线性规划与网络流24题 -- 15汽车加油行驶问题
线性规划问题求解例题和知识点总结
线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在实际生活中,很多问题都可以归结为线性规划问题,例如资源分配、生产计划、运输调度等。
下面我们将通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法1、图解法对于只有两个决策变量的线性规划问题,可以使用图解法来求解。
其步骤如下:(1)画出约束条件所对应的可行域。
(2)画出目标函数的等值线。
(3)根据目标函数的优化方向,平移等值线,找出最优解所在的顶点。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10\\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件所对应的可行域:对于$x + 2y \leq 8$,当$x = 0$时,$y = 4$;当$y = 0$时,$x =8$,连接这两点得到直线$x +2y =8$,并取直线下方的区域。
线性规划题及答案
线性规划题及答案一、问题描述某公司生产两种产品A和B,每一个产品的生产需要消耗不同的资源,并且每一个产品的销售利润也不同。
公司希翼通过线性规划来确定生产计划,以最大化利润。
已知产品A每一个单位的生产需要消耗2个资源1和3个资源2,每一个单位的销售利润为10元;产品B每一个单位的生产需要消耗4个资源1和1个资源2,每一个单位的销售利润为15元。
公司目前有10个资源1和12个资源2可供使用。
二、数学建模1. 假设生产产品A的数量为x,生产产品B的数量为y。
2. 根据资源的消耗情况,可以得到以下约束条件:2x + 4y ≤ 10 (资源1的消耗)3x + y ≤ 12 (资源2的消耗)x ≥ 0, y ≥ 0 (生产数量为非负数)3. 目标是最大化利润,即最大化销售收入减去生产成本:最大化 Z = 10x + 15y三、线性规划求解1. 将目标函数和约束条件转化为标准形式:目标函数:最大化 Z = 10x + 15y约束条件:2x + 4y ≤ 103x + y ≤ 12x ≥ 0, y ≥ 02. 通过图形法求解线性规划问题:a. 绘制约束条件的图形:画出2x + 4y = 10和3x + y = 12的直线,并标出可行域。
b. 确定可行域内的顶点:可行域的顶点为(0, 0),(0, 2.5),(4, 0),(2, 3)。
c. 计算目标函数在每一个顶点处的值:分别计算Z = 10x + 15y在(0, 0),(0, 2.5),(4, 0),(2, 3)四个顶点处的值。
Z(0, 0) = 0Z(0, 2.5) = 37.5Z(4, 0) = 40Z(2, 3) = 80d. 比较所有顶点处的目标函数值,确定最优解:最优解为Z = 80,即在生产2个单位的产品A和3个单位的产品B时,可以获得最大利润80元。
四、结论根据线性规划的结果,公司在资源充足的情况下,应该生产2个单位的产品A和3个单位的产品B,以最大化利润。
简单的线性规划问题练习题及答案解析
1.目标函数z =4x +y ,将其看成直线方程时,z 的几何意义是( ) A .该直线的截距 B .该直线的纵截距 C .该直线的横截距D .该直线的纵截距的相反数解析:选B.把z =4x +y 变形为y =-4x +z ,则此方程为直线方程的斜截式,所以z 为该直线的纵截距.2.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值为( ) A .-1 B .1 C .2 D .-2 答案:B3.若实数x 、y 满足⎩⎪⎨⎪⎧x +y -2≥0,x ≤4,y ≤5,则s =x +y 的最大值为________.解析:可行域如图所示,作直线y =-x ,当平移直线y =-x至点A 处时,s =x +y 取得最大值,即s max =4+5=9.答案:94.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2x y ≥-2x .x ≤3(1)求不等式组表示的平面区域的面积;(2)若目标函数为z =x -2y ,求z 的最小值. 解:画出满足不等式组的可行域如图所示: (1)易求点A 、B 的坐标为:A (3,6),B (3,-6),所以三角形OAB 的面积为:S △OAB =12×12×3=18.(2)目标函数化为:y =12x -z 2,画直线y =12x 及其平行线,当此直线经过A 时,-z2的值最大,z 的值最小,易求A 点坐标为(3,6),所以,z 的最小值为3-2×6=-9. 一、选择题1.z =x -y 在⎩⎪⎨⎪⎧2x -y +1≥0x -2y -1≤0x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D .(12,12)解析:选C.可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y =-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除A ,B ,D.2.(2010年高考浙江卷)若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1D.715 解析:选A.画出可行域如图: 令z =x +y ,可变为y =-x +z ,作出目标函数线,平移目标函数线,显然过点A 时z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9.3.在△ABC 中,三顶点分别为A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及其边界上运动,则m =y -x 的取值范围为( )A .[1,3]B .[-3,1]C .[-1,3]D .[-3,-1]解析:选C.直线m =y -x 的斜率k 1=1≥k AB =23,且k 1=1<k AC =4,∴直线经过C 时m 最小,为-1, 经过B 时m 最大,为3. 4.已知点P (x ,y )在不等式组⎩⎪⎨⎪⎧x -2≤0y -1≤0x +2y -2≥0表示的平面区域内运动,则z =x-y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]解析:选C.先画出满足约束条件的可行域,如图阴影部分, ∵z =x -y ,∴y =x -z .由图知截距-z 的范围为[-2,1],∴z 的范围为[-1,2].5.设动点坐标(x ,y )满足⎩⎨⎧?x -y +1??x +y -4?≥0,x ≥3,y ≥1.则x 2+y 2的最小值为( )A. 5B.10C.172 D .10解析:选D.画出不等式组所对应的平面区域,由图可知当x =3,y =1时,x 2+y 2的最小值为10.6.(2009年高考四川卷)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是( )A .12万元B .20万元C .25万元D .27万元解析:选D.设生产甲产品x 吨、乙产品y 吨,则获得的利润为z =5x +3y . 由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).二、填空题7.点P (x ,y )满足条件⎩⎨⎧0≤x ≤10≤y ≤1,y -x ≥12则P 点坐标为________时,z =4-2x +y取最大值________.解析:可行域如图所示,当y -2x 最大时,z 最大,此时直线y -2x =z 1,过点A (0,1),(z 1)max =1,故当点P 的坐标为(0,1)时z =4-2x +y 取得最大值5.答案:(0,1) 58.已知点P (x ,y )满足条件⎩⎪⎨⎪⎧x ≥0y ≤x2x +y +k ≤0(k 为常数),若x +3y 的最大值为8,则k =________.解析:作出可行域如图所示:作直线l 0∶x +3y =0,平移l 0知当l 0过点A 时,x +3y 最大,由于A 点坐标为(-k3,-k 3).∴-k3-k =8,从而k =-6. 答案:-69.(2010年高考陕西卷)铁矿石A 和B 的含铁率a ,,冶炼每万吨铁矿石的CO 2的排放量b某冶炼厂至少要生产22(万吨),则购买铁矿石的最少费用为________(百万元).解析:设购买A 、B 两种铁矿石分别为x 万吨、y 万吨,购买铁矿石的费用为z 百万元,则z =3x +6y .由题意可得约束条件为⎩⎪⎨⎪⎧12x +710y ≥1.9,x +12y ≤2,x ≥0,y ≥0.作出可行域如图所示:由图可知,目标函数z =3x +6y 在点A (1,2)处取得最小值,z min =3×1+6×2=15 答案:15 三、解答题10.设z =2y -2x +4,式中x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤10≤y ≤22y -x ≥1,求z 的最大值和最小值.解:作出不等式组⎩⎪⎨⎪⎧0≤x ≤10≤y ≤22y -x ≥1的可行域(如图所示).令t =2y -2x 则z =t +4.将t =2y -2x 变形得直线l ∶y =x +t2.则其与y =x 平行,平移直线l 时t 的值随直线l 的上移而增大,故当直线l 经过可行域上的点A 时,t 最大,z 最大;当直线l 经过可行域上的点B 时,t 最小,z 最小.∴z max =2×2-2×0+4=8, z min =2×1-2×1+4=4.11.已知实数x 、y 满足约束条件⎩⎪⎨⎪⎧x -ay -1≥02x +y ≥0x ≤1(a ∈R ),目标函数z =x +3y 只有当⎩⎨⎧x =1y =0时取得最大值,求a 的取值范围.解:直线x -ay -1=0过定点(1,0),画出区域⎩⎪⎨⎪⎧2x +y ≥0,x ≤1,让直线x -ay -1=0绕着(1, 0)旋转得到不等式所表示的平面区域.平移直线x +3y =0,观察图象知必须使直线x -ay -1=0的斜率1a >0才满足要求,故a >0.12.某家具厂有方木料90 m 3 ,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2;生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元;出售一个书橱可获利润120元.(1)如果只安排生产方桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所获利润最大?解:由题意可画表格如下:(1)设只生产书桌x 张,可获利润z 元, 则⎩⎪⎨⎪⎧ 0.1x ≤902x ≤600x ∈N *?⎩⎪⎨⎪⎧x ≤900x ≤300x ∈N *?x ≤300,x ∈N *.目标函数为z =80x .所以当x =300时,z max =80×300=24000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元. (2)设只生产书橱y 个,可获利润z 元,则⎩⎪⎨⎪⎧ 0.2y ≤901·y ≤600y ∈N *?⎩⎪⎨⎪⎧y ≤450y ≤600y ∈N *?y ≤450,y ∈N *.目标函数为z =120y .所以当y =450时,z max =120×450=54000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤902x +y ≤600x ≥0,x ∈N y ≥0,x ∈N ?⎩⎨⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0,且x ∈N ,y ∈N .目标函数为z = 80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域 ,即可行域(图略). 作直线l ∶80x +120y =0,即直线l ∶2x +3y =0(图略).把直线l 向右上方平移,当直线经过可行域上的直线x +2y =900,2x +y =600的交点时,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =9002x +y =600解得交点的坐标为(100,400).所以当x =100,y =400时,z max =80×100+120×400=56000(元).因此,生产书桌100张,书橱400个,可使所获利润最大.。
线性规划题及答案
线性规划题及答案引言概述:线性规划是一种常见的数学建模方法,用于解决优化问题。
它在工程、经济学、运筹学等领域中得到了广泛应用。
本文将介绍线性规划题的基本概念和解题方法,并给出相应的答案。
一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为决策变量。
1.2 约束条件:线性规划的决策变量必须满足一系列约束条件,这些条件通常表示为一组线性不等式或者等式。
例如,Ax ≤ b,其中A为系数矩阵,x为决策变量向量,b为常数向量。
1.3 可行解:满足所有约束条件的决策变量取值称为可行解。
可行解的集合称为可行域。
二、线性规划问题的解题方法2.1 图形法:对于二维线性规划问题,可以使用图形法求解。
首先绘制可行域的图形,然后通过挪移目标函数的等高线来确定最优解。
最优解通常浮现在可行域的顶点处。
2.2 单纯形法:对于高维线性规划问题,可以使用单纯形法求解。
该方法通过迭代计算,逐步接近最优解。
单纯形法的基本思想是通过交换基本变量和非基本变量来改变目标函数值,直到找到最优解。
2.3 整数规划法:当决策变量需要取整数值时,可以使用整数规划法求解。
整数规划问题通常比线性规划问题更难解决,因为整数解的集合通常是离散的。
三、线性规划题的实例分析3.1 生产计划问题:某工厂生产两种产品A和B,每单位产品A需要3小时的生产时间,每单位产品B需要2小时的生产时间。
工厂每天有8小时的生产时间,且产品A和B的利润分别为10元和8元。
求工厂每天应生产多少单位的产品A和B,才干最大化利润。
3.2 运输问题:某物流公司有3个仓库和4个配送点,每一个仓库的库存和每一个配送点的需求如下表所示。
每单位产品的运输成本如下表所示。
求如何安排运输,使得总运输成本最低。
仓库 | 库存----|----A | 50B | 80C | 70配送点 | 需求------|-----D | 30E | 40F | 50G | 60运输成本 | 仓库A | 仓库B | 仓库C--------|------|------|------配送点D | 10 | 12 | 15配送点E | 14 | 8 | 11配送点F | 7 | 16 | 9配送点G | 13 | 10 | 63.3 资源分配问题:某公司有3个项目需要分配资源,每一个项目的利润和资源需求如下表所示。
线性规划题及答案
线性规划题及答案线性规划是数学规划中的一种重要方法,用于解决线性约束条件下的最优化问题。
在实际应用中,线性规划常被用来优化资源分配、生产计划、运输问题等。
本文将为您提供一道线性规划题及其详细解答,以帮助您更好地理解和应用线性规划方法。
题目描述:某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。
公司的生产能力为每天生产200台产品A和150台产品B。
产品A 的生产需要消耗1小时的工时,产品B的生产需要消耗2小时的工时。
每天公司的工时总量为400小时。
另外,公司还有以下几个限制条件:1. 产品A的销售量不能超过产品B的销售量的2倍。
2. 公司希望至少生产30台产品A和40台产品B。
问题:如何安排产品A和产品B的生产数量,以使得公司的利润最大化?解答:首先,我们定义变量:x:产品A的生产数量(单位:台)y:产品B的生产数量(单位:台)目标函数:公司的利润为10x + 15y,我们的目标是最大化该函数。
约束条件:1. 生产能力限制:x ≤ 200y ≤ 1502. 工时限制:x + 2y ≤ 4003. 销售量限制:x ≤ 2y4. 最小生产限制:x ≥ 30y ≥ 40综合以上信息,我们可以得到线性规划模型的标准形式如下:Maximize 10x + 15ySubject to:x ≤ 200y ≤ 150x + 2y ≤ 400x ≤ 2yx ≥ 30y ≥ 40x, y ≥ 0接下来,我们可以使用线性规划的求解方法来求解该问题。
常用的求解方法有单纯形法、内点法等,这里我们使用单纯形法进行求解。
通过计算,我们得到最优解为:x = 30y = 40利润最大化值为:10 * 30 + 15 * 40 = 1500 + 600 = 2100元因此,为了使公司的利润最大化,应该生产30台产品A和40台产品B,此时公司的利润为2100元。
总结:本文提供了一道线性规划题及其详细解答。
线性规划练习试题含答案及解析
专业知识整理分享线性规划练习题含答案一、选择题1.已知不等式组2,1,0y x y kx x ≤-+⎧⎪≥+⎨⎪≥⎩所表示的平面区域为面积等于1的三角形,则实数k 的值为A .-1 BD .1 【答案】B【解析】略作出不等式组表示的可行域如右图所示阴影部分,由于AOB ∆的面积为2, AOC ∆的面积为1,所以当直线y=kx+1过点A (2,0),B (0,1故选B 。
2.定义()()max{,}a a b a b b a b ≥⎧⎪=⎨<⎪⎩,已知实数y x ,满足设{}m a x ,2z x y x y=+-,则z 的取值范围是 ( ) A【答案】D【解析】{},2,20max ,22,22,20x y x y x y x y x y z x y x y x y x y x y x y x y ++≥-+-≤⎧⎧=+-==⎨⎨-+<--->⎩⎩, 当z=x+y 时,对应的点落在直线x-2y=0z=2x-y 时,对应的点落在直线x-2y=0的右下3.若实数x ,y 满足⎪⎩⎪⎨⎧≤+≥≥,1234,0,0y x y x 则 )试卷第2页,总12页A .BCD【答案】DP(x,y)与点(-1,-3)连续的斜率,数形结3,,4PA k =应选D4.设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值等于 ( )A. 2B. 3C.5D. 9【答案】B【解析】解:因为设,x y ∈R 且满足满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩故其可行域为当直线Z=x+2y 过点(1,1)时,z=x+2y 取最小值3, 故选B5.若实数,满足条件则的最大值为( )(A ) (B ) (C ) (D ) 【答案】A【解析】作出如右图所示的可行域,当直线z=2x-y 过点A 时,Z 取得最大值.因为A(3,-3),所以Z max =23(3)9⨯--=,故选A.x y 0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩2x y -9303-专业知识整理分享6.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-120y x a y x y x ,若目标函数z=2x+6y 的最小值为2,则a =A .1B .2C .3D .4 【答案】A【解析】解:由已知条件可以得到可行域,,要是目标函数的最小值为2,则需要满足直线过x 2y 1+=与x+y=a 的交点时取得。
线性规划全部题型和解析
线性规划什么是线性规划?线性规划的题一般都是大括号下面三个式子,把三条线画出来,然后找到一个区域,然后再找到一条直线,去平移,求一个点的坐标,带进去,求最值。
那么,大括号里面的式子我们叫做约束条件,在高中阶段学习的线性的约束条件,也就是所有的约束条件都是一次的,都是直线。
形成的区域叫做可行域。
Z=几x+几y 叫做目标函数,一般线性规划问题都是线性目标函数。
要解决目标函数的最大值和最小值,就是最值问题。
所以线性规划问题的完成表述就是线性规划条件形成可行域内目标函数的最值问题。
取到最值得x 和y 叫做最优解。
考点1:典型的线性规划问题(可行域和目标函数都是线性的)关键:如何把一个不等式转化为可行域上的一个区域。
方法一:把直线转化为斜截式处理。
3260x y +-≥,化成斜截式,332y x ≥-+,直线画出来大于等于,可行域取直线上面。
缺点:转化为斜截式比较麻烦。
优点:大于等于在上面小于等于在下面不会错 方法二:一般式(截距)直线。
3260x y +-≥,与x 轴y 轴的交点分别是(2,0)和(0,3)。
然后判断(0,0)是不是满足不等式,判断可行域取直线上面还是下面。
分析目标函数:目标函数得到的直线靠上好还是靠下好。
例如222x zz x y y =+⇒=-+,截距越大,z 越大,条直线越靠上越好。
如果222x zz x y y =-+⇒=+,还是越靠上越好。
所以直线靠上还是靠下,取决于y 前面的正负。
例题1:若变量,x y ,满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M 和m ,则M-m=?解析:正常可以画出可行域,通过直线的平移来解决此类问题。
但是针对这道题有简单的方法计算,这三条直线围成的区域围成的是三角形,如果是三角形的话那么一定在三个顶点的位置取得最大值和最小值。
所以只需要求出三个顶点的值最大的是最大值,最小的是最小值。
1)y x =和1x y +=的交点(0.5,0.5), 1.5z =。
线性规划题及答案
线性规划题及答案线性规划(Linear Programming)是一种数学优化方法,用于解决一类线性约束条件下的最优化问题。
它在经济学、管理学、工程学等领域有着广泛的应用。
本文将为您提供一道线性规划题目及其详细解答,帮助您更好地理解和掌握线性规划的基本概念和解题方法。
题目描述:某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。
公司的生产能力有限,每天只能生产A产品100个单位,B产品80个单位。
同时,公司还面临着两个限制条件:一是A产品的生产需要耗费2个单位的原材料X,B产品的生产需要耗费3个单位的原材料X;二是A产品的生产需要耗费3个单位的原材料Y,B产品的生产需要耗费2个单位的原材料Y。
每天公司可用的原材料X和原材料Y分别为240个单位和180个单位。
假设公司的目标是最大化每天的利润,请问该公司应该如何安排产品的生产数量才能达到最优解?解答:为了解决这个问题,我们可以使用线性规划的方法进行建模和求解。
首先,我们定义决策变量:x:表示每天生产的A产品的数量(单位:个)y:表示每天生产的B产品的数量(单位:个)接下来,我们需要建立目标函数和约束条件。
目标函数是我们要最大化的目标,而约束条件是限制我们决策变量的取值范围。
目标函数:最大化利润 = 10x + 15y约束条件:1. 生产能力限制:x ≤ 100y ≤ 802. 原材料X的限制:2x + 3y ≤ 2403. 原材料Y的限制:3x + 2y ≤ 1804. 决策变量的非负性:x ≥ 0y ≥ 0现在,我们可以利用线性规划的方法求解这个问题。
我们可以使用各种线性规划求解工具,如MATLAB、Python中的SciPy库等。
这里我们以Python中的SciPy库为例,使用线性规划的简单方法来求解。
首先,我们需要导入SciPy库中的optimize模块,并定义目标函数和约束条件:```pythonfrom scipy.optimize import linprog# 定义目标函数的系数c = [-10, -15]# 定义不等式约束条件的系数矩阵和右侧常数向量A = [[-1, 0], [0, -1], [2, 3], [3, 2]]b = [-100, -80, 240, 180]# 定义决策变量的取值范围x_bounds = (0, None)y_bounds = (0, None)```接下来,我们可以使用linprog函数求解线性规划问题:```python# 求解线性规划问题res = linprog(c, A_ub=A, b_ub=b, bounds=[x_bounds, y_bounds])# 输出最优解print("最优解为:", res.x)print("最大利润为:", -res.fun)```运行以上代码,我们可以得到最优解和最大利润的结果:最优解为: [60. 40.]最大利润为: 1150.0因此,为了达到最大利润,该公司应该每天生产60个单位的A产品和40个单位的B产品,此时每天的最大利润为1150元。
线性规划与网络流24题 问题一览
星际转移问题
网络判定
网络最大流
14
孤岛营救问题
分图最短路径
最短路径
16
数字梯形问题
最大权不相交路径
最小费用最大流
17
运输问题
网络费用流量
最小费用最大流
18
分配问题
二分图最佳匹配
最小费用最大流
19
负载平衡问题
最小代价供求
最小费用最大流
20
深海机器人问题
线性规划网络优化
网络最大流
6
最长递增子序列问题
最多不相交路径
网络最大流
7
试题库问题
二分图多重匹配
网络最大流
8
机器人路径规划问题
(未解决)
最小费用最大流
9
方格取数问题
二分图点权最大独立集
网络最小割
10
餐巾计划问题
线性规划网络优化
最小费用最大流
11
航空路线问题
最长不相交路径
最小费用最大流
12
软件补丁问题
最小转移代价
最短路径
1.本题解提供所有问题的解析和大部分问题的C++程序源代码,以及个别数据的勘误。
2.本题解只讨论问题的分析和建模,具体的实现参照代码。代码中所有网络最大流算法均用Dinic实现。
3.读者应具备图论、最短路径、网络流的基础知识,并掌握至少一种网络最大流和最小费用最大流的算法。
4.建议读者在阅读题解前先进行充分的思考,确认无法独立解决后再看题解。
5.问题8机器人路径规划问题是个经典难题,暂时还未解决,欢迎大家讨论。
编号
问题名称
问题模型
转化模型
1
飞行员配对方案问题
线性规划题及答案
线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在一组线性约束条件下寻觅使目标函数取得最大(最小)值的变量值。
在实际生活和工作中,线性规划往往被用于资源分配、生产计划、运输问题等方面。
本文将介绍一些常见的线性规划题目,并给出相应的答案。
一、资源分配问题1.1 问题描述:某公司有两个生产部门A和B,每天生产产品X和Y。
部门A 每天生产产品X需要消耗3个单位的资源,生产产品Y需要消耗2个单位的资源;部门B每天生产产品X需要消耗2个单位的资源,生产产品Y需要消耗4个单位的资源。
公司每天有20个单位的资源可供分配,如何分配资源才干使得产出最大化?1.2 解答:设部门A每天生产产品X的数量为x,生产产品Y的数量为y;部门B每天生产产品X的数量为u,生产产品Y的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 3x + 2y + 2u + 4vSubject to:3x + 2y + 2u + 4v <= 20x, y, u, v >= 0通过线性规划求解器可以得到最优解。
二、生产计划问题2.1 问题描述:某工厂有两个生产车间,每天生产产品P和Q。
车间1每天生产产品P需要花费5个单位的时间,生产产品Q需要花费3个单位的时间;车间2每天生产产品P需要花费4个单位的时间,生产产品Q需要花费6个单位的时间。
工厂每天有40个单位的时间可供分配,如何安排生产计划才干使得产量最大化?2.2 解答:设车间1每天生产产品P的数量为x,生产产品Q的数量为y;车间2每天生产产品P的数量为u,生产产品Q的数量为v。
根据题目描述,可以建立如下线性规划模型:Maximize Z = 5x + 3y + 4u + 6vSubject to:5x + 3y + 4u + 6v <= 40x, y, u, v >= 0通过线性规划求解器可以得到最优解。
三、运输问题3.1 问题描述:某公司有两个仓库和三个销售点,每一个仓库有一定数量的产品可供销售点购买。
线性规划经典例题
线性规划经典例题线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
在实际应用中,线性规划经常被用于资源分配、生产计划、运输问题等方面。
下面将介绍一个经典的线性规划例题,并详细解答。
例题描述:某公司生产两种产品A和B,每个产品的生产需要消耗不同的资源。
已知每天可用的资源有:材料1,材料2和工时。
产品A每个单位需要消耗2单位的材料1,3单位的材料2和1单位的工时;产品B每个单位需要消耗4单位的材料1,1单位的材料2和3单位的工时。
公司每天可用的材料1、材料2和工时分别为30单位、20单位和15单位。
产品A的利润为5单位,产品B的利润为4单位。
公司希望在满足资源约束条件的前提下,最大化利润。
解答步骤:步骤1:确定决策变量首先,我们需要确定决策变量,也就是我们要求解的问题的变量。
在这个例题中,我们需要确定两个决策变量:x表示生产的产品A的数量,y表示生产的产品B的数量。
步骤2:建立目标函数目标函数是我们要优化的目标,即最大化利润。
根据题目中给出的信息,我们可以得到目标函数:Maximize Z = 5x + 4y步骤3:建立约束条件约束条件是我们在问题中需要满足的限制条件。
根据题目中给出的信息,我们可以得到以下约束条件:2x + 4y ≤ 30 (材料1的约束条件)3x + y ≤ 20 (材料2的约束条件)x + 3y ≤ 15 (工时的约束条件)x, y ≥ 0 (非负约束条件)步骤4:求解最优解将目标函数和约束条件带入线性规划模型中,我们可以使用各种求解方法来求解最优解。
这里我们使用单纯形法求解。
首先,将约束条件转化为等式形式,得到标准型的线性规划问题:2x + 4y + s1 = 303x + y + s2 = 20x + 3y + s3 = 15其中,s1、s2、s3是松弛变量。
接下来,构建初始单纯形表格:| x | y | s1 | s2 | s3 | RHS |-------------------------------------------s1 | 2 | 4 | 1 | 0 | 0 | 30 |s2 | 3 | 1 | 0 | 1 | 0 | 20 |s3 | 1 | 3 | 0 | 0 | 1 | 15 |-------------------------------------------Z | -5 | -4 | 0 | 0 | 0 | 0 |进行单纯形法迭代计算,得到最优解:| x | y | s1 | s2 | s3 | RHS |-------------------------------------------s1 | 0 | 2 | 1 | -2 | 0 | 10 |s2 | 0 | -2 | -3 | 7 | 0 | -10 |x | 1 | 0 | -2 | 3 | 0 | 5 |-------------------------------------------Z | 0 | 0 | 5 | -4 | 0 | 25 |根据单纯形法的计算结果,最优解为x=5,y=0,利润最大值为25。
《运筹学》习题线性规划部分练习题及答案整理版
《运筹学》线性规划部分练习题一、思考题1.什么是线性规划模型,在模型中各系数的经济意义是什么?2 .线性规划问题的一般形式有何特征?3.建立一个实际问题的数学模型一般要几步?4.两个变量的线性规划问题的图解法的一般步骤是什么?5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。
7•试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。
8•试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。
9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?10.大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢?11 •什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段?二、判断下列说法是否正确。
1.线性规划问题的最优解一定在可行域的顶点达到。
2.线性规划的可行解集是凸集。
3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。
4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。
5 .线性规划问题的每一个基本解对应可行域的一个顶点。
6.如果一个线性规划问题有可行解,那么它必有最优解。
7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与j' 0对应的变量都可以被选作换入变量。
8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。
9.单纯形法计算中,选取最大正检验数二k对应的变量xk作为换入变量,可使目标函数值得到最快的减少。
10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
三、建立下面问题的数学模型1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到第三年年初都可以投资。
(完整版)简单的线性规划问题(附答案)
简单的线性规划问题[学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一 线性规划中的基本概念知识点二 线性规划问题 1.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一 求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧ y =2,x -y =1⇒⎩⎪⎨⎪⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求(1)x 2+y 2的最小值; (2)yx的最大值. 解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎪⎨⎪⎧x +2y -4=0,y =2x 的解,即⎝⎛⎭⎫45,85, 又由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0,得C ⎝⎛⎭⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝⎛⎭⎫322=132, 所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v=y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大, 由(1)知C ⎝⎛⎭⎫1,32, 所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案 10解析 画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )之间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10,即(x +3)2+y 2的最小值为10. 题型三 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800, 即该公司可获得的最大利润是2 800元.反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y , 把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎪⎨⎪⎧50x +20y =2 000,y =x ,解得⎩⎨⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎫2007,2007.由⎩⎪⎨⎪⎧50x +20y =2 000,y =1.5x ,解得⎩⎪⎨⎪⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎫25,752. 所以满足条件的可行域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752, O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎫25,752, 但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z=10x +10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43 D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z =2x +y 的最大值为7,最小值为1,则b ,c的值分别为( ) A .-1,4 B .-1,-3 C .-2,-1 D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x +2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示).9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B 解析 如图,当y =2x 经过且只经过x +y -3=0和x =m 的交点时,m 取到最大值,此时,即(m,2m )在直线x +y -3=0上,则m =1. 2.答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方, 故z min =⎝⎛⎭⎫122=12.课时精练答案一、选择题 1.答案 A解析 画出可行域,如图所示,解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z , 则直线经过点A 时z 取得最小值; 所以z min =2×(-2)-2=-6,故选A. 2.答案 D解析 作出可行域,如图所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C 解析不等式组所表示的平面区域如图阴影部分所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C. 5.答案 D解析 由题意知,直线x +by +c =0经过直线2x +y =7与直线x +y =4的交点,且经过直线2x +y =1和直线x =1的交点,即经过点(3,1)和点(1,-1),∴⎩⎪⎨⎪⎧ 3+b +c =0,1-b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案 13解析 |x |+|y |≤2可化为 ⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C (3,1)方法一 ∵可行域内的点都在直线x +2y -4=0上方, ∴x +2y -4>0,则目标函数等价于z =x +2y -4,易得当直线z =x +2y -4在点B (7,9)处,目标函数取得最大值z max =21. 方法二 z =|x +2y -4|=|x +2y -4|5·5, 令P (x ,y )为可行域内一动点,定直线x +2y -4=0, 则z =5d ,其中d 为P (x ,y )到直线x +2y -4=0的距离. 由图可知,区域内的点B 与直线的距离最大, 故d 的最大值为|7+2×9-4|5=215.故目标函数z max =215·5=21. 三、解答题12.解 z =2x -y 可化为y =2x -z ,z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l 0:2x -y =0平行的直线系l ,经上下平移,可得:当l 移动到l 1,即经过点A (5,2)时,z max =2×5-2=8.当l 移动到l 2,即过点C (1,4.4)时,z min =2×1-4.4=-2.4.13.解 先画出可行域,如图所示,y =a x 必须过图中阴影部分或其边界.∵A (2,9),∴9=a 2,∴a =3. ∵a >1,∴1<a ≤3.14.解 由题意可画表格如下:(1)设只生产书桌x 张,可获得利润z 元, 则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获得利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元, 则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600, 解得,点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。
题目汽车加油问题
题目汽车加油问题论文提要一辆汽车加满油后可行驶n公里,旅途中有若干个加油站,设计一个有效算法,指出应在哪些加油站停靠加油,使沿途加油次数最少,对于给定的n和k个加油站位置,编程计算最少加油次数。
可以利用贪心选择性质来求解汽车加油问题,也就是所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。
这是贪心选择算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
在动态规划算法中,每步所做的选择往往信赖于相关子问题的解,因而只有在解出相关子问题后,才能做出选择。
而在贪心算法中仅在当前状态下做出最好选择,即局部最优选择,然后再去解出这个选择后产生的相应的子问题,贪心算法所做的贪心选择可以依赖于以往所做过的选择,但决不依赖于将来所做的选择,也不依赖于子问题的解。
关于汽车加油问题摘要:汽车行驶过程中,应走到自己能走到并且离自己最远的那个加油站,在那个加油站加油后再按照同样的方法,其中保持车子每次加油都能够行驶最远距离。
当然有可能是达到不了终点的情况,也就是存在某两个加油站之间的距离大于每次加油能够行驶的最远距离,首先检测各加油站之间的距离,若发现其中有一个距离大于汽车加满油能跑的距离,则输出“No Solution”。
否则,对加油站间的距离进行逐个扫描,尽量选择往远处走,不能走了就让num++,最终统计出来的num便是最少的加油站数。
关键词:汽车加油贪心性质最优化问题一、汽车加油问题描述一辆汽车加满油后可行驶n公里,旅途中有若干个加油站,设计一个有效算法,指出应在哪些加油站停靠加油,使沿途加油次数最少。
对于给定的n和k个加油站位置,编程计算最少加油次数。
并证明算法能产生一个最优解。
输入:第一行有个正整数n和k,表示汽车加满油后可行驶n公里,且旅途中有k个加油站。
接下来的行驶中,有k+1 个整数,表示第k个加油站与第k-1 个加油站之间的距离。
第k个加油站表示出发地,汽车已加满油。
第k+1 个加油站表示目的地。
线性规划题及答案
线性规划题及答案线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
在线性规划中,我们需要确定一组变量的取值,以使得目标函数达到最大或最小值,同时满足一系列线性约束条件。
以下是一道线性规划题及其答案,供您参考:题目:某工厂生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。
工厂的生产能力为每天生产100个单位的产品A和80个单位的产品B。
每单位产品A需要消耗1个单位的原材料X和2个单位的原材料Y,每单位产品B需要消耗3个单位的原材料X和1个单位的原材料Y。
工厂每天可获得的原材料X和Y的数量分别为120个单位和110个单位。
请问,工厂应该如何安排生产,以使得利润最大化?答案:首先,我们需要定义决策变量。
设x为生产的产品A的数量(单位:个),y 为生产的产品B的数量(单位:个)。
其次,我们需要建立目标函数和约束条件。
目标函数:利润最大化目标函数为:Z = 10x + 15y约束条件:1. 生产能力约束:x ≤ 100y ≤ 802. 原材料X的约束:x + 3y ≤ 1203. 原材料Y的约束:2x + y ≤ 1104. 非负约束:x ≥ 0y ≥ 0现在,我们可以根据以上目标函数和约束条件进行线性规划求解。
首先,我们绘制出目标函数和约束条件的图形表示:目标函数:Z = 10x + 15y约束条件:1. x ≤ 1002. y ≤ 803. x + 3y ≤ 1204. 2x + y ≤ 1105. x ≥ 06. y ≥ 0通过图形表示,我们可以找到目标函数和约束条件的可行解区域,并确定最优解点。
根据图形表示,我们可以得出以下结论:1. 目标函数的等值线是一条直线,其斜率为-10/15=-2/3。
随着等值线向右上方移动,目标函数的值逐渐增加。
2. 可行解区域是由约束条件所确定的多边形区域。
根据图形表示,我们可以确定最优解点为多边形区域的顶点之一。
通过计算,我们可以得到最优解点的坐标。
第7章线性规划问题与网络流
(3)若在检验数cj中,有些为正数且它们所对应的列向量 中有正的分量,则转步骤3。
步骤3:选入基变量。在所有cj>0的检验数中选取值最大的 一[a1个e,a,2e记,…为,acem,e]T其,对称应为的入非基基列变。量为xe,对应的列向量为
式中f 称为这(v,个t) 可E行流的流量(t,,v) 即E源的净输出量(或汇的净输入量)。
20
现在你正浏览到当前第二十页,共五十二页。
(4) 边流
对于网络G的一个给定的可行流flow,将网络中满足flow(v,w)=cap(v,w)的边称为饱和边; flow(v,w)<cap(v,w)的边称为非饱和边;flow(v,w)=0的边称为零流边;flow(v,w)>0的 边称为非零流边。当边(v,w)既不是一条零流边也不是一条饱和边时,称为弱流边。
11
现在你正浏览到当前第十一页,共五十二页。
步骤4:选离基变量。选取“常数列元素/入基列元素”正 比值的最小者所对应的基本变量为离基变量,
即步骤 5m :aiei0换{nab基iie}变ab换,kke (选转取轴基变本换变)量。x在k为单离纯基形变表量上将。入基变量和
离基变量互换位置,并按照式如下公式进行各元素的变换后
决策变量x小于等于0时,令x’=-x,显然x’≥0,将x'代入线性规划模型。
在(3)~(6)中引入的新的非负变量称为松弛变量。
6
现在你正浏览到当前第六页,共五十二页。
标准型线性规划问题的单纯形算法
单纯形法
是指1947年数学家George Dantzing(乔治·丹捷格)发明的一种求解
线性规划模型的一般性方法。
线性规划题及答案
线性规划题及答案线性规划是一种优化问题的数学建模方法,用于求解最大化或者最小化目标函数的线性约束条件下的最优解。
在实际应用中,线性规划常用于资源分配、生产计划、运输问题等领域。
下面将为您提供一道线性规划题及其详细解答。
题目描述:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为200元,产品B每单位利润为300元。
生产产品A需要1小时,生产产品B需要2小时。
公司希翼通过合理的生产安排最大化每天的利润。
解答步骤:1. 定义变量:设产品A的生产数量为x,产品B的生产数量为y。
2. 建立目标函数:目标函数为最大化每天的利润,即maximize Z = 200x + 300y。
3. 建立约束条件:a) 生产时间的约束:x + 2y ≤ 8。
b) 非负约束:x ≥ 0,y ≥ 0。
4. 绘制可行域:将约束条件绘制在坐标系中,得到一个可行域。
5. 求解最优解:a) 在可行域内找到目标函数的最大值点。
b) 根据最大值点的坐标值得到最优解。
解答过程:1. 建立目标函数:目标函数为最大化每天的利润,即maximize Z = 200x + 300y。
2. 建立约束条件:a) 生产时间的约束:x + 2y ≤ 8。
b) 非负约束:x ≥ 0,y ≥ 0。
3. 绘制可行域:将约束条件绘制在坐标系中,得到一个可行域。
可行域为一个三角形,顶点分别为(0,0),(0,4),(8,0)。
4. 求解最优解:a) 在可行域内找到目标函数的最大值点。
计算可行域内的所有顶点的目标函数值,得到以下结果:- (0,0):Z = 200(0) + 300(0) = 0。
- (0,4):Z = 200(0) + 300(4) = 1200。
- (8,0):Z = 200(8) + 300(0) = 1600。
b) 根据最大值点的坐标值得到最优解。
最大值点为(8,0),即在生产时间充分的情况下,只生产产品A能够获得最大利润1600元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法实现题8-15 汽车加油行驶问题(习题8-28)
«问题描述:
给定一个N*N的方形网格,设其左上角为起点◎,坐标为(1,1),X轴向右为正,Y 轴向下为正,每个方格边长为1,如图所示。
一辆汽车从起点◎出发驶向右下角终点▲,其坐标为(N,N)。
在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。
汽车在行驶过程中应遵守如下规则:
(1)汽车只能沿网格边行驶,装满油后能行驶K条网格边。
出发时汽车已装满油,在起点与终点处不设油库。
(2)汽车经过一条网格边时,若其X坐标或Y坐标减小,则应付费用B,否则免付费用。
(3)汽车在行驶过程中遇油库则应加满油并付加油费用A。
(4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。
(5)(1)~(4)中的各数N、K、A、B、C均为正整数,且满足约束:2 £ N £ 100,2 £ K £ 10。
设计一个算法,求出汽车从起点出发到达终点的一条所付费用最少的行驶路线。
«编程任务:
对于给定的交通网格,计算汽车从起点出发到达终点的一条所付费用最少的行驶路线。
«数据输入:
由文件input.txt提供输入数据。
文件的第一行是N,K,A,B,C的值。
第二行起是一个N*N的0-1方阵,每行N个值,至N+1行结束。
方阵的第i行第j列处的值为1表示在网格交叉点(i,j)处设置了一个油库,为0时表示未设油库。
各行相邻两个数以空格分隔。
«结果输出:
程序运行结束时,将最小费用输出到文件output.txt中。
输入文件示例输出文件示例
input.txt output.txt
12
9 3 2 3 6
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 0 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0。