九年级数学综合训练题

合集下载

初中数学九年级数学试题及答案

初中数学九年级数学试题及答案

九年级数学综合试题题目 一 二 三 四 五 六 总 分 分数一、填空(每小题3分,共30分)1、已知m 是方程210x x --=的一个根,则代数式2m m -=2、一名同学在掷骰子,连续抛了9次都没有点数为6的面朝上,当他掷第10次时,点数为6的面朝上是 事件。

3、已知231,3,a b ab -=-=则(1)(1)a b +-=4、如图,⊙O 是ABC ∆的外接圆,030C ∠=,2AB cm =, 则⊙O 的半径为 cm 。

5、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______. 6、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_______cm 。

7、如图,将一块斜边长为12cm ,60B ∠=°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至A B C '''△的位置,再沿CB 向右平移,使点B '刚好落在斜边AB上,那么此三角板向右平移的距离是 cm .8、如图,A 是第一象限里的点,点B 是点A 关于原点的对称点, 点C 是点A 关于x 轴的对称点,则以点A ,B ,C 为顶点的三角 形是 三角形。

9、如图是44⨯正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形. 10、已知:关于x 的一元二次方程221()04x R r x d -++=没有实数 根,其中R 、r 分别为⊙O 1和⊙O 2的半径,d 为此两圆的圆心距,则⊙O 1和⊙O 2的位置关系为 。

二、选择题(每小题3分,共18分)11、下列图形中既是轴对称图形又是中心对称图形的是( )A B C D12、如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( ).A 、32B 、21C 、31D 、4113、已知:m n ,是两个连续自然数()m n <,且q mn =.设p q n q m =++-,则p ( )A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数14、如图,⊙O 内切于ABC ∆,切点分别为D ,E ,F ,已知050B ∠=,060C ∠=,连接OE 、OF 、DE 、DF ,那么EDF ∠等于( )A 、055B 、040C 、065D 、07015、为执行“一免一补”政策,我市2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=16、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好 经过圆心O ,则折痕AB 的长为( ) A.2cm B.3cm C.23cmD.25cm三、解答题(第17题6分,18、19题7分共20分) 17、计算:127122(2)23-⨯+-OABA B A '()C C 'B 'A B C18、如图,ABC ∆中,∠=∠Rt ACB ,2,8==BC AB ,求斜边AB 上的高CD .19、小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A 棋1只,B 棋2只,C 棋3只,D 棋4只.“字母棋”的游戏规则为: ①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A 棋胜B 棋、C 棋;B 棋胜C 棋、D 棋;C 棋胜D 棋;D 棋胜A 棋;③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C 棋的概率是多少?(2)已知小玲先摸到了C 棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?四、每小题8分,共16分。

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。

人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)

人教版九年级数学上册综合题练习卷:第21章  一元二次方程(包含答案)

第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。

九年级数学几何综合专项测试(含答案)

九年级数学几何综合专项测试(含答案)

学生做题前请先回答以下问题问题1:举例说明几何综合中常见的结构以及思考角度有哪些?问题2:中点的思考角度有哪些?几何综合专项测试一、单选题(共8道,每道12分)1.如图,在梯形ABCD中,已知AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB 中点.在AC上存在一点M使EM+MN的值最小,则EM+MN的最小值为( )A.6B.8C.4D.答案:A解题思路:试题难度:三颗星知识点:轴对称—最短路线问题2.如图,将边长为12cm的正方形ABCD折叠,使得A点落在边CD上的E点,然后压平得折痕GF,若GF的长为13cm,则线段CE的长为( )cm.A.6B.7C.8D.5答案:B解题思路:试题难度:三颗星知识点:翻折变换(折叠问题)3.如图是两块完全一样的含30°角的直角三角板,分别记作△ABC与.现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角板ABC,使其直角顶点C恰好落在三角板的斜边上.若∠A=30°,AC=10,则此时两直角顶点之间的距离是( )A.4B.5C.6D.答案:B解题思路:试题难度:三颗星知识点:旋转的性质4.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于点E,F为AD的中点,若∠AEF=52°,则∠B=( )A.52°B.54°C.72°D.76°答案:D解题思路:试题难度:三颗星知识点:类倍长中线5.如图,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标是(0,2),顶点B在x轴负半轴上,对角线AC,BD相交于点M,,则点D的坐标是( )A.(-2,6)B.(-3,5)C.(-5,2)D.(-6,4)答案:A解题思路:试题难度:三颗星知识点:弦图模型6.如图,已知正方形ABCD的周长为24,△BCE是等边三角形,F是CE的中点,AE,BF交于点G,连接CG,则CG的长为( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:三线合一7.如图1,等边△ABD和等边△BCD的边长均为1,将△ABD沿AC方向向右平移到的位置得到图2,则图中阴影部分的周长为( )A.1B.2C.2.5D.3答案:B解题思路:试题难度:三颗星知识点:平移的性质8.如图,在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一块直角三角板的直角顶点放在点M处,并将此三角板绕点M旋转,三角板的两直角边与边OP,OQ分别交于点A,B,连接AB.则在旋转三角板的过程中,△AOB周长的最小值为( )A. B.C.6D.答案:B解题思路:试题难度:三颗星知识点:斜直角的处理思路(斜转直)。

2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)

2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)

浙江省杭州市杭州公益中学2022-2023学年第一学期九年级数学第三次月考综合测试题(附答案)一、选择题(共40分)1.已知圆的半径为5cm,圆心到直线l的距离为5cm,那么直线l和这个圆的公共点有()A.0个B.1个C.2个D.1个或2个2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.对于抛物线y=(x﹣1)2+2,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.与y轴交点坐标为(0,2)D.与x轴有两个交点4.某企业对其生产的产品进行抽检,抽检结果如下表:抽检件数1040100200300500不合格件数0123610若该企业生产该产品10000件,估计不合格产品的件数为()A.80件B.100件C.150件D.200件5.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5 m B.2m C.4m D.m6.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,⊙O的半径为5,弦AB=8,点C在弦AB上,且AC=6,过点C作CD⊥AB交OB于点D,则CD的长为()A.1B.2C.1.5D.2.58.如图所示,已知⊙I是△ABC的内切圆,点I是内心,若∠A=35°,则∠BIC等于()A.35°B.70°C.145°D.107.5°9.如图,已知:45°<∠A<90°,则下列各式成立的是()A.sin A=cos A B.sin A>cos A C.sin A>tan A D.sin A<cos A 10.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣3,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.C.2.4D.3二、填空题(共30分)11.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为.12.如图(1)为折叠椅,图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB和CD的长度相等,O是它们的中点,为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm,∠DOB=100°,那么椅腿AB的长应设计为cm(结果精确到0.1cm)13.如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.14.小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.你认为其中正确的信息是.(只填序号)15.如图,半径为5个单位的⊙A与x轴、y轴都相切;现将⊙A沿y轴向下平移个单位后圆与x轴交于点(2,0).16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B 的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=2,则BN的长为,sin∠AFE的值为.三、解答题(共80分)17.计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.18.某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.19.如图,已知四边形ABCD内接于圆O,且∠A=105°,BD=CD(1)求∠DBC的度数(2)若⊙O的半径为3,求的长.20.(10分)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.21.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧的中点,BD交AC于点E.(1)求证:AD2=DE•DB;(2)若BC=,CD=,求DE的长.22.如图所示,在△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线.(2)若点E是BC上一点,已知BE=6,cos∠ABC=,tan∠AEC=,求圆的直径.23.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.24.如图1,四边形ABCD内接于⊙O,BD为直径,上存在点E,满足=,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=,求△FGD的周长.②求CG的最小值.参考答案一、选择题(共40分)1.解:∵圆的半径为5cm,圆心到直线l的距离为5cm,∴d=r,∴直线与圆相切,∴直线l和这个圆的公共点有1个,故选:B.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:A、a=1>0,抛物线开口向上,所以A选项错误;B、y=(x﹣1)2+2,抛物线顶点坐标为(1,2),B选项错正确.C、抛物线与y轴的交点坐标为(0,3),所以C选项错误;D、△=(﹣2)2﹣4×1×3=﹣8<0,则抛物线与x轴没有交点,所以D选项错误;故选:B.4.解:抽查总体数:10+40+100+200+300+500=1150,次品件数:0+1+2+3+6+10=22,P(抽到不合格产品)=≈0.02.则10000×0.02=200(件).∴估计不合格产品的件数为200件,故选:D.5.解:∵AB=10米,tan A==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选:B.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:过点O作OE⊥AB于点E,∵OE⊥AB,∴AE=BE=AB=4,∵BO=5,∴EO==3,∵AC=6,∴BC=EC=2,∵CD⊥BE,OE⊥AB,∴CD∥EO,且CD是△BEO的中位线,∴CD=EO=1.5.故选:C.8.解:∵∠A=35°,∴∠ABC+∠ACB=180°﹣∠A=145°,∵⊙I是△ABC的内切圆,点I是内心,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=∠ABC+∠ACB=(∠ABC+∠ACB)=72.5°,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣72.5°=107.5°,故选:D.9.解:∵45°<A<90°,∴根据sin45°=cos45°,sin A随角度的增大而增大,cos A随角度的增大而减小,当∠A>45°时,sin A>cos A.故选:B.10.解:如图所示:连接OP,OQ,过点O作OP′⊥AB,垂足为P′.∵A(﹣3,0)、B(0,4),∴OA=3,OB=4.由勾股定理可知AB=5.∵OP′•AB=OA•OB,∴OP′=.∵PQ是圆O的切线,∴OQ⊥QP.∴PQ=.∴当OP有最小值时,PQ有最小值.∵由垂线段最短可知PO的最小值=OP′=,∴PQ的最小值==.故选:B.二、填空题(共30分)11.解:从箱中随机取出一个球,这个球是白球的概率为,故答案为:.12.解:连接BD.由题意,OA=OB=OC=OD.∵∠DOB=100°,∴∠ADO=50°,∠OAD=∠ODB=40°,∴∠ADB=90°.又∵BD=32,∴AB=32÷sin50°≈41.8(cm).13.解:如图,过点A1作A1H⊥AB于H,∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴A1H=A1B=2,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.14.解:∵开口向上,∴a>0,∵对称轴为x=>0,∴b<0,﹣=,∴2a=﹣3b,∴2a﹣3b=﹣6b<0,故④错误,不符合题意;∵函数图象与y轴的交点在y轴负半轴上,∴c<0,故①正确,符合题意;∴abc>0,故②正确,符合题意;由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,故③正确,符合题意;∵3b=﹣2a,∴c﹣4b=c﹣3b﹣b=c﹣(﹣2a)﹣b=a﹣b+c+a>0,故⑤正确,符合题意,故答案为:①②③⑤.15.解:设点A向下平移x个单位后经过(2,0),则(5﹣x)2+32=52,解得x=1或9,∴将⊙A沿y轴向下平移1或9个单位后圆与x轴交于点(2,0),故答案为:1或9.16.解:∵BM=BE,∴∠BEM=∠BME,∵AB∥CD,∴∠BEM=∠GCM,又∵∠BME=∠GMC,∴MG=GC=2,∵G为CD中点,∴CD=AB=4.连接BF,FM,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴F A=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=4.∵FE=FM,F A=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=4﹣x,NG=MG﹣NM=2﹣x,∵FM∥GC,∴=,即,解得x=4+2(舍)或x=4﹣,∴EF=BE=4﹣x=,∴sin∠AFE===2﹣1.故答案为:4;2﹣1.三、解答题(共80分)17.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.18.解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:由树状图知共有6种等可能结果,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.19.解:(1)∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠A=105°,∴∠C=180°﹣105°=75°,∵BD=CD,∴∠DBC=∠C=75°;(2)连接BO、CO,∵∠C=∠DBC=75°,∴∠BDC=30°,∴∠BOC=60°,故的长l==π.20.解:(1)由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴=2.解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²﹣4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²﹣4x.21.(1)证明:由D是劣弧的中点,得⇒∠ABD=∠DAC,又∵∠ADB=∠EDA,∴△ABD∽△EAD,∴,∴AD2=DE•DB;(2)解:由D是劣弧的中点,得AD=DC,则DC2=DE•DB∵CB是直径,∴△BCD是直角三角形.∴BD===由DC2=DE•DB得,DE,解得DE=.22.(1)证明:∵BC是直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACD=∠ABC,∴∠ACD+∠BCD=90°,即∠ACB=90°,∴CA是圆的切线;(2)解:∵cos∠ABC===,tan∠AEC==,∴设CB=3y,AC=5x,则EC=3x,AB=y,由勾股定理得:AC=2y,∴,解得:,∴BC=BE+CE=6+3x=10.23.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.24.解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∵=,∴∠ABG=∠DBC=α,∴∠AGB=90°﹣α;(2)∵BD为⊙O的直径,∴∠BCD=90°,∴∠BEC=∠BDC=90°﹣α,∴∠BEC=∠AGB,∵∠CEF=180°﹣∠BEC,∠BGD=180°﹣∠AGB,∴∠CEF=∠BGD,又∵CE=BG,∠ECF=∠GBD,∴△CFE≌△BDG(ASA),∴EF=DG;(3)①如图,连接DE,∵BD为⊙O的直径,∴∠A=∠BED=90°,在Rt△ABD中,tan∠ADB=,AD=2,∴AB=×AD=,∵=,∴+=+,即=,∴AD=CE,∵CE=BG,∴BG=AD=2,∵在Rt△ABG中,sin∠AGB==,∴∠AGB=60°,AG=BG=1,∴EF=DG=AD﹣AG=1,∵在Rt△DEG中,∠EGD=60°,∴EG=DG=,DE=DG=,在Rt△FED中,DF==,∴FG+DG+DF=,∴△FGD的周长为;②如图,过点C作CH⊥BF于H,∵△BDG≌△CFE,∴BD=CF,∠CFH=∠BDA,∵∠BAD=∠CHF=90°,∴△BAD≌△CHF(AAS),∴FH=AD,∵AD=BG,∴FH=BG,∵∠BCF=90°,∴∠BCH+∠HCF=90°,∵∠BCH+∠HBC=90°,∴∠HCF=∠HBC,∵∠BHC=∠CHF=90°,∴△BHC∽△CHF,∴=,设GH=x,∴BH=2﹣x,∴CH2=2(2﹣x),在Rt△GHC中,CG2=GH2+CH2,∴CG2=x2+2(2﹣x)=(x﹣1)2+3,当x=1时,CG2的最小值为3,∴CG的最小值为.。

2022-2023学年浙教版九年级数学上册第二次阶段性(第1—4章)综合训练题(附答案)

2022-2023学年浙教版九年级数学上册第二次阶段性(第1—4章)综合训练题(附答案)

2022-2023学年浙教版九年级数学上册第二次阶段性(第1—4章)综合训练题(附答案)一.选择题(共10小题,每题3分,满分30分)1.若=,则的值为()A.B.C.D.2.已知一个扇形的弧长为π,半径是3,则这个扇形的面积为()A.πB.C.D.3π3.如图,在△ABC中,点D,E分别在边AB,AC上,且==,则三角形ADE 周长与三角形ABC的周长比是()A.1:B.1:2C.1:3D.1:44.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径5.如图,在正五边形ABCDE中,记∠BCD=x°,∠ACB=y°,则等于()A.B.2C.3D.46.若点A(﹣1,y1),B(2,y2),C(3,y3)在二次函数y=(x﹣2)2+3的图象上,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y2<y3<y1C.y1<y3<y2D.y1<y2<y3 7.校园里一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为()cm.A.﹣1B.2﹣2C.5﹣5D.10﹣10 8.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…04…y…0.37﹣10.37…则方程ax2+bx+1.37=0的根是()A.0或4B.或4﹣C.1或5D.无实根9.如图,由边长为1的正方形组成的6×5网格中,一块含45°的三角板ABC的斜边AB 始终经过格点N,AC始终经过格点M,点A在MN下方运动,格点P到A的距离最小值为()A.1B.C.﹣1D.2﹣210.如图,△ABC中,点D为边BC上的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.m>1,n>1,则2S△AEF>S△ABD B.m<1,n<1,则2S△AEF>S△ABDC.m>1,n<1,则2S△AEF<S△ABD D.m<1,n>1,则2S△AEF<S△ABD二.填空题。

初三数学综合复习题

初三数学综合复习题

初三数学综合复习题一、选择题1. 已知直角三角形的斜边长为5cm,一个锐角的角度为30°,求此三角形的周长。

A. 10cmB. 15cmC. 20cmD. 25cm2. 若正方形的周长等于矩形的周长的一半,且正方形的边长为6cm,则矩形的长是多少?A. 3cmB. 6cmC. 9cmD. 12cm3. 若已知一个角的补角是60°,则这个角的大小是多少?A. 30°B. 60°C. 90°D. 120°二、填空题1. 一辆汽车以每小时60km的速度行驶,若行驶2小时,则汽车行驶的距离为__________km。

2. 一个多边形有6个顶点,其中一个内角是120°,其他内角是90°,那么这个多边形的边数是__________。

3. 一个水桶中装有25升的水,每小时流出5升的水,水桶中的水会在__________小时内流干。

三、解答题1. 一个三角形的两边分别为8cm和12cm,夹角的度数为60°,求此三角形的面积。

2. 一间教室的长和宽比是5:3,若教室的面积是120平方米,求教室的长和宽各是多少米。

3. 一本书原价150元,现在打8折出售,求打折后的价格。

四、应用题1. 小明从家到学校骑自行车需要15分钟,如果小明骑电动车到学校只需10分钟,那么他骑电动车比骑自行车快了多少分钟?2. 一辆汽车以每小时50km的速度行驶,已知汽车行驶的时间为4小时,求汽车行驶的距离。

3. 甲乙两人进行比赛,甲比乙跑得快8分钟,乙总共花了40分钟完成比赛,求甲完成比赛所用的时间。

以上是初三数学综合复习题的一部分,希望能对你的数学复习有所帮助。

祝你取得好成绩!。

人教版九年级 数学上册期末综合复习专题提优训练(三)

人教版九年级 数学上册期末综合复习专题提优训练(三)

九年级(人教版)数学上册期末综合复习专题提优训练(三)一.选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件3.一元二次方程x2=3x的解为()A.x=0 B.x=3 C.x=0或x=3 D.x=0 且x=3 4.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x支球队,则可列方程为()A.x(x﹣1)=6 B.x(x+1)=6 C.D.5.如图,在平面直角坐标系中,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(2,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是()A.x<﹣1 B.x>2 C.﹣1<x<2 D.x<﹣1或x>2 6.如图,已知⊙O是正方形ABCD的外接圆,点E是弧AD上任意一点,则∠BEC的度数为()A.30°B.45°C.60°D.90°7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①3a+2b+c<0;②3a+c<b2﹣4ac;③方程2ax2+2bx+2c﹣5=0没有实数根;④m(am+b)+b<a(m≠﹣1).其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题9.将抛物线y=4x2向左平移3个单位,再向上平移2个单位,所得到图象的函数表达式是.10.要为一幅长29cm,宽22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,设相框边的宽度为x,则可列出关于x的一元二次方程.11.一个圆锥和一个圆柱的底面积相等,已知圆柱的体积是圆锥的9倍,圆锥的高是8.1cm,则这个圆柱的高是cm.12.如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.13.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.14.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为.15.已知边长为1的正方形ABCD的顶点A、B在一个半径为1的圆上,使AB边与弦MN重合,如图所示,将正方形在圆中逆时针滚动,在滚动过程中,点M、D之间距离的最小值是.三.解答题16.解下列方程.(1)x2+2x﹣35=0;(2)4x(2x﹣1)=1﹣2x.17.已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.18.如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.19.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200 300 400 1000 1600 2000 摸到白球的频数72 93 130 334 532 667 摸到白球的频率0.3600 0.3100 0.3250 0.3340 0.3325 0.3335 (1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是.(精确到0.01),由此估出红球有个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.20.在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴的正半轴交于点C.已知OB=OC,点B的坐标为(3,0),抛物线的顶点为M.(1)求该抛物线的表达式;(2)直接写出点A、M的坐标,并在下图中画出该抛物线的大致图象;A;M.(3)根据图象直接回答:不等式x2+bx+c>3的解集为.21.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图②所建立平面直角坐标系.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.22.如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=4,求图中阴影部分的面积.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y 与a的关系式.24.已知:直线与y轴交于A,与x轴交于D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE上一动点,当△PBC周长最小时,求点P坐标;(3)动点Q在x轴上移动,当△QAE是直角三角形时,求点Q的坐标;(4)在y轴上是否存在一点M,使得点M到C点的距离与到直线AD的距离恰好相等?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.3.解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.4.解:设该小组有x支球队,则共有x(x﹣1)场比赛,由题意得:x(x﹣1)=6,故选:C.5.解:观察函数图象可知:当x<﹣1或x>2时,直线y=mx+n在抛物线y=ax2+bx+c 的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>2.故选:D.6.解:连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=∠BOC=45°.故选:B.7.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.8.解:由图象可知,当x=1时,y<0,即a+b+c<0,∵对称轴x=﹣=﹣1,a<0,∴b=2a<0,∴a+2a+c<0,即3a+c<0,∴3a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴3a+c<0<b2﹣4ac,故②正确;∵2ax2+2bx+2c﹣5=0,∴ax2+bx+c=,结合图象可知,不能确定抛物线y=ax2+bx+c与直线y=的交点情况,故③不正确;∵当x=m(m≠﹣1)时,y=am2+bm+c,且当x=﹣1时,函数y取得最大值,∴a﹣b+c>am2+bm+c,∴m(am+b)+b<a,故④正确;综上,正确结论有①②④共3个,故选:B.二.填空题(共7小题)9.解:由“左加右减”的原则可知,将抛物线y=4x2向左平移3个单位所得直线的解析式为:y=4(x+3)2;由“上加下减”的原则可知,将抛物线y=4(x+3)2向上平移2个单位所得抛物线的解析式为:y=4(x+3)2+2.故平移后的抛物线的函数关系式是:y=4(x+3)2+2.故答案为y=4(x+3)2+2.10.解:设相框边的宽度为xcm,则可列方程为:(29+2x)(22+2x)=×29×22.故答案为:(29+2x)(22+2x)=×29×22.11.解:设这个圆柱的高是xcm,圆锥和圆柱的底面积都为S,根据题意得S•x=9××S×8.1,解得x=24.3(cm),即这个圆柱的高是24.3cm.故答案为24.3.12.解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.13.解:连结OC,过C点作CF⊥OA于F,∵半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=1cm,OC=2cm,∠AOC=45°,∴CF=,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×=π﹣(cm2)三角形ODE的面积=OD×OE=(cm2),∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(π﹣)﹣=π+﹣(cm2).故图中阴影部分的面积为(π+﹣)cm2.故答案为:(π+﹣).14.解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(﹣4,3).故答案为:(﹣4,3).15.解:如图,点D的运动轨迹是图中的红线.观察图象可知M、D之间的最小距离是线段AD′的长=AE﹣D′E=2﹣,故答案为2﹣.三.解答题(共9小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,∴x1=﹣7,x2=5.(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k+2)≥0,解得:k≤﹣1.(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵+=k﹣2,∴==k﹣2,∴k2﹣6=0,解得:k1=﹣,k2=.又∵k≤﹣1,∴k=﹣.∴存在这样的k值,使得等式+=k﹣2成立,k值为﹣.18.解:(1)如图所示:连接AC,BD,交于点O.连接EO并延长到点F,使OF=OE,连接DF,CF,(2)如图所示:过点O作OG⊥OE与EB的延长线交于点G,∵四边形ABCD为正方形∴OA=OB,∠AOB=∠EOG=90°∴∠AOE=∠BOG在四边形AEBO中∠AEB=∠AOB=90°∴∠EAO+∠EBO=180°=∠EBO+∠GBO∴∠GBO=∠EAO,∴在△EAO和△GBO中,∵∴△EAO≌△GBO(ASA),∴AE=BG,OE=OG.∴△GOE为等腰直角三角形,∴OE=EG=(EB+BG)=(EB+AE)∵AE=12,AB=13,∴BE=5,∴EB+AE=17,∴OE=∴EF=.19.解:(1)观察表格发现,随着摸球次数的增多,摸到白球的频率逐渐稳定在0.33附近,由此估出红球有2个.故答案为:0.33,2;(2)列表如下:白红红白﹣﹣﹣(红,白)(红,白)红(白,红)﹣﹣﹣(红,红)红(白,红)(红,红)﹣﹣﹣所有等可能的情况有6种,其中恰好摸到1个白球,1个红球的情况有4种,则P(1个白球,1个红球)==;所以从该袋中摸出2个球,恰好摸到1个白球、1个红球的结果的概率为.20.解:(1)∵OB=OC,点B的坐标为(3,0),点C在y轴的正半轴上∴点C的坐标为(0,3),∵抛物线y=x2+bx+c过B、C两点,∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)y=x2﹣4x+3,=(x﹣2)2﹣1,故顶点坐标为:M(2,﹣1),当y=0,则0=x2﹣4x+3,解得:x1=1,x2=3,故A(1,0);如图所示:故答案为:(1,0),(2,﹣1);(3)根据图象即可得出当x<0或x>4,y=x2﹣4x+3>3,即不等式x2+bx+c>3的解集为:x<0或x>4.故答案为:x<0或x>4.21.解:(1)如图②中,A(4,0),C(0,4),设抛物线解析式为y=ax2+k,由题意,得,解得:,∴抛物线表达式为.(2)2+=2.2,当x=2.2时,y=﹣×2.22+4=2.79,当y=2.79时,2.79﹣0.5=2.29 (m).答:该货车能够通行的最大高度为2.29 m.22.(1)证明:连接OD,∵∠BCA=90°,∠B=30°,∴∠OAD=∠BAC=60°,∵OD=OA,∴△OAD是等边三角形,∴AD=OA=AC,∠ODA=∠O=60°,∴∠ADC=∠ACD=∠OAD=30°,∴∠ODC=60°+30°=90°,即OD⊥DC,∵OD为半径,∴CD是⊙O的切线;(2)解:∵AB=4,∠ACB=90°,∠B=30°,∴OD=OA=AC=AB=2,由勾股定理得:CD===2,∴S阴影=S△ODC﹣S扇形AOD=×2×2﹣=2﹣π.23.解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.24.解:(1)∵直线与y轴交于A,∴A点的坐标为(0,2),∵B点坐标为(1,0).∴∴;(2)作出C关于直线AE的对称点F,由B和F确定出直线BF,与直线AE交于P点,设F(m,n),由题意D(﹣4,0),C(4,0),A(0,2),AF=AC=2,DF=DC=8,∴,解得或,∴F(,),∴直线BF的解析式为:y=﹣32x+32,,可得:P();(3)根据题意得:x+2=x2﹣x+2,解得:x=0或x=6,∴A(0,2),E(6,5),∴AE=3,设Q(x,0),①若Q为直角顶点,则AQ2+EQ2=AE2,即x2+4+(x﹣6)2+25=45,此时x无解;②若点A为直角顶点,则AQ2+AE2=EQ2,即x2+4+45=(x﹣6)2+25,解得:x=1,即Q(1,0);③若E为直角顶点,则AQ2=AE2+EQ2,即x2+4=45+(x﹣6)2+25,解得:x==,此时求得Q(,0);∴Q(1,0)或(,0)(4)假设存在,设M坐标为(0,m),则OM=|m|,∵OC=4,AO=2,OD=4,∴MC=MD,∴当MD⊥AD时,满足条件,∴在直角三角形AOD中,根据勾股定理得:AD=2,且AM=2﹣m,CM=,∵MD=MC,∴根据勾股定理得:=,即(2﹣m)2﹣(2)2=m2+16,解得m=﹣8,则M(0,﹣8).。

人教版2022-2023学年第一学期九年级数学第三次阶段性综合测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次阶段性综合测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次阶段性综合测试题(附答案)一、单项选择题(共18分)1.中秋节是中国的传统节日,有“团圆”、“丰收”的寓意.月饼是首选传统食品,不仅美味,而且设计多样.下列月饼图案中,为中心对称图形的是()A.B.C.D.2.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+3)2=4D.(x﹣3)2=4 3.若气象部门预报明天下雪的概率是85%,下列说法正确的是()A.明天下雪的可能性比较大B.明天一定不会下雪C.明天一定会下雪D.明天下雪的可能性比较小4.如图,AB为⊙O的直径,C,D为⊙O上的两点,若∠ABD=54°,则∠C的度数为()A.34°B.36°C.46°D.54°5.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A.x1=﹣1,x2=5B.x1=﹣2,x2=4C.x1=﹣1,x2=2D.x1=﹣5,x2=56.截止到2021年3月15日,返乡入乡创业就业规模扩大,全国当年各类返乡入乡创业创新人员由2018年的320万人增加到2020年的1010万人.设我国从2018年到2020年返乡入乡创业创新人员的平均增长率为x,则可列方程为()A.320(1+2x)=1010B.320×2(1+x)=1010C.320(1+x)2=1010D.320+320(1+x)+320(1+x)2=1010二、填空题(共24分)7.一元二次方程x2=﹣x的根是.8.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.9.抛物线y=(x+2)2﹣2的顶点是.10.已知抛物线y=﹣(x+3)2﹣5,当x时,y随x的增大而增大.11.如图,矩形ABCD中,AB=3,AC=5.以点A为中心,将矩形ABCD旋转得到矩形AB′C′D′,使得点B′落在边AD上,此时DB′的长为.12.如图,已知四边形ABCD内接于⊙O,∠ABC=68°,则∠ADC的度数是.13.如图,⊙O的内接正六边形ABCDEF边长为cm,则该正六边形的面积为cm2.14.如图,半径为10的扇形AOB中,∠AOB=90°,C为弧AB上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.若∠CDE=40°,则图中阴影部分的面积为(结果保留π).三、解答题(共78分)15.解一元二次方程:x2﹣x﹣1=0.16.已知关于x的方程x2+4x+3﹣a=0有两个不相等的实数根,求a的取值范围.17.已知抛物线y=x2﹣kx﹣3k与x轴的一个交点为(﹣2,0)(1)求k的值;(2)求抛物线与x轴的另一个交点坐标.18.红红和丁丁玩纸牌游戏,如图是同一副扑克中的4张牌的正面,将它们正面洗匀后放在桌面上.(1)红红从4张牌中抽取一张,这张牌的数字为大于7的概率是.(2)红红先从中抽取一张,丁丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树状图或列表法求出红红获胜的概率.19.如图,在7×8的正方形网格中,每个小正方形的边长均为1,点A,B,C均在小正方形的顶点上.(1)将线段AB绕点C逆时针旋转90°得到线段DE(点A,B的对应点分别为点D,E),请画出线段DE.(2)以AD为对角线作▱AEDF,画出▱AEDF,并直接写出▱AEDF的面积.20.如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE ⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=,∠C=30°,求的长.21.如图,在正方形ABCD中,AD=2,将边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC.(1)判断△ABP的形状,并说明理由.(2)求CE的长.22.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?23.小明进行铅球训练,他尝试利用数学模型来研究铅球的运动情况.他以水平方向为x 轴方向,1m为单位长度,建立了如图所示的平面直角坐标系,铅球从y轴上的A点出手,运动路径可看作抛物线,在B点处达到最高位置,落在x轴上的点C处.小明某次试投时的数据如图所示.(1)在图中画出铅球运动路径的示意图;(2)根据图中信息,求出铅球路径所在抛物线的表达式;(3)若铅球投掷距离(铅球落地点C与出手点A的水平距离OC的长度)不小于10m,成绩为优秀.请通过计算,判断小明此次试投的成绩是否能达到优秀.24.如图,△ABC中,AB=AC,∠BAC=120°,将△ABC绕点A逆时针旋转一个角度α(0<α<120°)得到△ADE,DE交BC于点F,连接AF,在旋转过程中,有下列对某些四边形状的判断.甲:四边形AFCE可能是矩形;乙:四边形ADCE可能是菱形;丙:四边形ABFE可能是菱形.解答下列问题:(1)上述判断正确的是.(2)请选择一个你认为正确的判断,画出相应的图形,求出此时旋转角a的度数,并给予证明.25.如图,△ABC中,AB=AC=8cm,∠BAC=120°.动点P从点A出发,在AB边上以每秒1cm的速度向终点B匀速运动(点P不与点A,B重合),同时动点Q从点B出发,沿BC边以每秒cm的速度向终点C匀速运动,连接PQ.设运动时间为x(s),△BPQ 的面积为y(cm2).(1)BP=cm,点Q到AB的距离为cm.(用含x的代数式表示)(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)当y=S△ABC时,求x的值.(4)在点P,Q的运动过程中,以PQ为直径作⊙O,⊙O能与AB或BC相切吗?若能,请直接写出x的值;若不能,请说明理由.26.如图,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C (0,3).(1)若抛物线的对称轴是直线x=﹣2.①求抛物线的解析式.②点P在对称轴上,若△PBC的面积是6,求点P的坐标.(2)当b≤0,﹣2≤x≤0时,函数y的最大值满足3≤y max≤16,求b的取值范围.参考答案一、单项选择题(共18分)1.解:选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以不是中心对称图形;选项C能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以是中心对称图形;故选:B.2.解:移项得:x2+6x=5,配方可得:x2+6x+9=5+9,即(x+3)2=14,故选:A.3.解:若气象部门预报明天下雪的概率是85%,说明明天下雪的可能性比较大,故选:A.4.解:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A=90°﹣∠ABD=90°﹣54°=36°,∴∠C=∠A=36°.故选:B.5.解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是﹣1.所以x1=﹣1,x2=5.故选:A.6.解:依题意得:320(1+x)2=1010.故选:C.二、填空题(共24分)7.解:∵x2=﹣x,∴x2+x=0,则x(x+1)=0,∴x=0或x+1=0,解得x1=0,x2=﹣1.故答案为:x1=0,x2=﹣1.8.解:点(﹣2,4)关于原点对称的点的坐标为(2,﹣4).故答案为:(2,﹣4).9.解:∵y=(x+2)2﹣2是抛物线解析式的顶点式,∴根据顶点式的坐标特点可知,顶点坐标为(﹣2,﹣2).故答案为:(﹣2,﹣2).10.解:∵抛物线y=﹣(x+3)2﹣5,∴抛物线开口向下,对称轴为直线x=﹣3;∵x<﹣3时,y随x的增大而增大,故答案为:<﹣3.11.解:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,AD=BC,∵AB=3,AC=5,∴BC===4,∴AD=4,由旋转的性质可知,AB=AB′=3,∴DB′=AD﹣AB′=4﹣3=1,故答案为:1.12.解:∵四边形ABCD内接于⊙O,∠ABC=68°,∴∠ADC=180°﹣∠ABC=180°﹣68°=112°,故答案为:112°.13.解:过点O作OH⊥AB于点H,连接OA,OB,∵⊙O的内接正六边形ABCDEF边长为cm,∴OA=OB=AB=2cm,∴OH=OA•cos30°=2×=3(cm),∴S正六边形ABCDEF=6S△OAB=6××=18(cm)2.故答案为:18.14.解:如图,连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴OD=CE,DE=OC,CD∥OE,∵∠CDE=40°,∴∠DEO=∠CDE=40°,在△DOE和△CEO中,,∴△DOE≌△CEO(SSS),∴∠COB=∠DEO=40°,∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC==,故答案为:.三、解答题(共78分)15.解:∵a=1,b=﹣1,c=﹣1,∴Δ=(﹣1)2﹣4×1×(﹣1)=5>0,则x==,∴x1=,x2=.16.解:∵方程x2+4x+3﹣a=0有两个不相等的实数根,∴Δ=42﹣4×1×(3﹣a)=4+4a>0,解得:a>﹣1.17.解:(1)根据题意得,4+2k﹣3k=0,所以k=4;得抛物线的解析式为y=x2﹣4x﹣12;(2)∵x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴抛物线与x轴的另一个交点坐标(6,0).18.解:(1)从4张牌中抽取一张,这张牌的数字为大于7的概率是=,故答案为:;(2)根据题意画树状图如下:共有12种等可能的结果数,其中红红获胜的结果有6个,∴红红获胜的概率为=.19.解:(1)如图,线段DE即为所求;(2)如图,平行四边形AEDF即为所求.四边形AEDF的面积=2×4=8.20.(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∠C=30°,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE=,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°•CD=×2=2,∴的长为:=.21.解:(1)△ABP是等边三角形.理由:∵四边形ABCD是正方形,∴∠ABC=∠BAD=∠D=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形;(2)∵△ABP是等边三角形,∴∠BAP=60°,∴∠DAE=30°,∵AD=2,∴DE=AD•tan30°=2,∴CE=2﹣2.22.解:(1)由题意,可设y=kx+b(k≠0),把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W元,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.23.解:(1)如图所示.(2)解:依题意,抛物线的顶点B的坐标为(4,3),点A的坐标为(0,2).设该抛物线的表达式为y=a(x﹣4)2+3,由抛物线过点A,有16a+3=2.解得,∴该抛物线的表达式为;(3)解:令y=0,得.解得,(C在x轴正半轴,故舍去).∴点C的坐标为(,0).∴.由,可得.∴小明此次试投的成绩达到优秀.24.解:(1)甲不正确:理由是当AF⊥CF时,DE与BC重合,四边形不存在.乙,丙正确(理由见2中证明).故答案为:乙,丙;(2)①四边形ADCE可能是菱形.当α=60°时,四边形ADCE是菱形.理由:如图1中,∵∠BAC=∠DAE=120°,∠BAD=60°,∴∠CAD=∠CAE=60°,∵AD=AC=AE,∴△ADC,△AEC都是等边三角形,∴AC=EC=CD,∴AE=AD=CD=EC,∴四边形ADCE是菱形.②四边形ABFE可能是菱形.当α=30°时,四边形ABFE是菱形.理由:如图2中,∵AB=AC,AD=AE,∠BAC=∠DAE=120°,∴∠B=∠ACB=∠ADE=∠AED=30°∵∠BAD=∠ADE=30°,∴AB∥DE,∵∠BAD=∠CAE=∠ACB=30°,∴AE∥CB,∴四边形ABFE是平行四边形,∵AB=AE,∴四边形ABFE是菱形.25.解:(1)由题意可得AP=xm,BQ=xcm,∵AB=8cm,∴BP=(8﹣x)cm,过Q点作QH⊥AB交于H,∵AB=AC,∠BAC=120°,∴∠B=30°,在Rt△BQH中,HQ=BQ=xcm,故答案为:8﹣x,x;(2)过点A作AG⊥BC交于G,∵BA=8cm,∠B=30°,∴AG=4cm,BG=4cm,∴BC=8cm,当Q点从B点运动到C点时,x=8,当P点从A点运动到B点时,x=8,∴P、Q点同时到达终点,∴0<x<8,由(1)知,BP=(8﹣x)cm,HQ=xcm,∴y=×BP×HQ=(8﹣x)×x=﹣x2+2x,∴y=﹣x2+2x(0≤x≤8);(3)由(2)知,AG=4cm,BC=8cm,∴S△ABC=×8×4=16cm2,∵y=S△ABC,∴﹣x2+2x=×16,解得x=4+2或x=4﹣2;(4)⊙O能与AB或BC相切,理由如下:如图3,当⊙O与AB相切时,P为切点,此时PQ⊥AB,∴8﹣x=×x,∴x=;如图4,当⊙O与BC相切时,Q为切点,此时PQ⊥BC,∴x=(8﹣x),解得x=;综上所述:x=或.26.解:(1)①抛物线y=x2+bx+c的对称轴为直线x=−=−2,∴b=4,又∵抛物线与y轴的交点为(0,3),∴c=3,∴抛物线的解析式为y=x2+4x+3;②∵抛物线的解析式为y=x2+4x+3,令y=0,则x2+4x+3=0,解得x=﹣1或﹣3,∴A(﹣3,0),B(﹣1,0),当点P在直线BC的上方时,∵点P在抛物线的对称轴上,∴设点P的坐标为(﹣2,m),则S△PBC=S梯形PDOC﹣S△PDB﹣S△COB=(m+3)×2﹣×1×m﹣×1×3=6,解得m=9,∴点P的坐标为(﹣2,9);当点P在直线m的下方时,设直线BC的解析式为y=mx+n,∵B(﹣1,0),C(0,3).∴,解得,∴直线BC的解析式为y=3x+3,∴直线BC与抛物线的对称轴的交点为(﹣2,﹣3),∴S△PBC=S△PEC﹣S△PEB=×2×(﹣3﹣m)﹣×1×(﹣3﹣m)=6,解得m=﹣15,∴点P的坐标为(﹣2,﹣15).综上所述,满足条件的点P的坐标为(﹣2,9)或(﹣2,﹣15);(2)∵b≤0时,∴−≥0,∴x=−≥0,∵抛物线开口向上,在对称轴左边,y随x的增大而减小,∴当﹣2≤x≤0时,取x=﹣2,y有最大值,即y=4﹣2b+3=﹣2b+7,∵C(0,3),∴当x=0时,取x=0,y有最小值3,∴3≤﹣2b+7≤16,解得:−≤b≤2,又∵b≤0,Δ=b2﹣12>0,∴<﹣2.。

人教版九年级数学上册综合卷:第21章 一元二次方程【含答案】

人教版九年级数学上册综合卷:第21章  一元二次方程【含答案】

第21章 一元二次方程一、填空题(本大题共2小题,每小题3分,共12分)1.若关于x 的方程(a +2)x |a |﹣3x +2=0是一元二次方程,则a 的值为__________. 2.已知方程22530x x --=的两根为m 、n ,则22m n +=________.3.方程2x –4=0的解也是关于x 的方程x 2+mx +2=0的一个解,则m 的值为__________. 4.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有_____人.5.已知关于x 的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,则实数k 的取值范围是__________.6.如图是一个邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6 m.若矩形的面积为4 m 2,则AB 的长度是__________m .(可利用的围墙长度超过6 m)二、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)7.下列方程中,一定是一元二次方程的是 A .2x 2﹣3x+1=0 B .(x +2)(2x ﹣1)=2x 2 C .5x 2﹣1=0D .ax 2+bx +c =08.一元二次方程240x -=的解是 A .2-B .2C .D .2±9.方程()2330x x -+=的二次项系数、一次项系数及常数项的和是 A .3 B .2 C .1-D .3-10.关于x 的一元二次方程x 2+4x +k =0有两个相等的实根,则k 的值为A .k =﹣4B .k =4C .k ≥﹣4D .k ≥411.用配方法解下列方程,其中应在方程左右两边同时加上4的是 A .x 2﹣2x =5 B .x 2+4x =5C .2x 2﹣4x =5D .4x 2+4x =512.若一元二次方程2430x x -+=的两个实数根分别是a b 、,则一次函数y abx a b =++的图象一定不经过 A .第一象限 B .第二象限C .第三象限D .第四象限13.定义运算:a ⋆b =a (1-b ),若a ,b 是方程x 2-x +m =0(m <0)的两根,则b ⋆b -a ⋆a 的值为 A .0 B .1 C .2D .与m 有关14.某超市1月份营业额为90万元,1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则下面所列方程正确的是 A .90(1+x )2=144B .90(1-x )2=144C .90(1+2x )=144D .90(1+x )+90(1+x )2=144-9015.已知:2是关于x 的方程()210x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰ABC △的两条边的边长,则ABC △的周长为 A .6 B .4 C .5D .4或516.如图,在△ABC 中,AC =50 cm ,BC =40 cm ,∠C =90°,点P 从点A 开始沿AC 边向点C 以2 cm/s 的速度匀速运动,同时另一点Q 由点C 开始以3 cm/s 的速度沿着CB 向点B 匀速运动,当其中一点到达终点时,另一点也随之停止运动,则当△PCQ 的面积等于300 cm 2时,运动时间为A .5 sB .20 sC .5 s 或20 sD .不确定三、解答题(本大题共9小题,共68分.解答应写出文字说明、证明过程或演算步骤) 17.(8分)解方程:(1)(x -5)2=16;(直接开平方法) (2)x 2+5x =0;(因式分解法) (3)x 2-4x +1=0;(配方法) (4)x 2+3x -4=0.(公式法)18.(6分)如果关于x 的方程()22250mx m x m -+++=没有实数根,试判断关于x 的方程()()25210m x m x m ---+=的根的情况.19.(6分)在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.20.(6分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)列一元二次方程解应用题某公司今年1月份的纯利润是20万元,由于改进技术,生产成本逐月下降,3月份的纯利润是22.05万元.假设该公司2、3、4月每个月增长的利润率相同.(1)求每个月增长的利润率;(2)请你预测4月份该公司的纯利润是多少?22.(8分)如图,在宽为40 m,长为64 m的矩形地面上,修筑三条同样宽的道路,每条道路均与矩形地面的一条边平行,余下的部分作为耕地,要使得耕地的面积为2418 m2,则道路的宽应为多少?23.(8分)已知关于x 的一元二次方程2104x x m -+=有两个实数根. (1)若m 为正整数,求此方程的根.(2)设此方程的两个实数根为a 、b ,若2221y ab b b =-++,求y 的取值范围.24.(8分)某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB =x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么?25.(10分)如图,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33 cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10 cm.参考答案1.【答案】2【解析】∵方程(a+2)x|a|﹣3x+2=0是一元二次方程,∴a+20,且|a|=2,解得:a=2.【名师点睛】本题考查了一元二次方程的定义,属于简单题,熟悉一元二次方程的定义是解题关键.2.【答案】37 4【解析】根据题意得:m+n=52,mn=﹣32,∴m2+n2=(m+n)2﹣2mn=(52)2﹣2×(﹣3 2)=374.故答案为:374.3.【答案】–3【解析】2x−4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=−3.故答案为:−3.4.【答案】13【解析】设该群共有x人,依题意有:x(x﹣1)=156,解得:x=﹣12(舍去)或x=13.故答案为:13.【名师点睛】本题考查的是一元二次方程的应用,正确找准等量关系列方程即可,比较简单.5.【答案】k<2且k≠1【解析】∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且 =(-2)2-4(k-1)>0,解得:k<2且k≠1.6.【答案】1【解析】设AB长为x米,则BC长为(6-2x)米.依题意,得x(6-2x)=4.整理,得x2-3x+2=0.解方程,得x1=1,x2=2.所以当x=1时,6-2x=4;当x=2时,6-2x=2(不符合题意,舍去).答:AB的长为1米;7.【答案】C【解析】A. 2x2﹣3x+1=0,分母含有未知数,是分式方程,B. (x+2)(2x﹣1)=2x2,化简之后消掉二次项,是一次方程,C. 5x2﹣1=0,是一元二次方程,正确,D. ax2+bx+c=0,对系数a没有限制,只有当a0≠时,方程才是一元二次方程,故选C.【名师点睛】本题考查了一元二次方程定义,属于简单题,熟悉一元二次方程的定义是解题关键.8.【答案】D【解析】移项得,x2=4,开方得,x=±2,故选D.【名师点睛】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.9.【答案】C【解析】原方程去括号整理得:2x2﹣6x+3=0,则二次项系数、一次项系数及常数项的和是2+(﹣6)+3=﹣1.故选C.10.【答案】B【解析】根据题意得∆=42﹣4k≥0,解得k≤4.故选C.11.【答案】B【解析】A、因为本方程的一次项系数是−2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;C、将该方程的二次项系数化为x 2−2x= 52,所以本方程的一次项系数是−2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;D、将该方程的二次项系数化为x 2 +x= 54,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方14;故本选项错误;故选B.【名师点睛】本题考查的知识点是配方法解一元二次方程,解题关键是注意选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.【答案】D【解析】∵一元二次方程x2−4x+3=0的两个实数根分别是a、b,∴a+b=4,ab=3,∴一次函数的解析式为y=3x+4.∵3>0,4>0,∴一次函数y=abx+a+b的图象经过第一、二、三象限.故选:D.【名师点睛】本题考查了根与系数的关系以及一次函数图象与系数的关系,利用根与系数的关系结合一次函数图象与系数的关系,找出一次函数图象经过的象限是解题的关键.13.【答案】A【解析】∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.【名师点睛】本题考查了根与系数的关系,解题的关键是找出a+b=1,ab=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.14.【答案】D【解析】设平均每月营业额的增长率为x,则第二个月的营业额为:90×(1+x),第三个月的营业额为:90×(1+x)2,则由题意列方程为:90(1+x)+90(1+x)2=144−90.故选D.15.【答案】C【解析】将x=2代入方程得:4﹣2(m+1)+m=0,解得:m=2,则方程为x2﹣3x+2=0,即(x﹣1)(x﹣2)=0,解得:x=1或x=2.当三角形的三边为1、1、2时,1+1=2,不能构成三角形,舍去;当三角形的三边为1、2、2时,三角形的周长为1+2+2=5.故选C.【名师点睛】本题主要考查方程的解的定义、解方程的能力、等腰三角形的性质及三角形三边间的关系,熟练掌握方程的解的定义及解方程的能力是解题的关键.16.【答案】A【解析】设x秒后,△PCQ的面积等于300 cm2,有:(50-2x)×3x=300,∴x2-25x+100=0,∴x1=5,x2=20.当x=20 s时,CQ=3x=3×20=60>BC=40,即x=20 s不合题意,舍去.答:5秒后,△PCQ的面积等于300 cm2.故选:A.【名师点睛】此题主要考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程求出是解题关键.17.【解析】(1)(x-5)2=16,(2)x2+5x=0,(3)x2-4x+1=0,,即:x 1=2+, x 2=2.(6分)(4)x 2+3x -4=0,a =1,b =3,c =-4,则 所以方程的根为:,即:x 1=-4 ,x 2=1.(8分) 【方法点睛】本题目是一道考查求一元二次方程的根的问题,四道题利用四种不同的方法求解,在于全面考查一元二次方程的解法,难度不大.18.【解析】关于x 的方程()22250mx m x m -+++=没有实数根, 当m =0时,方程为450x -+=,方程有一个实数根,不符合题意,(1分)当m ≠0时,因为方程()22250mx m x m -+++=没有实数根, 所以, 240b ac -<,即()()222450m m m ⎡⎤-+-+<⎣⎦解得: 4m >,(2分) ()()25210m x m x m ---+=对于方程,5,850m x =-+=当时方程变为有一个实数根,(4分)()()()25,2145431m m m m m ∆⎡⎤≠=----=+⎣⎦当时, 4m >,()4310m ∴+>,()()25210m x m x m ∴---+=此时方程有两个不相等的实数根,,5,,5,m m =≠综上所述当时方程有一个实数根当时方程有两个不相等的实数根.(6分)19.【解析】(1)4△3=42-32 =16-9=7.(3分)(2)(x +2)△5=0,(x +2)2-52=0,(x +2)2=52,x +2=±5,x 1=3,x 2=-7 .(6分)20.【解析】(1)当m =0时,方程为x 2+x ﹣1=0.∆=12﹣4×1×(﹣1)=5>0,∴x =,∴x 1=x 2=.(3分) (2)∵方程有两个不相等的实数根,∴∆>0,即12﹣4×1×(m ﹣1)=1﹣4m +4=5﹣4m>0,∴m 54<.(6分)【名师点睛】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式∆=b 2﹣4ac .21.【解析】(1)设每个月增长的利润率为x ,根据题意得:20×(1+x )2=22.05,解得:x 1=0.05=5%,x 2=﹣2.05(不合题意,舍去).答:每个月增长的利润率为5%.(4分)(2)22.05×(1+5%)=23.1525(万元).答:4月份该公司的纯利润为23.1525万元.(8分)【名师点睛】本题考查了一元二次方程的实际应用,属于简单题,理解平均增长率的含义是解题关键.22.【解析】设道路的宽应为x m ,则(64-2x )(40-x )=2418,(2分)整理,得x 2-72x +71=0,解得x 1=1,x 2=71(不合题意,舍去).答:道路的宽应为1 m.(8分)23.【解析】(1)∵一元二次方程2104x x m -+=有两个实数根,∴∆=11414m m -⨯=-≥0,∴m ≤1.∵m 为正整数,∴m =1.(2分) 当m =1时,此方程为2104x x -+=,∴此方程的根为1212x x ==.(4分) (2)∵此方程的两个实数根为a 、b ,∴211044ab m b b m =-+=,,∴y =ab ﹣2b 2+2b +1=ab ﹣2(b 2﹣b )+1=112144m m --+()=314m +.(6分) 解法一:∵m =43(y ﹣1). 又∵m ≤1,∴m =43(y ﹣1)≤1,∴y 的取值范围为y ≤74.(8分) 解法二:∵m ≤1,∴34m ≤34,∴314m +≤74,∴y 的取值范围为y ≤74.(8分) 【名师点睛】本题考查了一元二次方程根的判别式和根与系数的关系,是一个综合性的题目,也是一个难度中等的题目.24.【解析】(1)设AB=x米,可得BC=54﹣2x+2=56﹣2x.(2分)(2)小娟的说法正确.(4分)矩形面积S=x(56﹣2x)=﹣2(x﹣14)2+392,(5分)∵56﹣2x>0,∴x<28,∴0<x<28,∴当x=14时,S取最大值,此时x56﹣2x,∴面积最大的不是正方形.(8分)25.【解析】(1)设P、Q两点从出发开始到x秒时四边形PBCQ的面积为33 cm2,则PB=(16﹣3x)cm,QC=2x cm,根据梯形的面积公式得12×(16﹣3x+2x)×6=33,解之得x=5.(3分)答:P、Q两点从出发开始到5秒时四边形PBCQ的面积为33 cm2.(4分)(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10 cm,作QE⊥AB,垂足为E,则QE=AD=6,PQ=10,∵PA=3t,CQ=BE=2t,∴PE=AB﹣AP﹣BE=|16﹣5t|,由勾股定理,得(16﹣5t)2+62=102,解得t1=4.8,t2=1.6.答:从出发到1.6秒或4.8秒时,点P和点Q的距离是10 cm.(10分)。

九年级数学上册 第二十三章综合测试题3套含答案

九年级数学上册 第二十三章综合测试题3套含答案

人教版九年级数学上册第二十三章综合测试卷01一、选择题(每小题4分,共28分)1.如图所示,在等腰直角三角形ABC 中,90B ∠=︒,48C ∠=︒,如果将ABC △绕顶点A 逆时针方向旋转60︒后得到AB C ''△,那么BAC '∠等于()A .60︒B .102︒C .120︒D .132︒2.如图所示,ABC △和BCD △都为等腰直角三角形,若ABC △经旋转后能与BCD △重合,下列说法正确的是()A .旋转中心为点C ,旋转角为45︒B .旋转中心为点B ,旋转角为45︒C .旋转中心为点C ,旋转角为90︒D .旋转中心为点B ,旋转角为90︒3.正方形ABCD 在平面直角坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90︒后,B 点的对应点的坐标为()A .()2,2-B .()4,1C .()3,1D .()4,04.如图所示,把ABC △绕点C 顺时针旋转30︒得到A B C ''△,其中A B ''与AC 交于点D ,若90A DC '∠=︒,则A ∠为()A .90︒B .60︒C .30︒D .无法确定5.已知点()11,1P a -和()22,1P b -关于原点对称,则b a 的值为()A .0B .1C .1-D .1±6.将如图所示的图案绕正六边形的中心旋转n ︒时与原图案完全重合,那么n 的最小值是()A .60B .90C .120D .1807.下列说法正确的是()A .中心对称的两个图形一定是全等形B .中心对称图形是旋转90︒后能与自身重合的图形C .两个形状、大小完全相同的图形一定中心对称D .中心对称图形一定是轴对称图形二、填空题(每空5分,共20分)8.若ABC △绕点A 旋转能与ADE △重合,其中AB 与AD 重合,AC 与AE 重合.若120EAD ∠=︒,则CAB ∠=________;若35CAE ∠=︒,则BAD ∠=________.9.在平面直角坐标系中,已知点0P 的坐标为()1,0,将点0P 绕原点O 逆时针旋转60︒得点1P ,延长1OP 到点2P ,使212OP OP =,再将点2P 绕原点O 逆时针旋转60︒得点3P ,则点3P 的坐标是________.10.如图所示,用两块完全相同的矩形拼成“L ”形,则ACF ∠的大小是________,ACF △的形状是________.11.已知点()221,25P a a a --+在y 轴上,则点P 关于原点O 对称的点的坐标为________.三、解答题(共52分)12.(12分)如图所示,画出四边形ABCD 绕点A 逆时针旋转90︒后的图形.13.(12分)如图所示,ABC △绕点A 旋转得到ADE △,恰好使点C 旋转后落在直线BC 上的点E 处,已知105ACB ∠=︒,10CAD ∠=︒,求DFE ∠和B ∠的度数.14.(14分)用四块如左图所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在右图①②③中各画出一种拼法(要求三种拼法各不相同),且其中至少有一种既是轴对称图形又是中心对称图形.15.(14分)在如图所示的网格中按要求画出图形,并回答问题:(1)先画出ABC △向下平移5格后的111A B C △,再画出ABC △以点O 为旋转中心顺时针旋转90 后的222A B C △;(2)在与同学交流时,你打算如何描述(1)中所画的222A B C △的位置?第二十三章综合测试答案解析一、1.【答案】B 【解析】因为90B ∠=︒,48C ∠=︒,所以42BAC ∠=︒.又CAC '∠是旋转角,所以60CAC '∠=︒.所以4260102BAC BAC CAC ''∠=∠+∠=︒+︒=︒.2.【答案】D 【解析】因为点B 始终没有改变位置,所以点B 为旋转中心,旋转角为90ABC ∠=︒.3.【答案】D 【解析】作出旋转后的图形,结合旋转的性质可得点B 的对应点的坐标为()4,0.4.【答案】B 【解析】由题意知,旋转角为30ACA '∠=︒,所以903060A '∠=︒-︒=︒.由旋转性质得60A A '∠=∠=︒.5.【答案】B 【解析】由题意得120a -+=,110b -+=,解得1a =-,0b =.所以()011b a =-=.6.【答案】C 【解析】观察图形的组成特点可以发现图形外围的图案至少旋转120︒后可以与原来的图案重合,内部的图案在旋转120︒后也和原来的图案重合,故选C .7.【答案】A二、8.【答案】120︒35︒【解析】由能互相重合的边得到对应边,从而确定对应角是解题关键.题中AB 与AD 重合,AC 与AE 重合,EAD ∠与CAB ∠是对应角,CAE ∠与BAD ∠是旋转角.9.【答案】(-【解析】画图确定点3P 的位置,过该点作x 轴、y 轴的垂线段,得到直角三角形,可求出点3P 的坐标.解答此题结合图形比较简便.10.【答案】90︒等腰直角三角形【解析】矩形FGCE 可以看作是由矩形ABCD 绕点C 顺时针旋转90︒得到的,则90ACF ∠=︒,AC FC =,所以ACF △是等腰直角三角形.11.【答案】()0,8-或()0,4-【解析】因为点()221,25P a a a --+在y 轴上,所以210a -=,所以1a =或1a =-.当1a =时,2254a a -+=,当1a =-时,2258a a -+=,所以点P 的坐标为()0,8-或()0,4-,所以点P 关于原点O 对称的点的坐标为()0,8-或()0,4-.三、12.【答案】如图所示.13.【答案】因为105ACB ∠=︒,所以18010575ACF ∠=︒-︒=︒.又因为10CAD ∠=︒,所以180751095AFC ∠=︒-︒-︒=︒.所以95DFE AFC ∠=∠=︒.又ABC ADE △≌△,所以AC AE =,105AED ACB ∠=∠=︒,B D ∠=∠,所以75AEC ACE ∠=∠=︒.所以1057530DEF AED AEC ∠=∠-∠=︒-︒=︒.所以180180953055D DFE DEF ∠=︒-∠-∠=︒-︒-︒=︒.所以55B D ∠=∠=︒.14.【答案】答案不唯一,如图所示,三种拼法仅供参考.15.【答案】(1)如图所示.(2)建立如图所示的平面直角坐标系,222A B C △各顶点的坐标分别为()25,2A ,()21,4B ,()23,1C .人教版九年级数学上册第二十三章综合测试卷02一、选择题(30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A B CD 2.如图,在方格纸中,ABC △经过变换得到DEF △,正确的变换是()A .把ABC △绕点C 逆时针方向旋转90︒,再向下平移2格B .把ABC △绕点C 顺时针方向旋转90︒,再向下平移5格C .把ABC △向下平移4格,再绕点C 逆时针方向旋转180︒D .把ABC △向下平移5格,再绕点C 顺时针方向旋转180︒3.如图,将ABC △绕点B 逆时针旋转α,得到EBD △,若点A 恰好在ED 的延长线上,则CAD ∠的度数为()A .90α︒-B .αC .180α︒-D .2α4.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的。

2022-2023学年湖北省武汉市元调综合复习九年级数学上册全册综合习题

2022-2023学年湖北省武汉市元调综合复习九年级数学上册全册综合习题

九年级上全册综合习题一.选择题(共4小题)1.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,其对称轴为x=1,过(﹣2,0),则下列结论:①ab2c3>0;②b+2a=0;③方程ax2+bx+c=0的两根为x1=﹣2,x2=4;④9a+c>3b,其中正确的结论有()A.1个B.2个C.3个D.4个2.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②9a+3b+c<0;③一元二次方程ax2+bx+c=2的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个3.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个4.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),点B(3,0),交y轴于点C,给出下列结论:①a:b:c=﹣1:2:3;②若0<x<4,则5a<y<﹣3a;③对于任意实数m,一定有am2+bm+a≤0;④一元二次方程cx2+bx+a=0的两根为﹣1和,其中正确的结论是()A.①②③④B.①③C.①③④D.②③④二.填空题(共9小题)5.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根,其中正确结论的个数为个.6.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠c),且a﹣b+c=0.下列四个结论:①若b=﹣2a,则抛物线经过点(3,0);②抛物线与x轴一定有两个不同的公共点;③一元二次方程﹣a(x﹣2)2+bx=2b+c有一个根x=﹣1;④点A(x1,y1),B(x2,y2)在抛物线上,若当x1>x2>2时,总有y1>y2,则5a+c≥0.其中正确的是.(填写序号)7.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(﹣1,0).下列说法:①abc>0;②﹣2b+c=0;③点(t﹣,y1),(t+,y2)在抛物线上,则当t>时,y1>y2;④b+c≤m(am+b)+c(m为任意实数).其中一定正确的是.8.抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=﹣2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(﹣,0)一定在此抛物线上.其中正确的结论是.9.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是.10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:①abc<0;②2a+b=0;③3a+c>0;④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.其中正确的是.(只填序号)11.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)中的x与y的部分对应值如表:x……﹣3﹣2﹣10t……y……0m n m0……下列结论中一定正确的有.(填序号即可)①9a﹣3b+c=0;②t=1;③关于x的一元二次方程a(x﹣1)2+bx+c=2a的解是x1=﹣2,x2=2;④若方程ax2+bx+c=p有两个实数根x1,x2,则二次函数y=a(x﹣x1)(x﹣x2)+p与x轴的交点坐标是(﹣1,0),(3,0).12.已知关于x的二次函数y=ax2+bx+c,下列结论中一定正确的是.(填序号即可)①若抛物线与x轴有两个不同交点,则方程cx2+bx+a=0(c≠0)必有两个不等实数根;②若对任意实数t都有at2+bt≤a﹣b(a<0),则b=2a;③若(am2+bm+c)(an2+bn+c)<0(m<n),则方程ax2+bx+c =0有一个根α,且m<α<n;④若a2m2+bam+ac<0,则方程ax2+bx+c=0必有两个实数根.13.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣102m…y=ax2+bx+c…n33n…其中n<0,则下列结论中一定正确的是(填序号即可).①abc>0;②m=3;③不等式ax2+bx+c﹣3>0的解集为0<x<3;④对于任意的实数t,at2+bt<a+b.三.解答题(共42小题)14.某公司生产的商品的市场指导价为每件150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量y(件)与销售价格浮动的百分点x之间的函数关系为y=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.(1)求该公司生产销售每件商品的成本为多少元?(2)当实际销售价格定为多少元时,日销售利润为660元?(说明:日销售利润=(销售价格一成本)×日销售量)(3)该公司决定每销售一件商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣2时,扣除捐赠后的日销售利润随x增大而减小,直接写出a的取值范围.15.水果店以一定的价格购进某种苹果若干千克,通过销售统计发现:这批苹果从开始销售至销售的第x 天的总销量y(千克)与x的关系为二次函数,销售情况记录如表:x123y3976111(1)求y与x的函数关系式;(2)这批苹果多少天才能销售完;(3)水果店为了充实库存,在销售第6天后决定每天又购进20千克该品种苹果,试问再过多少天该品种苹果库存量为244千克?16.用一条长40cm的绳子围成一个矩形,设矩形的一边长为xcm.(1)若围成的矩形面积为75cm2,求x的值;(2)当x为何值时围成的矩形面积最大,最大面积是多少?17.某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该服装店销售这批秋衣日获利W(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?18.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的两组对应值如表:售价x(元/件)4050周销售量y(件)120100周销售利润w(元)24003000注:周销售利润=周销售量×(售价﹣进价)(1)直接写出该商品的每件的进价以及y关于x的函数解析式(不要求写出自变量的取值范围);(2)当每件售价x为多少时,周销售利润w最大?并求出此时的最大利润;(3)若该商品每件进价提高了4元,其每件售价不超过m元(m是大于50的常数,且是整数),该商店在销售中,周销售量与售价仍满足(1)中的函数关系,直接写出周销售的最大利润.19.某商场要求所有商家商品的利润率不得超过40%,一商家以每件16元的价格购进一批商品.该商品每件售价定为x元,每天可卖出(170﹣5x)件,每天销售该商品所获得的利润为y元.(1)求y与x的函数关系式;(2)若每天销售该商品要获得280元的利润,每件商品的售价应定为多少元?(3)请直接写出这个商家每天销售该商品可获得的最大利润为元.20.某商家购进一批产品,成本为每件10元,采取线上和线下两种方式进行销售.调查发现:线下销售时,售价为12元可以销售1200件,每涨价1元则少售出100件.设线下的月销售量为y件,线下售价为每件x元(12≤x<24且x为整数).(1)直接写出y与x的函数关系式;(2)若线上每件售价始终比线下便宜2元,且线上的月销售量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润;(3)若月利润总和不低于6900元,则线下售价x的取值范围为.21.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如表:销售价格x元3035404550(元/千克)6004503001500日销售量p(千克)(1)请直接写出p与x之间的函数关系式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.22.某商品销售量y(件)与售价x(元)满足一次函数关系,部分对应值如下表:当售价为60元时,每件商品能获得50%的利润.售价x(元)…555045…销售量y(个)…350400450…(1)求y与x的函数关系式;(2)售价为多少时利润最大?最大利润为多少?(3)由于原材料价格上涨,导致每件成本增加a元,结果发现当售价为60元和售价为80元时,利润相同,求a的值.23.某网店经营一种热销的小商品,若该商品的售价为每件25元,第x天(x为正整数)的每件进价为y 元,y与x的对应关系如下(为所学过的一次函数或二次函数中的一种):第x天1234…1212.51313.5…每件进价(单位:元)(1)直接写出y与x的函数关系式;(2)统计发现该网店每天卖掉的件数m=4x+20,设该店每天的利润为w元;①求该店每天利润的最大值;②若该店每卖一件小商品就捐n元给某慈善组织(n>0),该店若想在第5天获得最大利润,求n的取值范围.24.某商店经销一种销售成本为30元/kg的水产品,据市场分析:若按50元/kg销售,一个月能售出300kg,销售单价每涨1元,月销售量就减少10kg.设售价为x元/kg(x>50),月销售量为ykg;(1)求月销售量y与售价x之间的函数解析式;(2)当售价定为多少时,月销售利润最大?最大利润是多少?(3)商店想在月销售成本不超过6000元的情况下,使得月销售利润不少于4000元,销售单价应定在什么范围?请直接写出售价x的取值范围.25.某商品的成本为20元,市场调查发现:当售价为180元时,每周可售出50件,每涨价10元每周少售出1件.现要求每周至少售出35件,且售价不低于180元.(1)设售价为x元(x为10的整数倍),每周利润为y元,求y与x之间的函数关系式,并直接写出x 的取值范围;(2)当售价为多少时,(销售这种商品)每周的利润最大?最大利润是多少?(3)若希望每周利润不得低于10400元,则售价x的范围为.26.某商家销售一种商品,其成本为每件20元,物价部门规定,该商品的销售单价不能超过48元/件.据市场调查发现每月的销售量与售价的关系如下表:售价x(元)…25303540…销售量y(件)…550500450400…(1)设该商品的售价为x元,每月的销售量为y件.求y与x的函数关系式;(2)若每月利润为8000元,则销售单价应定为多少元?(3)设每月获得的利润为w元,当销售单价定价多少元时,每月获得的利润最大,最大利润是多少?27.某宾馆有50个房间供游客居住,当每个房间每天的定价为160元时,房间全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲.宾馆对每个有游客居住的房间每天支出的各种费用为20元(无游客居住的房间不支出费用),设每个房间每天的定价为求x元,每天有游客居住的房间个数为y.(1)求y与x的函数关系;(2)当房价定为多少时,宾馆利润最大?最大利润是多少?(3)若宾馆要求每天的利润不低于8280元,且每天至少有20个房间有游客居住,试直接写出此时房价x的范围.28.某公司分别在A,B两城生产同种产品,A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx,当x=5时,y=75;当x=10时,y=200,B城生产产品的每件成本为110万元.(1)求a,b的值;(2)若在A,B两城生产相同数量的产品,当两城的总成本相等时,求A城生产多少件;(3)若在A,B两城一共生产200件产品,求两城的总成本的和的最少值是多少万元.29.天猫“天天特价”网店销售某款打底裙,每件售价60元,每星期可卖300件,为促销,该店决定降价销售,市场调查反映,每降价1元,每星期可多卖30件,已知该款打底裙每件成本40元,天猫规定售价不得低于成本价,设该款打底裙每件售价x元,每星期的销量为y件,每星期的销售利润为w元.(1)求y与x之间的函数解析式,并写出自变量的取值范围.(2)求w与x之间的函数解析式,并求当每件售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)若该网店每星期想要获得不低于6480元利润,请直接写出每件售价x的取值范围.30.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和100米长的木栏围成一个矩形菜园ABCD.(1)如图1,已知矩形菜园的一边靠墙,且AD≤MN,设AD=x米.①若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;②求矩形菜园ABCD面积的最大值;(2)如图2,若a=20.则旧墙和木栏能围成的矩形菜园ABCD面积的最大值是米2.31.某商场主营玩具销售,经市场调查发现,某种玩具的月销量y(件)是售价x(元/件)的一次函数,该玩具的月销售总利润W=(售价﹣成本)×月销量,三者有如下数据:售价x(元/件)152030月销量y(件)500400200月销售总利润W(元)250040004000(1)试求y关于x的函数关系式(x的取值范围不必写出);(2)玩具的成本为元,当玩具售价x=元时,月销售总利润有最大值元;(3)受市场波动原因,从本月起,该玩具成本上涨a元/件(a>0),且物价局规定该玩具售价最高不得超过25元/件.若月销量y与售价x仍满足(1)中的关系,预计本月总利润W最高为3000元,请你求出a的值.32.某超市销售一种成本为每千克40元的水产品,若按每千克50元销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)直接写出月销售量y(千克)与售价x(元/千克)之间的函数关系式:;月销售利润w(元)与售价x(元/千克)之间的函数关系式:;(2)该超市想在月销售量不低于250千克的情况下,使月销售利润达到8000元,销售单价应定为每千克多少元?(3)售价定为每千克多少元时会获得最大利润?求出最大利润.33.如图,在⊙O中,C为弦AB的中点,连接CO并延长交⊙O于点D,AB=CD=8,求⊙O的半径.34.如图,⊙O的半径OA=5cm,AB是弦,C是AB上一点,且OC⊥OA,OC=BC (1)求∠A的度数.(2)求AB的长.35.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,5为半径作⊙O分别与∠EPF的两边相交于A、B和C、D,连接OA,且OA∥PE.(1)求证:AP=AO;(2)若弦AB=8,求OP的长.36.(1)如图1,AD是⊙O的直径,BC是⊙O的弦,AD⊥BC垂足为E,AE=BC=16,求⊙O的半径.(2)在(1)的条件下,将线段AD沿射线EB方向平移,使得BE=6,如图2所示,求AD的长.37.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.38.如图,已知等腰△ABC的顶角A在⊙O的内部,点B、C在圆上,连接OA,求证:OA⊥BC.39.已知,如图,AD=BC.求证:AB=CD.40.如图,AB为⊙O的直径,点C为的中点,CD⊥AE交直线AE于D点.(1)求证:OC∥AD;(2)若DE=1,CD=2,求⊙O的直径.41.如图,在⊙中,弦AC为2cm,弦BC为4cm,∠ACB=90°,=,OE与弦CD垂直于点E.(1)求⊙O的半径;(2)求OE的长.42.如图,AB是⊙O的直径,C、D为⊙O上的点,且BC∥OD,过点D作DE⊥AB于点E.(1)求证:BD平分∠ABC;(2)若BC=3,DE=2,求⊙O的半径长.43.如图,四边形ABCD为⊙O的内接四边形,AC为⊙O的直径,∠ACD与∠BCD互余.(1)求证:=;(2)若CD=4,BC=8,求AD的长.44.如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若⊙O的半径为8,的度数为90°,求线段MN的长.45.如图,⊙O中的弦AB⊥CD于H,BE⊥AC于E,交CD于F.(1)求证:HD=HF.(2)若∠ABC=60°,求证:BD等于⊙O的半径.46.已知:△ABC中,以AB为直径的⊙O交边AC,BC于点D,E,且点E为BC边的中点.(1)求证:AC=AB;(2)若BE=2,AD=6,求⊙O半径长.47.如图,AB为⊙O的直径,且AB=10,C为⊙O上一点,AC平分∠DAB交⊙O于点C,AE=6,AD⊥CD于D,F为半圆弧AB的中点,EF交AC于点G.(1)求CD为长;(2)求EG的长.48.如图AB为⊙O的直径,点D为AB下方圆上一点,点C为的中点,连接CA、CD.(1)求证:∠ABD=2∠BDC;(2)连AD,过点C作CE⊥AB交AB于H,交AD于点E,若OH=5,AD=24,求线段DE的长度.49.如图,AB为⊙O的直径,C是⊙O上的一点,连接AC,BC.D是的中点,过D作DE⊥AB于点E,交BC于点F.(1)求证:BC=2DE;(2)若AC=6,AB=10,求DF的长.50.如图:OA=OB=OC,∠AOB=∠BOC,∠BAC=45°.(1)求证:A,B,C在以O为圆心,OA为半径的圆上;(2)求∠OAC的度数.51.如图,△ABC为⊙O的内接三角形,∠ACB=60°,弦CD平分∠ADB.(1)求证:△ABC为等边三角形;(2)若BD=3,AD=5,过C点作BD的平行线交DA的延长线于点E,试求△CAE面积.52.如图,半圆O的直径为AB,D是半圆上的一个动点(不与点A,B重合),连接BD并延长至点C,使CD=BD,连接AC,过点D作DE⊥AC于点E.(1)请猜想DE与⊙O的位置关系,并说明理由;(2)当AB=4,∠BAC=45°时,求DE的长.53.如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE:PF=1:3,AB=2,求OG的长.54.如图,点A、P、B、C为⊙O上四点,∠APC=∠CPB=60°.(1)判断△ABC形状并证明;(2)将△APB绕点B顺时针旋转60°至△CMB,请画出图形,直接写出P A,PB,PC三者之间的数量关系.55.如图,AB为⊙O直径,C为AB上一点,DC⊥AB于C,交⊙O于D,D为中点,AE交DC于点F.(1)求证:AE=2DC;(2)若AC=2,AE=8,求⊙O半径R和CF长.。

九年级数学专题复习之《圆》的综合训练卷

九年级数学专题复习之《圆》的综合训练卷

九年级数学专题复习之《圆》的综合训练卷一.选择题(共10小题)1.如图,矩形ABCD中.AB=3,BC=6,以点B为圆心、BA为半径画弧,交BC于点E,以点D为圆心、DA为半径画弧,交BC于点F,则阴影部分的面积为()A.B.6π﹣C.D.2.如图,点C是半圆O的中点,AB是直径,CF⊥弦AD于点E,交AB于点F,若CE=1,EF=,则BF的长为()A.B.1C.D.3.已知⊙O的半径为2,A为圆内一定点,AO=1.P为圆上一动点,以AP为边作等腰△APG,AP=PG,∠APG=120°,OG的最大值为()A.1+B.1+2C.2+D.2﹣14.如图,⊙O中,弦AB⊥CD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD 于M,过F作FH⊥AC,垂足为G,以下结论:①=;②HC=BF:③MF=FC:④+=+,其中成立的个数是()A.1个B.2个C.3个D.4个5.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连接CD交AB于点F,点P从点A出发沿AO向终点O运动,在整个运动过程中,△CFP与△DFQ的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大6.如图,AB是半圆O的直径,点D在半圆O上,AB=2,AD=10,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C移动的过程中,BH的最小值是()A.5B.6C.7D.87.如图,已知OA=6,OB=8,BC=2,⊙P与OB、AB均相切,点P是线段AC与抛物线y=ax2的交点,则a的值为()A.4B.C.D.58.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则△AMN周长的最小值是()A.3B.4C.5D.69.如图,已知在矩形ABCD中,AB=1,BC=,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是()A.πB.π+C.D.2π10.如图,半径为1的⊙O与直线l相切于点A,C为⊙O上的一点,CB⊥l于点B,则AB+BC 的最大值是()A.2B.C.D.二.填空题(共10小题)11.已知如图,AB=4,AC=2,∠BAC=60°,所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为.12.已知圆锥的侧面积是40π,底面圆直径为2,则圆锥的母线长是.13.如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=8,点D是BC上一点,BC=3CD,点P是线段AC上一个动点,以PD为直径作⊙O,点M为的中点,连接AM,则AM 的最小值为.14.如图,等边△ABC中,AB=2,点D是以A为圆心,半径为1的圆上一动点,连接CD,取CD的中点E,连接BE,则线段BE的最大值与最小值之和为.15.如图,AB是半圆O的直径,点C在半径OA上,过点C做CD⊥AB交半圆O于点D.以CD,CA为边分别向左、下作正方形CDEF,CAGH.过点B作GH的垂线与GH的延长线交于点I,M为HI的中点.记正方形CDEF,CAGH,四边形BCHI的面积分别为S1,S2,S3.(1)若AC:BC=2:3,则的值为;(2)若D,O,M在同条直线上,则的值为.16.如图,直线y=﹣x+m(m>0)与x轴、y轴分别交于点A,B,C是AB的中点,点D 在直线y=﹣2上,以CD为直径的圆与直线AB的另一交点为E,交y轴于点F,G,已知CE+DE=6,FG=2,则CD的长是.17.如图1,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,设PB+ PD的值为a,如图2,⊙O是正方形ABCD的内切圆,AB=4,点P是⊙O上一个动点,设AP+DP的值为b,如图3,MN=4,∠M=75°,MG=3.点O是△MNG内一点,设点O到△MNG三个顶点的距离和的值为c,则a2+b2+c2的最小值为.18.如图,正六边形ABCDEF中,G,H分别是边AF和DE上的点,GF=AB=2,∠GCH =60°,则线段EH长.19.如图,边长为5的圆内接正方形ABCD中,P为CD的中点,连接AP并延长交圆于点E,则DE的长为.20.已知:如图,在矩形ABCD中,AB=6,BC=9,点E是对角线AC上的一点,经过C,D,E三点的⊙O与AD,BC分别交于点F,G,连接ED,EF,EG,延长GE交AD于点H.若当△HEF是等腰三角形时,CE的长为.三.解答题(共10小题)21.如图,O是△ABC的外心,I是△ABC的内心,连AI并延长交BC和⊙O于D、E两点.(1)求证:EB=EI;(2)若AB=4,AC=3,BE=2,求AI的长.22.如图,AB是⊙O的直径,P在AB的延长线上,PD与⊙O相切于点D,C在⊙O上,PC=PD.(1)求证:PC是⊙O的切线;(2)连接AC,若AC=PC,PB=1,求⊙O的半径.23.如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连接DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.24.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE (1)求证:OA=OB;(2)已知AB=4 ,OA=4,求阴影部分的面积.25.已知⊙O为△ABC的外接圆,直线l与⊙O相切于点P,且l∥BC.(1)连接PO,并延长交⊙O于点D,连接AD.证明:AD平分∠BAC;(2)在(1)的条件下,AD交BC于点E,连接CD.若DE=2,AE=6.试求CD的长.26.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.27.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,连接MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.28.如图,在Rt△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的外接圆,交AC于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为5,AC=8,求S△BDE.29.如图,在△ABC中,BE是∠ABC的平分线,∠C=90°,点D在AB边上,以DB为直径的半圆O经过点E.(1)求证:AC是⊙O的切线.(2)若BC=3,⊙O的半径为2,求BE的长.30.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.。

九年级数学上册 第二十一章综合测试题含答案

九年级数学上册 第二十一章综合测试题含答案

人教版九年级数学上册第二十一章综合测试卷01一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是()A .2550x x -+=B .2550x x +-=C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是()A .12x x ==B .10x =,2x =-C .1x 2x =-D .1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为()A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为()A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为()A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为()A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=()A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为()A .1(1)282x x +=B .1(1)282x x -=C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是()A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -++-=的两根为1x ,2x ,则1211x x +=__________.15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________.16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________.17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分)19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=.(1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。

人教版 九年级数学上册 第21章 一元二次方程 综合训练(含答案)

人教版 九年级数学上册 第21章 一元二次方程 综合训练(含答案)

人教版九年级数学第21章一元二次方程综合训练一、选择题(本大题共10道小题)1. 若关于x的方程x2-2x+c=0有一根为-1,则方程的另一根为( )A. -1B. -3C. 1D. 32. 一元二次方程2x2-3x+1=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根3. 绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为() A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9004.若关于x的一元二次方程x2-2x+m=0无实数根,则实数m的取值范围是( ) A.m<1 B.m≥1C.m≤1 D.m>15. 关于x的一元二次方程x2+kx-2=0(k为实数)根的情况是( )A.有两个不相等的实数根C.没有实数根B.有两个相等的实数根D.不能确定6. 以x=b±b2+4c2为根的一元二次方程可能是( )A.x2+bx+c=0 B.x2+bx-c=0C.x2-bx+c=0 D.x2-bx-c=07. 在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=08. 若方程(x+3)2=m的解是有理数,则实数m不能..取下列四个数中的( )A.1 B.4 C.14 D.129. 若M=2x2-12x+15,N=x2-8x+11,则M与N的大小关系为( )A.M≥N B.M>N C.M≤N D.M<N10. 定义:如果一元二次方程ax2+bx+c=0满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0满足a-b+c=0,那么我们称这个方程为“美好”方程.如果一元二次方程2x2+mx+n=0既是“和谐”方程又是“美好”方程,那么mn的值为()A.2 B.0 C.-2 D.3二、填空题(本大题共7道小题)11. 一元二次方程3x2=4-2x的解是__________________.12. 方程x-1=2的解是________.13. 填空:(1)x2+4x+(____)=(x+____)2;(2)x2+(____)x+254=⎝⎛⎭⎪⎫x-522;(3)x2-73x+(______)=(x-______)2;(4)x2-px+(______)=(x-______)2.14.三角形的两边长分别是3和4,第三边长是方程x2-13x+40=0的根,则该三角形的周长为________.15. 对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=________.16. 已知x=m是一元二次方程x2-9x+1=0的一个根,则m2-7m-18m2m2+1=________.17. 小明在解方程x2-2x-1=0时出现了错误,其解答过程如下:x2-2x=-1.(第一步)x2-2x+1=-1+1.(第二步)(x-1)2=0.(第三步)x1=x2=1.(第四步)(1)小明的解答过程是从第________步开始出现错误,其错误原因是__________ ______;(2)请写出此题正确的解答过程.三、解答题(本大题共4道小题)18. 用配方法解下列方程:(1) x2+6x=-7;(2)4y2+4y+3=0;(3)(2x-1)2=x(3x+2)-7.19. 如图,某工程队在工地上利用互相垂直的两面墙AE,AF,另两边用铁栅栏围成一个矩形场地ABCD,中间再用铁栅栏分割成两个矩形,铁栅栏的总长为180米,已知墙AE的长为90米,墙AF的长为60米.(1)设BC=x米,则CD=________米,四边形ABCD的面积为____________平方米;(2)若矩形ABCD的面积为4000平方米,则BC的长为多少米?20. 某学校机房有100台学生用电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播得非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都将被感染?21. 2018·常州阅读材料:各类方程的解法:求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图1-T-2,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD,DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.人教版九年级数学第21章一元二次方程综合训练-答案一、选择题(本大题共10道小题)1. 【答案】D 【解析】设方程的另一个根为x2,则根据根与系数关系有-1+x2=2,解得x2=3.2. 【答案】B 【解析】代入数据求出根的判别式Δ=b2-4ac的值,根据Δ的正负即可得出结论.∵Δ=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.3. 【答案】 B4. 【答案】D [解析] ∵方程无实数根,∴Δ=b2-4ac=(-2)2-4×1·m=4-4m<0,解得m>1.故选D.5. 【答案】 A [解析] ∵a=1,b=k,c=-2,∴Δ=b2-4ac=k2-4×1×(-2)=k2+8>0,∴方程有两个不相等的实数根.故选A.6. 【答案】 D [解析] 对照求根公式,可确定二次项系数、一次项系数和常数项分别为1,-b,-c.故选D.7. 【答案】B8. 【答案】D9. 【答案】A [解析] M-N=(2x2-12x+15)-(x2-8x+11)=x2-4x+4=(x-2)2.∵(x-2)2≥0,∴M≥N.10. 【答案】B[解析] 根据“和谐”方程和“美好”方程的定义得2+m+n=0,2-m+n=0,解得m=0,n=-2,所以mn=0.二、填空题(本大题共7道小题)11. 【答案】x1=-1+133,x2=-1-133[解析]直接利用公式法解一元二次方程得出答案.整理,得3x2+2x-4=0,则Δ=b2-4ac=4-4×3×(-4)=52>0,∴x=-2±526,∴x1=-1+133,x2=-1-133.12. 【答案】x=5【解析】方程两边平方得,x-1=4,解得x=5,经检验,x=5是原方程的解.13. 【答案】(1)4 2 (2)-5 (3)493676(4)p24p214. 【答案】12【解析】解一元二次方程x2-13x+40=0得x1=5,x2=8.当x=5时,∵3+4>5,∴3,4,5能构成三角形,此时三角形周长为:3+4+5=12;当x=8时,∵3+4<8,不满足三角形的三边关系,∴3,4,8不能构成三角形.故此三角形的周长为12.15. 【答案】-3或4 [解析] 根据题意,得[(m+2)+(m-3)]2-[(m+2)-(m-3)]2=24.整理,得(2m-1)2=49,即2m-1=±7,所以m1=-3,m2=4.16. 【答案】-1[解析] 由题意可得m2-9m+1=0,所以m2+1=9m,m≠0,所以m2-7m-18m2m2+1=m2-9m+2m-18m29m=-1+2m-2m=-1.17. 【答案】解:(1)一移项时没有变号(2)x2-2x=1.x2-2x+1=1+1.(x-1)2=2.x-1=±2.所以x1=1+2,x2=1- 2.三、解答题(本大题共4道小题)18. 【答案】解:(1)配方,得x2+6x+9=-7+9.即(x+3)2=2.方程两边开方,得x+3=±2.所以x1=-3+2,x2=-3- 2.(2)移项,得4y2+4y=-3.配方,得(2y+1)2=-2.因为无论y为何实数,总有(2y+1)2≥0,所以此方程无解.(3)去括号,得4x2-4x+1=3x2+2x-7.整理,得x2-6x=-8.配方,得(x-3)2=1.所以x-3=±1,所以x1=2,x2=4.19. 【答案】解:(1)(180-2x)x(180-2x)(2)设红星公司要制作的BC=x米.由题意,得x(180-2x)=4000,整理,得x2-90x+2000=0,解得x1=40,x2=50.当x=40时,180-2x=100>90,不符合题意,舍去;当x=50时,180-2x=80<90,符合题意.答:BC的长为50米.20. 【答案】解:(1)设每轮感染中平均一台电脑会感染x台电脑.根据题意,得1+x+x(1+x)=16,解得x1=3,x2=-5(舍去).答:每轮感染中平均一台电脑会感染3台电脑.(2)三轮感染后,被感染的电脑台数为16+16×3=64,四轮感染后,被感染的电脑台数为64+64×3=256>101.答:若病毒得不到有效控制,四轮感染后机房内所有电脑都将被感染.21. 【答案】解:(1)x3+x2-2x=0,x(x2+x-2)=0,x(x+2)(x-1)=0,∴x=0或x+2=0或x-1=0,∴x1=0,x2=-2,x3=1.故答案为:-2,1.(2)2x+3=x,方程两边平方,得2x+3=x2,即x2-2x-3=0,(x-3)(x+1)=0,∴x-3=0或x+1=0,∴x1=3,x2=-1.当x=-1时,2x+3=1=1≠-1,∴-1不是原方程的解.∴方程2x+3=x的解是x=3.(3)∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD=3 m.设AP=x m,则PD=(8-x)m.∵BP+CP=10 m,BP=AB2+AP2,CP=PD2+CD2,∴9+x2+(8-x)2+9=10,∴(8-x)2+9=10-9+x2,两边平方,得(8-x)2+9=100-20 9+x2+9+x2,整理,得5 9+x2=4x+9,两边平方并整理,得x2-8x+16=0,即(x-4)2=0,解得x1=x2=4.经检验,x=4是方程的解.答:AP的长为4 m.。

宜昌市2019春数学综合训练(4)

宜昌市2019春数学综合训练(4)

第7题图 a b 2019学年春季学期九年级数学试题综合训练(4)命题人:刘国洪 审题人:李秋萍一、选择题(本大题满分45分,共15小题,每小题3分)1、-3的倒数是( )A 、-3B 、31-C 、31D 、32、下列四个图形中,轴对称图形的个数是( )A 、0个B 、1个C 、2个D 、3个3、分式12x -有意义时,x 的取值范围是( ) A 、x <2 B 、x ≠2 C 、x >2 D 、x ≥24、已知实数a ,b 在数轴上的位置如图所示,下列式子的值为正数的是( )A 、b a -B 、b a +C 、abD 、ba 5、日岛核电站事故期间,某处监测到一种浓度为0.000 096 3贝克/立方米的放射性元素,数据“0.000 096 3”用科学记数法表示为( )A 、9.63×10-4B 、0.963×10-4C 、9.63×105D 、9.63×10-56、下列式子中,一定成立的是( )A 、030=B 、236a a a =C 、22(1)1xx +=+D、=7、在Rt △ABC 中,∠C =90°,AB =5,AC =3,cos B 的值是( )A 、45B 、35C 、34D 、438、在八年级一次引体向上测试中,801班某小组的成绩(单位:个)分别是:7、9、8、9、8、10、9、7,下列说法不正确的是( )A 、中位数是8.5B 、平均数是8.4C 、众数是9D 、极差是39、劳技课上,小李将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm ,母线长50cm ,则这顶纸帽的侧面积为 ( )cm 2.A 、250πB 、500πC 、750πD 、1000π第4题图B第10题图10、下图是一个正方体的表面展开图,正方体的每个面都标注了数字,展开之前与标有数3的面相对的一面所标注的数字为( )A 、1B 、4C 、5D 、611、如图,AC 、BD 交于点E ,AE =CE ,添加以下四个条件中的一个,其中不能使△ABE ≌△CDE 的条件是( )A 、BE =DEB 、AB ∥CDC 、∠A =∠CD 、AB =CD12、天气预报说宜昌市明天下雨的概率为95%,这说明( ).A 、明天该市的雨量是今天雨量的95%B 、明天该市下雨的可能性很大C 、今天该市的雨量是明天雨量的95%D 、明天该市下雨的可能性很小13、某药品原价为每盒100元,由于连续两次降价,每次降价20%,则两次降价后价格是每盒( )元.A 、64B 、60C 、36D 、8014、如图,AB 是半圆的直径,弦CD ∥AB ,∠A =65°,∠BCD 的度数是( )A 、25°B 、35°C 、55°D 、65°15、如图,平行于x 轴的直线AC 分别交函数y 1=x 2(x ≥0)与y 2=31x 2(x ≥0)的图象于B ,C 两点,过点C 作y 轴的平行线交y 1=x 2(x ≥0)的图象于点D ,直线DE ∥AC ,交y 2=31x 2(x ≥0)的图象于点E ,则ABDE =( ) A .33 B .1 C .22 D .33-二、解答题:(本大题共9题,满分75分)16.若x 、y 满足方程组⎩⎨⎧=--=+73213y x y x ,求x -2y 的值. 第15题图第11题图 第14题图17.先化简,再求值:x x x x x x x x 124122222÷⎪⎪⎭⎫ ⎝⎛+-+-+-,其中x 从-2、-1、0、1四个数中适当选取一个数.18.如图,在△ABC 中,∠BAC =90°,点D 是BC 中点,AE ∥BC ,CE ∥AD .(1)求证:四边形ADCE 是菱形;(2)过点D 作DF ⊥CE 于点F ,∠B =60°,AB =6,求EF 的长.19.为了预防春季流感,长江中学在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到4.5毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少分钟后,学生才能再次进入教室?20.长江中学课外阅读小组对A 《唐诗》、B 《宋词》、C 《蒙山童韵》、D 其它,这四类著作开展“最受欢迎的传统文化著作”调查,随机调查了若干名学生(每名学生必选且只能选这四类著作中的一种)并将得到的信息绘制了下面两幅不完整的统计图:(1)求一共调查了多少名学生;(2)请将条形统计图补充完整;(3)若覃老师想从这四类著作中随机选取两类作为学生寒假必读书籍,请用树状图或列表的方法求恰好选中《宋词》和《蒙山童韵》的概率.21.已知⊙O 的直径AB =2,弦AC 与弦BD 交于点E .且OD ⊥AC ,垂足为点F .(1)如图,如果AC =BD ,求弦AC 的长;(2)连接BC 、CD 、DA ,如果BC 是⊙O 的内接正n 边形的一边,CD 是⊙O 的内接正(n +4)边形的一边,求△ACD 的面积.22.长江高中正在火热筹建,为表示对勤劳工人们的感谢,今天早晨食堂王阿姨跟着李阿姨一起给工人们包饺子做早餐.已知有10名工人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若李阿姨每分钟包饺子的速度是王阿姨速度的2倍少2个,那么王阿姨每分钟至少要包多少个饺子?(2)王阿姨以(1)问中的最低速度,和李阿姨同时开始包饺子,李阿姨包饺子的速度在(1)问的最低速度基础上提升了%45a ,在包饺子的过程中王阿姨外出耽误了40a 分钟,返家后,王阿姨与李阿姨一起包完剩下的饺子,所用时间比原计划少了21a %,求a 的值.23.已知:在矩形ABCD 中,AB =a (a 为定值),连接AC ,点O 是AC 上的一个动点,以AO 为半径的⊙O 与AD 交于点P .(1)如图1,若∠DCP =∠DAC ,求证:PC 是⊙O 的切线;(2)在(1)的条件下,若AP =PC ,求⊙O 的半径(用含a 的代数式表示);(3)如图2,若BC =AB =a ,且点O 运动到AC 与BD 的交点处,在弧CD 上任取一点Q ,连接AQ 、BQ 分别交BD 、AC 于M 、N ,求证:四边形AMNB 的面积为定值.24.如图1,矩形OABC 的顶点A ,C 的坐标分别为(4,0),(0,6),直线AD 交BC于点D ,tan ∠OAD =2,抛物线M 1:y =ax 2+bx (a ≠0)过A ,D 两点.(1)求点D 的坐标和抛物线M 1的表达式;(2)图2中点E (0,4),连接AE ,将抛物线M 1的图象向下平移m (m >0)个单位得到抛物线M 2.① 设点D 平移后的对应点为点D′,当点D′ 恰好在直线AE 上时,求m 的值; ② 当1≤ x ≤ m (m >1)时,若抛物线M 2与直线AE 有两个交点,求m 的取值范围.C。

九年级上(人教版)数学单元综合练习卷:前两章综合练习

九年级上(人教版)数学单元综合练习卷:前两章综合练习

前两章综合练习一、填空题1.用配方法把函数y=2x2−4x化成y=a(x+ℎ)2+k的形式是y=________.2.某商品原价为a元 ,后连续两次以同一个百分率降价 ,假设设此百分率为x ,那么两次降价后该商品的售价为________元〔用含a与x的代数式表示〕.3.用配方法将二次函数y=2x2−4x+5化为y=a(x−ℎ)2+k的形式是________.4.二次函数y=−x2+2x+m的局部图象如下图 ,那么关于x的一元二次方程−x2+2x+m=0的解为________.5.假设m为任意实数 ,且满足(m2+2m)2+2(m2+2m)−15=0 ,那么2009−2m2−4m=________.6.关于x的一元二次方程x2+√k−1x−1=0有两个不相等的实数根 ,那么k的取值范围是________.7.如图 ,用长为24m的篱笆 ,一面利用墙〔墙足够长〕围成一块留有一扇tm宽门的长方形花圃.设花圃宽AB 为xm ,面积为ym2 ,那么y与x的函数表达式为________.8.某种植物的主干长出假设干数目的支干 ,每个支干又长出同样多数目的小分支 ,主干、支干、小分支一共是91个 ,那么每个支干长出的小分支数目为________.9.α、β是方程x2+2x−5=0的两个实数根 ,那么α2+β2+αβ的值为________.10.体育测试时 ,初三一名学生推铅球 ,铅球所经过的路线为抛物线y=−112x2+x+12的一局部 ,该同学的成绩是________.二、选择题11.以下方程一定是关于x的一元二次方程的是〔〕A.12x2+1x−2=0B.ax2+bx+c=0C.(n2+1)x2+n=0D.mx2+3x=n12.直线y=52x−2与抛物线y=x2−12x的交点个数是〔〕A.0个B.1个C.2个D.互相重合的两个13.一元二次方程(x−4)2=2x−3化为一般式是〔〕A.x2−10x+13=0B.x2−10x+19=0C.x2−6x+13=0D.x2−6x+19=014.二次函数y=ax2+bx+c(a≠0)的图象如下图 ,那么以下结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2−4ac>0 ,其中正确的结论的序号是〔〕A.①②B.①③C.③④D.②④15.以下一元二次方程没有实数根的是〔〕A.x2+2x+1=0B.x2+x+2=0C.x2−1=0D.x2−2x−1=016.抛物线y=ax2+bx+c(a<0)过A(−3, 0)、O(1, 0)、B(−5, y1)、C(5, y2)四点 ,那么y1与y2的大小关系是〔〕A.y1>y2B.y1=y2C.y1<y2D.不能确定1 7.设a ,b是方程x2+x−2017=0的两个实数根 ,那么a2+2a+b的值为〔〕A.2014B.2015C.2016D.201718.假设方程(x2+y2−1)2=16 ,那么x2+y2=()A.5或−3B.5C.±4D.41 9.关于二次函数y=x2+4x−7的最大〔小〕值 ,表达正确的选项是〔〕A.当x=2时 ,函数有最大值B.当x=2时 ,函数有最小值C.当x=−2时 ,函数有最大值D.当x=−2时 ,函数有最小值20.用配方法解方程x2+2x−5=0时 ,原方程应变形为〔〕A.(x+1)2=6B.(x−1)2=6C.(x+2)2=9D.(x−2)2=9三、解答题〔共 6 小题 ,每题 10 分 ,共 60 分〕21.用适当的方法解以下方程:(1)2x2−10x=3(2)(x+3)2=(1−2x)2(3)(x+4)2=5(x+4)(4)(x+1)2−3(x+1)+2=0.22.函数y=(m+2)x m2+m−4是关于x的二次函数.(1)求m的值.(2)如果这个二次函数的图象经过点P(3√2, −18) ,求m的值;(3)对于(2)中二次函数 ,函数有无最大值?假设有 ,此时的x为何值.23.要建一个如下图的面积为300m2的长方形围栏 ,围栏总长50m ,一边靠墙〔墙长25m〕.(1)求围栏的长和宽;(2)能否围成面积为400m2的长方形围栏?如果能 ,求出该长方形的长和宽 ,如果不能请说明理由.24.某商场经营某种品牌的玩具 ,购进时的单价是30元 ,根据市场调查发现:在一段时间内 ,当销售单价是40元时 ,销售量是600件 ,而销售单价每涨1元 ,就会少售出10件玩具.假设商场要获得10000元销售利润 ,该玩具销售单价应定为多少元?售出玩具多少件?25.如图 ,在△ABC中 ,∠B=90∘ ,AB=12cm ,BC=24cm ,动点P从点A开始沿着边AB向点B以2cm/s的速度移动〔不与点B重合〕 ,动点Q从点B开始沿着边BC向点C以4cm/s的速度移动〔不与点C重合〕.假设P、Q两点同时移动t(s);(1)当移动几秒时 ,△BPQ的面积为32cm2.(2)设四边形APQC的面积为S(cm2) ,当移动几秒时 ,四边形APQC的面积为108cm2?x+3与y轴交于点C ,与x轴26.如图 ,抛物线y=ax2+bx+5与x轴交于A(−1, 0)、B(5, 0)两点 ,直线y=−34交于点D.点P是抛物线上一动点 ,过点P作直线PF⊥x轴于点F ,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)假设点P在x轴上方的抛物线上 ,当PE=5EF时 ,求点F的坐标;(3)假设点E’是点E关于直线PC的对称点 ,当点E’落在y轴上时 ,请直接写出m的值.答案1.2(x−1)2−22.a(1−x)23.y=2(x−1)2+34.x1=4 ,x2=−25.20036.k≥17.y=−2x2+(24+t)x8.99.910.6+6√511.C12.C13.B14.C15.B16.A17.C18.B19.D20.A21.解:(1)2x 2−10x −3=0 ,∴△=(−10)2−4×2×(−3)=124 ,∴x =10±√1244=5±√312 ,(2)(x +3)2−(1−2x)2=0 ,(x +3+1−2x)(x +3−1+2x)=0 ,(4−x)(3x +2)=0 ,∴x =4或x =−23 ,(3)(x +4)2−5(x +4)=0 ,(x +4)(x +4−5)=0 ,∴x =−4或x =1 ,(4)(x +1−1)(x +1−2)=0 ,∴x =0或x =1 ,22.解:(1)∵函数y =(m +2)x m 2+m−4是关于x 的二次函数 ,∴m 2+m −4=2 ,且m +2≠0 ,解得:m 1=2 ,m 2=−3 ,故m 的值为:2或−3;(2)∵这个二次函数的图象经过点P(3√2, −18) ,∴−18=(m +2)×(3√2)2 ,解得:m =−3;(3)∵m +2=−3+2=−1 ,∴二次函数有最大值 ,∵y =−x 2 ,开口向下 ,顶点坐标在原点 ,∴当函数取到最值 ,此时的x 为0.23.围栏的长为20米 ,围栏的宽为15米.(2)假设能围成 ,设围栏的宽为y 米 ,那么围栏的长为(50−2y)米 , 依题意得:y(50−2y)=400 ,即2y 2−50y +400=0 ,∵△=(−50)2−2×4×400=−700<0 ,∴该方程没有实数根.故假设不成立 ,即不能围成面积为400m 2的长方形围栏.24.该玩具销售单价应定为50元或80元 ,售出玩具为500件或200件.25.当移动2秒或4秒时 ,△BPQ 的面积为32cm 2.(2)S =S △ABC −S △BPQ =12AB ⋅BC −(24t −4t 2)=4t 2−24t +144=108 ,解得:t =3.答:当移动3秒时 ,四边形APQC 的面积为108cm 2.26.解:(1)∵抛物线y =−x 2+bx +c 与x 轴交于A (−1, 0) ,B(5, 0)两点 ,∴{−1−b +c =0−25+5b +c =0, 解得{b =4c =5, ∴抛物线的解析式为y =−x 2+4x +5.(2)∵点P 的横坐标为m ,∴P(m, −m 2+4m +5) ,E(m, −34m +3) ,F(m, 0).∴PE =|y P −y E |=|(−m 2+4m +5)−(−34m +3)|=|−m 2+194m +2| ,EF =|y E −y F |=|(−34m +3)−0|=|−34m +3|.由题意 ,PE =5EF ,即:|−m 2+194m +2|=5|−34m +3|=|−154m +15| ①假设−m 2+194m +2=−154m +15 ,整理得:2m 2−17m +26=0 , 解得:m =2或m =132; ②假设−m 2+194m +2=−(−154m +15) ,整理得:m 2−m −17=0 , 解得:m =1+√692或m =1−√692.由题意 ,m 的取值范围为:−1<m <5 ,故m =132、m =1−√692这两个解均舍去. ∴m =2或m =1+√692.∴点F 的坐标为(2, 0)或(1+√692, 0).(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称 ,∴∠1=∠2 ,CE =CE′ ,PE =PE′.∵PE 平行于y 轴 ,∴∠1=∠3 ,∴∠2=∠3 ,∴PE =CE ,∴PE =CE =PE′=CE′ ,即四边形PECE′是菱形.当四边形PECE′是菱形存在时 ,由直线CD 解析式y =−34x +3 ,可得OD =4 ,OC =3 ,由勾股定理得CD =5. 过点E 作EM // x 轴 ,交y 轴于点M ,易得△CEM ∽△CDO , ∴ME OD =CE CD ,即|m|2=CE 5 ,解得CE =54|m| , ∴PE =CE =54|m| ,又由(2)可知:PE =|−m 2+194m +2| ∴|−m 2+194m +2|=54|m|.①假设−m 2+194m +2=54m ,整理得:2m 2−7m −4=0 ,解得m =4或m =−12; ②假设−m 2+194m +2=−54m ,整理得:m 2−6m −2=0 ,解得m 1=3+√11 ,m 2=3−√11. 由题意 ,m 的取值范围为:−1<m <5 ,故m =3+√11这个解舍去.当四边形PECE′是菱形这一条件不存在时 ,此时P 点横坐标为0 ,E ,C ,E ′三点重合与y 轴上 ,也符合题意 , ∴P(0, 5)综上所述 ,存在满足条件的m 的值为0或−12或4或3+√11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习专题一:数与式
一、选择题:
1. 计算12--的结果是( )
A .3-
B .2-
C .1-
D .3
2. 据某网站报道:一粒废旧纽扣电池可以使600吨水受到污染.某校团委四年来共回收废旧纽扣电池3500粒.若这3 500粒废旧纽扣电池可以使m 吨水受到污染.用科学记数法表示m 为( )
A .2.1×105
B .2.1×10-5 C. 2.1×106 D .2.1×10-6 3. “x 的
1
2与y 的和”用代数式可以表示为( )
A .1()2x y +
B . 12
x y ++
C .1
2
x y +
D .
1
2
x y + 4. 下列因式分解中,结果正确的是( )
A .()()2
422x x x -=+-
B .()()()2
1213x x x -+=++ C .(
)23
22
2824m n n n m n
-=-
D .2
2211
1144x x x x x ⎛⎫-+
=-+ ⎪⎝⎭
5.
有意义,则x 的取值范围为( ) A .x ≥2
B .x ≠3
C .x ≥2或x ≠3
D .x ≥2且x ≠3
6. 下列各式与
x y
x y
-+相等的是( ) A .5
5
x y x y -+++
B .22x y x y
-+
C .222()x y x y --(x ≠y )
D .2222
x y x y -+
7. 如果把分式
2x y
x
+中的x 和y 的值都扩大了3倍,那么分式的值( ) A .扩大3倍 B .扩大2倍
C .扩大6倍
D .不变
8. 计算(1-
11a -)(21a
-1)的正确结果是( ) A .1
a a
+ B .-1a a + C .1a a -
D .-
1
a a
- 下面四个命题中,正确的是:
A . 绝对值等于它本的实数只有零
B . 倒数等于它本的实数只有1
C . 相反数等于它本身的实数只有零
D . 算术平方根等于它本身的实数只有1
《同步课程》试卷
填空题
9.
若化简1x --
2x -5,则x 的取值范围是 .
10. 把多项式ac-bc+a 2-b 2分解因式,结果是 .
11. 当x=2006时,代数式1
1
2--x x -1的值为 .
12. a<0
,则a 的取值范围为_______. 13. 在实数
18,π

3
,0
+1,0.303003……中,无理数有________个. 14.
最简根式4a
和a=__________,b=__________. 15. 在等式3215⨯
-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且
等式成立。

则第一个方格内的数是___________
16. 如下图是由边长为a 和b 的两个正方形组成,通过用不同的方法,计算下图中阴影部分
的面积,可以验证的一个公式是 .
17
的整数部分为a ,小数部分为b ,则2
b
-a=________ 18. 已知a -b=b -c=
35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 .
19. 已知1
a b +=1a +1b
,则 b a +a b 的值为 .
20. 若4m ·8m-1÷2m =32,则m=________
21 察下面一列数的规律填空:0,3,8,15,24,。

则这列数的第100个数是
________
21.计算:①12+
1
2-3
-(2+3)2 ; ② -12005-(1+0.5)×3-
1÷(-2) 2+(cos60°-
43
)0
22.请将下面的代数式尽可能化简, 再选择一个你喜欢的数(要合适哦!)代入求值:1
1122--+
+-a a a a )(.
23. 先化简,再求值:①()()()2y x y x y x y x +++--,其中x 2=-,1y 2
=.
②(11x y x y +-+)÷22
xy
x y
-,其中x
y
24.有这样一道题:“计算:22
211x x x -+-÷21x x x
-+-x 的值,其中x=2006”,有同学把“x=2006”错抄成“x=2060”,但是他的计算结果也是正确的,你说这是怎么回事?
25. 若m ,n 是方程x 2
x+3=0
26. 已知关于x 的方程
323a x bx --=
的解是x=2,其中a ≠0且b ≠0,求代数式a b
b a
-的值 。

27.有一列数:第一个数为x 1=1,第二个数为x 2=3,第三个数开始依次记为x 3,x 4,…,
x n ;
从第二个数开始,每个数是它相邻两个数和的一半.(如x 2=
13
2
x x +) (1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测x 8=_________.
(3)探索这一列数的规律,猜想第K 个数X k =_______.(K 是大于2的整数)
5)已知:⎩⎨⎧==+25
10xy y x 不解方程组求2
255y x +
6)观察下列算式: 1×4+2=6=2×3 2×5+2=12=3×4 3×6+2=20=4×5 4×7+2=30=5×6 ......
(1)猜想:将你发现的规律,用含有正整数n 的式子表示出来. (2)验证:运用所学知识,证明你的猜想.
44.(2010 四川南充)如图,△ABC 内接于⊙O ,AD ⊥BC ,OE ⊥BC , OE =
1
2
BC . (1)求∠BAC 的度数.
(2)将△ACD 沿AC 折叠为△ACF ,将△ABD 沿AB 折叠为△ABG ,延长FC 和GB 相交于点H .求证:四边形AFHG 是正方形. (3)若BD =6,CD =4,求AD 的长. 47.(2010四川 泸州)(本题满分10分)如图9,在平行四边形ABCD 中,E 为BC 边上的一点,且AE 与DE 分别平分∠BAD 和∠ADC .
(1) 求证:AE ⊥DE ;
(2) 设以AD 为直径的半圆交AB 于F ,连接DF 交AE 于
G ,已知CD =5,AE =8,求FG
AF
的值.
15.(2008黄冈市)(本题满分8分)四川汶川大地震发生后,我市某工厂A 车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x 天,每天生产的帐篷为y 顶.
(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围.
(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W 元,试求出W 与x 之间的函数关系式,并求出该车间捐款给灾区多少钱?。

相关文档
最新文档