宁阳一中高一数学竞赛试题
数学竞赛试题高一及答案
数学竞赛试题高一及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 + 3x + 1的图像关于直线x = -1/2对称,则下列哪个函数的图像也关于直线x = -1/2对称?A. g(x) = x^2 + 2x + 3B. h(x) = -x^2 + 2x - 3C. i(x) = x^2 - 2x + 3D. j(x) = -x^2 - 2x - 3答案:B2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∪B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 3, 4}答案:A3. 若方程x^2 - 5x + 6 = 0的两个根为α和β,则α + β的值为:A. 1B. 2C. 3D. 5答案:C4. 函数y = |x - 2| + 3的图像与x轴交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 已知等差数列的前三项依次为2, 5, 8,则该数列的第五项为________。
答案:112. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,则圆心坐标为________。
答案:(3, 4)3. 函数y = sin(x)在区间[0, π]上的最大值为________。
答案:14. 已知三角形的三边长分别为3, 4, 5,则该三角形的面积为________。
答案:6三、解答题(每题15分,共30分)1. 证明:若一个三角形的两边长分别为a和b,且满足a^2 + b^2 =c^2(c为第三边长),则该三角形为直角三角形。
证明:根据勾股定理,若三角形的两边长为a和b,且满足a^2 + b^2 = c^2,则第三边c所对的角θ为直角,即θ = 90°。
因此,该三角形为直角三角形。
2. 解方程:2x^2 - 3x - 2 = 0。
解:首先,我们计算判别式Δ = b^2 - 4ac = (-3)^2 - 4*2*(-2) = 9 + 16 = 25。
高一数学竞赛选拔试题
姓名_________班级__________
一:选 (log2x)]=log3[log (log3y)]=log5[log (log5z)]=0,那么( )
(A) z<x<y (B) x<y<z (C) y<z<x (D) z<y<x
2.由方程|x-1|+|y-1|=1确定的曲线所围成的图形的面积是( )
(A)1(2)2(C) (D)4
3.设有三个函数,第一个是y=f(x),它的反函数就是第二个函数,而第三个函数的图象与第二个函数的图象关于直线x+y=0对称,那么第三个函数是()
(A)y=-f(x) (B) y=-f(-x) (C) y=-f-1(x) (D) y=-f-1(-x)
8.设函数f(x)满足关系式af(xn)+f(-xn)=bx,其中a2≠1,n为奇数,则f(x)__________,.
9.函数y=(Sinx+1)(Cosx+1)(- )的最小值为________,
10.y=( )lgcosx的单调递减区间是_________;
11.方程Sinx+Cosx=-k在区间[0,π]上有两个不相等实根,则实数k的取值范围是__________;
12.当时a∈_________,,关于x的方程|x|=ax+1无实数根
四:解答题(每小题20分,共60分)
13. .已知:f(x)=( )2(x≥1),f-1(x)为f(x)的反函数,又g(x)= + +2,求f-1(x)定义域,单调区间和g(x)的最小值;
14.已知方程:mx4-(m-3)x2+3m=0有一根小于-2,其余三根大于-1,求m的取值范围,
最新高一数学竞赛试题5
高一数学竞赛试题(1)(注意:共有二卷,时间100分钟, 满分150)第一卷(本卷100分)一、选择题(每小题5分,共50分)1.下列结论中正确的是( )A .{}{}3,2,1,00∈B .{}无理数∈2C .{}φ==0|2x xD .{}{}等腰直角三角形等腰三角形∈2.若集合M={x │x 2-3x+2≥0},N={x|5<x ,R x ∈},则M ∩N 是( )A .}15|{≤<-x x B. }52|{<≤x xC. }5215|{<≤≤<-x x x 或D. φ3.函数2-=x y 的图象是( )4. 一个教室的面积为x m 2, 其窗子的面积为y m 2, (x>y), 如果把y/x 称为这个教室的亮度, 现在教室和窗子同时增加z m 2, 则其亮度将( ) A. 增加 B. 减小 C. 不变 D. 不确定5.奇函数)()0,(,)(),0()(x f x x x f x f 上的则在上的表达式为在-∞+=+∞的 表达式为f(x)=( )A .x x +- B .x x -- C .x x -+- D .x x ---6.函数()22--+=x x x f 是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数7.已知x x 322-≤0,则函数f (x ) = x 2 +x +1 ( )A. 有最小值43, 但无最大值 B. 有最小值43, 有最大值1C. 有最小值1,有最大值419D. 以上选项都不对8. 方程ax 2+2x+1=0至少有一个负实根的充要条件是( )A. 0<a ≤1B. a<1C. 0<a ≤1或a<0D. a ≤19. 已知)2(log ax y a -=在[0,1]上为x 的减函数,则a 的取值范围为() A .(0,1) B .(1,2) C .(0,2) D .),2[+∞ 10.若 02log 2log <<b a ,则( )A. 0<a <b <1B. 0<b <a <1C. a >b >1D. b >a >1二.填空题(每小题5分,共15分)11.数y=)1(log 21--x x 的定义域是____________________12.“若0)2)(1(=+-y x ,则21-==y x 或”的否命题是_________________________________________________13.函数y=1313+-x x 的反函数是______________________________三.解答题(共35分. 需要写出详细求解过程)14.(10分)(1)求函数4236)(22-++-=x x x x f 的定义域;(2)已知函数43)(-=x x f 的值域为[-1,5],求函数)(x f 的定义域。
数学竞赛高一试题及答案
数学竞赛高一试题及答案一、选择题(每题5分,共10分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 4B. 6C. 8D. 102. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共10分)3. 已知\( a \)、\( b \)、\( c \)为三角形的三边长,且\( a^2 + b^2 = c^2 \),这个三角形是________。
4. 将\( 1 \)、\( 2 \)、\( 3 \)三个数字排列成三位数,所有可能的组合数是________。
三、解答题(每题15分,共30分)5. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),\( a_{n+1} = a_n + 2n \),求\( a_5 \)。
6. 一个直角三角形的斜边长为\( 5 \),一条直角边长为\( 3 \),求另一条直角边长。
四、证明题(每题15分,共30分)7. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。
8. 证明:若\( a \)、\( b \)、\( c \)是三角形的三边长,且\( a^2 + b^2 = c^2 \),则这个三角形是直角三角形。
五、综合题(每题15分,共20分)9. 一个工厂计划在一年内生产\( x \)个产品,已知生产每个产品的成本是\( 10 \)元,销售每个产品的价格是\( 20 \)元。
如果工厂希望获得的利润不少于\( 10000 \)元,求\( x \)的最小值。
10. 已知函数\( g(x) = x^3 - 6x^2 + 11x - 6 \),求\( g(x) \)的极值点。
答案:一、选择题1. 答案:B. 6(计算方法:\( f(-1) = 2(-1)^2 - 3(-1) + 1 = 2 + 3 + 1 = 6 \))2. 答案:B. 50π(计算方法:圆面积公式为\( πr^2 \),代入\( r = 5 \))二、填空题3. 答案:直角三角形4. 答案:6(排列组合方法:\( 3 \times 2 \times 1 = 6 \))三、解答题5. 答案:\( a_5 = 1 + 2(1) + 2(2) + 2(3) + 2(4) = 1 + 2 + 4 +6 + 8 = 21 \)6. 答案:根据勾股定理,另一条直角边长为\( 4 \)(计算方法:\( 5^2 - 3^2 = 4^2 \))四、证明题7. 证明:根据等差数列求和公式,\( 1 + 2 + ... + n =\frac{n(n+1)}{2} \),立方后得到\( \left(\frac{n(n+1)}{2}\right)^2 \),展开后即为\( 1^3 + 2^3 + ... + n^3 \)。
高一数学竞赛试题
高一数学竞赛试题一、选择题1、若A={3,4,5},B={1,2},f为集合A到集合B的映射,则这样的映射f的个数为()A、8个B、6个C、9个D、12个2、已知I=R,A={x||x-a|≤2},B={x||x-1|≥3}且A∩B= ,则实数a的取值范围是()A、0≤a≤2B、0<a<2C、0≤a≤1D、0<a<13、已知函数,则它的定义域是()A、[-2,0)∪(0,2]B、C、D、(0,2]4、函数f(x)是定义在R上的奇函数,且在(-∞,0)上递增,n=f(a2+a+1),则m,n的大小关系是()A、m>nB、m<nC、a>0时,m>nD、不能确定5、设a、b、c 分别是方程的实数根,则()A、a>b>cB、b>a>cC、b>c>aD、c>a>b6、已知奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2,且g(b)=a,则f(2)=()A、a2B、2C、b>c>aD、c>a>b6、已知奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2,且g(b)=a,则f(2)=()A、a2B、2C、D、7、数的大小顺序为()A、a>b>cB、a<b<cC、a<c<bD、c<a<b8、如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在100个小伙子中如果某人不亚于其它99人,就称它为棒小伙子,那么,100个小伙子中的棒小伙子最多可能有()A、1个B、2个C、50个D、100个[答案]二、填空题9、如果质数p、q满足关系式3p+5q=31,那么= ___________.10、非空集合则具备这样性质的集合s共有______个.11、若,则a0+a2+a4+a6=______.12、一个学校中有2001个学生,每人都学习法语或西班牙语,其中学习西班牙语的学生数在总人数中所占的比例介于80%与85%之间;学习法语的学生数在总人数中所占的比例介于30%与40%之间,设两门都学的学生数的最小值为m,最大值为M,则M-m的值为_____________.[答案]三、解答题13、设-1≤x≤0,求函数y=2x+2-3×4x的最大值及最小值.[解答]14、已知A={x|x2-7x+10≤0},B={x|x2+ax+b<0},且A∩B≠,A∪B={x||x-3|<4≤2x},写出集合s={x|x=a+b}.[解答]15、设其中a i∈N(i=1,2,3,4,5),a1<a2<a3 <a4<a5,且A∩B={a1,a4},a1+a4=10,又A∪B元素之和为224,求A.[解答]16、函数f(n)是定义在正整数集上,并取非负整数值,且对所有m,n,有f(m+n)-f(m)-f(n)=0或1,以及f(2)=0,f(3)>0,f(9999)=3333,求f(1982).[解答]。
高一数学上册学科竞赛试题
高一第一学期学科竞赛数学试题(时间:120分钟, 满分150分)一、选择题(共10小题,每小题5分,共50分)1、集合{0,1,2,2006}的非空真子集的个数是 ( ) A 16 B 15 C 14 D 132.已知0sin 2005α=,则α是第 象限角. ( ) A,一 B,二 C,三 D,四3、设U=Z ,M={2,}x x k k z =∈,N={21,}x x k k z =±∈,P={41,}x x k k z =±∈,则下列结论不正确的是 ( ) A U C M N = B U C P M = C M N =∅ D N P N =4、函数12xy -=的图象是( )5、函数()log [1,2]xa f x a x =+在上的最大值和最小值之差为21a a -+,则的a 值为 ( )A 2或21 B 2或4 C21或4 D 26.当0,4x π⎛⎫∈ ⎪⎝⎭时,下面四个函数中最大的是 ( ) A. sin(cos )x B. sin(sin )x C. cos(sin )x D. cos(cos )x7.已知四边形ABCD 在映射f :),(y x →)2,1(+-y x 作用下的象集为四边形D C B A ''''。
四边形ABCD 的面积等于6,则四边形D C B A ''''的面积等于 ( ) A .9B .26C .34D .68、的解的个数为方程xx 22= ( )A.0B.1C.2D.39.若F(11xx-+)=x 则下列等式正确的是 ( ). A F(-2-x)=-1-F(x) B F(-x)=11xx+-C F(x -1)=F(x)D F (F (x ))=-x10.函数2()log (321)a f x ax x a =-++-对于任意(0,1]x ∈恒有意义,则实数a 的取值范围( )A 0a >且1a ≠B 12a ≥且1a ≠ C 12a >且1a ≠ D 1a > 二、填空题(共6小题,每小题5分,共30分)11.已知全集U={}R y R x y x ∈∈,),(,集合M={}2),(=+y x y x ,集合N=⎭⎬⎫⎩⎨⎧-=--111),(x y y x ,则集合)(N M C U ⋂= . 12、已知函数(0)()(0)x x f x x x ≥⎧=⎨-<⎩,奇函数()g x 在0x =处有定义,且0x <时,()(1)g x x x =+,则方程()()1f x g x +=的解是 。
高一全国数学竞赛试题
高一全国数学竞赛试题一、选择题(每题5分,共10分)1. 下列哪个数不是有理数?- A. π- B. √2- C. 0.33333...(无限循环小数)- D. -1/32. 如果一个函数f(x)在区间[a, b]上连续,并且在这个区间上f(x)的值域为[c, d],那么下列哪个选项是正确的?- A. f(a) = c- B. f(b) = d- C. f(a) ≤ c- D. f(x)在[a, b]上存在最大值和最小值二、填空题(每题5分,共20分)1. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。
2. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是____。
3. 一个圆的半径为5,求该圆的面积。
三、解答题(每题15分,共30分)1. 证明:对于任意正整数n,n^5 - n 能被30整除。
2. 解不等式:|x + 2| + |x - 3| ≥ 5。
四、综合题(每题25分,共50分)1. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
工厂每月固定成本为F元,每月生产x件产品。
求工厂的月利润函数,并讨论其增减性。
2. 在平面直角坐标系中,已知点A(-1, 2)和点B(4, -1),求直线AB的方程,并求出该直线与x轴和y轴的交点坐标。
五、附加题(10分)1. 一个数列{a_n}的前n项和为S_n,已知a_1 = 1,且对于所有n > 1,有a_n = 1/2(a_{n-1} + S_{n-1})。
求证:数列{a_n}是等差数列。
结束语数学竞赛不仅是一场智力的较量,更是一次思维的锻炼。
希望同学们能够通过练习这些题目,提高自己的数学素养和解题能力。
预祝大家在数学竞赛中取得优异的成绩!。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若a,b,c是三角形的三边长,且满足a² + b² = c²,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 函数f(x) = 2x³ - 3x² + 1在区间[-1,2]上的最大值是:A. 1B. 7C. 9D. 无法确定3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的元素个数:A. 3B. 4C. 5D. 64. 等差数列的首项a₁ = 3,公差d = 2,第10项a₁₀的值是:A. 23B. 25C. 27D. 295. 圆的方程为(x - 2)² + (y - 3)² = 9,圆心到直线x + 2y - 7= 0的距离是:A. 2B. 3C. 4D. 56. 已知函数y = |x| + 1的图像与直线y = kx平行,那么k的值是:A. 1B. -1C. 0D. 无法确定二、填空题(每题4分,共20分)7. 若二次函数y = ax² + bx + c的顶点坐标为(-1, -4),则a =_______。
8. 已知等比数列的首项为2,公比为3,第5项的值为 _______。
9. 一个正六边形的内角和为 _______。
10. 若直线y = 2x + b与曲线y = x² - 3x相切,则b = _______。
11. 圆的方程为x² + y² = 25,圆上一点P(4,3)到圆心的距离是_______。
三、解答题(每题25分,共50分)12. 已知直线l₁:2x - 3y + 6 = 0与直线l₂:x + y - 2 = 0相交于点M,求点M的坐标。
13. 已知函数f(x) = x³ - 3x + 2,求证:对于任意的x > 0,都有f(x) > x。
奥赛精选试题及答案高一
奥赛精选试题及答案高一一、选择题(每题3分,共30分)1. 已知函数f(x)=x^2-2x+1,求f(2)的值。
A. 1B. 3C. -1D. 5答案:B2. 一个等差数列的前三项分别是1, 4, 7,求该数列的第五项。
A. 13B. 10C. 12D. 11答案:A3. 已知三角形ABC的三个内角A、B、C满足A+B=2C,求角C的大小。
A. 30°B. 45°C. 60°D. 90°答案:C4. 一个圆的半径是5,求该圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B5. 已知函数f(x)=2x+3,求f(-1)的值。
A. -1B. 1C. -5D. 5答案:C6. 一个等比数列的前三项分别是2, 6, 18,求该数列的公比。
A. 2B. 3C. 4D. 5答案:B7. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
A. 5B. 7C. √7D. √13答案:A8. 一个圆的直径是10,求该圆的周长。
A. 10πB. 20πC. 30πD. 40π答案:B9. 已知函数f(x)=x^3-3x^2+2,求f(2)的值。
A. -2B. 0C. 2D. 4答案:A10. 一个等差数列的前三项分别是5, 9, 13,求该数列的公差。
A. 2B. 3C. 4D. 5答案:B二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(1)的值。
_______答案:012. 一个等差数列的前三项分别是3, 7, 11,求该数列的第五项。
________答案:1513. 已知三角形ABC的三个内角A、B、C满足A=2B,B=2C,求角A的大小。
________答案:90°14. 一个圆的半径是8,求该圆的面积。
________答案:64π15. 已知函数f(x)=x^2-6x+8,求f(3)的值。
________答案:1三、解答题(每题10分,共50分)16. 已知函数f(x)=ax^2+bx+c,其中a、b、c为常数,且f(1)=2,f(-1)=4,f(0)=1,求a、b、c的值。
高一数学竞赛题
.高一数学竞赛试题班级 姓名一、选择题1、集合A+{x|x=2K,k ∈z},B={x|x=2k+1 k ∈z} C{x|x=4k+1 k ∈z}又a ∈A ,b ∈B 则有( )A 、a+b ∈AB 、a+b ∈BC 、a+b ∈CD 、a+b 不属于A 、B 、C 中任何一个 —1)(x —3)>—22、若x 是不等式组 的解,则点P(x+2,x —2)在( ) 1365)2(2-+<+x x A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 3、化简)21)(21)(21)(21)(21(214181161321-----+++++的值为( ) A 、)21(21321-- B 、1321)21(21--- C 、1321)21(--- D 、32121--4、若f(x)的值域是[21,3]则)(1)()(x f x f x F +=的值域是( ) A 、(2,310) B 、[2,25] C 、[310,35] D 、[2,+∞] 5、y=f(x)是偶函数又x<0时f(x)是增函数,且x 1<0,x 2>0时|x 1|<|x 2|则( )A 、f(—x 1)<f(—x 2)B 、f(—x 1)=f(—x 2)C 、f(-x 1)>f(—x 2)D 、f(—x 1)与f(—x 2)大小关系不能确定6、函数y=f(x)和y=ϕ(x)互为反函数,则y=f(-x)的反函数是( )A 、ϕ(x )B 、y= —ϕ(x)C 、y=ϕ(—x)D 、y= —ϕ(—x)7、已知0<a<1,b>1且ab>1则下列各不等式中成立的是( )A 、b b b a a b 1log log 1log <<B 、bb b b a a 1log 1log log <<C 、b b b a b a 1log 1log log <<D 、b bb a a b log 1log 1log << 8、已知x ≠y 且两个数列x 、a 1、a 2…a m 、y, x 、b 1、b 2…b n 、y 各自都成等差数列,则1212b b a a --等于( )A 、n mB 、11++n mC 、m nD 、11++m n 9、S n =1-2+3-4+…+(-1)n+1n ,则S 100+S 200+S 301=( )A 、1B 、—1C 、51D 、5210、ac b =是a 、b 、c 成等比数列的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分,也不必要条件二、填空题1、集合A={x|x=3n+2,n ∈N} B={y|y=4n+1 n ∈N},则在A ∪B 中,100以下的元素个数是 个.2、32)1|23(|--=x y 的定义域是 . 3、31)93186293142842421(n n n n n n ⋅⋅++⋅⋅+⋅⋅⋅⋅++⋅⋅+⋅⋅ = . 4、数列{a n }这项公式为:1)2(1)2(22-+=n n a n 则前n 项和S n = . 5、已知数列前五项为:6、9、14、21、30则它的通项公式为a n = .三、解答题1、已知A={a 1,a 2,a 3,a 4,a 5},B={a 12,a 22,a 32,a 42,a 52}, a i ∈N (i=1,2,3,4,5)设a 1<a 2<a 3<a 4且A ∩B={a 1,a 4},a 1+a 4=10,又A ∪B 元素之和为224,求:(1)a 1、a 4 (2)A2、设0<a<1,)1()1()(log 22--=a x x a x f a (1)求f(x);(2)求证f(x)是奇函数;(3)求证f(x)在R 上的增函数;3、设a n 是正数组成的数列;其前n 项和为S n ,且对所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项,求数列{a n }的通项公式。
高一数学竞赛试题
高一数学竞赛试题一、单选题1.若集合A ={-2,-1,0,1},B ={x |x 2+2x <0},则A ∩B =( )A .{-1}B .{-1,0}C .{-2,-1,0}D .{-1,0,1} 2.对于任意0a >且1a ≠,函数()log (1)3a f x x =-+的图象必经过点( ) A .(4,2) B .(2,4) C .(2,3) D .(3,2) 3.在ABC 中、角A ,B 均为锐角,cos sin A B >,则C ∠是( )A .直角B .锐角C .钝角D .不确定4.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 5.下列说法正确的是( )A .若0a b >>,则b b m a a m+<+ B .若a b >,则22ac bc >C .若0a b >>,则11a b b a +>+ D .若,R a b ∈,则2a b +6.函数2||2x y x e =-在[]–2,2的图象大致为( )A .B .C .D . 7.已知0.22a -=,ln3b =,0.2log 3c =,则( )A .b c a <<B .a c b <<C .c a b <<D .c b a << 8.若关于x 的方程(||)1x x a +=有三个不同的实数解,则实数a 的可能取值( ) A .-5B .-2C .2D .3二、多选题9.下列命题正确的是( )A .长度等于半径的弦所对的圆心角为1弧度B .若tan α≥0,则k π≤α<π2 +k π(k ∈Z )C .若角α的终边过点P (3k ,4k )(k ≠0),则sin α=45D .当2k π<α<π4+2k π(k ∈Z )时,sin α<cos α 10.已知函数)123f x =,则( ) A .()17f = B .()225f x x x =+C .()f x 的最小值为258- D .()f x 的图象与x 轴只有1个交点 11.命题“x R ∀∈,则2x <”的一个必要不充分条件是( )A .1x <B .3x <C .3x >D .5x ≤12.设a >0,b >0,a +b =1,则下列说法正确的是( )A .41a b +的最小值为9B .222a b +的最小值为23CD三、填空题 13.函数()f x =______.14. 3log 5lg5lg321-+=____________ 15.223(8)--⨯ __. 16.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.四、解答题17.已知集合{}1A x x =≥,集合{}33,B x a x a a R =-≤≤+∈.(1)当4a =时,求A B ;(2)若B A ⊆,求实数a 的取值范围.18.已知α为第三象限角,且3sin cos tan()22()sin tan(2)2f ππαααπαπαπα⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫+- ⎪⎝⎭.(1)化简()f α;(2)若()f α=,求cos()πα+的值.19.已知函数2()21f x x ax =+-,[1,1]x ∈-.(1)若12a =,求函数()f x 的最值; (2)若a ∈R ,记函数()f x 的最小值为()g a ,求()g a 关于a 的函数解析式.20.已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品x 千件(025x <≤)并全部销售完,每千件的销售收入为()R x (单位:万元),且21108(010),3()17557(1025).x x R x x x x ⎧-<≤⎪⎪=⎨⎪-++<≤⎪⎩(1)写出年利润()f x (单位:万元)关于年产量x (单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入-年总成本)21.已知函数()y f x =的图像与()log (0a g x x a =>,且1)a ≠的图像关于x 轴对称,且()g x 的图像过点(9,2).(1)求函数()f x 的解析式;(2)若(31)(5)f x f x ->-+成立,求实数x 的取值范围.22.已知函数f(x)=log a(2+3x)-log a(2-3x)(a>0,a≠1).(1)求函数f(x)的定义域;(2)判断f(x)的奇偶性,并证明;(3)当0<a<1时,求关于x的不等式f(x)≥0的解集.。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 3.1415926B. πC. √2D. 0.33333(无限循环小数)答案:B2. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。
A. -15B. -7C. -3D. 1答案:B3. 一个圆的半径为r,圆心到直线的距离为d,如果d < r,那么该直线与圆的位置关系是:A. 相切B. 相交C. 相离D. 内含答案:B4. 如果一个等差数列的前三项和为9,第四项为5,求该数列的首项a1。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共12分)5. 一个长方体的长、宽、高分别是a、b、c,其体积的公式是______。
答案:abc6. 若sinθ = 1/3,且θ在第一象限,求cosθ的值。
答案:2√2/37. 已知等比数列的前n项和公式为S_n = a1(1 - r^n) / (1 - r),其中a1是首项,r是公比。
如果S_5 = 31,a1 = 1,求r的值。
答案:2三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 能被30整除。
证明:由题意,我们需要证明n^5 - n 能被30整除。
首先,我们知道任何正整数n都能被1、2、3、5中的至少一个整除。
设n = 2a + b,其中a和b是整数,且b属于{0, 1, 2, 3, 4}。
则n^5 - n = (2a + b)^5 - (2a + b) = 32a^5 + 20a^4b + 5a^3b^2 + a^2b^3 + 2ab^4 - 2a - b。
可以看到,除了最后两项,其他项都能被2整除。
对于最后两项,我们有2a - b = 2(a - b/2),当b为偶数时,2a - b能被2整除;当b为奇数时,a - b/2为整数,所以2a - b也能被2整除。
同理,b - 1能被3整除,因为b属于{0, 1, 2, 3, 4}。
高一第一学期数学竞赛试题
高一第一学期数学竞赛决赛试题命题人:景建文 审核人:(本次竞赛时间120分钟,满分150分)一、选择题(每题5分,共50分)1、设全集{1,2,3,4,5}U =,{}1,2U A C B ⋂=,则集合U C A B ⋃的子集个数为( )A. 3B. 4C. 7D. 82、对函数()x f x e =作)(t h x =的代换,则不改变函数)(x f 的值域的是( ) A .t t h 10)(= B.2)(t t h = C .tt h 1)(= D .t t h 2log )(= 3、已知集合{}{}23,log 4,,x M N x y ==,且{}2MN =,函数:f M N →满足:对任意的x M ∈,都有()x f x +为奇数,满足条件的函数的个数为( ) A .0B .1C .2D .44、已知函数2()f x ax x c =--,且()0f x >的解集为(-2,1)则函数()y f x =-的图象为( )5、已知()|log |a f x x =,其中01a <<,则下列不等式成立的是( )A .11()(2)()43f f f >>B .11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)(34f f f >>6、如图,一个平面图形的斜二测直观图是边长为1的正方形,则这个平面图形是( )A.周长为4的菱形B.周长为6的平行四边形C.周长为2+的平行四边形D.周长为8的平行四边形 7、若一系列函数的解析式相同,值域相同,但定义域不同,那么函数解析式为221y x =-,值域为{1,7}的“孪生函数”共有 ( )A .10个B .9个C .8个D .4个8、函数()f x =)A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数9、当10<<a 时,aa aaa a ,,的大小关系是( )A .a a aaa a>>B .a aaaa a >>C .aa a a a a>> D .aa aa a a >>10、已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能为( )A .1 B.12 D.1213、钟表现在是10时整,那么在 时 分 秒时,分针与时针首次出现重合. 14、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于________2cm .15、设集合A=10,2⎡⎫⎪⎢⎣⎭, B=1,12⎡⎤⎢⎥⎣⎦, 函数f(x)=()1,221,,x x A x x B ⎧+∈⎪⎨⎪-∈⎩若x 0A ∈, 且 f [ f (x 0)]A ∈,则x 0的取值范围是 .三、解答题(共75分)(写出必要的文字说明,作出相应的图示)16、(12分)已知函数31(){|0}{|4},1x f x y y y y x -=≤⋃≥-的值域是 求()f x 的定义域。
高一数学竞赛试题及答案
高一数学竞赛试题注意:本试卷均为解答题. 解答应写出文字说明、证明过程或演算步骤.总分150分,考试时间120分钟.1.(本小题满分15分)设集合{}()(){}222320,2150,A x x x B x x a x a a R =-+==+++-=∈, (1)若{}2AB =求a 的值; (2)若A B A =,求a 的取值范围;(3)若(),U U R A C B A ==,求a 的取值范围.2.(本小题满分15分)设},)]([|{},)(|{x x f f x N x x f x M ====(1)求证:;N M ⊆(2))(x f 为单调函数时,是否有N M =?请说明理由.已知函数444)cos (sin )cos (sin 2)(x x m x x x f +++=在]2,0[π∈x 有最大值5,求实数m 的值.已知函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x)且在闭区间[0,7]上,只有f(1)=f(3)=0,(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 011, 2 011]上根的个数,并证明你的结论.已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1)如果4221<<<x x ,设函数)(x f 的对称轴为0x x =,求证:10->x ;(2)如果21<x ,212=-x x ,求b 的取值范围.如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1。
(1) 证明:BC DC ⊥1;(2) 求二面角11C BD A --的大小。
AB C D 1A 1B 1C7.(本小题满分15分)在平面直角坐标系xOy中,设二次函数f(x)=x2+2x+b(x ∈R)的图象与两坐标轴有三个交点.经过三点的圆记为C.(1)求实数b的取值范围;(2)求圆C的方程;(3)问圆C是否经过定点(其坐标与b无关)?请证明你的结论.8.(本小题满分20分) 设f (x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x 1,x 2∈[0,21]都有).()()(2121x f x f x x f ⋅=+且f (1)=a >0. (Ⅰ));41(),21(f f 求 (Ⅱ)证明)(x f 是周期函数;(Ⅲ)记),212(nn f a n +=求).(ln lim n n a ∞→9.(本小题满分20分)设)(x f 是R 上的奇函数,且当0>x 时,)10lg()(2+-=ax x x f ,R a ∈.(1)若5lg )1(=f ,求)(x f 的解析式;(2)若0=a ,不等式0)14()2(>+++⋅k f k f x x 恒成立,求实数k 的取值范围;(3)若)(x f 的值域为R ,求a 的取值范围.高一数学竞赛试题参考答案1、解:{}2,1=A(1)∵{}2A B = ∴B ∈2即,0)5(2)12222=-+⋅+⋅+a a (,解得13-=-=a a 或① 当3-=a 时, {}{}2044|2==+-=x x x B② 当1-=a 时, {}{}2,204|2-==-=x x B综上{}3,1--∈a(2)∵A B A =∴A B ⊆① 当φ=B 时,则该一元二次方程无解,即△<0,∴()[]0)5(41222<-⋅-+a a ,即3-<a ② 当φ≠B 时,则该一元二次方程有解,即△≥0,即3-≥a1. 当3-=a 时,{}2=B2. 当3->a 时,该一元二次方程有两个不同实数根1和2∴ )1(221+-=+a ,即25-=a 5212-=⋅a ,即7±=a (舍) ,∴综上(]3,-∞-∈a(3)∵(),U U R A C B A == ∴φ=B A① 当△<0时,即3-<a ,φ=B ,满足要求② 当△=0时,即3-=a ,{}2=B ,φ≠B A ,舍③ 当△>0时,即3->a ,所以只需B B ∉∉21且将1代入方程中得31±-=a ;将2代入方程中得13-=-=a a 或所以3113±-≠-≠-≠a a a 和、综上,a 的取值范围为()()()()()+∞+-+---------∞-,3131,11,3131,33 ,2、3、解:422222)cos (sin cos sin 4)cos (sin 2)(x x m x x x x x f ++-+=42)cos (sin )cos sin 2(2x x m x x ++-= 令]2,1[)4sin(2cos sin ∈+=+=πx x x t , 则1cos sin 22-=t x x ,从而12)1()1(2)(24422++-=+--=t t m mt t x f令]2,1[2∈=t u ,由题意知12)1()(2++-=u u m u g 在]2,1[∈u 有最大值5. 当01=-m 时,12)(+=u u g 在2=u 时有最大值5,故1=m 符合条件; 当01>-m 时,5122)2()(max =+⨯>≥g u g ,矛盾!当01<-m 时,512)(≤+<u u g ,矛盾!综上所述,所求的实数1=m .4、解 (1)若y =f (x )为偶函数,则f (-x )=f (2-(x +2))=f (2+(x +2))=f (4+x )=f (x ),∴f (7)=f (3)=0,这与f (x )在闭区间[0,7]上,证明:(1)若M φ=,显然有;M N ⊆若M φ≠,则存在0x M ∈,满足()00f x x =, 所以()()000f f x f x x ==⎡⎤⎣⎦,故0x N ∈,所以;M N ⊆ (2).M N =用反证法证明 假设M N ≠,由于M N ⊆,必存在1,x N ∈ 但1x M ∉,因此()11f x x ≠,① 若()11f x x >,由于()f x 为单调增函数, 所以()()11f f x f x >⎡⎤⎣⎦,即()11x f x >,矛盾; ②若()11f x x <,由于()f x 为单调增函数, 所以()()11f f x f x <⎡⎤⎣⎦,即()11x f x <,矛盾。
高一数学竞赛试题及答案
高一数学竞赛试题及答案题一:某数列的前n项和为Sn,已知Sn=(2n+1)(n+2),求该数列的通项表达式。
解答一:设该数列的通项为an,则该数列的前n项和可表示为Sn=∑an。
根据已知得,Sn=(2n+1)(n+2)。
我们可以尝试寻找数列项an之间的关系,进而求得通项表达式。
由于Sn是前n项和,所以我们可以利用数学归纳法得到两个基础式子:当n=1时,S1=∑a1,代入已知条件得到S1=(3)(2)=6;当n=2时,S2=∑(a1+a2),代入已知条件得到S2=(5)(4)=20。
通过观察可以发现,S2=2×S1+8,这是一个重要的线索。
我们可以推测,Sn可能与Sn-1之间存在一种类似的关系,即Sn=2×Sn-1+C,其中C为常数。
接下来,我们来进行数学归纳法的假设和证明:假设Sn=2×Sn-1+C成立,即前n项和Sn与前n-1项和Sn-1之间存在关系。
则我们可以推导得到Sn+1=2×Sn+C',其中C'为常数。
根据已知条件进行计算:Sn+1=(2(n+1)+1)(n+1+2)=(2n+3)(n+3)=2n²+9n+9;由假设得,Sn=2×Sn-1+C,带入Sn+1的计算结果,得到Sn+1=2(2×Sn-1+C)+C'=4×Sn-1+3C+C',其中3C+C'为新的常数。
比较Sn+1和Sn的关系,可得到4×Sn-1+3C+C'=2n²+9n+9,由此可以推断,3C+C'=9,即C'=9-3C。
综上所述,我们已经推导出两个重要的关系式:Sn=2×Sn-1+CC'=9-3C我们再通过计算已知条件的S1和S2进行迭代计算,得到:C=6,C'=9-3(6)=-9因此,该数列的通项表达式为an=2×an-1+6,其中a1=6。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. √3B. 0.33333(无限循环)C. πD. 1/32. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(-1) 的值。
A. 4B. 6C. 8D. 103. 一个圆的半径为 5,求其面积。
A. 25πB. 50πC. 75πD. 100π4. 若 a + b + c = 6,且 a^2 + b^2 + c^2 = 14,求 ab + bc + ca 的值。
A. 2B. 4C. 6D. 8二、填空题(每题5分,共20分)5. 已知等差数列的首项为 2,公差为 3,求第 10 项的值是__________。
6. 已知等比数列的首项为 4,公比为 2,求前 5 项的和是__________。
7. 若函数 g(x) = x^3 - 2x^2 + 3x - 4 的导数是 g'(x),则 g'(1) 的值是 __________。
8. 一个长方体的长、宽、高分别是 3、4、5,求其对角线的长度(保留根号)是 __________。
三、解答题(每题15分,共60分)9. 证明:对于任意正整数 n,都有 1^2 + 1/2^2 + 1/3^2 + ... +1/n^2 < 2。
10. 解不等式:|x - 1| + |x - 3| ≥ 5。
11. 已知函数 h(x) = x^3 - 6x^2 + 11x - 6,求其极值点。
12. 已知一个三角形的三个顶点分别为 A(1, 2),B(-1, -1),C(3, 4),求其面积。
答案一、选择题1. 正确答案:C(π 是无理数)2. 正确答案:A(f(-1) = 2(-1)^2 - 3(-1) + 1 = 4)3. 正确答案:B(面积= πr^2 = 25π)4. 正确答案:B(根据柯西-施瓦茨不等式)二、填空题5. 第 10 项的值是 2 + 9*(10-1) = 296. 前 5 项的和是 4 + 8 + 16 + 32 + 64 = 1267. g'(x) = 3x^2 - 4x + 3,g'(1) = 3 - 4 + 3 = 28. 对角线的长度是√(3^2 + 4^2 + 5^2) = √50三、解答题9. 证明:根据调和级数的性质,我们知道 1/n^2 随着 n 的增大而减小,且 1/n^2 < 1/(n-1)^2,因此可以构造不等式 1^2 + 1/2^2 +1/3^2 + ... + 1/n^2 < 1 + 1/(1*2) + 1/(2*3) + ... + 1/((n-1)*n) = 1 + 1 - 1/n < 2。
高一数学竞赛试题及答案
高一数学竞赛试题及答案一、选择题(每题4分,共20分)1. 若一个等差数列的首项为3,公差为5,那么它的第n项可以表示为:A. 3 + 5(n-1)B. 3 + 5nC. 5 + 3(n-1)D. 5 + 3n2. 下列哪个分数可以化简为1/2?A. 3/6B. 5/10C. 7/14D. 9/183. 已知函数f(x) = x^2 - 6x + 9,求f(x)的最小值。
A. -36B. -9C. 0D. 94. 若a, b, c是等比数列,且a + b + c = 0,那么b^2的值是:A. a^2 + c^2B. -a^2 - c^2C. acD. -ac5. 一个圆的半径是5cm,求这个圆的面积(圆周率取3.14)。
A. 78.5平方厘米B. 157平方厘米C. 200平方厘米D. 314平方厘米二、填空题(每题5分,共20分)6. 一个等比数列的前三项分别是2, 6, 18,那么它的第四项是_______。
7. 函数g(x) = |2x - 3| + |x + 1|的最小值是_______。
8. 已知一个直角三角形的两条直角边长分别为3cm和4cm,那么它的斜边长(根据勾股定理)是_______。
9. 一个圆的周长是12π,那么这个圆的直径是_______。
三、解答题(每题10分,共60分)10. 已知等差数列的前n项和为S_n = n^2 + 2n,求这个等差数列的前三项。
11. 求解方程:\(\frac{1}{x-1} + \frac{2}{x-2} = 3\)。
12. 一个圆与直线y = 2x + 3相交于点P,圆心坐标为(1, 0),且半径为2。
求点P的坐标。
13. 证明:若a, b, c, d是正整数,且满足a^2 + b^2 = c^2 + d^2,则a + b = c + d。
14. 一个等差数列的前10项和为110,且第10项是第2项的3倍,求这个等差数列的公差和首项。
高一数学竞赛答案一、选择题答案1. A2. D3. D4. B5. B二、填空题答案6. 547. 28. 59. 6三、解答题答案10. 首项为2,公差为4,前三项为2,6,10。
山东省泰安市宁阳一中2020-2021学年高一数学下学期第一次考试试题
故
b (2,4) ; ································
·····································
············6 分
(2) a 12 (2)2 5 ,
(a b) (2a b) 2a2 a b b2 2a2 | a | | b | cos 2 b 2 10 3
D. 2
3
+μA→C,则λμ的值
A.-3 B.3 C.2 D.-2
5.已知向量 a 1, 2 ,则与 a 平行的单位向量的坐标为( )
A.
2
5 5
,
5 5
B.
2
5 5
,
5 5
或
2
5 5
,
5 5
C.
5 5
,
2
5 5
D.
5 5
,
2
5 5
或
5 5
,
2
5 5
6.△ABC 的内角 A、B、C 的对边分别为 a、b、c,若△ABC 的面积为 a2 b2 c2 ,则C
山东省泰安市宁阳一中 2020-2021 学年高一数学下学期第一次考试试题
山东省泰安市宁阳一中 2020-2021 学年高一数学下学期第
一次考试试题
(时间:120 分钟 满分:150 分)
一、单项选择题(本大题共 8 小题,每小题 5 分,共 40 分)
1.已知 i 为虚数单位,则 z=1-i2i在复平面内对应的点位于(
(Ⅱ)由余弦定理 cos A b2 c2 a2 1 , a 2 5 ,
小岛 A、小岛 C 相距都为 5 n mile,与小岛 D 相距为 3 5 n mile.小岛 A 对小岛 B 与 D 的视角为钝角,且 sin A=35.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东宁阳一中高一上学期数学竞赛检测试题
命题人 :王峰
2012年12月13日晚上19:10~21:10
姓名_________ 班级__________分数 _______
一、 填空题(每小题3分,共30分)
1.集合{|,}M
x y x y R ==∈,{|,}N y y x y R ==∈,则集合M N = ________
2.若(1,1)1234f =,(,),(,1)3f x y k f x y k =+=-,则(1,2012)f =________
3.用{}m in ,,a b c 表示,,a b c 三个数中的最小值,设
{}()min 2,2,10(0),()x
f x x x x f x =+-≥则的最大值为________ 4.已知)(x f 是定义在R 上的偶函数,若)(x
g 是奇函数,),1()(-=x f x g
,2012)1(=g 则)2013(f 的值等于________ 5.若,,a b c 是三个互不相等的实数,且满足关系式
222221614,45b c a a bc a a +=++=--,则a 的取值范围是______
6.若实数、x y 满足
20132013(1)2013(1)10,(1)
2013(1)1,-+-+=-+-=x x y y 则___
x y += 7.使不等式2log 0m x x -<在1(0,)2上恒成立的m 的取值范围是________
8.正六棱锥底面边长为a ,32a ,则侧棱与底面所成的角为__
9.代数式54222222+++++y x y xy x 的最小值为________
10.集合B A ,的并集},,{321a a a B A = ,当B A ≠时,),(B A 与),(A B 视为不同的对,则这样的),(B A 对的个数为_________
二、解答题(每小题15分,共90分)
11.对集合{1,2,,2013}
A= 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减
相继各数,如}9,6,4,2,1{的“交替和”是6
-
+
-,集合}
+
6
1
9=
2
4
,7{的“交
10
替和”是3
10=
-,集合}5{的“交替和”是5等等。
试求A的所有“交替
7
和”的总和.
1.
12.设b
=2
(,求证:|)3(
+
)
f+
x
ax
x
f
f中至少有一个不小于
|f
||,
||,
)2(
)1(
2
13.是否存在实数a 、b 、c ,使函数c bx ax x f ++=2)(的图像过点)0,1(-M ,且满足条件:对一切R x ∈,都有)1(21)(2x x f x +≤≤
?证明你的结论。
14.已知定义在R 上的单调函数)(x f 满足)()()(y f x f y x f +=+且.2)1(=f
(1)求证:)(x f 为奇函数;
(2)当2>t 时,不等式0
)2log (log )log (2222<--+t t f t k f 恒成立,求实数k 的取值范围。
15. 4个平面可以将空间最多划分为多少个区域?证明之.
16.在每个边长均为1的正三棱锥内有13个点,其中任意三点不共线,任意四点不共面,试证:其中一定有一个以这些点中的四个点为顶点的三棱锥,其体积.482 V。