B=∠B'
∴ △ABC∽△A'B'C'
B'
C'
A
D
E
B
C
基础训练
1、下列图形中两个三角形是否相似?并说理由.
B
A
A
A’
C
B
C B’
C’ D
(1) 不相似
(2) 相似
E
2、判断题:
√ ⑴ 底角相等的两个等腰三角形相似. ( )ຫໍສະໝຸດ ADCE F
图1
(2)图2∵DE∥BC
∴△ADE∽△ABC
(3)图1∵
AB ACBC DE DF EF
∴△ABC∽△DEF
(4)图1∵ AB AC
DE DF
∠A=∠D
A
D
E
B 图2
C
∴△ABC∽△DEF
观察
猜想:两角分别相等的两个三角形相似.
探究
判猜定想定:理:两角分别相等的两个三角形相似.
如图,已知△ABC和△A'B'C'中,∠A=∠A',
AB AC BC
小结
本节课我收获了……
作业: 1.必做题 P42第2 题中(2) 2.选做题 P43第7题
给我最大的快乐,不是已有 知识,而是不断的学习,不是已 有的东西,而是不断的获取,不 是已达的高度,而是继续不断的 攀登。
——高斯
27.2.1 相似三角形的判定
知识回顾
判定三角形相似的方法
(1)图1∵∠A=∠D, ∠B= ∠E, ∠C= ∠F
27.2.1_相似三角形的判定AA(4)
此结论可以称为“母子相似定理”,今后可以直接使用.
A
D
B
18
4 √2 12√2
C
〈应用〉如图:在Rt △ ABC中, ∠ABC=900,BD⊥AC于D 若 AB=6 AD=2 则AC= BD= BC=
4.如图, ∠B=90°,AB=BE=EF=FC=1,求证: (1) ⊿AEF∽⊿ CEA. (2) ∠1+ ∠2= 45 °
∴△ABC∽△DEF
AB AC (4) ∵ DE DF
∠A=∠A ∴△ABC∽△DEF D E C
B
问题引入:
观察两副三角尺,其中同样角度(30°与60°,或45°与 45°)的两个三角尺大小可能不同,但它们看起来是相 似的。一般地,如果两个三角形有两组对应角相等,它 们一定相似吗?
已知:在△ABC 和△A´B´C´中, ∠A=∠A', ∠B'=∠B 求证: Δ A'B'C'∽Δ ABC
E A D A E B B C C
将△DAE绕A点旋转
D
如何证明∠DEA=∠
D
C B C
B
3.已知如图, ∠ABD=∠C AD=2 , AC=8, 求AB
解: ∵ ∠ A= ∠ A ∠ABD=∠C ∴ △ABD ∽ △ACB ∴ AB : AC=AD : AB ∴ AB2 = AD · AC ∵ AD=2 AC=8 ∴ AB =4
基础演练
A’
1、下列图形中两个三角形是否相似?
A
B
A
C
D A B
(1)
C B’ A’
C’
(2)
D
A
E
E C
B
(3)
C
初中数学 27.2.1 相似三角形的判定同步练习
ABDCHG EFADEEABDC27.2.1 相似三角形的判定(一)A组1.如图27-2-1,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A.1对B.2对C.3对D.4对图27-2-1 图27-2-22.如图27-2-2,在△ABC中,DE//BC,且AD:DB=2:1,那么DE:BC等于()A.2:1B.1:2C.2:3D.3:23.如图27-2-3,在□ABCD中,F、H分别是BC、AD上任一点,EF平行AB,HG平行CD,则图中共有相似三角形的对数是()A.2B.3C.4D.5图27-2-3 图27-2-44.如图27-2-4,在△ABC中,DE//BC,AD:CD=1:3,BE=6cm,则AE= cm.5.如图,在□ABCD中,E、F分别是AB、BC的中点,连接AC、EF.求证:△BEF∽△ACD.6.已知:如图,试用两种不同的方法在△ABC内部作一个三角形,使其与△ABC相似,且相似比为14.7.如图,物AB与其所成像A’B’平行,孔心O到蜡烛头A的距离是36cm,到蜡烛头的像A’的距离是12cm,你知道像长是物长的几分之几吗?你是怎样知道的?8.如图,AD与BC交于点O,且AB ∥ CD。
①已知BO:OC=1:3,CD=6cm,求AB的长。
②已知BO:BC=1:3,CD=6cm,求AB的长。
③已知BO:OC=1:3,AD=8cm,求OA的长。
C DA BOOABB’A’PC AGFB 组1.如图27-2-5,已知DE ∥BC ,EF ∥AB ,则下列比例式,错误..的是 ( ) A.AD AE =ABACB.CE EA =CFFBC.DE AD =BC BD D.EF CF=AB CB图27-2-5 图27-2-62.如图27-2-6,在△ABC 中,DG ∥A C ,EF ∥BC ,则图中与△PDE 相似三角形的个数是( ) A.1B.2C.3D.43.如图,AB 是⊙O 的直径,C 、D 是圆上两点,且弧AC=弧BD ,射线AC 与射线BD 交于点E ,求证:△ECD∽△ABE.4.已知:如图,AB=AD ,AC=AE ,FG ∥DE.试说出与所有△ABC 相似的三角形,并说明理由.E OD C BADB CG FE5.如图,△ABC 中,AD ⊥BC ,D 是垂足,E 是BC 中点,FE ⊥BC 交AB 于F ,BD =6,DC =4,AB =8,求BF 长。
最新人教版九年级数学下册第二十七章27.2.1《相似三角形的判定》说课稿
《相似三角形的判定》说课稿各位评委老师:大家好!我今天说课的内容是《相似三角形的判定》,下面我将从说教材、说学生、说教学方法、说教学过程、板书设计五个大板块来给大家阐述我的教学思路和教学设计。
一、说教材首先进入我的第一个大板块“说教材”。
我把说教材这个板块分为三个小环节来进行,它们分别是教材分析、教学目标、教学重难点。
1、教材分析本节课《相似三角形的判定》是选自新人教版九年级下册第二十七章第二节第二课时的内容。
是在学习了第一节相似多边形的概念、第一课时平行线分线段成比例的定理及推论后,研究相似三角形的定义以及三角形一边的平行线的判定定理。
本节课是判定三角形相似的起始课,是本章的重点之一。
一方面,该定理是前面知识的延伸和全等三角形性质的拓展;另一方面,不仅可以直接用来证明有关三角形相似的问题,而且还是证明其他三种判定定理的主要根据,所以把它叫做相似三角形判定定理的“预备定理”。
因此,这节课在本章中有着举足轻重的地位。
2、教学目标根据教学大纲的要求和贯彻全面发展的教育方针,我制定了如下的教学目标:(1)知识与技能:理解相似三角形的定义,掌握相似三角形判定定理的“预备定理”。
(2)过程与方法:让学生经历观察---探索----猜想----验证----运用----巩固的过程,渗透类比的思想方法,培养学生探究新知识、提高分析问题和解决问题的能力。
(3)情感态度和价值观:通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,通过主动探究、合作交流,在学习活动中体验获得成功的喜悦。
3、教学重难点为了达到以上的教学目标,我制定了以下的教学重难点:教学重点:相似三角形的定义,判定两个三角形相似的预备定理。
教学难点:探究两个三角形相似的预备定理的过程。
二、说学生说完了教材,我想跟大家分析一下我所授课的学生所具有的特点,也就是学情分析。
老师们,我们都知道九年级的学生接受能力相比七八年级强,想得到老师的鼓励。
相似三角形的判定方法
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
27.2.1_相似三角形的判定(4)
●
(或者∠ C=∠ ADE)
A
E
C
A
D
B C
3.已知如图, ∠ABD=∠C AD=2 AC=8,求AB 解: ∵ ∠ A= ∠ A ∠ABD=∠C ∴ △ABD ∽ △ACB ∴ AB : AC=AD : AB ∴ AB2 = AD · AC ∵ AD=2 AC=8 ∴ AB =4
A C
B′ C′
如果人体高度 AC = 1.7 米,人影长 BC = 2.2 米,而 B′C′ = 176 米,你能求出金字塔的高度并说明其中的道理吗?
可证△ABC∽△A’B’C’ AC BC 即 A'C' B'C' 所以A’ C’=1.7x176÷2.2=136m
例4.已知D、E分别是△ABC的边AB,AC上的点,
若∠A=35°, ∠C=85°,∠AED=60 °则AD· AB=
AE· AC
A D E B C
3.找出图中所有的相似三角形
C
A
D
B
△ACD ∽ △ CBD∽ △ ABC
你能写出对应边的比例式吗?
填一填
(1)如图3,点D在AB上,当∠ACD =∠ B 时, △ACD∽△ABC。 (或者∠ ACB=∠ ADB) (2)如图4,已知点E在AC上,若点D在AB上,则满足 条件 DE//BC ,就可以使△ADE与原△ABC相似。 (或者∠ B=∠ ADE)
5、如图:在Rt △ ABC中, ∠ABC=90 , BD⊥AC于D
0
问:若E是BC中点,ED的延 长线交BA的延长线于F, 求证:AB : AC=DF : BF
A
F
D
B
27.2.1相似三角形的判定课件
D
E
C
变式2:如图,若点D是AB边 上的任意一点, 过点D作 DE∥BC,量一量,检验△ADE 与△ABC是否相似。
D B
A
E
∵ DE∥BC ∴△ADE∽△ABC
C
变式3:若点D是BA延长线上的 一点,过点D作DE∥BC,与CA的 延长线交于点E,△ADE与 △ABC相似吗? E
∵ DE∥BC ∴△ADE ∽ △ABC
知识要点
三角形相似判定定理1 如果两个三角形的三组对应边的比 相等,那么这两个三角形相似。简称:
三边对应成比例,两三角形相似。
A
A1 即:
C
B
B1
C1
AB BC AC 如果 A B B C A C , 1 1 1 1 1 1 那么 △ABC∽△A1B1C1.
例1: 根据下列条件,判断 ABC和A' B' C ' 是
AB AC BC . DE DC CE
若△ABC∽ △DEC,
从上面的解答中,你获得了那些信息?
A
E
E
D A
D
B
C
B
C
平行于三角形一边的直线和其他两边(或两 边的延长线)相交,所构成的三角形与原三角形 相似.
相似三角形的预备定理:
平行于三角形一边的直线截其他两边所在的直 线,截得的三角形与原三角形相似。 DE//BC
BC EF , AC DF
l3 l4
B
ห้องสมุดไป่ตู้
AC DF , BC EF
C
F
l5
三条平行线截两条直线,所得的对 应线段的比相等.
A B C
D E
l1
l2 l3
27.2.1三角形相似的判定(教案)
a.对应角相等的两个三角形可能相似,但不一定相等。
b.对应边成比例的两个三角形可能相似,但还需满足对应角相等的条件。
c.判定相似三角形时,可先观察角度关系,再比较边长比例。
举例:在讲解过程中,教师可通过展示具体的相似三角形图形,强调以上重点内容,使学生深入理解相似三角形的判定方法。
2.教学难点
-理解对应角和对应边的关系:学生在判定相似三角形时,容易混淆对应角和对应边的关系,误以为只有对应边成比例即可判定相似。
-应用判定定理解决实际问题:学生在解决实际问题时,可能难以将问题转化为相似三角形的判定问题,导致解题困难。
-突破以下难点内容:
a.对应角相等是相似三角形的必要条件,对应边成比例是相似三角形的充分条件。
27.2.1三角形相似的判定(教案)
一、教学内容
本节课选自人教版八年级下册第27章第二节的“27.2.1三角形相似的判定”。教学内容主要包括以下两点:
1.掌握三角形相似的判定定理:如果两个三角形的对应角相等,并且对应边的比也相等,那么这两个三角形相似。
2.学会运用三角形相似的判定定理解决实际问题,如求三角形的未知边长、证明线段比例关系等。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形相似的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对三角形相似判定的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
27.2.1 相似三角形的判定
l l
l
l
A
l1
E
D l1
D
E
l2
A
l2
B
C l3
B
C l3
1.在三角形中只要具备平行条件就可以直接得到对应线段成比例. AD AE AD AE DE DB EC AD DB AB
如果 DE∥BC,那么DB=EC,AB=AC=BC,AB=AC,AE=EC=AC.
2.由平行线获得相似常见的有两种基本图形:“A”字型和“X”字型.我们只要从 复杂图形中找出这些基本图形,就可以找出图中的相似三角形.
l1
A
l2
D l3
A(D)
B C
E l4 F l5
BE
C
F
图2(1)
图1
思考
如果把图1中l1 , l2两条直线相交,交点A刚 落到l4上,如图2(2)所得的对应线段的 比会相等吗?依据是什么?
l1
A
B
l2
D l3
E l4
E
D
A
B
C
C
F
l5
图1
图2(2)
推论
平行于三角形一边的直线截其他两边(或两
边的延长线)所得的对应线段成比例.
相似比
AB : A1B1 = BC : B1C1 = CD : C1D1 = k 时,
则△ABC 与△A1B1C1 的相似比为 k .
或△A1B1C1 与△ABC 的相似比为
1.
k
A1
A
想一想:如果k=1,这
两个三角形有怎样的关
系?
B
C B1
C1
请分别度量l3 , l4, l5.在l1 上截得的两条线段AB, BC和
三角形相似的判定方法6种
三角形相似的判定方法6种三角形相似是几何学中的一个重要概念,它描述了两个三角形形状相同,大小可能不同的关系。
判断两个三角形是否相似,主要依靠六种判定方法,它们分别是:AA相似、SSS相似、SAS相似、ASA相似、AAS相似以及HL相似(仅限于直角三角形)。
本文将详细阐述这六种判定方法,并辅以例题和图形说明,力求全面、深入地讲解三角形相似的判定。
一、 AA相似(角角相似)如果两个三角形的两个角对应相等,那么这两个三角形相似。
这是最常用的相似判定方法,其简洁性使其在解题中应用广泛。
原理:两个角对应相等,则第三个角也必然相等(因为三角形内角和为180°)。
三个角对应相等,保证了两个三角形的形状完全一致,从而判定它们相似。
图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果∠A = ∠A’ 且∠B = ∠B’,则△ABC ∽△A’B’C’。
例题1:已知△ABC中,∠A = 60°,∠B = 80°;△DEF中,∠D = 60°,∠E = 80°。
判断△ABC与△DEF是否相似,并说明理由。
解答:因为∠A = ∠D = 60°,∠B = ∠E = 80°,根据AA相似判定定理,△ABC ∽△DEF。
二、 SSS相似(边边边相似)如果两个三角形的对应边成比例,那么这两个三角形相似。
这是基于比例关系的相似判定方法。
原理:对应边成比例意味着两个三角形形状相同,只是大小不同。
比例关系保证了三角形的形状不变,从而判定它们相似。
图形说明:A A'/ \ / \/ \ / \/ \ / \B-------C B'-------C'如果AB/A’B’ = BC/B’C’ = AC/A’C’,则△ABC ∽△A’B’C’。
例题2:已知△ABC的三边长分别为6cm、8cm、10cm;△DEF的三边长分别为3cm、4cm、5cm。
27.2.1相似三角形的判定——角角
27.2.1 相似三角形的判定——角角教学目标:知识与技能目标:掌握“两角对应相等的两个三角形相似”的判定定理,并会用其解决简单的问题;过程与方法:经历探究“两角对应相等两三角形相似”的过程,培养学生类比的思想方法;情感态度价值观:培养学生的逻辑思维能力、主动学习能力。
教学重点、难点:重点:掌握“两角对应相等的两个三角形相似”的判定定理,并会用其解决简单的问题;难点:探究“两角对应相等两三角形相似”的过程;掌握“两角对应相等的两个三角形相似”的判定定理,并会用其解决简单的问题。
教学过程:一、学前准备1.我们已学习过哪些判定三角形相似的方法?2.如图,△ABC 中, DE ∥BC ,EF ∥AB ,试说明△ADE ∽△EFC.A E FB C D3.如图,△ABC 中,点D 在AB 上,如果AB AD AC ∙=2,请判断△ACD 与△ABC 相似吗?说说你的理由.教师提问:上面两个题目是由平行或两组对应边的比相等及夹角相等来判定,那如果把条件换一下,变成∠ACD=∠B ,这两个三角形还相似吗?二、新知探究证明上述结论 如图所示,在△ABC 与△A ′B ′C ′中,若∠A=∠A ′,∠B=∠B ′,证明:△ABC ∽△A ′B ′C ′引导学生写出已知、求证。
结论的证明以教师讲授为主,并引导学生思考。
为此,需要构造出符合定理条件的图形:在△ABC 中,作BC 的平行线,且在△ABC 中截得的三角形与△A ′B ′C ′又有着非常紧密的联系(全等),这样师生共同分析,完成证明。
教师把证明过程在课件中展示。
证明:在△ABC 的边AB 上截取AD= A ′B ′,过点D 作DE ∥BC ,交AC 于点E ,则有△ADE ∽△ABC.∵∠ADE=∠B , ∠B=∠B ′,∴ ∠ADE=∠B ′.又∵∠A=∠A ′,AD= A ′B ′, A B CA'B'C'图(4)A B C A'B'C'DE∴△ADE≌△A′B′C′.∴△ABC ∽△A′B′C′.师生共同归纳,得出结论:判定定理3:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两三角形相似.用数学符号表示这个定理:∵∠A=∠A′,∠B=∠B′,∴△ABC∽△A′B′C′.三、运用新知1.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形.(2)底角相等的两个等腰三角形是否相似.(3)顶角相等的两个等腰三角形是否相似.(4)有一个角相等的两等腰三角形是相似三角形.2.在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°,∠A′=80°,∠B′=40°,求证:△ABC∽△A′B′C′3.已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,求证:(1)△ADF∽△EAB(2) A D·AB =EA·DF学案上的题目,学生在下面完成,并进行口答四、精讲点拨例1.如图:弦AB和CD相交于⊙O内一点P, 求证:学案上呈现,学生在下面写,并叫一个学生进行板演,规范书写步骤。
27.2.1 第4课时 相似三角形的判定定理3
利用两角判定三角形相似
直角三角形相似的判定
THANKS
则AB=kA'B',AC=kA'C'
由勾股定理得
∴
∴
∴
Rt△ABC∽ Rt△A'B'C'.
1.在 Rt△ABC 和 Rt△A′B′C′ 中,∠C=∠C′=90°,依据下列各组条件判定这两个三角形是否相似.(1) ∠A=35°,∠B′=55°: ;(2) AC=3,BC=4,A′C′=6,B′C′=8: ;(3) AB=10,AC=8,A′B′=25,B′C′=15: .
符号语言:
归纳:
例1 如图,Rt△ABC中,∠C=90°,AB=10,AC=8.E是AC上一点,AE=5,ED⊥AB,垂足为D,求AD的长.
解:∵ ED⊥AB, ∴ ∠EDA=90°. 又∠C=90 °, ∠A=∠A, ∴△AED∽△ABC. ∴
在△ABC 与△A'B'C'中,如果满足∠B=∠B',∠C=∠C',那么能否判定这两个三角形相似?
猜想:△ABC∽△A'B'C'
问题1: 度量 AB,BC,AC,A′B′,B′C′,A′C′ 的长,并计算出它们的比值. 你有什么发现?
一、两角分别相等的两个三角形相似
探究
与同伴合作,一人画 △ABC,另一人画 △A′B′C′,使∠A=∠A′=40°,∠B=∠B′=55°,探究下列问题:
第二十七章 相 似
27.2.1 相似三角形的判定
第4课时 两角分别相等的两个三角形相似
27.2 相似三角形
1. 探索两角分别相等的两个三角形相似的判定定理.2. 掌握利用两角来判定两个三角形相似的方法,并能进行相关计算. (重点、难点)3. 掌握判定两个直角三角形相似的方法,并能进行相关计算.
判定三角形相似的方法
判定三角形相似的方法三角形是几何学中的重要概念,而相似三角形则是在几何学中经常遇到的一种情况。
在数学和几何学的学习中,我们经常需要判定三角形是否相似,因此了解判定三角形相似的方法是非常重要的。
接下来,我们将介绍一些判定三角形相似的方法,希望能够帮助大家更好地理解和运用这一知识。
首先,我们来看一下相似三角形的定义。
两个三角形如果对应的角相等,并且对应的边成比例,那么这两个三角形就是相似的。
根据这个定义,我们可以得出判定三角形相似的一些方法。
一种判定三角形相似的方法是角-角-相似判定法。
当两个三角形的对应角相等时,这两个三角形就是相似的。
这是因为对应角相等意味着它们的内部角度是相似的,而在相似三角形中,对应角相等是相似的必要条件。
因此,如果我们能够确定两个三角形的对应角相等,那么我们就可以判定这两个三角形是相似的。
另一种判定三角形相似的方法是边-角-边判定法。
当两个三角形的一个对应边和两个对应角相等时,这两个三角形就是相似的。
这是因为对应边和对应角的关系确定了这两个三角形的形状和大小,从而可以判定它们是相似的。
因此,如果我们能够确定两个三角形的一个对应边和两个对应角相等,那么我们就可以判定这两个三角形是相似的。
除了以上两种方法外,我们还可以利用边-边-边判定法来判定三角形相似。
当两个三角形的三条边成比例时,这两个三角形就是相似的。
这是因为边的比例确定了三角形的大小,从而可以判定它们是相似的。
因此,如果我们能够确定两个三角形的三条边成比例,那么我们就可以判定这两个三角形是相似的。
在实际运用中,我们可以根据具体情况选择合适的判定方法来判断三角形是否相似。
有时候我们可以直接根据已知的条件判定三角形相似,有时候我们需要通过一些推导和计算来得出结论。
无论哪种方法,我们都需要充分理解相似三角形的定义和性质,才能够正确地判定三角形是否相似。
总的来说,判定三角形相似的方法有很多种,我们可以根据具体情况选择合适的方法来进行判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
填一填
• (1)如图3,点D在AB上,当∠ =∠ 时, △ACD∽△ABC。 • (2)如图4,已知点E在AC上,若点D在AB上,则满足 条件 ,就可以使△ADE与原△ABC相似。
A D
●
A
E C
B
图 3
C
B 图 4
例4.已知D、E分别是△ABC的边AB,AC上的点,
若∠A=35°, ∠C=85°,∠AED=60 °则AD· AB=
例题分析
例2. 如图,△ABC中, DE∥BC,EF∥AB, 试说明△ADE∽△EFC.
B D
A
E
Fห้องสมุดไป่ตู้
C
解: ∵ DE∥BC,EF∥AB(已知),
∴ ∠ADE=∠B=∠EFC (两直线平行,同位角相等) ∠AED=∠C. (两直线平行,同位角相等) ∴ △ADE∽△EFC. (两个角分别对应相等的 两个三角形相似.)
AE· AC
A D E B C
• (3)下列说法是否正确,并说明 理由. • A、有一个锐角相等的两直角三角 形是相似三角形; • b、有一个角相等的两等腰三角形 是相似三角形.
能力体现:
• 2.已知:如图,∠1=∠2=∠3,求证: △ABC∽△ADE.
• 1 、图1中DE∥FG∥BC,找出图中所有的相似 三角形。 • 2 、图2中AB∥CD∥EF,找出图中所有的相似三 角形。
学习目标
• 1.掌握“两角对应相等,两个三 角形相似”的判定方法. • 2.能够运用三角形相似的条件解 决简单的问题.
忆一忆
• 1、我们已学习过哪些判定三角形相似的方 法? • 2、如图,△ABC中,点D在AB上,如果 AC2=AD•AB,那么△ACD与△ABC相似 吗?说说你的理由.
学习指导:
课堂小结
相似三角形的识别方法有那些?
方法1:通过定义
三个角对应相等 三边对应成比例
方法2:平行于三角形一边的直线。 方法3:三边对应成比例。 方法4:两边对应成比例且夹角。 方法5:通过两角对应相等。
(这可是今天新学的,要牢记噢!)
下
课
• 从课本45页练习下面开始到48页练习上面, 同学们一定要认真阅读,需要动手的要动 手,小组内要配合。看那小组又快又准确 的解决下列问题。 • 1.“探究4”你们的发现有不同的吗? • 2.例2是怎样运用新判定解决的? • 3.47页的“思考”一定注意,是否理解。 • (5分钟后我们先解决1、2题)
A
D F B
E
A
O G C E
B
F
C
D
图 2
图 1
• 3 、在△ABC和△A′B′C′中,如果 ∠A=80°,∠C=60°,∠A′= 80°,∠B′=40°,那么这两个 三角形是否相似?为什么?
•
4、已知:如图,△ABC 的高AD、BE交 于点F.求证:
AF BF EF FD
• 5.已知D、E分别是△ABC的边AB,AC 上的点,若∠A=35°, ∠C=85°,∠AED=60 ° • 求证:AD· AB= AE· AC